
Element Distinctness, Frequency Moments, and Sliding
Windows

Paul Beame∗

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

beame@cs.washington.edu

Raphaël Clifford†

Department of Computer Science
University of Bristol

Bristol BS8 1UB, United Kingdom
clifford@cs.bris.ac.uk

Widad Machmouchi‡

Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350

widad@cs.washington.edu

Abstract
We derive new time-space tradeoff lower bounds and algorithms for exactly computing

statistics of input data, including frequency moments, element distinctness, and order statistics,
that are simple to calculate for sorted data. In particular, we develop a randomized algorithm
for the element distinctness problem whose time T and space S satisfy T ∈ Õ(n3/2/S1/2),
smaller than previous lower bounds for comparison-based algorithms, showing that element
distinctness is strictly easier than sorting for randomized branching programs. This algorithm
is based on a new time- and space-efficient algorithm for finding all collisions of a function f
from a finite set to itself that are reachable by iterating f from a given set of starting points.

We further show that our element distinctness algorithm can be extended at only a polylog-
arithmic factor cost to solve the element distinctness problem over sliding windows [19], where
the task is to take an input of length 2n − 1 and produce an output for each window of length
n, giving n outputs in total.

In contrast, we show a time-space tradeoff lower bound of T ∈ Ω(n2/S) for randomized
multi-way branching programs, and hence standard RAM and word-RAM models, to compute
the number of distinct elements, F0, over sliding windows. The same lower bound holds for
computing the low-order bit of F0 and computing any frequency moment Fk for k 6= 1. This
shows that frequency moments Fk 6= 1 and even the decision problem F0 mod 2 are strictly
harder than element distinctness. We provide even stronger separations on average for inputs
from [n].

We complement this lower bound with a T ∈ Õ(n2/S) comparison-based deterministic
RAM algorithm for exactly computing Fk over sliding windows, nearly matching both our
general lower bound for the sliding-window version and the comparison-based lower bounds
for a single instance of the problem. We further exhibit a quantum algorithm for F0 over sliding
windows with T ∈ Õ(n3/2/S1/2). Finally, we consider the computations of order statistics
over sliding windows.

∗Research supported by NSF grants CCF-1217099 and CCF-0916400
†Research supported by the EPSRC. This work was done while the author was visiting the University of Washington.
‡Research supported by NSF grant CCF-1217099

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 127 (2013)

1 Introduction

Problems related to computing elementary statistics of input data have wide applicability and utility.
Despite their usefulness, there are surprising gaps in our knowledge about the best ways to solve
these simple problems, particularly in the context of limited storage space. Many of these elemen-
tary statistics can be easily calculated if the input data is already sorted but sorting the data in space
S, requires time T ∈ Ω(n2/S) [12, 9], a bound matched by the best comparison algorithms [30]
for all S ∈ O(n/ log n). It has not been clear whether exactly computing elementary statistical
properties, such as frequency moments (e.g. F0, the number of distinct elements in the input) or
element distinctness (ED, whether or not F0 equals the input size) are as difficult as sorting when
storage is limited.

The main approach to proving time-space tradeoff lower bounds for problems in P has been to
analyze their complexity on (multi-way) branching programs. (As is usual, the input is assumed
to be stored in read-only memory and the output in write-only memory and neither is counted
towards the space used by any algorithm. The multi-way branching program model simulates both
Turing machines and standard RAM models that are unit-cost with respect to time and log-cost with
respect to space.) An important method for this analysis was introduced by Borodin and Cook for
sorting [12] and has since been extended and generalized to randomized computation of a number
of other important multi-output problems (e.g., [37, 2, 3, 9, 28, 33]). Unfortunately, the techniques
of [12] yield only trivial bounds for problems with single outputs such as F0 or ED.

Element distinctness has been a particular focus of lower bound analysis. The first time-
space tradeoff lower bounds for the problem apply to structured algorithms. Borodin et al. [13]
gave a time-space tradeoff lower bound for computing ED on comparison branching programs of
T ∈ Ω(n3/2/S1/2) and, since S ≥ log2 n, T ∈ Ω(n3/2

√
log n/S). Yao [36] improved this to

a near-optimal T ∈ Ω(n2−ε(n)/S), where ε(n) = 5/(lnn)1/2. Since these lower bounds apply
to the average case for randomly ordered inputs, by Yao’s lemma, they also apply to randomized
comparison branching programs. These bounds also trivially apply to all frequency moments since,
for k 6= 1, ED(x) = n iff Fk(x) = n. This near-quadratic lower bound seemed to suggest that the
complexity of ED and Fk should closely track that of sorting.

For multi-way branching programs, Ajtai [4] showed that any linear time algorithm for ED
must consume linear space. Moreover, when S is no(1), Beame et al. [11] showed a T ∈
Ω(n

√
log(n/S)/ log log(n/S)) lower bound for computing ED. This is a long way from the

comparison branching program lower bound and there has not been much prospect for closing the
gap since the largest lower bound known for multi-way branching programs computing any single-
output problem in P is only T ∈ Ω(n log((n log n)/S)).

We show that this gap between sorting and element distinctness cannot be closed. More pre-
cisely, we give a randomized multi-way branching program algorithm that for any space bound
S ∈ [c log n, n] computes ED in time T ∈ Õ(n3/2/S1/2)1, significantly beating the lower bound
that applies to comparison-based algorithms. Our algorithm for ED is based on an extension of
Floyd’s cycle-finding algorithm [25] (more precisely, its variant, Pollard’s rho algorithm [31]). Pol-
lard’s rho algorithm finds the unique collision reachable by iterating a function f : [n] → [n] from
a single starting location in time proportional to the size of the reachable set, using only a constant
number of pointers. Variants of this algorithm have been used in cryptographic applications to find

1As is usual, we use Õ to suppress polylogarithmic factors in n.

1

collisions in functions that supposedly behave like random functions [16, 34, 29].
More precisely, our new ED algorithm is based on a new deterministic extension of Floyd’s

algorithm to find all collisions of a function f : [n] → [n] reachable by iterating f from any one
of a set of k starting locations, using only O(k) pointers and using time roughly proportional to
the size of the reachable set. Motivated by cryptographic applications, [35] previously considered
this problem for the special case of random functions and suggested a method using ‘distinguished
points’, though the only analysis they gave was heuristic and incomplete. Our algorithm, developed
independently, uses a different method, applies to arbitrary functions, and has a fully rigorous
analysis.

Our algorithm forED does not obviously apply to the computation of frequency moments, such
as F0, and so it is interesting to ask whether or not frequency moment computation is harder than
that of ED and may be closer in complexity to sorting. Given the general difficulty of obtaining
strong lower bounds for single-output functions, we consider the relative complexity of computing
many copies of each of the functions at once and apply techniques for multi-output functions to
make the comparison. Since we want to retain a similar input size to that of our original problems,
we need to evaluate them on overlapping inputs.

Evaluating the same function on overlapping inputs occurs as a natural problem in time series
analysis when it is useful to know the value of a function on many different intervals or windows
within a sequence of values or updates, each representing the recent history of the data at a given
instant. In the case that an answer for every new element of the sequence is required, such computa-
tions have been termed sliding-window computations for the associated functions [19]. In particular,
we consider inputs of length 2n − 1 where the sliding-window task is to compute the function for
each window of length n, giving n outputs in total. We write F�n to denote this sliding-window
version of a function F .

Many natural functions have been studied for sliding windows including entropy, finding fre-
quent symbols, frequency moments and order statistics, which can be computed approximately in
small space using randomization even in one-pass data stream algorithms [19, 8, 7, 26, 27, 17, 15].
Approximation is required since exactly computing these values in this online model can easily be
shown to require large space. The interested reader may find a more comprehensive list of sliding-
windows results by following the references in [15].

We show that computingED over n sliding windows only incurs a polylogarithmic overhead in
time and space versus computing a single copy ofED. In particular, we can extend our randomized
multi-way branching program algorithm for ED to yield an algorithm for ED�n that for space
S ∈ [c log n, n] runs in time T ∈ Õ(n3/2/S1/2).

In contrast, we prove strong time-space lower bounds for computing the sliding-window version
of any frequency moment Fk for k 6= 1. In particular, the time T and space S to compute F�n

k must
satisfy T ∈ Ω(n2/S) and S ≥ log n. (F1 is simply the size of the input, so computing its value
is always trivial.) The bounds are proved directly for randomized multi-way branching programs
which imply lower bounds for the standard RAM and word-RAM models, as well as for the data
stream models discussed above. Moreover, we show that the same lower bound holds for computing
just the parity of the number of distinct elements, F0 mod 2, in each window. This formally proves
a separation between the complexity of sliding-window F0 mod 2 and sliding-window ED. These
results suggest that in the continuing search for strong complexity lower bounds, F0 mod 2 may be
a better choice as a difficult decision problem than ED.

2

Our lower bounds for frequency moment computation hold for randomized algorithms even
with small success probability 2−O(S) and for the average time and space used by deterministic
algorithms on inputs in which the values are independently and uniformly chosen from [n]. (For
comparison with the latter average case results, it is not hard to show that over the same input
distribution ED can be solved with T ∈ Õ(n/S) and our reduction shows that this can be extended
to T ∈ Õ(n/S) bound for ED�n on this input distribution.)

We complement our lower bound with a comparison-based RAM algorithm for any F�n
k that

has T ∈ Õ(n2/S), showing that this is nearly an asymptotically tight bound, since it provides a
general RAM algorithm that runs in the same time complexity. Since our algorithm for computing
F�n
k is comparison-based, the comparison lower bound for Fk implied by [36] is not far from

matching our algorithm even for a single instance of Fk. We also provide a quantum algorithm for
F�n
0 with T ∈ Õ(n3/2/S1/2).

