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Abstract

We study two natural extensions of Constraint Satisfaction Problems (CSPs). Balance-Max-
CSP requires that in any feasible assignment each element in the domain is used an equal number
of times. An instance of Hard-Max-CSP consists of soft constraints and hard constraints, and
the goal is to maximize the weight of satisfied soft constraints while satisfying all the hard
constraints. These two extensions contain many fundamental problems not captured by CSPs,
and challenge traditional theories about CSPs in a more general framework.

Max-2-SAT and Max-Horn-SAT are the only two nontrivial classes of Boolean CSPs that
admit a robust satisfibiality algorithm, i.e., an algorithm that finds an assignment satisfying
at least (1 − g(ε)) fraction of constraints given a (1 − ε)-satisfiable instance, where g(ε) → 0
as ε → 0, and g(0) = 0. We prove the inapproximability of these problems with balance or
hard constraints, showing that each variant changes the nature of the problems significantly
(in different ways). For instance, deciding whether an instance of 2-SAT admits a balanced
assignment is NP-hard, and for Max-2-SAT with hard constraints, it is hard to find a constant-
factor approximation even on (1 − ε)-satisfiable instances (in particular, the version with hard
constraints does not admit a robust satisfiability algorithm).

We also study hardness results for a certain CSP over larger domain capturing ordering
constraints: we show that hard constraints rule out constant-factor approximation algorithms.
All our hardness results are almost optimal — they completely rule out algorithms with certain
properties, or can be matched by simple extensions to existing algorithms.

1 Introduction

The study of the complexity of Constraint Satisfaction Problems (CSPs) has seen much progress,
with beautiful well-developed theories explaining when they admit efficient satisfiability and ap-
proximation algorithms. A CSP is specified by a finite set Π of relations (relations can have different
arities) over some finite domain Q. An instance of a Max-CSP(Π) consists of a set of variables
X = {x1, ..., xn} and a collection of constraints C = {C1, ..., Cm} each of which is a relation
from Π applied to some tuple of variables from X. Constraints are weighted and we assume that
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∑
i wt(Ci) = 1. For any assignment σ : X → Q, val(σ) is the total weight of satisfied constraints

by σ, and our goal is to find σ that maximizes val(σ). We consider two natural extensions of
Max-CSP(Π).

Definition 1.1 (CSP with balance constraints). An instance of Balance-Max-CSP(Π) over domain
Q, I = (X,C) consists of set of variables X and a collection of constraints C, as in Max-CSP(Π).
An assignment σ : X → Q is called balanced if for each q ∈ Q, |σ−1(q)| = n

|Q| . Define valB(σ) =

val(σ) if σ is balanced, and valB(σ) = 0 otherwise. Let optB(I) = maxσ valB(σ). Our goal is to
find σ that maximizes valB(σ).

The notion of Balance-Max-CSP is interesting both practically and theoretically. Partitioning
a set of objects into equal-sized subsets with desired properties is a basic scheme used in Divide
and Conquer algorithm. Balance-Max-Cut, also known as Max-Bisection, is one of the most well-
known example of Balance-Max-CSP. Theoretically, the balance constraint is one of the most simple
non-local constraints where the current algorithmic and hardness results on ordinary CSPs do not
work.

Definition 1.2 (CSP with hard constraints). An instance of Hard-Max-CSP(Π) I = (X,S,H)
consists of set of variables X and a two collections of constraints S = {S1, ..., SmS} and H =
{H1, ...,HmH} (S stands for soft constraints and H stands for hard constraints, and only soft
constraints are weighted). An assignment σ : X → Q is feasible if it satisfies all constraints in H.
Let valH(σ) be the total weight of satisfied constraints in S if σ is feasible, and 0 otherwise. Let
optH(I) = maxσ valH(σ). Our goal is to find σ that maximizes valH(σ).

Hard-Max-CSP contains every Max-CSP by definition, and also several additional fundamental
combinatorial optimization problems, such as (Hypergraph) Independent Set, Multicut, Graph-k-
Coloring, and many other covering/packing problems. While every assignment is feasible in ordi-
nary Max-CSP, in Hard-Max-CSP only certain assignments which satisfy all the hard constraints
are considered as feasible, giving a more general framework to study combinatorial optimization
problems.

By the seminal work of Schaefer [29], there are only three nontrivial classes of Boolean CSPs for
which satisfiability can be checked in polynomial time: 2-SAT, Horn-SAT, and LIN-mod-2.1 Even
among them, there is a stark difference in terms of approximability. Hastad [20] showed that for
Max-LIN-mod-2, it is NP-hard to find an assignment that satisfies (12 + ε) fraction of constraints
even when there is an assignment that satisfies (1 − ε) fraction of constraints, for any ε > 0. On
the other hand, a series of works [14, 32, 7] showed that Max-2-SAT and Max-Horn-SAT admit a
robust algorithm, which outputs an assignment satisfying at least (1− g(ε)) fraction of constraints
given a (1 − ε)-satisfiable instance, where g(ε) → 0 as ε → 0, and g(0) = 0. The exact behavior
of the function g() for Max-2-SAT and Max-Horn-3SAT has been pinned down under the Unique
Games conjecture [23, 18]. Generalizing this, all Boolean CSPs were classified with respect to how
well they can be robustly approximated (i.e., the behavior of the function g(·)) in [9]. From our
perspective, it is natural to investigate the effects of balance and hard constraints applied to the

1An instance of Horn-SAT is a set of Horn clauses, each with at most one unnegated literal. An instance of
LIN-mod-2 is linear equations mod 2. Dual-Horn-SAT in which clauses have at most one negated literal also admits
an efficient satisfability algorithm, but as it obviously has the same properties as Horn-SAT, we focus on Horn-SAT
in this paper.

2



most tractable classes of Boolean CSPs (Max-2-SAT, Max-Horn-SAT, Max-Cut) and study how
hard each variant becomes. This is the task we undertake in this paper.

Between balance and hard constraints, which one makes the original problem harder? They are
not directly comparable since each variant inherits different characteristics of the original problem.
For Balance-Max-SAT which includes both Balance-Max-2SAT and Balance-Max-Horn-SAT, it is
easy to find σ with valB(σ) ≥ 0.5 − choose an arbitrary assignment with the same number of 0’s
and 1’s, and try it and its complement. Therefore, Balance-Max-SAT admits a constant-factor
approximation algorithm, but given an instance that admits a balanced satisfying assignment, even
for 2-SAT and Horn-SAT, it is not clear how to find such an assignment.

The situation is exactly opposite in the case of Hard-Max-2-SAT or Hard-Max-Horn-SAT. Given
an instance I that admits a satisfying (both hard and soft constraints) assignment (i.e., optH(I) =
1), well-known algorithms for 2-SAT or Horn-SAT will find such an assignment. However, for
any ε > 0, when optH(I) = 1 − ε, it is not clear how to find σ such that valH(σ) ≥ c for some
absolute constant c, or even valH(σ) ≥ ε. Therefore, adding hard constraints preserves the fact
that satisfiability can be checked in polynomial time, but does not preserve a simple constant-factor
approximation algorithm.

