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Abstract

We precisely characterize the role of private randomness in the ability of Alice to send a
message to Bob while minimizing the amount of information revealed to him. We show that if
using private randomness a message can be transmitted while revealing I bits of information, the
transmission can be simulated without private coins using I + log I +O(1) bits of information.
Moreover, we give an example where this bound is tight: at least I + log I − O(1) bits are
necessary in some cases. Our example also shows that the one-round compression construction
of Harsha et al. [HJMR07] cannot be improved.

1 Introduction

In this paper we investigate the role of private randomness in the ability of two parties to com-
municate while revealing as little information as possible to each other – i.e. to communicate at
low information cost. More specifically, Alice and Bob are given possibly correlated inputs X and
Y and need to perform a task T by means of a communication protocol π. Alice and Bob share
a public random string R; in addition they have access to private random strings RA and RB,
respectively. The information cost of π with respect to a distribution (X,Y ) ∼ µ is the quantity

ICµ(π) := I(Π;Y |XRRA) + I(Π;X|Y RRB),

where Π = Π(X,Y,R,RA, RB) is the random variable representing the transcript of the protocol.
It is not hard to see that if the goal is to solve a task T while minimizing the information

cost of the protocol, we can always avoid using the public randomness string R: to simulate
public randomness, before the beginning of the protocol’s execution, Alice can send a portion
of RA, which will be used as R for the remainder of the protocol. This modification increases
the communication cost of the protocol, but it is not hard to see that it does not change its
information cost. Therefore, in the context of information complexity, private randomness is at
least as good as public randomness. Is the converse true? In other words, can any protocol π
that uses private randomness be simulated by a protocol π′ which uses only public randomness so
that ICµ(π′) ≤ ICµ(π)? The näıve “solution” to this problem would be to simulate π by using the
public randomness to simulate private randomness. The following simple example shows why this
approach fails. Consider the protocol π in which X ∈ {0, 1}n. Alice samples a uniformly random
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string RA ∈U {0, 1}n, and sends the bitwise XOR M := X ⊕ RA to Bob. This protocol conveys
0 information to Bob about X. However, if the public randomness R were to be used to produce
RA, then Bob would also know RA, and thus the message M reveals X = M ⊕ RA to Bob –
drastically increasing the information cost of the protocol. This, of course, does not mean that a
more sophisticated simulation scheme cannot work.

It is instructive to compare this question to the public-vs-private randomness question in
randomized communication complexity. In the context of communication complexity the situa-
tion is somewhat reversed: it is obvious that public randomness can be used to simulate pri-
vate randomness: the parties can always designate part of their public randomness as “private
randomness”. This will not affect the communication cost of the protocol (although, as seen
above, it may affect its information cost). In the reverse direction, Newman [New91] showed that

Rε+δ(f) ≤ Rpub
ε (f) +O(log(nδ )). Thus, up to an additive log n, private randomness replaces public

randomness in communication complexity. Does a “reverse Newman theorem” hold for information
complexity? Can private randomness be replaced with public randomness at a small cost?

This question has been considered by Brody et al. in [BBK+12], which showed a version of
the private-by-public simulation for one-round protocols. In the one-round setting, Alice wishes
to send Bob her message – a random variable M = M(X,RA). Obviously, the information cost
of this task is just I(M ;X|Y ). If Bob receives no input, then it is just I(M ;X). In this paper
we prove tight bounds on the one round private-by-public simulation. Specifically, we show that
the cost of simulating a message M of information cost I without the use of private randomness
is between I and I + log I ± O(1), and that the upper bound is in fact tight in some cases.
Previously, [BBK+12] showed a weaker translation to information cost of at most I + O(log n),
where n = max(log |X |, log |Y|) – the log of the sizes of the domains of X and Y . Note that it
is always the case that I ≤ H(X) ≤ log |X | ≤ n, and therefore log I ≤ log n. Our lower bound
example shows that even if dependence on n is allowed, one cannot do with less than log n additive
overhead.

It is interesting to consider the connection between the problem of simulating a protocol without
private randomness, and the problem of compressing communication protocols. The general proto-
col compression problem [BBCR10, Bra12] is the problem of simulating a protocol π with commu-
nication cost C and information cost I with a protocol π′ of communication cost C ′ that is as close
to I as possible. The problem of compressing interactive communication is essentially equivalent to
the direct sum problem for randomized communication complexity [BR11]. The best known gen-
eral compression results gives C ′ = Õ(

√
I · C), and it is wide open whether C ′ = O(I · (logC)O(1))

is possible. It has been shown in [BBK+12] (and independently in [Pan12]) that if a protocol π
does not use private randomness, then it can be compressed to O(I · (logC)O(1)). Thus a way to
replace private randomness with public randomness for unbounded-round protocols would imply a
substantial improvement in the state-of-the-art on protocol compression.