It is interesting to understand how the complexity of computing a function F can be related to
that of computing F�n. To this end, we consider problems of computing the tth order statistic in
each window. For these problems we see the full range of relationships between the complexities of
the original and sliding-window versions of the problems. In the case of t = n (maximum) or t = 1
(minimum) we show that computing these properties over sliding windows can be solved by a com-
parison based algorithm in O(n log n) time and only O(log n) bits of space so there is very little
growth in complexity. In contrast, we show that a T ∈ Ω(n2/S) lower bound holds when t = αn
for any fixed 0 < α < 1. Even for algorithms that only use comparisons, the expected time for
errorless randomized algorithms to find the median in a single window is T ∈ Θ(n log logS n) [18].
Hence, these problems have a dramatic increase in complexity over sliding windows.

Related work While sliding-windows versions of problems have been considered in the context
of online and approximate computation, there is little research that has explicitly considered any
such problems in the case of exact offline computation. One instance where a sliding-windows
problem has been considered is a lower bound for generalized string matching due to Abraham-
son [2]. This lower bound implies that for any fixed string y ∈ [n]n with n distinct values, H�n

y

requires T · S ∈ Ω(n2/ log n) where decision problem Hy(x) is 1 if and only if the Hamming
distance between x and y is n. This bound is an Ω(log n) factor smaller than our lower bound for
sliding-window F0 mod 2.

Frequency Moments, Element Distinctness, and Order Statistics Let a = a1a2 . . . an ∈ Dn

for some finite set D. We define the kth frequency moment of a, Fk(a), as Fk(a) =
∑

i∈D f
k
i ,

where fi is the frequency (number of occurrences) of symbol i in the string a and D is the set of
symbols that occur in a. Therefore, F0(a) is the number of distinct symbols in a and F1(a) = |a|
for every string a. The element distinctness problem is a decision problem defined as: ED(a) =
1 if F0(a) = |a| and 0 otherwise. We write EDn for the ED function restricted to inputs a with
|a| = n. The tth order statistic of a, Ot, is the tth smallest symbol in a. Therefore On is the
maximum of the symbols of a and Odn

2
e is the median.

Branching programs Let D and R be finite sets and n and m be two positive integers. A D-way
branching program is a connected directed acyclic graph with special nodes: the source node and
possibly many sink nodes, a set of n inputs and m outputs. Each non-sink node is labeled with an
input index and every edge is labeled with a symbol from D, which corresponds to the value of the

3

input indexed at the originating node. In order not to count the space required for outputs, as is
standard for the multi-output problems [12], we assume that each edge can be labeled by some set
of output assignments. For a directed path π in a branching program, we call the set of indices of
symbols queried by π the queries of π, denoted by Qπ; we denote the answers to those queries by
Aπ : Qπ → D and the outputs produced along π as a partial function Zπ : [m]→ R.

A branching program computes a function f : Dn → Rm by starting at the source and then
proceeding along the nodes of the graph by querying the inputs associated with each node and
following the corresponding edges. In the special case that there is precisely one output, without
loss of generality, any edge with this output may instead be assumed to be unlabeled and lead to a
unique sink node associated with its output value.

A branching program B computes a function f if for every x ∈ Dn, the output of B on x,
denoted B(x), is equal to f(x). A computation of B on x is a directed path, denoted πB(x), from
the source to a sink inB whose queries to the input are consistent with x. The time T of a branching
program is the length of the longest path from the source to a sink and the space S is the logarithm
base 2 of the number of the nodes in the branching program. Therefore, S ≥ log T where we write
log x to denote log2 x.

A randomized branching program B is a probability distribution over deterministic branching
programs with the same input set. B computes a function f with error at most η if for every input
x ∈ Dn, PrB∼B[B(x) = f(x)] ≥ 1 − η. The time (resp. space) of a randomized branching
program is the maximum time (resp. space) of a deterministic branching program in the support of
the distribution.

While our lower bounds apply to randomized branching programs, which allow the strongest
non-explicit randomness, our randomized algorithms for element distinctness will only require a
weaker notion, input randomness, in which the random string r is given as an explicit input to a
RAM algorithm. For space-bounded computation, it would be preferable to only require the random
bits to be available online as the algorithm proceeds.

As is usual in analyzing randomized computation via Yao’s lemma, we also will consider com-
plexity under distributions µ on the input space Dn. A branching program B computes f under µ
with error at most η iff B(x) = f(x) for all but an η-measure of x ∈ Dn under distribution µ.

A branching program is leveled if the nodes are divided into an ordered collection of sets each
called a level where edges are between consecutive levels only. Any branching program can be
leveled by increasing the space S by an additive log T . Since S ≥ log T , in the following we
assume without loss of generality that our branching programs are leveled.

A comparison branching program is similar to a D-way branching program except that each
non-sink node is labeled with a pair of indices i, j ∈ [n] with i < j and has precisely three out-
edges with labels from {<,=, >}, corresponding to the relative position of inputs xi and xj in the
total order of the inputs.

4

2 Element Distinctness and Small-Space Collision-Finding

2.1 Efficient small-space collision-finding with many sources

Our approach for solving the element distinctness problem has at its heart a novel extension of
Floyd’s small space “tortoise and hare” cycle-finding algorithm [25]. Given a start vertex v in
a finite graph G = (V,E) of outdegree 1, Floyd’s algorithm finds the unique cycle in G that is
reachable from v. The out-degree 1 edge relation E can be viewed as a set of pairs (u, f(u)) for a
function f : V → V . Floyd’s algorithm, more precisely, stores only two values from V and finds
the smallest s and ` > 0 and vertex w such such that fs(v) = fs+`(v) = w using only O(s + `)
evaluations of f .

We say that vertices u 6= u′ ∈ V are colliding iff f(u) = f(u′) and call v = f(u) = f(u′) a
collision. Floyd’s algorithm for cycle-finding can also be useful for finding collisions since in many
instances the starting vertex v is not on a cycle and thus s > 0. In this case i = f s−1(v) 6= j =
fs+`−1(v) satisfy f(i) = f(j) = w, which is a collision in f , and the iterates of f produce a ρ
shape (see Figure 1a). These colliding points may be found with minimal cost by also storing the
previous values of each of the two pointers as Floyd’s algorithm proceeds. The ρ shape inspired the
name of Pollard’s rho algorithm for factoring [31] and solving discrete logarithm problems [32].
This in turn is also the commonly associated name for the application of Floyd’s cycle finding
algorithm to the general problem of collision-finding.

Within the cryptographic community there is an extensive body of work building on these early
advances of Pollard. There is also considerable research on cycle detection algorithms that use
larger space than Floyd’s algorithm and improve the constant factors in the number of edges that
must be traversed (function evaluations) to find the cycle (see for example [16, 34, 29] and refer-
ences therein). In these applications, the goal is to find a single collision reachable from a given
starting point as efficiently as possible.

The closest existing work to our problem tackles the problem of speeding up collision detection
in random functions using parallelization. In [35], van Oorschot and Wiener give a deterministic
parallel algorithm for finding all collisions of a random function using k processors, along with
a heuristic analysis of its performance. Their algorithm keeps a record of visits to predetermined
vertices (so-called ‘distinguished points’) which allow the separate processes to determine quickly
if they are on a path that has been explored before. Their heuristic argument suggests a bound
of O(n3/2/k1/2) function iterations, though it is unclear whether this can ever be made rigorous.
Our method is very different in detail and developed independently: we provide a fully rigorous
analysis that roughly matches the heuristic bound of [35] by using a new deterministic algorithm
for collision-finding on random hash functions applied to worst-case inputs for element distinctness.

As part of our strategy for efficiently solving element distinctness, we examine the time and
space complexity of finding all colliding vertices, along with their predecessors, in the subgraph
reachable from a possibly large set of k starting vertices, not just from a single start vertex. We
will show how to do this using storage equivalent to only O(k) elements of V and time roughly
proportional to the size of the subgraph reachable from this set of starting vertices. Note that the
obvious approach of running k independent copies of Floyd’s algorithm in parallel from each of
the start vertices does not solve this problem since it may miss collisions between different parallel
branches (see Figure 1c), and it may also traverse large regions of the subgraph many times.

5

(a) (b)

(c) (d)

Figure 1: Collision-finding with multiple sources

For v ∈ V , define f∗(v) = {f i(v) | i ≥ 0} to be the set of vertices reachable from v and
f∗(U) =

⋃
v∈U f

∗(v) for U ⊆ V .

Theorem 2.1. There is an O(k log n) space deterministic algorithm COLLIDEk that, given f :
V → V for a finite set V and K = {v1, . . . , vk} ⊆ V , finds all pairs (v, {u ∈ f∗(K)|f(u) = v})
and runs in time O(|f∗(K)| log kmin{k, log n}).

Proof. We first describe the algorithm COLLIDEk: In addition to the original graph and the colli-
sions that it finds, this algorithm will maintain a redirection list R ⊂ V of size O(k) vertices that it
will provisionally redirect to map to a different location. For each vertex in R it will store the name
of the new vertex to which it is directed. We maintain a separate list L of all vertices from which
an edge of G has been redirected away and the original vertices that point to them.
COLLIDEk:
Set R = ∅.
For j = 1, . . . , k do:

1. Execute Floyd’s algorithm starting with vertex vj on the graph G using the redirected out-
edges for nodes from the redirection list R instead of f .

2. If the cycle found does not include vj , there must be a collision.

(a) If this collision is in the graph G, report the collision v as well as the colliding vertices
u and u′, where u′ is the predecessor of v on the cycle and u is the predecessor of v on
the path from vj to v.

(b) Add u to the redirection list R and redirect it to vertex vj .

3. Traverse the cycle again to find its length and choose two vertices w and w′ on the cycle that
are within 1 of half this length apart. Add w and w′ to the redirection list, redirecting w to

6

f(w′) and w′ to f(w). This will split the cycle into two parts, each of roughly half its original
length.

The redirections for a single iteration of the algorithm are shown in Figure 1b. The general situation
for later iterations in the algorithm is shown in Figure 1d.

Observe that in each iteration of the loop there is at most one vertex v where collisions can
occur and at most 3 vertices are added to the redirection list. Moreover, after each iteration, the
set of vertices reachable from vertices v1, . . . , vj appear in a collection of disjoint cycles of the
redirected graph. Each iteration of the loop traverses at most one cycle and every cycle is roughly
halved each time it is traversed.