Though each of balance and hard constraints does not preserve one of the important characteris-
tics of the original CSP in a simple way, there might be a hope that a more sophisticated algorithmic
idea gives an efficient algorithm deciding satisfiability for Balance-Max-CSP, a constant-factor ap-
proximation algorithm for Hard-Max-CSP, or a robust algorithm for both of them.

1.1 Our Results

In this work, we prove strong hardness results for these problems, proving APX-hardness of deciding
satisfiability of balanced versions and Unique Games-hardness of constant factor approximation
algorithms on (1 − ε)-satisfiable instances of hard versions, of both Max-2-SAT and Max-Horn-
SAT. The results are formally stated below.

Balanced CSP. For Balance-Max-2-SAT and Balance-Max-Horn-SAT, the Schaefer-like dichotomy
due to [8] for the (decision version of) Boolean Balance-CSP, implies that we cannot efficiently de-
cide whether the given instance is satisfiable or not. (This dichotomy was extended to all domains
in [6], which is somewhat surprising given the status of the dichotomy conjecture for CSPs without
any balance/cardinality constraint.)

We show the following stronger statement that rules out even a robust satisfiability algorithm
for the common special case Balance-Max-Horn-2-SAT.

Theorem 1.3. There exists an absolute constant δ > 0 such that given an instance I of Balance-
Max-Horn-2-SAT (special case of Balance-Max-2-SAT and Balance-Max-Horn-SAT), it is NP-hard
to distinguish the following cases.

• optB(I) = 1

• optB(I) ≤ 1− δ

This result should be contrasted with the fact that a special case of Balance-Max-2-SAT, namely
Balance-Max-Cut (Max-Bisection), does admit a robust algorithm [16, 28, 2]. The work [2] also
shows that the guaranteed approximation ratio for Balance-Max-2-SAT (which is the worst ratio
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valB(σ)
optB(I) over every instance I and σ found by the algorithm) is indeed equal to the best known

approximation ratio for Max-2-SAT [25], i.e., αLLZ ≈ 0.9401, so adding the balance constraint
does not make the problem harder in this regard.

While several nontrivial approximation algorithms for Balance-Max-2-SAT have been studied,
as far as we know, no algorithm for Balance-Max-Horn-SAT or even Balance-Max-SAT has been
suggested in the literature. Other than the trivial 0.5-approximation algorithm given above, we also
show that a slight modification to 3

4 -approximation algorithm due to Goemans and Williamson [14]
gives the algorithm with the same ratio.

Theorem 1.4. For any ε > 0, there is a randomized algorithm such that given an instace I of
Balance-Max-SAT, in time poly(size(I), 1ε ), outputs σ with valB(σ) ≥ (34−ε)optB(I) with constant
probability.

Hard CSP. In Hard-Max-2SAT, robust algorithms are ruled out in a more radical way, assuming
the Unique Games Conjecture. In the sequel, we use the phrase “UG-hard” for a decision problem
to mean that it is NP-hard under the Unique Games Conjecture (Conjecture 2.3).

Theorem 1.5. For any ε > 0, given an instance I of Hard-Max-2-SAT, it is UG-hard to distinguish
the following cases.

• optH(I) ≥ 1− ε
• optH(I) ≤ ε

The above result again shows a stark difference between Max-2-SAT and Max-Cut since the
famous algorithm of Goemans and Williamson [15] works well with hard constraints; if vertices u
and v must be separated, we require the vectors corresponding to them to be placed in antipodal
positions, and any hyperplane rounding separates them. It shows that Hard-Max-Cut admits both
a constant-factor approximation algorithm and a robust algorithm while Hard-Max-2-SAT admits
neither of them.

For Hard-Max-Horn-2-SAT, simple algorithmic and hardness tricks show that finding σ with
valH(σ) ≥ 1−2ε given optH(I) = 1−ε is the best possible, assuming the Unique Games Conjecture.

Observation 1.6. There is an algorithm that for any ε > 0, if the given instance I of Max-Horn-
2-SAT satisfies optH(I) = 1 − ε, finds σ with valH(σ) ≥ 1 − 2ε. Furthermore, for any ε, δ > 0, it
is UG-hard to distinguish the following cases.

• optH(I) ≥ 1− ε− δ.
• optH(I) ≤ 1− 2ε+ δ.

The above algorithmic trick does not work for other robust algorithms, and for Hard-Max-Horn-
3-SAT (or higher arities), we have the following NP-hardness result.

Theorem 1.7. For any ε > 0, given an instance I of Hard-Max-Horn-3-SAT, it is NP-hard to
distinguish the following cases.

• optH(I) ≥ 1− ε
• optH(I) ≤ ε
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Ordinary Balance Hard

Ratio 0.9401 [25] 0.9401 [2] N/A
Max-2-SAT Robust (1− ε, 1−O(

√
ε)) [7] N/A N/A

Hardness UG: (1− ε, 1− Ω(
√
ε)) [23] NP: (1, 1− δ) UG:(1− ε, ε)

Ratio 0.8786 [14] 0.8776 [2] 0.8786 [14]
Max-Cut Robust (1− ε, 1−O(

√
ε)) [14] Same as left [28] Same as left [14]

Hardness UG: (1− ε, 1− Ω(
√
ε)) [23] Same as left [23] Same as left [23]

Ratio 0.9401 [25] 0.9401 [2] N/A
Max-Horn-2-SAT Robust (1− ε, 1− 2ε) [18] N/A (1− ε, 1− 2ε) [18]

Hardness NP: (1, 1− δ) UG:(1− ε, 1− 2ε)
Ratio 0.7968 [4] 0.75 N/A

Max-Horn-SAT Robust (1− ε, 1−O( log log(1/ε)
log(1/ε) )) [18] N/A N/A

Hardness UG: (1− ε, 1− Ω( 1
log(1/ε) )) [32] NP: (1, 1− δ) NP:(1− ε, ε)

Table 1: Summary of several Balance-Max-CSP and Hard-Max-CSP. ε > 0 indicates an arbitrary
positive constant, while δ > 0 is a fixed absolute constant. Ratio indicates the best approximation
ratio. (1 − ε, 1 − f(ε)) in a row labeled Robust indicates that there is a robust algorithm that
find an assignment satisfying (1− f(ε)) fraction of constraints given an (1− ε)-satisfiable instance.
(1 − ε, 1 − f(ε)) in a row labeled Hardness indicates that it is NP-hard to find an assignment
satisfying (1− f(ε)) fraction of constraints given an (1− ε)-satisfiable instance. NP indicates that
it is an NP-hardness result; UG indicates that it is based on the Unique Games Conjecture. N/A
means that a robust or constant-factor approximation algorithm are ruled out by the hardness
results.