Another interesting connection between removing private randomness and compression is in
the context of one-message protocols. In the setting where Bob has no input Y , the information
cost of sending a message M is just I := I(M ;X). Harsha et al. [HJMR07] showed how to
simulate such a transmission using I + O(log I) bits of (expected) communication (with access to
public randomness). Their work left open the interesting question of whether the additive O(log I)
is necessary. As noted above, a communication protocol with communication C can always be
simulated by a protocol with same communication and only public randomness. As information
cost is bounded from above by communication cost, a compression scheme is in particular a private-
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by-public scheme. Thus our lower bound gives an example showing that the O(log I) additive
overhead in [HJMR07] is necessary.

Results and techniques

Our main result gives an upper and lower bound on simulating private randomness by public
randomness for one-message protocols.

Theorem 1.1. Let X,Y be inputs to Alice and Bob respectively distributed according to a dis-
tribution µ. Alice and Bob have access to public randomness R′, and Alice has access to private
randomness RA. Let π be a protocol where Alice sends a message M = M(X,R′, RA) to Bob, so
that the information cost of π is I := I(X;M |Y R′). Then

1. π can be simulated by a one-message public-coin protocol π′ such that ICµ(π′) ≤ I+log I+O(1).

2. for each I, there is an example with no Y (i.e. Bob has no “private” knowledge), and no R′,
such that if I := I(X;M), then any public-coin protocol π′ simulating the transmission of M
must have information cost of at least I + log I −O(1).

Thus, up to an additive constant, our bounds are tight. Note that while the upper bound holds
under the most general conditions, for the lower bound it is sufficient to consider protocols without
Y (this is the type of protocols considered, for example, in [HJMR07]).

Both the upper and lower bound require some careful analysis. For the upper bound, a natural
variant of the one-round compression scheme of Braverman and Rao [BR11] is used. The main
challenge is in analyzing the information cost of the resulting public randomness protocol: we need
to prove that Bob does not learn too much about X from Alice’s message. Suppose that given X
and the public randomness R of the simulating protocol, Alice’s message in the simulating protocol
is S = S(X,R). Observe that in this case

I(S;X|Y R) = H(S|Y R)−H(S|XY R) = H(S|Y R).

To establish an upper bound on H(S|Y R) , we show how, someone knowing X, Y and R, can
describe S to Bob using a message M ′ (i.e. H(S|M ′Y R) = 0) such that

H(M ′) ≤ I + log(I) +O(1)

Noting that this expression is an upper bound for H(S|Y R), completes the proof.
To prove the lower bound, we give a family of specific examples whose information cost nec-

essarily increases by log I − O(1) when private randomness is replaced with public randomness.
Details of the construction are given in Section 4, here we only give the high level idea for why the
information cost increases in lieu of private randomness. Consider the following example: Alice
knows a secret random string PASS of 128 bits (which we can think of as her password). She
wants to send Bob a message M such that M = PASS with probability 1/2 and M = RANDOM
with probability 1/2 – that is, half of the time she sends her password and half the time she sends a
random 128-bit string. The message M reveals approximately 63 bits of information about PASS.
To see this, note that given M the posterior distribution of PASS puts mass 1/2 on M and mass
1/2 on the remaining 2128−1 strings. The entropy of this distribution is ≈ 1

2 ·1+ 1
2 ·129 = 65, down

from the prior entropy of 128. Thus I(M ;PASS) ≈ 128− 65 = 63 bits. One might have expected
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this number to be 64 bits. Indeed, if Alice had told Bob which of the two cases has occurred, M
would reveal 1

2 ·128+ 1
2 ·0 = 64 bits of information. However, not knowing whether Alice’s message

is the password or a random string “saves” one bit in information cost. Now suppose Alice was
not allowed to use private randomness. Then, intuitively, the public random string R should reveal
to Bob whether M = PASS or M = RANDOM . Therefore, the information cost of a public-
randomness protocol increases to 64 bits. Generalizing from this example, we construct a situation
where Alice sends a binary message M of length n and information cost I ≈ n/2− log n, so that any
public randomness simulation of M requires information cost of ≥ n/2 − O(1) = I + log I − O(1)
– demonstrating the desired gap.