In order to store the redirection list R, we use a dynamic dictionary data structure of O(k log n)
bits that supports insert and search in O(log k) time per access or insertion. We can achieve this
using balanced binary search trees and we can improve the bound to O(

√
log k/ log log k) us-

ing exponential trees [6]. Before following an edge (i.e., evaluating f), the algorithm will first
check list R to see if it has been redirected. Hence each edge traversed costs O(log k) time (or
O(
√

log k/ log log k) using exponential trees). Since time is measured relative to the size of the
reachable set of vertices, the only other extra cost is that of re-traversing previously discovered
edges. Since all vertices are maintained in cycles and each traversal of a cycle roughly halves its
length, each edge found can be traversed at most O(min{k, log n}) times.

As we have noted in the proof, with exponential trees the running time of the algorithm can
be reduced to O(|f∗(K)|

√
log k/ log log kmin{k, log n}), though the algorithm becomes signifi-

cantly more complicated in this case.

2.2 A randomized T 2 · S ∈ Õ(n3) element distinctness algorithm

We will use collision-finding for our element distinctness algorithm. In this case the vertex set V
will be the set of indices [n], and the function f will be given by fx,h(i) = h(xi) where h is a
(random) hash function that maps [m] to [n].

Observe that if we find i 6= j such that fx,h(i) = fx,h(j) then either

• xi = xj and hence ED(x) = 0, or

• we have found a collision in h: xi 6= xj but h(xi) = h(xj);

We call xi and xj “pseudo-duplicates” in this latter case.
Given a parameter k, on input x our randomized algorithm will repeatedly choose a random

hash function h and a random set K of roughly k starting points and then call the COLLIDEk
algorithm given in Theorem 2.1 on K using the function f = fx,h and check the collisions found
to determine whether or not there is a duplicate among the elements of x indexed by f∗x,h(K). The
space bound S of this algorithm will be O(k log n).

The running time of COLLIDEk depends on |f∗x,h(K)|, which in turn is governed by the random
choices of h and K and may be large. Since f∗x,h(K) is also random, we also need to argue that if
ED(x) = 0, then there is a reasonable probability that a duplicate in x will be found among the
indices in f∗x,h(K). The following two lemmas analyze these issues.

7

Lemma 2.2. Let x ∈ [m]n. For h : [m] → [n] chosen uniformly at random and for K ⊆ [n]
selected by uniformly and independently choosing 2 ≤ k ≤ n/32 elements of [n] with replacement,
Pr[|f∗x,h(K)| ≤ 2

√
kn] ≥ 8/9.

Lemma 2.3. Let x ∈ [m]n be such that ED(x) = 0. Then for h : [m] → [n] chosen uniformly
at random and for K ⊆ [n] selected by uniformly and independently choosing 2 ≤ k ≤ n/32 ele-
ments of [n] with replacement, Pr[|f∗x,h(K)| ≤ 2

√
kn and ∃i 6= j ∈ f∗x,h(K) such that xi = xj] ≥

k/(18n).

Before we prove these lemmas we show how, together with the properties of COLLIDEk, they
yield the following theorem.

Theorem 2.4. For any ε > 0, and any S with c log n ≤ S ≤ n/32 for some constant c > 0, there
is a randomized RAM algorithm with input randomness computing EDn with 1-sided error (false
positives) at most ε, that uses space S and time T ∈ O(n

3/2

S1/2 log5/2 n log(1/ε)). Further, when
S ∈ O(log n), we have T ∈ O(n3/2 log(1/ε)).

Proof. Choose k ≥ 2 such that the space usage of COLLIDEk on [n] is at most S/2. Therefore
k ∈ Ω(S/ log n). The algorithm is as follows:

On input x, run (18n/k) log(1/ε) independent runs of COLLIDEk on different fx,h,
each with independent random choices of hash functions h and independent choices,
K, of k starting indices, and each with a run-time cut-off bounding the number of
explored vertices of f∗x,h(K) at t∗ = 2

√
kn.

On each run, check if any of the collisions found is a duplicate in x, in which case
output ED(x) = 0 and halt. If none are found in any round then output ED(x) =
1.

The algorithm will never incorrectly report a duplicate in a distinct x and by Lemma 2.3, each
run has a probability of at least k/(18n) of finding a duplicate in an input x such that ED(x) = 0
so the probability of failing to find a duplicate in (18n/k) log(1/ε) rounds is at most ε.

Using Theorem 2.1 each run of our bounded version of COLLIDEk, requires run-
time O(

√
kn log kmin{k, log n}) and hence the total runtime of the algorithm is

O(
√
kn · n/k · log kmin{k, log n} log(1/ε)) which is O(n3/2 log(1/ε)) for k constant and

O(n3/2/k1/2 · log2 n · log(1/ε)) for general k. The claim follows using k ∈ Ω(S/ log n).

To complete the proof of Theorem 2.4, we now prove the two technical lemmas on properties
of f∗x,h(K) that the randomization in the hash functions. In particular, we first prove Lemma 2.2
showing that for any x, f∗x,h(K) is typically not larger than 2

√
kn.

Proof of Lemma 2.2. We can run an experiment that is equivalent to selecting f∗x,h(K) as follows:

Set M = I = K = ∅.
For count = 1 to k do

Choose an element i ∈ [n] uniformly at random and add it to K.
While i /∈ I do

8

Add i to I
If xi /∈M then

Add xi to M
Choose an element i ∈ [n] uniformly at random.

else exit while loop and output (“duplicate found”)
End While

End For
Output I .

Observe that, when each new element i is chosen at random, the probability that a previous
index is found (the while loop exits) is precisely |I|/n and that |I| increases by 1 per step, except
for the k steps when i was already in I or xi was in M . View each of these random choices of i as
a coin-flip with probability of heads being |I|/n.

The index set size |I| at the j-th random choice is at least j−k as we will have seen a duplicate
in either I orM at most k times. Hence the probability of exiting the while loop is at least (j−k)/n.
Therefore the expected number of while loop exits that have occurred when the t-th random choice
is made is at least

∑t−k
j=1 j/n. Consider for a moment our experiment but with the bound on the for

loop removed. Then, solving for t we get that the minimum number of random choices at which the
expected number of while loop exits is at least k/(1 − δ) is itself at least d(

√
1 + 8kn/(1− δ) −

1)/2 + ke ≤
√

2kn/(1− δ) + k + 1. Let δ = 3/4 and observe that n > 32k implies that√
8kn/3 + k + 1 ≤ 2

√
kn. Our experiment terminates when count > k and so we can now bound

the number of random choices and hence |f∗k,n(K)|. By treating the event of exiting the while loop
as independent coin flips with the lower bound probability of (j − k)/n at random choice j and
applying the Chernoff inequality, we get that Pr[|f∗k,n(K)| > 2

√
kn] ≤ e−9k/8 as required to prove

the lemma.

Finally we prove Lemma 2.3 showing that any duplicate in x is also somewhat likely to be
found in f∗x,h(K).

Proof of Lemma 2.3. We show this first for an x that has a single pair of duplicated values and
then observe how this extends to the general case. Consider the sequence of indices selected in the
experiment in the proof of Lemma 2.2 on input x. We define an associated Markov chain with a
state S(d, j, b) for 0 ≤ d < n, for 0 ≤ j ≤ k−1, and for b ∈ {0, 1}, where state S(d, j, b) indicates
that there have been d distinct indices selected so far, j pseudo-duplicates, and b is the number of
indices from the duplicated pair selected so far. In addition, the chain has two absorbing states, F ,
indicating that a duplicate has been found, and N , indicating that no duplicates have been found at
termination.

Observe that the probability in state S(d, j, b) that the next selection is a pseudo-duplicate is
precisely d/n; hence it is also the probability of a transition from S(d, j, b) to S(d, j + 1, b) if
j < k − 1, or to N if j = k − 1. From state S(d, j, 0) there is a 2/n chance of selecting one
of the duplicated pair, so this is the probability of the transition from S(d, j, 0) to S(d + 1, j, 1).
Finally, from state S(d, j, 1), the probability that the other element of the duplicated pair is found is
precisely 1/n and so this is the probability of a transition to F . The remaining transition from state
from S(d, j, b) leads to state S(d+ 1, j, b) with probability 1− (d+ 2− b)/n. See Figure 2.

9

Figure 2: Transitions from the Markov chain in the proof of Lemma 2.3

By the result of Lemma 2.2, with probability at least 8/9, when started in state S(0, 0, 0) this
chain reaches state F orN in at most t∗ = 2

√
kn steps. The quantity we wish to lower bound is the

probability that the chain reaches state F in its first t∗ steps. We derive our bound by comparing the
probability that F is reached in t∗ steps to the probability that either F or N is reached in t∗ steps.

Consider all special transitions, those that increase j or b, or result in states F or N . In any
walk on the Markov chain that reaches F or N , at most k + 1 special transitions can be taken, and
to reach N , at least k special transitions must be taken.

Fix any sequence 0 ≤ d1 ≤ . . . ≤ dk+1 < t∗. We say that a walk on the Markov chain is
consistent with this sequence iff the sequence of starting states of its special transitions is a prefix
of some sequence of states S(d1, ∗, ∗), . . . , S(dk+1, ∗, ∗). We condition on the walk being one of
these consistent walks.

Assume that k ≥ 2. In order to reach state F , there must be one special transition that changes b
from 0 to 1 and another that leads to F . Consider the choices (a, a′) ∈

(
[k]
2

)
of where these can occur

among the first k special transitions. The conditional probability that a consistent special transition
goes from S(da, ja, 0) to S(da + 1, ja, 1) is precisely 2/(da + 2) ≥ 1/t∗ and the conditional
probability that it goes from S(da′ , ja′ , 1) to F is precisely 1/(da′ + 1) ≥ 1/t∗. In particular, the
conditional probability that two special transitions of these types occur is lower bounded by the
probability that k Bernoulli trials with success probability 1/t∗ yield at least two successes. This
lower bound is at least(

k

2

)
1/(t∗)2(1− 1/t∗)k−2 ≥ [1− (k − 2)/t∗] ·

(
k

2

)
/(t∗)2

≥ [1− (k − 2)/(2
√
kn)]k(k − 1)/(8kn) ≥ k/(16n).