The complete algorithmic and hardness results are summarized in Table 1.1.

Ordering constraints over larger domain. If we go beyond the Boolean domain, the situation
is not as clear; indeed even satisfiabilities of ordinary CSPs are not completely classified yet. We
consider a simple and natural CSP of arity two over larger domains, namely Max-CSP(<) over
domain [q] = {1, 2, ..., q} − every constraint says that one variable must be less than another. This
problem can also be understood as a graph-theoretic problem; given a directed graph G = (V,E),
delete the minimum number of edges so that the remaining graph has no walk of length q (for the
formal definition, see Section 4). If the domain is unbounded (indeed, [n] is enough), this is exactly
the well-known Max-Acyclic-Subgraph problem.

For all of these problems, a random assignment will give a constant-factor approximation algo-
rithm. We observe that for fixed q, Max-CSP(<) over [q] also admits a robust algorithm, and the
same holds also for Hard-Max-CSP(<) over [q]. However, we show that adding hard constraints
rules out the possibility of a constant-factor approximation algorithm, regardless of whether [q] is
fixed or unbounded.

Theorem 1.8. For any k ≥ 2 and ε > 0, given an instance I of Hard-Max-CSP(<) over [2k+ 1],
it is UG-hard to distinguish the following cases.

• optH(I) ≥ (1− ε)k−1k
• optH(I) ≤ ε

Over {1, 2, 3, 4}, it is also UG-hard to distinguish whether optH(I) ≥ 1−ε
2 or optH(I) ≤ ε.
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Also, for any ε > 0, given an instance I of Hard-Max-CSP(<) over the unbounded domain
(an instance of Max-Acyclic-Subgraph with several edges that must be included), it is UG-hard to
distinguish the following cases.

• optH(I) ≥ 1− ε
• optH(I) ≤ ε

We also provide a constant-factor approximation algorithm for Hard-Max-CSP(<) over {1, 2, 3}
(albeit with a worse ratio than its ordinary counterpart), showing a difference between {1, 2, 3} and
{1, 2, 3, 4}, and complete the picture of the approximability of these Ordering CSPs with hard
constraints.

1.2 Discussion

Max-Cut is one of the simplest and well-studied CSPs. Its variants with balance or hard variants
also inherit the desirable algorithmic properties of the original version — in particular both these
variants admit robust satisfiability as well as constant-factor approximation algorithms. However,
these algorithmic results do not extend even slightly more general CSPs; in Max-2-SAT, even one of
balance and hard variants rule out the possibility of a robust algorithm. Furthermore, Hard-Max-
2-SAT does not have a constant-factor approximation algorithm as well, and the hardness result
for Balance-Max-2-SAT also holds for Balance-Max-Horn-2-SAT (which does not even capture
Max-Cut).

These delicate differences even for CSPs of arity two over Boolean domain (where satisfiability
is always in P) suggest that adding balance or hard constraints highlights previously unnoticed
characteristics with respect to the approximability of each predicate. This work settles the approx-
imability of almost all interesting arity two CSPs over Boolean domain, demonstrating the effect
of hard and balance constraints on some classic problems.

While our techniques are relatively simple twists to known ones (with the one underlying the
inapproximability of Hard-Max-2-SAT being the most significant), we think the body of results
highlights subtle (and perhaps surprising) differences between CSPs in the presence of hard/balance
constraints, and raises the challenge of extending our study to larger arity or domains. Attempts
at such a generalization should be interesting by itself and also illuminate new aspects of CSPs.

In this regard, we record some simple observations on robust algorithms for Hard-Max-CSP(Π).
In the weighted minimization version (Min-Uncut, Min-CNF-Deletion and Min-Feedback-Arc-Set
are minimization versions of some problems we studied in this work), where the goal is to minimize
the weight of unsatisfied constraints, hard constraints do not add to the difficulty of the original
version as can be seen via the simple trick of converting all hard constraints to soft constraints
and giving them large enough weight. Therefore, a constant-factor approximation algorithm for
the minimization version will yield a robust satisfiability algorithm for Hard-Max-CSP(Π) as well.
In general we do not have a reduction in the reverse direction as the robust algorithm might be
allowed runtime exponential in ε (e.g. nO( 1

ε
)) on (1 − ε)-satisfiable instances. Also, when the

approximation factor for the minimization version depends on the instance size (e.g. O(
√

log n)
for Min-CNF-Deletion [1]), we do not automatically get a robust algorithm for the associated CSP
with hard constraints.

We have an example, namely Hard-Max-2-SAT, where constant-factor and robust approxima-
tions are both hard in the presence of hard constraints, and an example (Hard-Max-Horn-2-SAT)
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where robust approximation is possible but a constant-factor approximation is hard. It is easy to
see that Hard-Max-Lin-mod-2 admits an efficient constant factor approximation but not a robust
algorithm; its ordinary version (without hard constraints), however, also has the same property.
This raises the following interesting question: Is there a CSP which admits an efficient robust
satisfiability algorithm, and whose hard version admits a constant-factor approximation algorithm
but no robust algorithm? Or must a robust algorithm also exist for the hard version under these
conditions?

1.3 Organization

Section 2 proves the results about Hard-CSP; Hard-Max-2-SAT in Section 2.2 and Hard-Max-
Horn-SAT in Section 2.3. This section requires some understanding of the inner workings of the
reduction from Unique Games to Min-Vertex-Cover [24, 5], so we present the relevant preliminaries
in Section 2.1. Section 3 proves the results about Balance-CSP; hardness results in Section 3.1 and
algorithmic results in Section 3.2. Section 4 proves the results about Ordering CSP.

2 CSP with hard constraints

2.1 Preliminaries

Unique Games. Our hardness result for Max-Hard-2-SAT relies on the Unique Games Conjec-
ture [22], which is stated below.

Definition 2.1. An instance L(G(V,W,E), [R], {π(v, w)}(v,w)∈E) of Unique Games consists of a
regular bipartite graph G(V,W,E) and a set [R] of labels. For each edge (v, w) ∈ E there is a
constraint specified by a permutation π(v, w) : [R]→ [R]. The goal is to find a labeling l : V ∪W →
[R] of the vertices such that as many edges as possible are satisfied, where an edge e = (v, w) is
said to be satisfied if l(v) = π(v, w)(l(w)).

Definition 2.2. Given a Unique Games instance L(G(V,W,E), [R], {π(v, w)}(v,w)∈E), let opt(L)
denote the maximum fraction of simultaneously satisfied edges of L by any labeling, i.e.

opt(L) :=
1

|E|
max

l:V ∪W→[R]
| {e ∈ E : l satisfies e} |

Conjecture 2.3 ([22]). For any constants ε > 0, there is R = R(ε) such that, for a Unique Games
instance L with label set [R], it is NP-hard to distinguish between

• opt(L) ≥ 1− ε.
• opt(L) ≤ ε.