Let us have a look at another example. Suppose that Alice gets a bit X ∼ B 1
2

and she wants to

transmit this bit to Bob with error 1
2 − ε. Consider a private-coin protocol in which Alice samples

a B 1
2

+ε bit R. She sends X if R = 1 and a ¬X if R = 0. Clearly the protocol performs the task of

transmitting the bit with error 1
2 − ε. Let Π denote the random variable for Alice’s message. The

information cost of this protocol is

I(Π;X) =
1

2
D(Π0||Π) +

1

2
D(Π1||Π) =

1

2
D(1/2− ε||1/2) +

1

2
D(1/2 + ε||1/2) =

2

ln 2
ε2 ± o(ε2)

However if we don’t allow private coins, then the information complexity of this task is ≥ 2ε. To
see this consider a public-coin protocol that transmits X with error probability ≤ 1

2 − ε. It is
basically a function f : {0, 1} × R → {0, 1} (in case Alice sends a longer message and then Bob
applies a deterministic function to that, f could be the composition of those two functions) such
that Er∼R[f(0, r)] = 1

2 − ε and Er∼R[f(1, r)] = 1
2 + ε. Then Prr∼R[f(1, r) = 1, f(0, r) = 0] ≥ 2ε.

Hence
I(f(X,R);X|R) = H(f(X,R)|R) = Er∼RH(f(X, r)) ≥ 2ε

since if f(1, r) = 1, f(0, r) = 0, then H(f(X, r)) = 1. This example, in some sense, highlights
the information-cost advantage one gains from having access to private randomness. It will be
interesting to see if this advantage can be amplified over multiple rounds to get a separation between
unbounded round private-coin information complexity and public-coin information complexity, and
thus in particular between information complexity and communication complexity.

Open problems

Our lower bound example is really about the simulation of a protocol and not about solving a
boolean function. So it will be nice to get a 1-round gap for a boolean function. Also it would be
nice to get a bigger separation between r-round public-coin information complexity and private-coin
information complexity, where r is a constant. Note that using the 1-round example, we can also
construct a 2-round example by requiring both Alice and Bob to perform the 1-round task.

1. Does there exist a boolean function f for which 0-error private-coin information complexity
is I but 0-error public-coin information complexity is ≥ I + log(I)−O(1) ?

2. Does there exist a (family of) 3-round private-coin protocol(s) π such that information cost of
π is I but any 3-round public-coin protocol simulating π has information cost ≥ I+3 log(I)−
O(1)?
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2 Preliminaries

2.1 Communication Complexity

In the two-party communication model, the parties, traditionally called Alice and Bob, are trying
to collaboratively compute a known Boolean function f : X × Y. Each party is computationally
unbounded; however, Alice is only given input x ∈ X and Bob is only given y ∈ Y. In order to
compute f(x, y), Alice and Bob communicate in accordance with an agreed-upon communication
protocol π. Protocol π specifies as a function of transmitted bits only whether the communication
is over and, if not, who sends the next bit. Moreover, π specifies as a function of the transmitted
bits and x the value of the next bit to be sent by Alice. Similarly for Bob. The communication
is over when both parties know the value of f(x, y). The cost of the protocol π is the number of
bits exchanged on the worst input. The transcript of a protocol is a concatenation of all the bits
exchanged during the execution of the protocol.

There are several ways in which the deterministic communication model can be extended to
include randomness. In the public-coin model, Alice and Bob have access to a shared random
string r chosen according to some probability distribution. The only difference in the definition of
a protocol is that now the protocol π specifies the next bit to be sent by Alice as a function of x,
the already transmitted bits, and a random string r. Similarly for Bob. This process can also be
viewed as the two players having an agreed-upon distribution on deterministic protocols. Then the
players jointly sample a protocol from this distribution. In the private-coin model, Alice has access
to a random string rA hidden from Bob, and Bob has access to a random string rB hidden from
Alice.

Definition 2.1 (Randomized Communication Complexity). For a function f : X × Y → Z and
a parameter ε > 0, Rε(f) denotes the communication cost of the best randomized private-coin

protocol for computing f with error at most ε on every input. Similarly Rpub
ε (f) denotes the cost

of the best randomized public-coin protocol for computing f with error at most ε on every input.