Since the different sequences correspond to disjoint sets of inputs, conditioned on the event that
F or N is reached in at most t∗ steps, which occurs with probability at least 8/9, the conditional
probability that F is reached is ≥ k/(16n). Therefore the total probability that F is reached in at
most t∗ steps is at least k/(18n), as required2.

In the general case, we observe that at each step prior to termination, the probability of finding
a pseudo-duplicate, given that j of them have previously been found, does not depend on x. On

2We have not tried to optimize these constant factors. Also, one can similarly do a separate sharper analysis when
k = 1.

10

the other hand, additional duplicated inputs in x only increase the chance of selecting a first index
that is duplicated, and can only increase the chance that one of its matching indices will be selected
in subsequent choices. Therefore, finding a duplicate is at least as likely for x as it is in the above
analysis.

3 Sliding Windows

Let D and R be two finite sets and f : Dn → R be a function over strings of length n. We
define the operation � which takes f and returns a function f�t : Dn+t−1 → Rt, defined by
f�t(x) = (f(xi . . . xi+n−1))

t
i=1. Because it produces a large number of outputs while less than

doubling the input size, we concentrate on the case that t = n and apply the � operator to the
statistical functions Fk, Fk mod 2, ED, and Ot, the tth order statistic. We will use the notation
F

(j)
k (resp. f (j)i) to denote the kth frequency moment (resp. the frequency of symbol i) of the string

in the window of length n starting at position j.

3.1 Element Distinctness over Sliding Windows

The main result of this section shows that our randomized branching program for EDn can even be
extended to a T ∈ Õ(n3/2/S1/2) randomized branching program for its sliding windows version
ED�n

n . We do this in two steps. We first give a deterministic reduction which shows how the
answer to an element distinctness problem allows one to reduce the input size of sliding-window
algorithms for computing ED�m

n .

Lemma 3.1. Let n > m > 0.

(a) If EDn−m+1(xm, . . . , xn) = 0 then ED�m
n (x1, . . . , xn+m−1) = 0m.

(b) If EDn−m+1(xm, . . . , xn) = 1 then define

i. iL = max{j ∈ [m−1] | EDn−j+1(xj , . . . , xn) = 0} where iL = 0 if the set is empty and

ii. iR = min{j ∈ [m − 1] | EDn−m+j(xm, . . . , xn+j) = 0} where iR = m if the set is
empty.

Then

ED�m
n (x1, . . . , xn+m−1) = 0iL1m−iL ∧ 1iR0m−iR ∧ED�m

m−1(x1, . . . , xm−1, xn+1, . . . , xn+m−1)

where each ∧ represents bit-wise conjunction.

Proof. The elementsM = (xm, . . . , xn) appear in allm of the windows so if this sequence contains
duplicated elements, so do all of the windows and hence the output for all windows is 0. This
implies part (a).

If M does not contain any duplicates then any duplicate in a window must involve at least one
element from L = (x1, . . . , xm−1) or from R = (xn+1, . . . , xn+m−1). If a window has value
0 because it contains an element of L that also appears in M , it must also contain the rightmost
such element of L and hence any window that is distinct must begin to the right of this rightmost

11

such element of L. Similarly, if a window has value 0 because it contains an element of R that
also appears in M , it must also contain the leftmost such element of R and hence any window that
is distinct must end to the left of this leftmost such element of R. The only remaining duplicates
that can occur in a window can only involve elements of both L and R. In order, the m windows
contain the following sequences of elements of L∪R: (x1, . . . , xm−1), (x2, . . . , xm−1, xn+1), . . .,
(xm−1, xn+1, . . . , xn+m−2), (xn+1, . . . , xn+m−1). These are precisely the sequences for which
ED�m

m−1(x1, . . . , xm−1, xn+1, . . . , xn+m−1) determines distinctness. Hence part (b) follows.

We use the above reduction in input size to show that any efficient algorithm for element dis-
tinctness can be extended to solve element distinctness over sliding windows at a small additional
cost.

Lemma 3.2. If there is an algorithm A that solve element distinctness, ED, using time at most
T (n) and space at most S(n), where T and S are nondecreasing functions of n, then there is an
algorithm A∗ that solves the sliding-window version of element distinctness, ED�n

n , in time T ∗(n)
that is O(T (n) log2 n) and space S∗(n) that is O(S(n) + log2 n). Moreover, if T (n) is Ω(nβ)for
β > 1, then T ∗(n) is O(T (n) log n).

IfA is deterministic then so isA∗. IfA is randomized with error at most ε thenA∗ is randomized
with error o(1/n). Moreover, if A has the obvious 1-sided error (it only reports that inputs are not
distinct if it is certain of the fact) then the same property holds for A∗.

Proof. We first assume that A is deterministic. Algorithm A∗ will compute the n outputs of ED�n
n

in n/m groups of m using the input size reduction method from Lemma 3.1. In particular, for each
group A∗ will first call A on the middle section of input size n−m+ 1 and output 0m if A returns
0. Otherwise, A∗ will do two binary searches involving at most 2 logm calls to A on inputs of size
at most n to compute iL and iR as defined in part (b) of that lemma. Finally, in each group, A∗ will
make one recursive call to A∗ on a problem of size m.

It is easy to see that this yields a recurrence of the form

T ∗(n) = (n/m)[cT (n) logm+ T ∗(m)].

In particular, if we choose m = n/2 then we obtain T ∗(n) ≤ 2T ∗(n/2) + 2cT (n) log n. If T (n)
is Ω(nβ) for β > 1 this solves to T ∗(n) ∈ O(T (n) log n). Otherwise, it is immediate from the
definition of T (n) that T (n) must be Ω(n) and hence the recursion for A∗ has O(log n) levels and
the total cost associated with each of the levels of the recursion is O(T (n) log n).

Observe that the space for all the calls to A can be re-used in the recursion. Also note that the
algorithm A∗ only needs to remember a constant number of pointers for each level of recursion for
a total cost of O(log2 n) additional bits.

We now suppose that the algorithm A is randomized with error at most ε. For the recursion
based on Lemma 3.1, we use algorithm A and run it C = O(log n) times on input (xm, . . . , xn),
taking the majority of the answers to reduce the error to o(1/n2). In case that no duplicate is
found in these calls, we then apply the noisy binary search method of Feige, Peleg, Raghavan, and
Upfal [21] to determine iL and iR with error at most o(1/n2) by using only C = O(log n) calls to
A. (If the original problem size is n we will use the same fixed number C = O(log n) of calls to A
even at deeper levels of the recursion so that each subproblem has error o(1/n2).) There are only

12

O(n) subproblems so the final error is o(1/n). The rest of the run-time analysis is the same as in
the deterministic case.

If A has only has false positives (if it claims that the input is not distinct then it is certain that
there is a duplicate) then observe that A∗ will only have false positives.

Combining Theorem 2.4 with Lemma 3.2 we obtain our algorithm for element distinctness over
sliding windows.

Theorem 3.3. For space S ∈ [c log n, n], ED�n can be solved in time T ∈ O(n3/2 log7/2 n/S1/2)
with 1-sided error probability o(1/n). If the space S ∈ O(log n) then the time is reduced to
T ∈ O

(
n3/2 log n

)
.

When the input alphabet is chosen uniformly at random from [n] there exists a much simpler 0-
error sliding-window algorithm for ED�n that is efficient on average. The algorithm runs in O(n)
time on average using O(log n) bits of space. By way of contrast, under the same distribution, we
prove an average case time-space lower bound of T ∈ Ω(n2/S) for (F0 mod 2)�n in Section 3.2.
The proof is in Appendix A.

Theorem 3.4. For input randomly chosen uniformly from [n]2n−1, ED�n can be solved in average
time T ∈ O(n) and average space S ∈ O(log n).

3.2 Frequency Moments over Sliding Windows

We now show a T ∈ Ω(n2/S) lower bound for randomized branching programs computing fre-
quency moments over sliding windows. This contrasts with our significantly smaller T ∈ Õ(n3/2/S1/2)
upper bound from the previous section for computing element distinctness over sliding windows in
this same model, hence separating the complexity of ED and Fk for k 6= 1 over sliding windows.
Our lower bound also applies to F0 mod 2.

3.2.1 A general sequential lower bound for F�n
k and (F0 mod 2)�n

We derive a time-space tradeoff lower bound for randomized branching programs computing F�n
k

for k = 0 and k ≥ 2. Further, we show that the lower bound also holds for computing (F0 mod
2)�n. (Note that the parity of Fk for k ≥ 1 is exactly equal to the parity of n; thus the outputs of
(Fk mod 2)�n are all equal to n mod 2.)

Theorem 3.5. Let k = 0 or k ≥ 2. There is a constant δ > 0 such that any [n]-way branching
program of time T and space S that computes F�n

k with error at most η, 0 < η < 1 − 2−δS , for
input randomly chosen uniformly from [n]2n−1 must have T · S ∈ Ω(n2). The same lower bound
holds for (F0 mod 2)�n.

Corollary 3.6. Let k = 0 or k ≥ 2.

• The average time T and average space S needed to compute (Fk)
�n(x) for x randomly

chosen uniformly from [n]2n−1 satisfy T · S ∈ Ω(n2).

• For 0 < η < 1 − 2−δS , any η-error randomized RAM or word-RAM algorithm computing
(Fk)

�n using time T and space S satisfies T · S ∈ Ω(n2).

13

Proof of Theorem 3.5. We derive the lower bound for F�n
0 first. Afterwards we show the modifica-

tions needed for k ≥ 2 and for computing (F0 mod 2)�n. For convenience, on input x ∈ [n]2n−1,
we write yi for the output Fk(xi, . . . , xi+n−1).