To show the optimal hardness result for Min-Vertex-Cover, Khot and Regev [24] introduced the
following stronger conjecture, and proved that it is in fact equivalent to the original the Unique
Games Conjecture.

Conjecture 2.4 ([24]). For any constants ε > 0, there is R = R(ε) such that, for a Unique Games
instance L with label set [R], it is NP-hard to distinguish between
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• There is a set V ′ ⊆ V such that |V ′| ≥ (1− ε)|V | and a labeling l : V ∪W → [R] that satisfies
every edge (v, w) for v ∈ V ′ and w ∈W .

• opt(L) ≤ ε.

Fourier Analysis on Biased Hypercubes. Fix p = 1/2− ε for some ε > 0. We let {0, 1}R(p) be

the R-dimensional boolean hypercube with p-biased distribution; each coordinate of x ∈ {0, 1}R(p)
is independently set to 1 with probability p and 0 with probability 1− p. Let f : {0, 1}n(p) → R.

Definition 2.5. The influence of the ith coordinate on f is given by

Infi(f) = E(xj)j 6=i
[Varxi [f(x)|(xj)j 6=i]]

Definition 2.6. Let ρ ∈ [−p/(1− p), 1]. The noisy operator Tρ acts on f by

Tρf(x) = Ey[f(y)] ,

where each bit yi of y is independently sampled such that it is equal to xi with probability ρ and
sampled according to p-biased distribution with probability (1− ρ). We call

Infi(Tρf)

the noisy influence of the ith coordinate.

2.2 Max-Hard-2-SAT

At the heart of every hardness result based on the Unique Games Conjecture is an appropriate
dictatorship test. The dictatorship test for Min-Vertex-Cover (and its maximization version Max-
Independent-Set) is a graph G = (V,E) where V = {0, 1}R(p) (vertices are weighted according to
p-biased distribution). This graph must ensure that

• Completeness: For each 1 ≤ i ≤ R, ith dictator function fi(x1, ..., xR) = xi is the indicator
function of a large independent set.

• Soundness: For every moderate-sized independent set D, its indicator function has a coordi-
nate with large noisy influence.

The edges are constructed such that there is an edge between (x1, ..., xR) and (y1, ..., yR) if and
only if there is no coordinate i such that xi = yi = 1. The first condition can be easily checked
since fi(x) = fi(y) = 1 for some i means xi = yi = 1 and there is no edge between x and y. This
construction was first used in Khot and Regev [24]. Later Austrin et al. [3] gave a different (and
arguably simpler) analysis of the same test, relying on the invariance principle of Mossel et al. [26].

Theorem 2.7 (Implicit in [3]). Let G = (V,E) be the graph constructed as above.

• Completeness: For each 1 ≤ i ≤ R, ith dictator function fi(x1, ..., xR) = xi is the indicator
function of a large independent set of weight p.

• Soundness: For every ε > 0, there exist τ > 0 and δ > 0 such that the following holds. If D
is an independent set of weight at least ε and f : {0, 1}R(p) → {0, 1} is the indicator function
of D, then there exists i such that Infi(T1−δf) ≥ τ .

8



Combined with the standard technique converting a dictatorship test to a hardness result based
on the Unique Games Conjecture, it is shown that it is UG-hard to distinguish whether the maxi-
mum independent set has weight at least 1/2− ε or at most ε.

There is a simple approximation-preserving reduction from Max-Independent-Set to Hard-Max-
Horn-2-SAT. Given G constructed as above,

• X = V ; each variable corresponds to one vertex.

• For each edge (x, y) ∈ E, add a hard constraint (¬x ∨ ¬y).

• For each vertex x ∈ V , add a soft constraint x.

Hard constraints ensure that two variables corresponding to neighboring vertices cannot be set
to True simultaneously, and maximizing the total weight of satisfied soft constraints is equivalent
to maximizing the total weight of the vertices set to True. Therefore, the same hardness result
also holds for Hard-Max-2-SAT. This hardness result rules out any constant-factor approximation
algorithm, but does not apply to instances that are almost satisfiable. In fact, Hard-Max-Horn-2-
SAT inherits the same hardness result (as the above reduction only uses Horn clauses), but it has
a robust algorithm (See Section 2.3).

Our crucial observation to amplify this gap to 1− ε and ε is that dictatorship functions always
give different values to a pair of antipodal points. Since our predicate is a disjunction of two
variables (vertices), if we change soft constraints so that

S =
{

(u ∨ v) : {u, v} is an antipodal pair in {0, 1}R(p)
}

Then, every dictator function fi will satisfy all the hard and soft constraints. To ensure the
soundness, we have to perturb the distribution a little bit, but still almost all the weight will be
concentrated around antipodal points. Given the dictatorship test G = (V,E) for Min-Vertex-
Cover, the dictatorship test for Hard-Max-2-SAT is I = (X,S,H) such that

• X = V ; each variable corresponds to one vertex.

• For each edge (x, y) ∈ E, add a hard constraint (¬x ∨ ¬y).

• Sample an ordered pair (x, y) such that for each i,

P[xi = yi = 0] = 2ε and P[xi = 1, yi = 0] = P[xi = 0, yi = 1] = 1/2− ε .

Add a soft constraint (x ∨ y) with the weight equal to the probability of (x, y).

With this trick, we can obtain a dictatorship test for Hard-Max-2-SAT with a much larger gap.

Theorem 2.8. Let I = (X,S,H) be the instance of Hard-Max-2-SAT constructed as above.

• Completeness: For each 1 ≤ i ≤ R, ith dictator function fi(x1, ..., xR) = xi satisfies valH(fi) =
1− 2ε.

• Soundness: For every ε > 0, there exist τ > 0 and δ > 0 such that the following holds. If
f : {0, 1}R(p) → {0, 1} satisfies valH(f) ≥ 2ε, then there exists i such that Infi(T1−δf) ≥ τ .

9



Proof. Completeness: It is already shown that ith dictator function fi satisfies all the hard
constraints. The only soft constraints that fi fail to satisfy is (x ∨ y) where xi = yi = 0. Since the
probability of picking xi = yi = 0 is 2ε, valH(fi) = 1− 2ε.

Soundness: If f is a function that satisfies all the hard constraints, it is also the indicator function
of some independent set D. We claim that the weight of D in {0, 1}R(p) with p = 1/2− ε is at least

valH(fi)/2. For z ∈ {0, 1}R(p), let deg(z) be the sum of the weights of soft constraints (z ∨ x) or
(x ∨ z) for some x ((z ∨ z) contributes twice). (x, y) ∼ S indicates that it is sampled according to
its weight defined above. Note that its marginal distribution of x (and y) is exactly the p-biased
distribution on {0, 1}R(p). Therefore,

deg(z) = P(x,y)∼S [z = x] + P(x,y)∼S [z = y]

= 2 P(x,y)∼S [z = x]

= 2 Px∼{0,1}R(p) [z = x]

= 2 wt(z) .

