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Abstract

A t-(n, k, λ) design over Fq is a collection of k-dimensional subspaces of Fn
q , called blocks,

such that each t-dimensional subspace of Fn
q is contained in exactly λ blocks. Such t-designs

over Fq are the q-analogs of conventional combinatorial designs. Nontrivial t-(n, k, λ) designs
over Fq are currently known to exist only for t 6 3. Herein, we prove that simple (meaning,
without repeated blocks) nontrivial t-(n, k, λ) designs over Fq exist for all t and q, provided
that k > 12t and n is sufficiently large. This may be regarded as a q-analog of the celebrated
Teirlinck theorem for combinatorial designs.
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1. Introduction

Let X be a set with n elements. A t-(n, k, λ) combinatorial design (or t-design, in brief) is a col-
lection of k-subsets of X, called blocks, such that each t-subset of X is contained in exactly λ

blocks. A t-design is said to be simple if there are no repeated blocks — that is, all the k-subsets in
the collection are distinct. A trivial t-design is the set of all k-subsets of X. The celebrated theorem
of Teirlinck [20] establishes the existence of nontrivial simple t-designs for all t.

It was suggested by Tits [23] in 1957 that combinatorics of sets could be regarded as the limiting
case q→ 1 of combinatorics of vector spaces over the finite field Fq. Indeed, there is a strong
analogy between subsets of a set and subspaces of a vector space, expounded by several authors [7,
10,24]. In particular, the notion of t-designs has been extended to vector spaces by Cameron [5,
6] and Delsarte [8] in the early 1970s. Specifically, let Fn

q be a vector space of dimension n over
the finite field Fq. Then a t-(n, k, λ) design over Fq is a collection of k-dimensional subspaces of
Fn

q (k-subspaces, for short), called blocks, such that each t-subspace of Fn
q is contained in exactly

λ blocks. Such t-designs over Fq are the q-analogs of conventional combinatorial designs. As for
combinatorial designs, we will say that a t-design over Fq is simple if it does not have repeated
blocks, and trivial if it is the set of all k-subspaces of Fn

q .
The first examples of simple nontrivial t-designs over Fq with t > 2 were found by Thomas [21]

in 1987. Today, following the work of many authors [3,4,15,16,18,19,22], numerous such exam-
ples are known. All these examples have t = 2 or t = 3. If repeated blocks are allowed, nontrivial
t-designs over Fq exist for all t, as shown in [16]. However, no simple nontrivial t-designs over Fq

are presently known for t > 3. Our main result is the following theorem.

Theorem 1. Simple nontrivial t-(n, k, λ) designs over Fq exist for all q and t, and all k > 12(t+1)
provided that n > ckt for a large enough absolute constant c. Moreover, these t-(n, k, λ) designs
have at most q12(t+1)n blocks.

This theorem can be regarded as a q-analog of Teirlinck’s theorem [20] for combinatorial de-
signs. Our proof of Theorem 1 is based on a new probabilistic technique introduced by Kuperberg,
Lovett, and Peled in [12] to prove the existence of certain regular combinatorial structures. We note
that this proof technique is purely existential: there is no known efficient algorithm which can pro-
duce t-(n, k, λ) design over Fq for t > 3. Hence, we pose the following as an open problem:

Design an efficient algorithm to produce simple nontrivial t-(n, k, λ) designs for large t (?)

The rest of this paper is organized as follows. We begin with some preliminary definitions in the
next section. We present the Kuperberg-Lovett-Peled (KLP) theorem of [12] in Section 3. In Sec-
tion 4, we apply this theorem to prove the existence of simple t-designs over Fq for all q and t.
Detailed proofs of some of the technical lemmas are deferred to Section 5.
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2. Preliminaries

Let Fq denote the finite field with q elements, and let Fn
q be a vector space of dimension n over Fq.

We recall some basic facts that relate to counting subspaces of Fn
q . The number of distinct k-sub-

spaces of Fn
q is given by the q-binomial (a.k.a. Gaussian) coefficient[

n
k

]
q

def
=

[n]q!
[k]q! [n− k]q!

(1)

where [n]q! is the q-factorial defined by

[n]q! def
= [1]q[2]q . . . [n]q =

(
1 + q

)(
1 + q + q2) · · · (1 + q + q2 + · · ·+ qn) (2)

Observe the similarities between (1) and (2) and the conventional binomial coefficients and facto-
rials, respectively. Many more similarities between the combinatorics of sets and combinatorics of
vector spaces are known; see [11], for example. Here, all we need are upper and lower bounds on
q-binomial coefficients, established in the following lemma.