We use the general approach of Borodin and Cook [12] together with the observation of [3]
of how it applies to average case complexity and randomized branching programs. In particular,
we divide the branching program B of length T into layers of height q each. Each layer is now a
collection of small branching programs B′, each of whose start node is a node at the top level of the
layer. Since the branching program must produce n outputs for each input x, for every input x there
exists a small branching program B′ of height q in some layer that produces at least nq/T > S
outputs. There are at most 2S nodes in B and hence there are at most 2S such small branching
programs among all the layers of B. One would normally prove that the fraction of x ∈ [n]2n−1

for which any one such small program correctly produces the desired number of outputs is much
smaller than 2−S and hence derive the desired lower bound. Usually this is done by arguing that
the fraction of inputs consistent with any path in such a small branching program for which a fixed
set of outputs is correct is much smaller than 2−S .

This basic outline is more complicated in our argument. One issue is that if a path in a small
programB′ finds that certain values are equal, then the answers to nearby windows may be strongly
correlated with each other; for example, if xi = xi+n then yi = yi+1. Such correlations risk
making the likelihood too high that the correct outputs are produced on a path. Therefore, instead
of considering the total number of outputs produced, we reason about the number of outputs from
positions that are not duplicated in the input and argue that with high probability there will be a
linear number of such positions.

A second issue is that inputs for which the value of F0 in a window happens to be extreme, say
n - all distinct - or 1 - all identical, allow an almost-certain prediction of the value of F0 for the next
window. We will use the fact that under the uniform distribution, cases like these almost surely do
not happen; indeed the numbers of distinct elements in every window almost surely fall in a range
close to their mean and in this case the value in the next window will be predictable with probability
bounded below 1 given the value in the previous ones. In this case we use the chain rule to compute
the overall probability of correctness of the outputs.

We start by analyzing the likelihood that an output of F0 is extreme.

Lemma 3.7. Let a be chosen uniformly at random from [n]n. Then the probability that F0(a) is
between 0.5n and 0.85n is at least 1− 2e−n/50.

Proof. For a = a1 . . . an uniformly chosen from [n]n,

E[F0(a)] =
∑
`∈[n]

Pr
a

[∃i ∈ [n] such that ai = `] = n[1− (1− 1/n)n].

Hence 0.632n < (1 − 1/e)n < E[F0(a)] ≤ 0.75n. Define a Doob martingale Dt, t = 0, 1, . . . , n
with respect to the sequence a1 . . . an by Dt = E[F0(a) | a1 . . . at]. Therefore D0 = E[F0(a)] and
Dn = F0(a). Applying the Azuma-Hoeffding inequality, we have

Pr
a

[F0(a) /∈ [0.5n, 0.85n]] ≤ Pr
a

[|F0(a)− E[F0(a)| ≥ 0.1n] ≤ 2e−2
(0.1n)2

n = 2e−n/50,

which proves the claim.

14

We say that xj is unique in x iff xj /∈ {x1, . . . , xj−1, xj+1, . . . , x2n−1}.

Lemma 3.8. Let x be chosen uniformly at random from [n]2n−1 with n ≥ 2. With probability at
least 1− 4ne−n/50,

(a) all outputs of F�n
0 (x) are between 0.5n and 0.85n, and

(b) the number of positions j < n such that xj is unique in x is at least n/24.

Proof. We know from Lemma 3.7 and the union bound that part (a) is false with probability at most
2ne−n/50. For any j < n, let Uj be the indicator variable of the event that j is unique in x and
U =

∑
j<n Uj . Now E(Uj) = (1− 1/n)2n−2 so E(U) = (n− 1)(1− 1/n)2n−2 ≥ n/8 for n ≥ 2.

Observe also that this is a kind of typical “balls in bins” problem and so, as discussed in [20], it
has the property that the random variables Uj are negatively associated; for example, for disjoint
A,A′ ⊂ [n− 1], the larger

∑
j∈A Uj is, the smaller

∑
j∈A′ Uj is likely to be. Hence, it follows [20]

that U is more closely concentrated around its mean than if the Uj were fully independent. It
also therefore follows that we can apply a Chernoff bound directly to our problem, giving Pr[U ≤
n/24] ≤ Pr[U ≤ E(U)/3] ≤ e−2E(U)/9 ≤ e−n/36. We obtain the desired bound for parts (a) and
(b) together by another application of the union bound.

Correctness of a small branching program for computing outputs in π-unique positions

DEFINITION 3.1. Let B′ be an [n]-way branching program and let π be a source-sink path in B′

with queries Qπ and answers Aπ : Qπ → [n]. An index ` < n is said to be π-unique iff either (a)
` /∈ Qπ, or (b) Aπ(`) /∈ Aπ(Qπ − {`}).

In order to measure the correctness of a small branching program, we restrict our attention to
outputs that are produced at positions that are π-unique and upper-bound the probability that a small
branching program correctly computes outputs of F�n

0 at many π-unique positions in the input.
Let E be the event that all outputs of F�n

0 (x) are between 0.5n and 0.85n.

Lemma 3.9. Let r > 0 be a positive integer, let ε ≤ 1/10, and let B′ be an [n]-way branching
program of height q = εn. Let π be a path inB′ on which outputs from at least r π-unique positions
are produced. For random x uniformly chosen from [n]2n−1,

Pr[these r outputs are correct for F�n
0 (x), E | πB′(x) = π] ≤ (17/18)r.

Proof. Roughly, we will show that when E holds (outputs for all windows are not extreme) then,
conditioned on following any path π in B′, each output produced for a π-unique position will have
only a constant probability of success conditioned on any outcome for the previous outputs. Because
of the way outputs are indexed, it will be convenient to consider these outputs in right-to-left order.

Let π be a path in B′, Qπ be the set of queries along π, Aπ : Qπ → [n] be the answers along
π, and Zπ : [n] → [n] be the partial function denoting the outputs produced along π. Note that
πB′(x) = π if and only if xi = Aπ(i) for all i ∈ Qπ.

Let 1 ≤ i1 < i2 < . . . < ir < n be the first r of the π-unique positions on which π produces
output values; i.e., {i1, . . . , ir} ⊆ dom(Zπ). Define zi1 = Zπ(i1), . . . , zir = Zπ(ir).

15

We will decompose the probability over the input x that E and all of yi1 = zi1 , . . . , yir = zir
hold via the chain rule. In order to do so, for ` ∈ [r], we define event E` to be 0.5n ≤ F

(i)
0 (x) ≤

0.85n for all i > i`. We also write E0
def
= E . Then

Pr[yi1 = zi1 , . . . , yir = zir , E | πB′(x) = π]

= Pr[Er | πB′(x) = π] ·
r∏
`=1

Pr[yi` = zi` , E`−1 | yi`+1
= zi`+1

, . . . , yir = zir , E`, πB′(x) = π]

≤
r∏
`=1

Pr[yi` = zi` | yi`+1
= zi`+1

, . . . , yir = zir , E`, πB′(x) = π]. (1)

We now upper bound each term in the product in (1). Depending on how much larger i`+1 is
than i`, the conditioning on the value of yi`+1

may imply a lot of information about the value of
yi` , but we will show that even if we reveal more about the input, the value of yi` will still have a
constant amount of uncertainty.

For i ∈ [n], let Wi denote the vector of input elements (xi, . . . , xi+n−1), and note that yi =
F0(Wi); we call Wi the ith window of x. The values yi for different windows may be closely
related. In particular, adjacent windows Wi and Wi+1 have numbers of distinct elements that can
differ by at most 1 and this depends on whether the extreme end-points of the two windows, xi and
xi+n, appear among their common elements Ci = {xi+1, . . . , xi+n−1}. More precisely,

yi − yi+1 = 1{xi 6∈Ci} − 1{xi+n 6∈Ci}. (2)

In light of (2), the basic idea of our argument is that, because i` is π-unique and because of the
conditioning on E`, there will be enough uncertainty about whether or not xi` ∈ Ci` to show that
the value of yi` is uncertain even if we reveal

1. the value of the indicator 1{xi`+n 6∈Ci`
}, and

2. the value of the output yi`+1.

We now make this idea precise in bounding each term in the product in (1), using G`+1 to denote
the event {yi`+1

= zi`+1
, . . . , yir = zir}.

Pr[yi` = zi` | G`+1, E`, πB′(x) = π]

=

n∑
m=1

∑
b∈{0,1}

Pr[yi` = zi` | yi`+1 = m, 1{xi`+n 6∈Ci`
} = b,G`+1, E`, πB′(x) = π]

× Pr[yi`+1 = m, 1{xi`+n 6∈Ci`
} = b | G`+1, E`, πB′(x) = π]

≤ max
m∈[0.5n,0.85n]

b∈{0,1}

Pr[yi` = zi` | yi`+1 = m, 1{xi`+n 6∈Ci`
} = b,G`+1, E`, πB′(x) = π]

= max
m∈[0.5n,0.85n]

b∈{0,1}

Pr[1{xi` 6∈Ci`
} = zi` −m+ b |

yi`+1 = m, 1{xi`+n 6∈Ci`
} = b,G`+1, E`, πB′(x) = π] (3)

where the inequality follows because the conditioning on E` implies that yi`+1 is between 0.5n
and 0.85n and the last equality follows because of the conditioning together with (2) applied with

16

i = i`. Obviously, unless zi`−m+b ∈ {0, 1} the probability of the corresponding in the maximum
in (3) will be 0. We will derive our bound by showing that given all the conditioning in (3), the
probability of the event {xi` 6∈ Ci`} is between 2/5 and 17/18 and hence each term in the product
in (1) is at most 17/18.

Membership of xi` in Ci`: First note that the conditions yi`+1 = m and 1{xi`+n 6∈Ci`
} = b

together imply that Ci` contains precisely m − b distinct values. We now use the fact that i` is
π-unique and, hence, either i` /∈ Qπ or Aπ(i`) /∈ Aπ(Qπ − {i`}).