It means that for any z, switching f(z) from 0 to 1 increases valH(f) by at most 2wt(z). Therefore,
valH(f) is at most two times the weight of D. Thus valH(f) ≥ 2ε indicates that the weight of D is
at least ε. We can now use Theorem 2.7 to finish the argument.

Combined with the standard technique converting a dictatorship test to a hardness result based
on the Unique Games Conjecture, the main theorem of this section is proved.

Theorem 2.9 (Restatement of Theorem 1.5). For any ε > 0, given an instance I of Hard-Max-2-
SAT, it is UG-hard to distinguish the following cases.

• optH(I) ≥ 1− ε
• optH(I) ≤ ε

Proof. Given an instance of L(G(V,W,E), [R], {π(v, w)}(v,w)∈E) of Unique Games, we construct an
instance I = (X,S,H) of Hard-Max-2-SAT.

• X = V × {0, 1}R. The weight of (v, x) is the weight of x in {0, 1}R(1/2−ε), divided by |V |
(weights are only used in the analysis).

• For every pair of edges (w, v1), (w, v2) with the same endpoint w ∈ W , and every x, y ∈
{0, 1}R, such that there is no i such that xπ(v1,w)(i) = yπ(v2,w)(i) = 1, add a hard constraint
(¬(v1, x) ∨ ¬(v2, y)).

• For each v, sample an ordered pair (x, y) such that for each i, P[xi = yi = 0] = 2ε and
P[xi = 1, yi = 0] = P[xi = 0, yi = 1] = 1/2− ε. Add a soft constraint ((v, x)∨ (v, y)) with the
weight equal to the probability of (x, y) divided by |V |.

Note that the variables and hard constraints of this construction are identical to that of Min-
Vertex-Cover (Max-Independent-Set) of [3]. We use the variant of the Unique Games Conjecture
(see Conjecture 2.4), and prove the following:

Lemma 2.10. Given an instance of Unique Games L and the instance I produced as above,
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• If there is a set V ′ ⊆ V such that |V ′| ≥ (1 − ε)|V | and a labeling l : V ∪W → [R] that
satisfies every edge (v, w) for v ∈ V ′ and w ∈W , then optH(I) ≥ 1− 3ε.

• There is a function f : R+ → R+ such that if opt(L) ≤ f(ε), then optH(I) ≤ 2ε.

Proof. We establish the completeness and soundness in turn.

Completeness: Let V ′ ⊆ V and l : V ∪W → [R] be a subset and a labeling satisfying the
above condition. For any v ∈ V ′, x ∈ {0, 1}, set (v, x) = xl(v). If v /∈ V ′, (v, x) = 0 for all x. Note
that this satisfies all the hard constraints; if there is a violated hard constraint (¬(v1, x)∨¬(v2, y)),
it means that v1, v2 ∈ V ′, xl(v1) = yl(v2) = 1, but there exists w ∈ W such that π(v1, w)(l(w)) =
l(v1), π(v2, w)(l(w)) = l(v2). It contradicts the above construction. For each v, the only soft
constraints ((v, x) ∨ (v, y)) that are not satisfied by this assignment have xl(v) = yl(v) = 0, which
happens with probability 2ε. Therefore, the total weight of soft constraints satisfied is at least
(1− ε)(1− 2ε) ≥ 1− 3ε.

Soundness: Suppose there is an assignment σ : V × {0, 1}R → {0, 1} such that it satisfies all
the hard constraints and valH(σ) ≥ 2ε. Let D ⊆ V × {0, 1}R be the support of σ. Since σ satisfies
all the hard constraints, D is an independent set of the graph whose vertex set is V × {0, 1}R and
each pair of variables in a same hard constraint forms an edge. Note that this is the same graph
used in the hardness of Min-Vertex-Cover in [3].

Since the soft constraints are defined within each hypercube v × {0, 1} for each v, we can use
the same analysis from Theorem 2.8 (which says that the sum of weights of the soft constraints
containing a variable in the Max-Hard-2-SAT instance is exactly two times the weight of the
corresponding vertex in the Max-Independent-Set instance) to conclude that the weight of D is at
least ε. We can invoke Theorem 3.1 of [3] to argue that opt(L) ≥ f(ε) for some fixed function
f : R+ → R+.

Therefore, if we can distinguish whether optH(L) ≥ 1 − 3ε or optH(L) ≤ 2ε for some ε > 0,
then we can refute Conjecture 2.4, which is equivalent to the original Unique Games Conjecture.
This proves Theorem 1.5.

2.3 Max-Hard-Horn-SAT

Suppose there is a very strong robust algorithm for Max-CSP(Π) in the sense that if the algorithm
can find σ such that valH(σ) ≥ 1− cε whenever optH(I) ≥ 1− ε for some absolute constant c (or
in other words, we have a constant-factor approximation algorithm for the minimization version
that seeks to minimize the weight of unsatisfied constraints). The performance of this algorithm
is preserved for Hard-Max-CSP(Π) by the following trick: convert all hard constraints to soft
constraints, but give them very large weight so that they will never be violated in the optimal
solution. This will result in I ′ such that opt(I ′) ≥ 1− ε′ where ε′ � ε, but the algorithm still finds
σ such that valH(σ) ≥ 1− cε′ as a solution to I ′, which also satisfies valH(σ) ≥ 1− cε as a solution
to I.

Now, Max-Horn-2-SAT is a problem that admits such a robust algorithm with c = 2 [18] (c = 3
was earlier shown in [21]), and therefore we can conclude that Hard-Horn-2-SAT admits a similar
robust algorithm.
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Furthermore, the reduction from Max-Independent-Set to Hard-Max-2-SAT introduced in Sec-
tion 2.3 is an indeed a reduction to Hard-Max-Horn-2-SAT. Therefore, by previous results about
Max-Independent-Set [24, 5], for any ε > 0, it is UG-hard to find σ with valH(σ) ≥ ε even when
optH(I) ≥ 1/2−ε. By adding many dummy constraints that are always satisfiable, for any ε, δ > 0,
it is NP-hard to find σ with valH(σ) ≥ 1−2ε+ δ even when optH(I) ≥ 1− ε− δ. These facts justfy
the following observation made about Hard-Max-Horn-2-SAT.

Observation 2.11 (Restatement of Observation 1.6). There is an algorithm that for any ε ≥ 0, if
the given instance I of Max-Horn-2-SAT satisfies optH(I) = 1− ε, finds σ with valH(σ) ≥ 1− 2ε.

Furthermore, for any ε, δ > 0, it is UG-hard to distinguish the following cases.

• opt(I) ≥ 1− ε− δ.
• opt(I) ≤ 1− 2ε+ δ.