Lemma 2.
qk(n−k) 6

[
n
k

]
q
6

(
n
k

)
qk(n−k)

Proof. We use the following identity from [11, p. 19],[
n
k

]
q
= ∑

16s1<s2<···<sk6n
q(s1+s2+...+sk)−k(k+1)/2 (3)

The largest term in the sum of (3) is qk(n−k), which corresponds to si = n− k + i for all i. The
number of terms in the sum is (n

k), and the lemma follows.

3. The KLP theorem

Kuperberg, Lovett, and Peled [12] developed a powerful probabilistic method to prove the exis-
tence of certain regular combinatorial structures, such as orthogonal arrays, combinatorial designs,
and t-wise permutations. In this section, we describe their main theorem.

Let M be a |B| × |A| matrix with integer entries, where A and B are the set of columns and the
set of rows of M, respectively. We think of the elements of A, respectively B, as vectors in ZB,
respectively in ZA. We are interested in those matrices M that satisfy the five properties below.
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1. Constant vector. There exists a rational linear combination of the columns of M that pro-
duces the vector (1, 1, . . . , 1)T.

2. Divisibility. Let b denote the average of the rows of M, namely b = 1
|B| ∑b∈B b. There is an

integer c1 < |B| such that the vector c1b can be produced as an integer linear combination of
the rows of M. The smallest such c1 is called the divisibility parameter.

3. Boundedness. The absolute value of all the entries in M is bounded by an integer c2, which
is called the boundedness parameter.

4. Local decodability. There exist a positive integer m and an integer c3 > m such that, for ev-
ery column a ∈ A, there is a vector of coefficients γa = (γ1, γ2 . . . , γ|B|) ∈ ZB satisfying
||γa||1 6 c3 and ∑b∈B γbb = mea, where ea ∈ {0, 1}A is the vector with 1 in coordinate
a and 0 in all other coordinates. The parameter c3 is called the local decodability parameter.

5. Symmetry. A symmetry of the matrix M is a permutation of rows π ∈ SB for which there
exists an invertible linear map ` : QA → QA such that applying the permutation on rows and
the linear map on columns does not change the matrix, namely `(π(M)) = M. The group of
symmetries of M is denoted by Sym(M). It is required that this group acts transitively on B.
That is, for all b1, b2 ∈ B there exists a permutation π ∈ Sym(M) satisfying π(b1) = b2.

The following theorem has been proved by Kuperberg, Lovett, and Peled in [12]. In fact, the
results of Theorem 2.4 and Claim 3.2 of [12] are more general than Theorem 3 below. However,
Theorem 3 will suffice for our purposes.

Theorem 3. Let M be a |B| × |A| integer matrix satisfying the five properties above. Let N be an
integer divisible by c1 such that

c|A|52/5c1(c2c3)
12/5 log

(
|A|c2

)8
6 N < |B| (4)

where c > 0 is a sufficiently large absolute constant. Then there exists a set of rows T ⊂ B of size
|T| = N such that the average of the rows in T is equal to the average of all the rows in M, namely

1
N ∑

b∈T
b =

1
|B| ∑

b∈B
b = b (5)

4. Proof of the main result

We will apply Theorem 3 to prove existence of designs over finite fields. We first introduce the ap-
propriate matrix M, which is the incidence matrix of t-subspaces and k-subspaces.
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Let M be a |B| × |A| matrix, whose columns A and rows B correspond to the t-subspaces and
the k-subspaces of Fn

q , respectively. Thus |A| = [nt ]q and |B| = [nk]q. The entries of M are defined
by Mb,a = 1a⊂b. It is easy to see that a simple t-(n, k, λ) design over Fq corresponds to a set of
rows b1, b2, . . . , bN of M such that

b1 + b2 + · · ·+ bN = (λ, λ, . . . , λ) for some λ ∈N (6)

Note that this implies λ[nt ]q = N[kt]q, because each row b ∈ B has Hamming weight [kt]q. In order
to relate (6) to Theorem 3, we need the following simple lemma. The lemma is well known; we
include a brief proof for completeness.

Lemma 4. Let V be a t-subspace of Fn
q . The number of k-subspaces U such that V ⊂ U ⊂ Fn

q

is given by [n−t
k−t]q.

Proof. Fix a basis {v1, v2, . . . , vt} for V. We extend this basis to a basis {v1, v2, . . . , vk} for U.
The number of ways to do so is (qn− qt)(qn− qt+1) · · · (qn− qk−1). However, each subspace U
that contains V is counted (qk− qt)(qk− qt+1) · · · (qk− qk−1) times in the above expression.