First consider the case that i` /∈ Qπ. By definition, the events yi`+1 = m, 1{xi`+n 6∈Ci`
} = b, E`,

and G`+1 only depend on xi for i > i` and the conditioning on πB′(x) = π is only a property of xi
for i ∈ Qπ. Therefore, under all the conditioning in (3), xi` is still a uniformly random value in [n].
Therefore the probability that xi` ∈ Ci` is precisely (m− b)/n in this case.

Now assume that i` ∈ Qπ. In this case, the conditioning on πB′(x) = π implies that xi` =
Aπ(i`) is fixed and not in Aπ(Qπ −{i`}). Again, from the conditioning we know that Ci` contains
precisely m − b distinct values. Some of the elements that occur in Ci` may be inferred from the
conditioning – for example, their values may have been queried along π – but we will show that
there is significant uncertainty about whether any of them equals Aπ(i`). In this case we will show
that the uncertainty persists even if we reveal (condition on) the locations of all occurrences of the
elements Aπ(Qπ − {i`}) among the xi for i > i`.

Other than the information revealed about the occurrences of the elements Aπ(Qπ − {i`})
among the xi for i > i`, the conditioning on the events yi`+1 = m, 1{xi`+n 6∈Ci`

} = b, E`, and G`+1,
only biases the numbers of distinct elements and patterns of equality among inputs xi for i > i`.
Further the conditioning on πB′(x) = π does not reveal anything more about the inputs in Ci` than
is given by the occurrences of Aπ(Qπ − {i`}). Let A be the event that all the conditioning is true.

Let q′ = |Aπ(Qπ − {i`})| ≤ q − 1 and let q′′ ≤ q′ be the number of distinct elements
of Aπ(Qπ − {i`}) that appear in Ci` . Therefore, since the input is uniformly chosen, subject
to the conditioning, there are m − b − q′′ distinct elements of Ci` not among Aπ(Qπ − {i`}),
and these distinct elements are uniformly chosen from among the elements [n] − Aπ(Qπ − {i`}).
Therefore, the probability that any of thesem−b−q′′ elements is equal to xi` = Aπ(i`) is precisely
(m− b− q′′)/(n− q′) in this case.

It remains to analyze the extreme cases of the probabilities (m−b)/n and (m−b−q′′)/(n−q′)
from the discussion above. Since q = εn, q′′ ≤ q′ ≤ q − 1, and b ∈ {0, 1}, we have the probability
Pr[xi` ∈ Ci` | A] ≤ m

n−q+1 ≤
0.85n
n−εn ≤

0.85n
n(1−ε) ≤ 0.85/(1− ε) ≤ 17/18 since ε ≤ 1/10. Similarly,

Pr[xi` /∈ Ci` | A] < 1 − m−q
n ≤ 1 − 0.5n−εn

n ≤ 0.5 + ε ≤ 3/5 since ε ≤ 1/10. Plugging in the
larger of these upper bounds in (1), we get:

Pr[zi1 , . . . , zir are correct for F�n
0 (x), E | πB′(x) = π] ≤ (17/18)r,

which proves the lemma.

Putting the Pieces Together We now combine the above lemmas. Suppose that TS ≤ n2/4800
and let q = n/10. We can assume without loss of generality that S ≥ log2 n since we need T ≥ n
to determine even a single answer.

17

Consider the fraction of inputs in [n]2n−1 on whichB correctly computes F�n
0 . By Lemma 3.8,

for input x chosen uniformly from [n]2n−1, the probability that E holds and there are at least n/24
positions j < n such that xj is unique in x is at least 1−4ne−n/50. Therefore, in order to be correct
on any such x, B must correctly produce outputs from at least n/24 outputs at positions j < n such
that xj is unique in x.

For every such input x, by our earlier outline, one of the 2S [n]-way branching programs B′ of
height q contained in B produces correct output values for F�n

0 (x) in at least r = (n/24)q/T ≥
20S positions j < n such that xj is unique in x.

We now note that for any B′, if π = πB′(x) then the fact that xj for j < n is unique in x
implies that j must be π-unique. Therefore, for all but a 4ne−n/50 fraction of inputs x on which B
is correct, E holds for x and there is one of the ≤ 2S branching programs B′ in B of height q such
that the path π = πB′(x) produces at least 20S outputs at π-unique positions that are correct for x.

Consider a single such program B′. By Lemma 3.9 for any path π in B′, the fraction of inputs
x such that πB′(x) = π for which 20S of these outputs are correct for x and produced at π-unique
positions, and E holds for x is at most (17/18)20S < 3−S . By Proposition 3.8, this same bound
applies to the fraction of all inputs x with πB′(x) = π for which 20S of these outputs are correct
from x and produced at π-unique positions, and E holds for x is at most (17/18)20S < 3−S .

Since the inputs following different paths inB′ are disjoint, the fraction of all inputs x for which
E holds and which follow some path inB′ that yields at least 20S correct answers from distinct runs
of x is less than 3−S . Since there are at most 2S such height q branching programs, one of which
must produce 20S correct outputs from distinct runs of x for every remaining input, in total only a
2S3−S = (2/3)S fraction of all inputs have these outputs correctly produced.

In particular this implies that B is correct on at most a 4ne−n/50 + (2/3)S fraction of inputs.
For n sufficiently large this is smaller than 1 − η for any η < 1 − 2−δS for some δ > 0, which
contradicts our original assumption. This completes the proof of Theorem 3.5.

Lower bound for (F0 mod 2)�n We describe how to modify the proof of Theorem 3.5 for com-
puting F�n

0 to derive the same lower bound for computing (F0 mod 2)�n. The only difference is
in the proof of Lemma 3.9. In this case, each output yi is F0(Wi) mod 2 rather than F0(Wi) and
(2) is replaced by

yi = (yi+1 + 1{xi 6∈Ci} − 1{xi+n 6∈Ci}) mod 2. (4)

The extra information revealed (conditioned on) will be the same as in the case for F�n
0 but, because

the meaning of yi has changed, the notation yi`+1 = m is replaced by F0(Wi`+1) = m, yi`+1 is
then m mod 2, and the upper bound in (3) is replaced by

max
m∈[0.5n,0.85n]

b∈{0,1}

Pr[1{xi` 6∈Ci`
} =(zi` −m+ b) mod 2 |

F0(Wi`+1) = m, 1{xi`+n 6∈Ci`
} = b,G`+1, E`, πB′(x) = π]

The uncertain event is exactly the same as before, namely whether or not xi` ∈ Ci` and the condi-
tioning is essentially exactly the same, yielding an upper bound of 17/18. Therefore the analogue
of Lemma 3.9 also holds for (F0 mod 2)�n and hence the time-space tradeoff of T · S ∈ Ω(n2)
follows as before.

18

Lower Bound for F�n
k , k ≥ 2 We describe how to modify the proof of Theorem 3.5 for comput-

ing F�n
0 to derive the same lower bound for computing F�n

k for k ≥ 2. Again, the only difference
is in the proof of Lemma 3.9. The main change from the case of F�n

0 is that we need to replace (2)
relating the values of consecutive outputs. For k ≥ 2, recalling that f (i)j is the frequency of symbol
j in window Wi, we now have

yi − yi+1 =

[(
f (i)xi

)k
−
(
f (i)xi − 1

)k]
−
[(
f (i+1)
xi+n

)k
−
(
f (i+1)
xi+n

− 1
)k]

. (5)

We follow the same outline as in the case k = 0 in order to bound the probability that yi` = zi` but
we reveal the following information, which is somewhat more than in the k = 0 case:

1. yi`+1, the value of the output immediately after yi` ,

2. F0(Wi`+1), the number of distinct elements in Wi`+1, and

3. f (i`+1)
xi`+n , the frequency of xi`+n in Wi`+1.

ForM ∈ N,m ∈ [n] and 1 ≤ f ≤ m, define CM,m,f be the event that yi`+1 = M , F0(Wi`+1) = m,
and f (i`+1)

xi`+n = f . Note that CM,m,f only depends on the values in Wi`+1, as was the case for the
information revealed in the case k = 0. As before we can then upper bound the `th term in the
product given in (1) by

max
m∈[0.5n,0.85n]
M∈N,f∈[m]

Pr[yi` = zi` | CM,m,f ,G`+1, E`, πB′(x) = π] (6)

Now, by (5), given event CM,m,f , we have yi` = zi` if and only if zi`−M =

[(
f
(i`)
xi`

)k
−
(
f
(i`)
xi`
− 1
)k]
−[

fk − (f − 1)k
]
, which we can express as as a constraint on its only free parameter f (i)xi ,(

f (i`)xi`

)k
−
(
f (i`)xi`

− 1
)k

= zi` −M − f
k + (f − 1)k.

Observe that this constraint can be satisfied for at most one positive integer value of f (i`)xi`
and that,

by definition, f (i`)xi`
≥ 1. Note that f (i`)xi`

= 1 if and only if xi` /∈ Ci` , where Ci` is defined as in

the case k = 0. The probability that f (i`)xi`
takes on a particular value is at most the larger of the

probability that f (i`)xi`
= 1 or that f (i`)xi`

> 1 and hence (6) is at most

max
m∈[0.5n,0.85n]

M∈N,f∈[m],c∈{0,1}

Pr[1{xi` 6∈Ci`
} = c | CM,m,f ,G`+1, E`, πB′(x) = π]

We now can apply similar reasoning to the k = 0 case to argue that this is at most 17/18: The only
difference is that CM,m,f replaces the conditions yi`+1 = F0(Wi`+1) = m and 1{xi`+n 6∈Ci`

} = b. It
is not hard to see that the same reasoning still applies with the new condition. The rest of the proof
follows as before.

19

3.2.2 A time-space efficient algorithm for F�n
k

We now show that our time-space tradeoff lower bound for F�n
k is nearly optimal even for restricted

RAM models.

Theorem 3.10. There is a comparison-based deterministic RAM algorithm for computing F�n
k for

any fixed integer k ≥ 0 with time-space tradeoff T · S ∈ O(n2 log2 n) for all space bounds S with
log n ≤ S ≤ n.