The above algorithmic result for Max-Horn-2-SAT does not hold for Max-Horn-SAT in general

since the robust algorithm is only guaranteed to find an assignment satisfying 1 − O
(
log log(1/ε)
log(1/ε)

)
fraction of clauses [32], and this exponential loss is inherent under the Unique Games conjecture [18].
In fact, even Horn-3-SAT is powerful enough to encode constraints of other hard problems with
unbounded arity, which results in a very strong hardness result, stated below.2

Theorem 2.12 (Restatement of Theorem 1.7). For any ε > 0, given an instance I of Hard-Max-
Horn-3-SAT, it is NP-hard to distinguish the following cases.

• optH(I) ≥ 1− ε
• optH(I) ≤ ε

Proof. We reduce Max-Ek-Hypergraph-Independent-Set to Max-Horn-3-SAT. An instance of Max-
Ek-Hypergraph-Independent-Set is a hypergraph G = (V,E) where each hyperedge e ∈ E contains
exactly k vertices. Our goal is to find a set D ⊆ V with the maximum weight such that no
hyperedge e is a subset of D.

Given a graph G = (V,E), we construct the instance I = (X,S,H) of Max-Horn-3-SAT as
follows.

• X = V ∪ {ye,j : e ∈ E, 1 ≤ j ≤ k}; there is one variable for each vertex, and k variables for
each hyperedge. Each variable corresponding to a vertex indicates that the vertex is picked
or not.

• For each hyperedge e = (v1, ..., vk) ∈ E, add hard constraints

– (v1 → ¬ye,1) ≡ (¬v1 ∨ ¬ye,1)
– 2 ≤ j ≤ k: (¬ye,i−1 ∧ vi → ¬ye,i) ≡ (ye,i−1 ∨ ¬vi ∨ ¬ye,i)
– ye,k

• For each vertex v ∈ V , add a soft constraint v with the same weight as in G.

2We learned from Andrei Krokhin that this result, with essentially the same proof, was also shown by Siavosh
Bennabas. But as we are not aware of a published reference, we include the simple proof.
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The above construction ensures that there is at most one unnegated literal per each clause, so this
is indeed an instance of Max-Horn-3-SAT. Once v1, ..., vn are fixed, a quick check of the second set
of constraints corresponding to hyperedge e ensures that there exists ye,1, ..., ye,k that satisfy all the
constraints if and only if at least one of v1, ..., vk is set to False. Since the weight of satisfied soft
constraints is equal to the weight of vertices picked, this is an approximation-preserving reduction
from Max-Ek-Hypergraph-Independent-Set to Max-Horn-3-SAT. Dinur et al [10] showed that for
the former, it is NP-hard to distinguish

• There is an independent set of weight (1− 1
k−1 − ε).

• Every independent set is of weight at most ε.

By taking k large and ε small, we get the desired result for Max-Horn-3-SAT.

3 Balance Constraints

3.1 Hardness Results

Theorem 3.1 (Restatement of Theorem 1.3). There exists an absolute constant δ > 0 such that
given an instance I of Balance-Max-Horn-2-SAT (special case of Balance-Max-2-SAT and Balance-
Max-Horn-SAT), it is NP-hard to distinguish the following cases.

• optB(I) = 1

• optB(I) ≤ 1− δ

Proof. We reduce from Max-3-SAT(B) to Max-Independent-Set to Balance-Max-Horn-2-SAT, where
in Max-3-SAT(B) each variable occurs at most B times. The following description of the reduction
from Max-3-SAT(B) to Max-Independent Set is from Papadimitriou and Yannakakis [27].

Construct a graph with one node for every occurrence of every literal. There is an edge
connecting any two occurrences of complementary literals, and also, an edge connecting
literal occurrences from the same clause (thus, there is a triangle for every clause with 3
literals, and an edge for a clause with 2 literals). The size of the maximum independent
set in the graph is equal to the maximum number of clauses that can be satisfied. If
every variable occurs at most B times in the clauses, then the degree is at most B + 1.

Note that in the above reduction, there is an independent set of size l if and only if there is
an assignment that satisfies l clauses. For some constants B and δ0 > 0, it is NP-hard to find an
assignment satisfying (1− δ0) fraction of clauses in a satisfiable instance of Max-3-SAT(B). Let m
be the number of clauses, and n be the number of variables of the given Max-3-SAT(B) instance, so
we have 3m vertices, and at most 1.5(B+1)m ≤ 2Bm edges in the graph. Our Balance-Max-Horn-
2-SAT instance I consists of 4m variables; 3m of them correspond to the vertices of the graph,
and m of them do not participate in any constraint. For each edge (u, v) we add the constraint
(¬u ∨ ¬v). Finally, we have the balance constraint that exactly 2m of them should be 1 (1 means
True in 2-SAT, and that the vertex is picked in the Independent Set problem).
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If the Max-3-SAT instance is satisfiable, we have an independent set of size 2m consisting of m
vertices from the graph and m of the dummy vertices, so the Balance-Max-Horn-2-SAT instance is
also satisfiable.

Now suppose that optB(I) > 1 − δ. This means that there is a balanced assignment (at least
m 1’s amongst the non-dummy variables) such that at most a fraction δ of the edges have both
endpoints set to 1. By switching 2δBm vertices from 1 to 0, all clauses of Balance-Max-Horn-2-
SAT will be satisfied. This means that there is an independent set of size at least (1− 2δB)m, and
therefore also an assignment that satisfies (1 − 2δB)m clauses of the Max-3-SAT(B) instance. It
follows that we must have δ ≥ δ0

2B .

Unlike the reduction from Max-Independent-Set to Hard-Max-Horn-2-SAT introduced in Sec-
tion 2.2 (hard clauses for independence constraints, and soft clauses for the objective), we use
clauses to enforce independence constraints, and the balance constraint to maximize the objective.
For the soundness analysis, given a good assignment to Balance-Max-Horn-2-SAT, when viewed
as a (slightly infeasible) solution to Max-Independent-Set, the balance constraint ensures that the
objective is good, but there might be some adjacent vertices picked. The bounded degrees allow us
to fix this solution to an independent set while still retaining many vertices.

3.2 Algorithmic Results

One of the most well-studied Balance-Max-CSP is Balance-Max-Cut (Max-Bisection). Over a long
line of work [13, 19, 31, 12, 28, 2], the approximation ratio for Max-Bisection has become 0.8776
which is very close to the optimal (under the Unique Games Conjecture) approximation ratio for
Max-Cut which is about 0.8786. Max-Bisection admits a robust algorithm as well [16, 28]. Note
that Balance-Max-CSP(Π) is no easier to approximate than Max-CSP(Π), since any instance of
Max-CSP(Π) can be reduced to an instance of Balance-Max-CSP(Π) by adding dummy variables
that do not participate in any constraint.

For Balance-Max-2-SAT, the best known approximation ratio is 0.9401, matching the best
known approximation ratio of Max-2-SAT [25]. This result indicates that in the approximation ratio
perspective, adding the balance constraint does not make the problem harder. However, Theorem
3.1 rules out any robust algorithm for Balance-Max-2-SAT, which shows a stark difference between
the balanced versions of Max-2-SAT and Max-Cut.