It follows from Lemma 4 that

b =
1
|B| ∑

b∈B
b =

[
n− t
k− t

]
q[

n
k

]
q

(
1, 1, . . . , 1

)
=

[
k
t

]
q[

n
t

]
q

(
1, 1, . . . , 1

)
(7)

Therefore, a simple nontrivial t-(n, k, λ) design over Fq is a set of N < |B| rows of M satisfying

b1 + b2 + · · ·+ bN = Nb

But this is precisely the guarantee provided by Theorem 3 in (5). Note that the corresponding value
of λ = N[kt]q/[nt ]q would be generally quite large.

4.1. Parameters for the KLP theorem

Let us now verify that the matrix M satisfies the five conditions in Theorem 3 and estimate the
relevant parameters c1, c2, c3 in (4).

Constant vector. Each k-subspace contains exactly [kt]q t-subspaces, so the sum of all the columns

of M is [kt]q(1, . . . , 1)T. Hence (1, 1, . . . , 1)T is a rational linear combination of the columns of M.
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Symmetry. An invertible linear transformation L : Fn
q → Fn

q acts on the set of k-subspaces by
mapping U = 〈v1, v2, . . . , vk〉 to L(U) = 〈L(v1), L(v2) . . . , L(vk)〉. It acts on the set of t-sub-
spaces in the same way. Note that if U is a k-subspace and V is a t-subspace, then V ⊂ U if and
only if L(V) ⊂ L(U). Now, let πL ∈ SB be the permutation of rows of M induced by L, and let
σL ∈ SA be the permutation of columns of M induced by L. Then πL

(
σL(M)

)
= M. Note that σL

acts as an invertible linear map on QA by permuting the coordinates. Hence, πL is a symmetry
of M. The corresponding symmetry group is, in fact, the general linear group GL(n, q). It is well
known that GL(n, q) is transitive: for any two k-subspaces U1, U2, we can find an invertible linear
transformation L such that L(U1) = U2, which implies πL(b1) = b2 for the corresponding rows.

Boundedness. Since all entries of M are either 0 or 1, we can set c2 = 1.

Local decodability. Let m be a positive integer to be determined later. Fix a t-subspace V corre-
sponding to a column of M. We wish to find a short integer combination of rows of M summing
to meV . In order to do so, we fix an arbitrary (t + k)-subspace W that contains V. As part of the
short integer combination, we will only choose those rows that correspond to the k-subspaces con-
tained in W. Moreover, the integer coefficient for a k-subspace U ⊂ W will depend only on the
dimension j = dim(U ∩V). We denote this coefficient by fk,t(j).

We need the following conditions to hold. First, by Lemma 4, there are [ k
k−t]q k-subspaces U

such that V ⊂ U ⊂W. Therefore, we need

fk,t(t)
[

k
k− t

]
q
= m (8)

Second, for any other t-subspace V′ ⊂ Fn
q , we need that

∑
V′⊂U⊂W

fk,t
(
dim(U ∩V)

)
= 0 (9)

where the sum is over all k-subspaces U containing V′ and contained in W. Note that we only need
to consider those t-subspaces V′ that are contained in W. For all other t-subspaces, our integer
combination of rows of M produces zero by construction.

The following lemma counts the number of k-subspaces which contain V′ and whose intersec-
tion with V has a prescribed dimension. Its proof is deferred to Section 5.

Lemma 5. Let V1, V2 be two distinct t-subspaces of Fn
q such that dim(V1 ∩V2) = l for some l in

{0, 1, . . . , t− 1}. The number of k-subspaces U ⊂ Fn
q such that V1 ⊂ U and dim(U ∩V2) = j,

for some j ∈ {l, l + 1, . . . , t}, is given by

q(k−t−j+l)(t−j)
[

t− l
j− l

]
q

[
n− 2t + l

k− t− j + l

]
q

(10)
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With the help of Lemma 5 we can rephrase (9) as the following set of t linear equations:
t

∑
j=l

fk,t(j)
[

t− l
t− j

]
q

[
k− t + l

j

]
q
q(k−t−j+l)(t−j) = 0 for l = 0, 1, . . . , t− 1 (11)

where l = dim(V ∩ V′). Equations (8) and (11) together form a set of t + 1 linear equations,
which can be represented in the form of a matrix production:

D f = (0, 0, . . . , 0, m)T (12)

where f =
(

fk,t(0), fk,t(1), . . . , fk,t(t)
)T and D is an upper-triangular (t+1)× (t+1) matrix with

entries

dl,j =

[
t− l
t− j

]
q

[
k− t + l

j

]
q
q(k−t−j+l)(t−j) for 0 6 l 6 j 6 t (13)

The condition t 6 k ensures nonzero values on the main diagonal. Therefore, det D is nonzero
and the system of linear equations is solvable. By Cramer’s rule, we have

fk,t(j) =
det Dj

det D
m (14)

where Dj is the matrix formed by replacing the j-th column of D by the vector (0, 0, . . . , 1)T. Note
that det D is an integer. Thus we set m = det D, so that fk,t(j) = det Dj. This guarantees that
the coefficients fk,t(0), fk,t(1), . . . , fk,t(t) are integers.