Proof. We denote the i-th output by yi = Fk(xi, . . . , xi+n−1). We first compute y1 using the
comparison-based O(n2/S) time sorting algorithm of Pagter and Rauhe [30]. This algorithm pro-
duces the list of outputs in order by building a space S data structure D over the n inputs and then
repeatedly removing and returning the index of the smallest element from that structure using a
POP operation. We perform POP operations on D and keep track of the last index popped. We
also will maintain the index i of the previous symbol seen as well as a counter that tells us the
number of times the symbol has been seen so far. When a new index j is popped, we compare the
symbol at that index with the symbol at the saved index. If they are equal, the counter is incre-
mented. Otherwise, we save the new index j, update the running total for Fk using the k-th power
of the counter just computed, and then reset that counter to 1.

Let S′ = S/ log2 n. We compute the remaining outputs in n/S′ groups of S′ outputs at a time.
In particular, suppose that we have already computed yi. We compute yi+1, . . . , yi+S′ as follows:

We first build a single binary search tree for both xi, . . . , xi+S′−1 and for xi+n, . . . , xi+n+S′−1
and include a pointer p(j) from each index j to the leaf node it is associated with. We call the
elements xi, . . . , xi+S′−1 the old elements and add them starting from xi+S′−1. While doing so
we maintain a counter cj for each index j ∈ [i, i + S′ − 1] of the number of times that xj appears
to its right in xi, . . . , xi+S′−1. We do the same for xi+n, . . . , xi+n+S′−1, which we call the new
elements, but starting from the left. For both sets of symbols, we also add the list of indices where
each element occurs to the relevant leaf in the binary search tree.

We then scan the n − S′ elements xi+S′ , . . . , xi+n−1 and maintain a counter C(`) at each leaf
` of each tree to record the number of times that the element has appeared.

For j ∈ [i, i + S′ − 1] we produce yj+1 from yj . If xj = xj+n then yj+1 = yj . Otherwise,
we can use the number of times the old symbol xj and the new symbol xj+n occur in the window
xj+1, . . . , xj+n−1 to give us yj+1. To compute the number of times xj occurs in the window, we
look at the current head pointer in the new element list associated with leaf p(j) of the binary
search tree. Repeatedly move that pointer to the right if the next position in the list of that position
is at most n + j − 1. Call the new head position index `. The number of occurrences of xj in
xj+1, . . . , xS′ and xn+1, . . . , xn+j is now cj + c`. The head pointer never moves backwards and
so the total number of pointer moves will be bounded by the number of new elements. We can
similarly compute the number of times xj+n occurs in the window by looking at the current head
pointer in the old element list associated with p(j + n) and moving the pointer to the left until it is
at position no less than j + 1. Call the new head position in the old element list `′.

Finally, for k > 0 we can output yj+1 by subtracting (1+cj+c`+C(p(j)))k−(cj+c`+C(p(j))k

from yj and adding (1 + cj+n + c`′ +C(p(j + n)))k − (cj+n + c`′ +C(p(j + n))k. When k = 0
we compute yj+1 by subtracting the value of the indicator 1cj+c`+C(p(j))=0 from yj and adding
1cj+n+c`′+C(p(j+n))=0.

20

The total storage required for the search trees and pointers is O(S′ log n) which is O(S). The
total time to compute yi+1, . . . , yi+S′ is dominated by the n− S′ increments of counters using the
binary search tree, which is O(n logS′) and hence O(n logS) time. This computation must be
done (n− 1)/S′ times for a total of O(n

2 logS
S′) time. Since S′ = S/ log n, the total time including

that to compute y1 is O(n
2 logn logS

S) and hence T · S ∈ O(n2 log2 n).

3.2.3 A time-space efficient quantum algorithm for F�n
0

We now consider the efficiency of quantum computers computing frequency moments over sliding
windows, in particular whether our T ∈ Θ̃(n2/S) bound for computing F�n

0 extends to quantum
computation. We show that this is not the case: quantum algorithms are significantly more efficient
for computing F�n

0 than classical algorithms are. The efficiency improvement is due to ideas em-
bodied in Grover’s quantum search algorithm [23], both directly and in its extension to a time-space
efficient quantum sorting algorithm due to Klauck [24]. We use these algorithms as black boxes
without regard to the details of quantum computation, so we omit more formal discussions of both
quantum computing and how they work.

Theorem 3.11. There is a quantum algorithm for computing F�n
0 with time-space tradeoff T ∈

O(n3/2 log3/2 n/S1/2) for all space bounds S with log3 n ≤ S ≤ n/ log n.

Proof. To compute the first output y1 of F�n
0 , we run Klauck’s quantum sorting algorithm [24]

in time O(n3/2 log3/2 n/S1/2). We let S′ = S/ log n and follow the same idea as in the proof of
Theorem 3.10 and determine the remaining outputs in n/S′ blocks of S′ consecutive values at a
time.

We can divide up the input positions on which the output values depend into two groups, O(S′)
boundary elements that are associated with some but not all of the S′ output values and n− S′ + 1
common elements that are associated with all of the S′ output values in the block. As before, we
can determine the values of the outputs in a block given (1) the output value immediately prior to
the block, (2) the pattern of appearances within the boundary elements, and (3) which of the O(S′)
boundary elements appear in the common vector of n − S′ + 1 elements. As before we build a
binary search tree for the O(S′) boundary elements as in the classical algorithm which allows us
to handle the pattern of appearances within the boundary elements and has very low cost. The
cost is dominated by that of determining which boundary elements appear in the common vector of
elements.

We use a standard multi-target variant of Grover’s algorithm (e.g.[14, 22]). In particular, we
begin by searching for some member of the common vector of elements. Let b ≤ S′ be the number
of different boundary elements that actually appear in the common vector. With the binary search
tree it costs only O(logS′) time to test if a value equals one of the binary elements, so we can
find the index of one such element using a variant of Grover search [14] in O(

√
n/b logS′) time

since there will be at least b potential indices. This requires only O(log n) additional space over
the cost of storing the binary search tree. We record that this boundary element occurs along
the common elements in the binary search tree, remove it from the set of allowable answers and
repeat. This takes O(

√
n/(b− 1) logS′) time. We continue b times until we have found all b of

the boundary elements that appear in the common vector. The total cost of these Grover searches
is O(

√
nb logS′) which is O(

√
nS′ logS′). Since this is being done n/S′ times, the total time for

21

this part of the algorithm is O(n3/2(logS′)/
√
S′), which is O(n3/2 log3/2 n/S1/2). This yields the

claimed time bound.

The above algorithm and the TS = Ω(n2) classical time-space tradeoff lower bound for
(F0 mod 2)�n prove that quantum computers have an advantage over classical ones in sliding-
windows.

4 Order Statistics in Sliding Windows

We first show that when order statistics are extreme, their complexity over sliding windows does
not significantly increase over that of a single instance.

Theorem 4.1. There is a deterministic comparison algorithm that computesMAX�n
n (equivalently

MIN�n
n) using time T ∈ O(n log n) and space S ∈ O(log n).

Proof. Given an input x of length 2n−1, we consider the window of n elements starting at position
dn2 e and ending at position n+ dn2 e − 1 and find the largest element in this window naively in time
n and spaceO(log n); call itm. Assume without loss of generality thatm occurs between positions
dn2 e and n, that is, the left half of the window we just considered. Now we slide the window of
length n to the left one position at a time. At each turn we just need to look at the new symbol that
is added to the window and compare it tom. If it is larger thanm then set this as the new maximum
for that window and continue.

We now have all outputs for all windows that start in positions 1 to dn2 e. For the remaining
outputs, we now run our algorithm recursively on the remaining n + dn2 e-long region of the input.
We only need to maintain the left and right endpoints of the current region. At each level in the
recursion, the number of outputs is halved and each level takes O(n) time. Hence, the overall time
complexity is O(n log n) and the space is O(log n).

In contrast when an order statistic is near the middle, such as the median, we can derive a
significant separation in complexity between that of the sliding-window version and that of a single
instance. This follows by a simple reduction and known time-space tradeoff lower bounds for
sorting [12, 9].

Theorem 4.2. Let B be a branching program computing O�n
t in time T and space S on an input

of size 2n − 1, for any t ∈ [n]. Then T · S ∈ Ω(t2) and the same bound applies to expected time
for randomized algorithms.

Proof. We give lower bound for O�n
t for t ∈ [n] by showing a reduction from sorting. Given a

sequence s of t elements to sort taking values in {2, . . . , n− 1}, we create a 2n− 1 length string as
follows: the first n− t symbols take the same value of n, the last n−1 symbols take the same value
of 1 and we embed the t elements to sort in the remaining t positions, in an arbitrary order. For the
first window, Ot is the maximum of the sequence s. As we slide the window, we replace a symbol
from the left, which has value n, by a symbol from the right, which has value 1. The tth smallest
element of window i = 1, . . . , t is the ith largest element in the sequence s. Then the first t outputs
of O�n

t are the t elements of the sequence s output in increasing order. The lower bound follows

22

from [12, 9]. As with the bounds in Corollary 3.6, the proof methods in [12, 9] also immediately
extend to average case and randomized complexity.

For the median (t = dn/2e), there is an errorless randomized algorithm for the single-input
version with T ∈ O(n log logS n) for S ∈ ω(log n) and this is tight for comparison algorithms [18].

5 Discussion

We have shown a new sharper T ∈ Õ(n3/2/S1/2) upper bound for randomized branching programs
solving the element distinctness problem. Our algorithm is also implementable in similar time and
space by RAM algorithms using input randomness. The impediment in implementing it on a RAM
with online randomness is our use of truly random hash functions h.

It seems plausible that a similar analysis would hold if those hash functions were replaced by
some logO(1) n-wise independent hash function such as h(x) = (p(x) mod m) mod n where p is a
random polynomial of degree logO(1) n, which can be specified in space logO(1) n and evaluated in
time logO(1) n, which would suffice for a similar T ∈ Õ(n3/2/S1/2) randomized RAM algorithm
with the most natural online randomness. The difficulty in analyzing this is the interaction of the
chaining of the hash function h with the values of the xi.