For Balance-Max-Horn-SAT, the same hardness result shows that we cannot hope for any
robust algorithm. Therefore, the only remaining quetion is whether there is an algorithm whose
approximation ratio nearly matches that of the best algorithm for ordinary Max-Horn-SAT. The
best approximation ratio for Max-Horn-SAT is achieved by an algorithm for more general Max-SAT,
which achieves 0.7968-approximation [4].3

The most recent results on Balance-Max-Cut and Balance-Max-2-SAT [28, 2] rely on Lasserre
SDP hierarchies. The purpose of using a more sophisticated SDP rather than the basic SDP of
Goemans and Williamson [15], is that during the rounding scheme, the vertices are not rounded
independently; even if we add the balance constraint in the SDP relaxation, the final solution is not
guaranteed to be approximately balanced when we do not have a guarantee about their correlations.
The goal of Lasserre hierarchies is to produce an SDP solution with low global correlation so that
each vertex can be rounded almost independently.

3The same paper gives another algorithm whose approximation ratio is 0.8434 under some conjecture.
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However, in the 3/4-approximation algorithm for Max-SAT by Goemans and Williamson [14],
which is based on a LP-relaxation, each variable is rounded independently. Therefore, adding the
balance constraint ensures that the final solution is almost balanced by a simple application of
Chernoff bound. After a simple correction phase to get perfect balance (slightly more sophisticated
than [28] since the arity is not bounded), we obtain an algorithm which is not far from the best
algorithm for Max-SAT in terms of approximation ratio.

Theorem 3.2 (Restatement of Theorem 1.4). For any ε > 0, there is a randomized algorithm such
that given an instace I of Balance-Max-SAT, in time poly(size(I), 1ε ), outputs σ with valB(σ) ≥
(34 − ε)optB(I) with constant probability.

Proof. Let I = (X,C) be an instance Balance-Max-SAT, where X = {x1, ..., xn} is the set of
variables and C = {C1, ..., Cm} is the set of clauses. For each 1 ≤ j ≤ m, let C+

j (resp. C−j ) be
the set of variables which appear in Cj unnegated (resp. negated). The following is a natural LP
relaxation of Balance-Max-SAT.

maximize
m∑
j=1

wt(Cj)zj

subject to ∀1 ≤ j ≤ m :
∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj

∀1 ≤ j ≤ m : 0 ≤ zj ≤ 1

∀1 ≤ i ≤ n : 0 ≤ yi ≤ 1
n∑
i=1

yi =
n

2

Given the solution (yi, zj) to the above LP, the rounding algorithm is simple:

1. Choose a ∈ {0, 1} uniformly at random.

2. If a = 0, set σ(xi) = 1 with probability yi independently; if a = 1, set σ(xi) = 1 with
probability 0.5 independently.

3. If the final solution is unbalanced (there exists b ∈ {0, 1} such that |σ−1(b)| = (0.5 + η)n for
some η > 0), pick exactly ηn variables from σ−1(b), set them to 1− b.

4. Iterate it O(1/ε) times.

Claim 3.3. At the end of step 2, E[val(σ)] ≥ 3/4 (note that it is val(σ), but not valB(σ)).

Proof. For each Cj , let k be the number of variables in Cj and without loss of generality assume
Cj = x1 ∨ ...∨ xk by renaming and negating variables. If a = 0, the probability that Cj is satisfied
is

1−Πk
i=1(1− yi) ≥ 1− (

∑k
i=1(1− yi)

k
)k ≥ 1− (1− zi

k
)k ≥ βkzi

where βk = 1 − (1 − 1
k )k. If a = 1, the probability that Cj is satisfied is at least αk = 1 − 2−k.

Overall, the probability that Cj is satisfied is αk+βk
2 . For k = 1, 2, αk+βk

2 = 3
4 , and for k ≥ 3,

αk+βk
2 ≥ 7/8+(1−1/e)

2 ≥ 3
4 .
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By a simple averaging argument, with probability at least ε, val(σ) ≥ 3/4 − ε. Since each
variable is rounded independently once a is fixed, by Chernoff bound, P[|σ−1(1) − n

2 | > εn] ≤
2exp(−2ε2

n ) = on(1). Therefore, at the end of step 2, the probability that val(σ) ≥ 3/4 − ε and
|σ−1(1)− n

2 | ≤ εn is at least ε/2.

Let b be such that |σ−1(b)| = (1/2 + η)n for some 0 < η ≤ ε. In step 3, we randomly choose ηn
variables from σ−1(b), and set them to 1− b. Fix a constraint Cj that is satisfied by σ. Since Cj is
a disjunction, there is only one assignment to the variables appearing Cj that makes Cj unsatisfied.
Since Cj is already satisfied, to reach the only unsatisfying assignment, at least one variable must
be switched. If there is a variable that must be switched from 1 − b to b, then Cj is guaranteed
to be satisfied even after step 3. Otherwise, there are k variables (k ≥ 1) that must be swithced
from b to 1− b, and the probability of switching all of them is at most the probability of switching
one of them, which is ηn

(1/2+η)n ≤ 2η. Therefore, in expectation, at most 2η fraction of already
satisfied clauses can be unsatisfied, and with probability half, at most 4η ≤ 4ε fraction of satisfied
clauses can be unsatisfied. Combining step 2 and 3, in each iteration, we get a balanced σ with
valB(σ) ≤ 3/4− 5ε with probability ε/4. This probability can be made to a constant by repeating
O(1/ε) times.

4 Ordering with Hard Constraints

Another natural class of 2-ary CSPs over non-Boolean domain is Max-CSP(<). Max-CSP(<) over
the unbounded domain (indeed [n] is enough) is the famous Max-Acyclic-Subgraph, which admits
a simple 2-approximation algorithm that is optimal under the Unique Games Conjecture [17]. For

fixed q, Max-CSP(<) over [q] also admits a simple (q−1)
2q algorithm by taking a random assignment.

These ordering problems can be best understood in terms of choosing the maximum subgraph
of a directed graph with certain desired properties. Max-CSP(<) over [q] is equivalent to the
following problem: given a directed graph G = (V,E), find G′ = (V,E′) with E′ ⊆ E such that
G′ does not have a walk of length q and |E′| is maximized. A walk of length q is a sequence of
vertices v0 → · · · → vq (vertices can be repeated) such that (vi, vi+1) ∈ E for 0 ≤ i < q. Note that
a directed cycle results in a walk of any length. Max-Acyclic-Subgraph is to find G′ such that G′

does not have any cycle.

Instead of choosing a subset of the edges, we can try to find a subset of the vertices so that
the induced subgraph has desired properties. Let Max-Vertex-CSP(<) and Max-Vertex-Acyclic-
Subgraph be the analogous problems where the goal is to choose the subset of variables (vertices)
with the maximum weight so that the induced CSP is satisfiable (induced graph has the desired
properties).