We are now in a position to establish a bound on the local decodability parameter c3. First, the
following lemma bounds the determinants of D and Dj. We defer its proof to Section 5.

Lemma 6. |det D| 6 qk(t+1)2

|det Dj| 6 qk(t+1)2
for j = 0, 1, . . . , t

The number of k-subspaces U contained in W is [k+t
k ]q. We have multiplied the row of M cor-

responding to each such subspace by a coefficient fk,t(j) which is bounded by qk(t+1)2
. Hence

c3 = max
{

m, ‖ f ‖1
}
6

[
k + t

k

]
q
qk(t+1)2

6
(

k + t
k

)
qktqk(t+1)2

6 q2k(t+1)2
(15)

Divisibility. The proof of local decodability also makes it possible to establish a bound on the di-
visibility parameter c1. We already know that for m = det D, we can represent any element in
mZA as an integer combination of rows of M. By (7), we have [nt ]qb = [kt]q(1, 1, . . . , 1). Hence,

m[nt ]qb ∈ mZA can be expressed as an integer combination of rows of M. It follows that

c1 6 m
[

n
t

]
q
6 qk(t+1)2

(
n
t

)
qt(n−t) 6 qk(t+1)2+t(n−t)+n (16)
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4.2. Putting it all together

We have proved that the incidence matrix M satisfies the five conditions in Theorem 3, and estab-
lished the following bounds on the parameters:

c1 6 qk(t+1)2+t(n−t)+n (17)

c2 = 1 (18)

c3 6 q2k(t+1)2
(19)

By Lemma 2, we also have

|A| =
[

n
t

]
q
6

(
n
t

)
qt(n−t) 6 qt(n−t)+n (20)

|B| =
[

n
k

]
q
> qk(n−k) (21)

Combining (4) with (17) – (20), we see that the lower bound on N in Theorem 3 is at most

c′|A|52/5c1(c2c3)
12/5 log(|A|c2)

8 6 cq(57/5)·(t+1)n+ckt2
nc (22)

for some absolute constant c > 0. If we fix t and k, while making n large enough, then the right-
hand side of (22) is bounded by cq12(t+1)n. In view of (21), this is strictly less than |B| whenever
k > 12(t+ 1) and n is large enough. It now follows from Theorem 3 that for large enough n, there
exists a simple t-(n, k, λ)-design over Fq of size N 6 cq12n(t+1). The reader can verify that this
holds whenever n > c̃kt for a large enough constant c̃ > 0.

5. Proof of the technical lemmas

In this section, we prove the two technical lemmas (Lemma 5 and Lemma 6) we have used to es-
tablish the local decodability property.

5.1. Proof of Lemma 5

Let V1, V2 be two distinct t-subspaces of Fn
q with dim(V1 ∩V2) = l. Let U be a k-subspace of Fn

q

such that V1 ⊂ U and dim(U ∩V2) = j. Further, let X = V1 ∩V2 and Y = V1 +V2. It is not dif-
ficult to show that the following holds:

dim(X) = l dim(Y) = 2t− l

dim(U ∩V1) = t dim(U ∩V2) = j (23)

dim(U ∩ X) = l dim(U ∩Y) = t + j− l
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We will proceed in three steps. First, fix a basis {v1, v2, . . . , vt} for V1. Next, we extend V1 to
the subspace Z = U ∩ Y which has an intersection of dimension j with V2. In order to do that,
we pick j− l vectors vt+1, vt+2, . . . , vt+j−l from Y \ V1, in such a way that v1, v2 . . . , vt+j−l are
linearly independent. The number of ways to do so is

N1 =
j−l−1

∏
i=0

(
q2t−l − qt+i

)
(24)

However, each such subspace Z is counted more than once in (24), since there are many different
ordered bases for Z. The appropriate normalizing factor is N2 = ∏

j−l−1
i=0

(
qt+j−l − qt+i). Hence,

the total number of different choices for Z is

N1

N2
=

j−l−1

∏
i=0

q2t−l − qt+i

qt+j−l − qt+i =
j−l−1

∏
i=0

qt−l − qi

qj−l − qi =

[
t− l
j− l

]
q

(25)