It remains to be able to produce a time-space tradeoff separation for the single-output rather
than between the windowed versions of ED and either Fk or F0 mod 2. In the very different
context of quantum query complexity two of the authors of this paper showed another separation
between the complexities of the ED and F0 mod 2 problems. ED has quantum query complexity
Θ(n2/3) (lower bound in [1] and matching quantum query algorithm in [5]). On other hand, the
lower bounds in [10] imply that F0 mod 2 has quantum query complexity Ω(n).

Acknowledgements

The authors would like to thank Aram Harrow, Ely Porat and Shachar Lovett for a number of
insightful discussions and helpful comments during the preparation of this paper.

References

[1] S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinctness
problems. Journal of the ACM, 51(4):595–605, 2004.

[2] K. R. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16(6):1039–
1051, 1987.

[3] K. R. Abrahamson. Time–space tradeoffs for algebraic problems on general sequential mod-
els. Journal of Computer and System Sciences, 43(2):269–289, October 1991.

[4] M. Ajtai. A non-linear time lower bound for Boolean branching programs. Theory of Com-
puting, 1(1):149–176, 2005.

23

[5] A. Ambainis. Quantum walk algorithm for element distinctness. SIAM Journal on Computing,
37(1):210–239, 2007.

[6] A. Andersson and M. Thorup. Dynamic ordered sets with exponential search trees. Journal
of the ACM, 54(3):13:1–40, 2007.

[7] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding windows. In
Proceedings of the Twenty-Third Annual ACM Symposium on Principles of Database Systems,
pages 286–296, 2004.

[8] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in data
stream systems. In Proceedings of the Twenty-First Annual ACM Symposium on Principles of
Database Systems, pages 1–16, 2002.

[9] P. Beame. A general sequential time-space tradeoff for finding unique elements. SIAM Journal
on Computing, 20(2):270–277, 1991.

[10] P. Beame and W. Machmouchi. The quantum query complexity ofAC0. Quantum Information
& Computation, 12(7–8):670–676, 2012.

[11] P. Beame, M. Saks, X. Sun, and E. Vee. Time-space trade-off lower bounds for randomized
computation of decision problems. Journal of the ACM, 50(2):154–195, 2003.

[12] A. Borodin and S. A. Cook. A time-space tradeoff for sorting on a general sequential model
of computation. SIAM Journal on Computing, 11(2):287–297, May 1982.

[13] A. Borodin, F. E. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson. A time-space
tradeoff for element distinctness. SIAM Journal on Computing, 16(1):97–99, February 1987.

[14] M. Boyer, G. Brassard, P. Hoyer, and A. Tapp. Tight bounds on quantum searching.
Fortschritte Der Physik, 46(4–5):493–505, 1988.

[15] V. Braverman, R. Ostrovsky, and C. Zaniolo. Optimal sampling from sliding windows. Jour-
nal of Computer and System Sciences, 78(1):260–272, 2012.

[16] R. P. Brent. An improved Monte Carlo factorization algorithm. BIT Numerical Mathematics,
20:176–184, 1980.

[17] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal algorithm for computing
the entropy of a stream. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 328–335, 2007.

[18] T. M. Chan. Comparison-based time-space lower bounds for selection. ACM Transactions on
Algorithms, 6(2):26:1–16, 2010.

[19] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream statistics over sliding
windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

[20] D. P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Randomized
Algorithms. Cambridge University Press, 2012.

24

[21] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM
Journal on Computing, 23(5):1001–1018, 1994.

[22] L. K. Grover and J. Radakrishnan. Quantum search for multiple items using parallel queries.
Technical Report arXiv:0407217, arXiv.org: quant-ph, 2004.

[23] L. K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the
Twenty-Eighth Annual ACM Symposium on Theory of Computing, pages 212–219, Philadel-
phia, PA, May 1996.

[24] H. Klauck. Quantum time-space tradeoffs for sorting. In Proceedings of the Thirty-Fifth
Annual ACM Symposium on Theory of Computing, pages 69–76, San Diega, CA, June 2003.

[25] D. E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Programming.
Addison-Wesley, 1971.

[26] L. K. Lee and H. F. Ting. Maintaining significant stream statistics over sliding windows. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
724–732, 2006.

[27] L. K. Lee and H. F. Ting. A simpler and more efficient deterministic scheme for finding
frequent items over sliding windows. In Proceedings of the Twenty-Fifth Annual ACM Sym-
posium on Principles of Database Systems, pages 290–297, 2006.

[28] Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing.
Theoretical Computer Science, 107:121–133, 1993.

[29] G. Nivasch. Cycle detection using a stack. Information Processing Letters, 90(3):135–140,
2004.

[30] J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proceedings 39th Annual
Symposium on Foundations of Computer Science, pages 264–268, Palo Alto, CA, November
1998. IEEE.

[31] J. M. Pollard. A Monte Carlo method for factorization. BIT Numerical Mathematics,
15(3):331–334, 1975.

[32] J. M. Pollard. Monte Carlo methods for index computation (mod p). Mathematics of Compu-
tation, 32(143):918–924, 1978.

[33] M. Sauerhoff and P. Woelfel. Time-space tradeoff lower bounds for integer multiplication and
graphs of arithmetic functions. In Proceedings of the Thirty-Fifth Annual ACM Symposium on
Theory of Computing, pages 186–195, San Diega, CA, June 2003.

[34] R. Sedgewick, T. G. Szymanski, and A. C.-C. Yao. The complexity of finding cycles in
periodic functions. SIAM Journal on Computing, 11(2):376–390, 1982.

[35] P. C. van Oorschot and M. J. Wiener. Parallel collision search with cryptanalytic applications.
Journal of Cryptology, 12(1):1–28, 1999.

25

[36] A. C. Yao. Near-optimal time-space tradeoff for element distinctness. In 29th Annual Sym-
posium on Foundations of Computer Science, pages 91–97, White Plains, NY, October 1988.
IEEE.

[37] Y. Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier transform on
any general sequential random-access computer. Journal of Computer and System Sciences,
29:183–197, 1984.

26

A A fast average case algorithm for ED�n with alphabet [n]

We now give the algorithm and proof for Theorem 3.4. The simple method we employ is as follows.
We start at the first window of length n of the input and perform a search for the first duplicate pair
starting at the right-hand end of the window and going to the left. We check if a symbol at position
j is involved in a duplicate by simply

scanning all the symbols to the right of position j within the window. If the algorithm finds
a duplicate in a suffix of length x, it shifts the window to the right by n − x + 1 and repeats the
procedure from this point. If it does not find a duplicate at all in the whole window, it simply moves
the window on by one and starts again.

In order to establish the running time of this simple method, we will make use of the following
birthday-problem-related facts.

Lemma A.1. Assume that we sample i.u.d. with replacement from [n] with n ≥ 4. Let X be a
discrete random variable that represents the number of samples taken when the first duplicate is
found. Then

Pr (X ≥ n/2) ≤ e−
n
16 . (7)

and
E(X2) ≤ 4n. (8)

Proof. For every x ≥ 1 we have

Pr(X ≥ x) =

x−1∏
i=1

(
1− i

n

)
≤

x−1∏
i=1

e−
i
n ≤ e−

x2

4n .

Inequality (7) now follows by substituting x = n/2 giving

Pr
(
X ≥ n

2

)
≤ e−

n
16 .

To prove inequality (8), recall that for non-negative valued discrete random variables

E(X) =

∞∑
x=1

Pr(X ≥ x).

Observe that

E(X2) =

∞∑
x=1

Pr(X2 ≥ x) =

∞∑
x=1

Pr(X ≥
√
x)

≤
∞∑
x=1

e−
(
√
x)2

4n ≤
∫ ∞
x=0

e−
(
√
x)2

4n = 4n.

We can now show the running time of our average case algorithm for ED�n.

27

Theorem A.2. For input sampled i.u.d. with replacement from alphabet [n], ED�n can be solved
in average time T ∈ O(n) and average space S ∈ O(log n).

Proof. Let U be a sequence of values sampled uniformly from [n] with n ≥ 4. Let M be the index
of the first duplicate in U found when scanning from the right and let X = n−M . Let W (X) be
the number of comparisons required to find X . Using our naive duplicate finding method we have
that W (X) ≤ X(X + 1)/2. It also follows from inequality (8) that E(W) ≤ 4n.

Let R(n) be the total running time of our algorithm and note that R(n) ≤ n3/2. Furthermore
the residual running time at any intermediate stage of the algorithm is at most R(n).

Let us consider the first window and let M1 be the index of the first duplicate from the right
and let X1 = n−M1. If X1 ≥ n/2, denote the residual running time by R(1). We know from (7)
that Pr(X1 ≥ n/2) ≤ e−

n
16 . If X1 < n/2, shift the window to the right by M1 + 1 and find

X2 for this new window. If X2 ≥ n/2, denote the residual running time by R(2). We know that
Pr(X2 ≥ n/2) ≤ e−

n
16 . If X1 < n/2 and X2 < n/2 then the algorithm will terminate, outputting

‘not all distinct’ for every window.
The expected running time is then

E(R(n)) = E (W (X1)) + E
(
R(1)

)
Pr
(
X1 ≥

n

2

)
+ Pr

(
X1 <

n

2

) [
E
(
W (X2)

∣∣∣X1 <
n

2

)
+ E

(
R(2)

)
Pr
(
X2 ≥

n

2

∣∣∣X1 <
n

2

)]
≤ 4n+

n3

2
e−

n
16 + 4n+

n3

2
e−

n
16 ∈ O(n)

The inequality follows from the followings three observations. We know trivially that Pr(X1 <
n/2) ≤ 1. Second, the number of comparisons W (X2) does not increase if some of the elements
in a window are known to be unique. Third, Pr(X2 ≥ n/2 ∧ X1 < n/2) ≤ Pr(X2 ≥ n/2) ≤
e−

n
16 .

We note that similar results can be shown for inputs uniformly chosen from the alphabet [cn]
for any constant c.

28

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