Despite of their similarity, Max-Vertex problems seem to be harder than their edge counterparts.
There is no intuitive constant-factor approximation algorithm, like taking a random assignment
in the edge problems. Svensson [30] confirmed that these problems are indeed a lot harder to
approximate, assuming the Unique Games Conjecture.

Theorem 4.1 (Theorem 1 of [30]). For any k ≥ 2 and ε > 0, given an instance I of Max-Vertex-
CSP(<) over the domain [k − 1], it is UG-hard to distinguish

• opt(I) ≥ (1− ε)k−1k
• opt(I) ≤ ε
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Also, for any ε > 0, given an instance I of Max-Acyclic-Subgraph, it is UG-hard to distinguish

• opt(I) ≥ 1− ε
• opt(I) ≤ ε

We show that introducing hard constraints makes the edge versions almost as hard as the vertex
counterparts. The reduction, introduced in Even et al. [11], is simple: split each vertex v to a soft
edge vin → vout and add a hard edge uout → vin for each edge u → v. This is almost enough to
show the following theorem.

Theorem 4.2 (Restatement of Theorem 1.8). For any k ≥ 2 and ε > 0, given an instance I of
Hard-Max-CSP(<) over [2k + 1], it is UG–hard to distinguish the following cases.

• optH(I) ≥ (1− ε)k−1k
• optH(I) ≤ ε

Over the domain {1, 2, 3, 4}, it is also UG-hard to distinguish whether

optH(I) ≥ 1− ε
2

or optH(I) ≤ ε .

Also, for any ε > 0, given an instance I of Hard-Max-CSP(<) over the unbounded domain (an
instance of Max-Acyclic-Subgraph with several edges that must be included), it is UG-hard to dis-
tinguish the following cases.

• optH(I) ≥ 1− ε
• optH(I) ≤ ε

Proof. The last result about the unbounded domain (Max-Acyclic-Subgraph with hard edges) is
immediate from the reduction above and the hardness of Max-Vertex-Acyclic-Subgraph.

We will now describe the first reduction from the instance I of Max-Vertex-CSP(<) over [k−1]
to the instance I ′ of Hard-Max-CSP(<) over [2k + 1] (in this proof, we identify each instance of
the CSP with its underlying directed graph). We perform the same reduction as above, and add
two special vertices s and t. Add a hard edge s → vin if vin has no incoming edge. Make a hard
edge vout → t if vout has no outgoing edge.

There is a one-to-one correspondence between the vertices of I and the soft constraints of I ′.
Let G denote a vertex-induced subgraph of I and G′ be its corresponding edge subgraph of I ′. If
there is a walk (v1, . . . , vk) of length k−1 exists in G, let v0 be any vertex which has a outgoing edge
to v1 (v0,out := s if v1 has no incoming edge), and let vk+1 be any vertex which has a incoming edge
from vk (vk+1,in := t if vk has no outgoing edge). Then v0,out → v1,in → v1,out · · · → vk,out → vk+1,in

is a walk of length 2k+1 in G′. Similarly, since any walk of G′ alternates soft edges and hard edges,
a walk of length 2k + 1 in G′ induces a walk of length k − 1 in G. Therefore, there is a one-to-one
correspondence between feasible solutions, and corresponding solutions have the same weight.

Finally, we show the hardness of Hard-Max-CSP(<) over {1, 2, 3, 4} by reducing Max-Independent-
Set to it. Given an instance (undirected graph) I, consider it as a directed graph with edges going
both directions, and apply the above reduction to get I ′. There is again one-to-one correspon-
dence between a vertex-induced subgraph G ⊆ I and a edge subgraph G′ ⊆ I ′. If (u, v) ∈ G,
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uin → uout → vin → vout → uin forms a cycle of G′, so it is not feasible. If there is a walk of length
at least 4 in G′, since it alternates soft and hard constraints, there are two neighboring vertices u
and v so that uin → uout, vin → vout ∈ G′, so G is not an independent set.

It is easy to get a constant-factor approximation for Hard-Max-CSP(<) over the domain {1, 2}.
Each hard constraint uniquely determine the value of the variables participating, and randomly
assigning remaing variables ensure that each soft constraint, if satisfiable at all, can be satisfied by
with some constant probability. A slight extension of this technique works for {1, 2, 3} as well, in
stark constrast to {1, 2, 3, 4}.

Theorem 4.3. There is a constant-factor approximation algorithm for Hard-Max-CSP(<) over
{1, 2, 3}.

Proof. Let I be an instance of Hard-Max-CSP(<) over {1, 2, 3}. We also think I as a directed
graph (V,E) such that for each constraint u > v there is an edge u → v. By virtue of certain
combinations of hard constraints, namely paths of length 2, the value of some vertices becomes
fixed; let F1, F2, F3 be the set of vertices fixed to 1, 2, 3 respectively. In the subgraph induced by
V \(F1∪F2∪F3), let B be the set of vertices v such that v → u is a hard edge for some u. Similarly,
S be the set of vertices u such that v → u for some v. Let R be the remaining vertices. Note there
is no edge from F1∪F2 to B ∪S ∪R, and no edge from B ∪S ∪R to F2∪F3, and from S to B (e.g.
if there is an edge from S to B, we have a path of length 2 and these vertices should be fixed). The
algorithm is the following.

1. Choose a ∈ {0, 1} uniformly at random.

2. If a = 0, for each vertex v ∈ B, v = 3; for each vertex v ∈ S, choose v ∈ {1, 2} uniformly and
independently.

3. If a = 1, for each vertex v ∈ B, choose v ∈ {2, 3} uniformly and independently; for each
vertex v ∈ S, choose v = 1.

4. Regardless of a, for each vertex v ∈ R, choose v ∈ {1, 2, 3} uniformly and independently.

Simple case analyses between possible edges between the sets yield the following:

• Each edge completely inside one of B,S,R is satisfied with probability at least 1/8.

• Each edge whose one endpoint is in R and the other in one of B,S is satisfied by with
probability at least 1/12.

• Each edge to F1 or from F3 is satisfied with probability at least 1/4.

Therefore, the above simple algorithm yields a 1/12-approximation algorithm.

For fixed q, Max-CSP(<) over [q] admits a simple robust algorithm that finds a solution of
value (1 − qε), given (1 − ε)-satisfiable instance: given a directed graph G = (V,E), set one
nonnegative variable ye for each e, and for any walk of length q, add a constraint that the sum of
the corresponding y’s must be at least 1. Deleting e when ye ≥ 1

q gives a q-approximation algorithm
for the minimization version. As this is a strong robust algorithm (as discussed in Section 2.3), it
is preserved for Hard-Max-CSP(<) over [q].
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Observation 4.4. For fixed q, Hard-Max-CSP(<), and consequently Max-Vertex-CSP(<) over [q]
admits a robust algorithm.

That gives the complete picture of the status these problems. The conclusion is that adding
hard constraints makes it as hard as its vertex counterparts, which is much harder to approximate.
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