In order to to complete U, we need to extend Z by k − (t + j− l) linearly independent vectors
chosen from Fn

q \ Y. The number of ways to do so is N3 = ∏
k−(t+j−l)−1
i=0

(
qn − q(2t−l)+i), with

normalizing factor N4 = ∏
k−(t+j−l)−1
i=0

(
qk − q(t+j−l)+i). We have

N3

N4
=

k−(t+j−l)−1

∏
i=0

q(2t−l)+i

q(t+j−l)+i
· qn−(2t−l)−i − 1

qk−(t+j−l)−i − 1
= q(k−t−j+l)(t−j)

[
n− 2t + l

k− (t + j− l)

]
q

(26)

Combining (25) and (26), the total number of different choices for the desired subspace U is given
by (10), as claimed.

5.2. Proof of Lemma 6

Lemma 6 follows from the following two lemmas. The first bounds the product of the largest ele-
ments in each row. The second bounds the number of nonzero generalized diagonals in Dj — that
is, the number of permutations π ∈ St+1 such that (Dj)i,π(i) 6= 0 for all i ∈ {0, 1, . . . , t}.

Lemma 7.
t

∏
l=0

max
j

dl,j 6 2k(t+1)+1q(k−t)t(t+1)

Proof. We first argue that for l ∈ {1, 2, . . . , t}, the largest element in row l is dl,l. For l = 0, the
largest element in the row is either d0,0 or d0,1. To see that, we calculate
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dl,j+1

dl,j
=

[
t− l

t− j− 1

]
q[

t− l
t− j

]
q

·

[
k− t + l

j + 1

]
q[

k− t + l
j

]
q

· q(k−t−j+l−1)(t−j−1)−(k−t−j+l)(t−j)

=
[t− j]q![j− l]q!

[t− j− 1]q![j− l + 1]q!
·

[j]q![k− t + l − j]q!
[j + 1]q![k− t + l − j− 1]q!

· q1−(t−j)−(k−t−j+l)

=
qt−j − 1

qj−l+1 − 1
· qk−t+l−j − 1

qj+1 − 1
· q1−(t−j)−(k−t−j+l)

=
qt−j − 1

qt−j
qk−t−j+l − 1

qk−t−j+l
q

(qj+1 − 1)(qj−l+1 − 1)

<
q

(qj+1 − 1)(qj−l+1 − 1)

Note that unless j = l = 0, this implies that dl,j+1 < dl,j. The only remaining case is d0,1/d0,0 <

q/(q− 1)2. This ratio can be at most 2 for q = 2, and is below 1 for q > 2. Hence
t

∏
l=0

max
j

dl,j 6 2
t

∏
j=0

dj,j

We next bound this product:
t

∏
j=0

dj,j =
t

∏
j=0

[
k− t + j

j

]
q
q(k−t)(t−j) 6

t

∏
j=0

(
k− t + j

j

)
qj(k−t)+(k−t)(t−j) 6 2k(t+1)q(k−t)t(t+1)

Lemma 8. Dj has at most 2t nonzero generalized diagonals.

Proof. Let π ∈ Sn be such that (Dj)i,π(i) 6= 0 for all i. If j > 0 then we must have π(i) = i for
all i < j, and π(t) = j. Letting r = t− j this reduces to the following problem: let R be an r× r
matrix corresponding to rows j, . . . , t− 1 and columns j + 1, . . . , t of Dj. This matrix has entries
rl,j 6= 0 only for j > l − 1. We claim that such matrices have at most 2r nonzero generalized
diagonals. We show this by induction on r. Let us index the rows and columns of R by 1, . . . , r. To
get a nonzero generalized diagonal we must have π(r) = r− 1 or π(r) = r. In both cases, if we
delete the r-th row and the π(r)-th column of R, one can verify that we get an (r− 1)× (r− 1)
matrix of the same form (e.g. zero values in coordinates (l, j) whenever j < l − 1). The lemma
now follows by induction.

Proof of Lemma 6. The determinant of D or Dj is bounded by the number of nonzero generalized
diagonals (which is 1 for D, and at most 2t for Dj), multiplied by the maximal value a product of
choosing one element per row can take. Hence, it is bounded by

max
{
|det D|, |det Dj|

}
6 2t · 2k(t+1)+1q(k−t)t(t+1) 6 qt+k(t+1)+1+(k−t)t(t+1) 6 qk(t+1)2
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