Definition 2.2. We will say that a (randomized) protocol φ simulates a protocol π if there is a de-

terministic function g such that g(Φ(x, y,Rφ, RφA, R
φ
B)) is equal in distribution to Π(x, y,Rπ, RπA, R

π
B),

∀x, y. Here Rφ, RφA, R
φ
B are the public and private randomness of protocol φ and Φ is the random

variable for the transcript. Similarly for π.

For the pre-1997 results on communication complexity, see the excellent book by Kushilevitz and
Nisan [KN97].

2.2 Information Theory

In this section we briefly provide the essential information-theoretic concepts required to understand
the rest of the paper. For a thorough introduction to the area of information theory, the reader
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should consult the classical book by Cover and Thomas [CT91]. Unless stated otherwise, all log’s
in this paper are base-2.

Definition 2.3. Let µ be a probability distribution on sample space Ω. Shannon entropy (or just
entropy) of µ, denoted by H(µ), is defined as H(µ) :=

∑
ω∈Ω µ(ω) log 1

µ(ω) .

For a random variable A we shall write H(A) to denote the entropy of the induced distribution on
the range of A. The same also holds for other information-theoretic quantities appearing later in
this section.

Definition 2.4. Conditional entropy of a random variable A conditioned on B is defined as

H(A|B) = Eb(H(A|B = b)).

Fact 2.5. H(AB) = H(A) +H(B|A).

Definition 2.6. The mutual information between two random variable A and B, denoted by
I(A;B) is defined as

I(A;B) := H(A)−H(A|B) = H(B)−H(B|A).

The conditional mutual information between A and B given C, denoted by I(A;B|C), is defined
as

I(A;B|C) := H(A|C)−H(A|BC) = H(B|C)−H(B|AC).

Fact 2.7 (Chain Rule). Let A1, A2, B,C be random variables. Then

I(A1A2;B|C) = I(A1;B|C) + I(A2;B|A1C).

Definition 2.8. Given two probability distributions µ1 and µ2 on the same sample space Ω such
that (∀ω ∈ Ω)(µ2(ω) = 0⇒ µ1(ω) = 0), the Kullback-Leibler Divergence between is defined as

D(µ1||µ2) =
∑
ω∈Ω

µ1(ω) log
µ1(ω)

µ2(ω)
.

For Bernoulli distributions Bp and Bq, we will slightly abuse notation and denote D(Bp||Bq) by
D(p||q). The connection between the mutual information and the Kullback-Leibler divergence is
provided by the following fact.

Fact 2.9. For random variables A,B, and C we have

I(A;B|C) = Eb,c(D(Abc||Ac)).

Fact 2.10. Let A,B,C,D,E be random variables.If C,D determine E and D → CE → AB is
Markov chain, then

I(A;B|CE) = I(A;B|CD)

Proof. I(A;B|CD) = I(A;B|CDE), since C,D determine E. Now consider I(A;BD|CE)

I(A;BD|CE) = I(A;B|CE) + I(A;D|BCE) = I(A;B|CE)

Also

I(A;BD|CE) = I(A;D|CE) + I(A;B|CDE) = I(A;B|CDE)

which completes the proof.
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2.3 Information Complexity

A much more detailed discussion of information complexity and its applications can be found in
[CSWY01, BYJKS04, BBCR10, BGPW13] and references therein.

Definition 2.11. The internal information cost of a protocol π with respect to a distribution µ
on inputs from X × Y is defined as

ICµ(π) := I(Π;X|Y RRB) + I(Π;Y |XRRA).

where Π = Π(X,Y,R,RA, RB) is the random variable denoting the transcript of the protocol,
R is the public randomness and RA and RB are the private random strings of Alice and Bob,
respectively. In the previous works, it is defined in a different way (without the conditioning on
private random strings), but both the definitions are in fact equivalent.

The following simple fact asserts that information cost is bounded by the communication cost
of the protocol (see, e.g. [BR11]):

Lemma 2.12. For any distribution µ, ICµ(π) ≤ CC(π).

The information complexity of f with respect to µ is

ICµ(f, ε) := inf
π

ICµ(π),

where the infimum ranges over all (randomized) protocols π solving f with error at most ε when
inputs are sampled according to µ.

3 Upper Bound

Theorem 3.1. Let X,Y be inputs to Alice and Bob respectively distributed according to a dis-
tribution µ. Alice and Bob have access to public randomness R′, and Alice has access to private
randomness RA. Let π be a protocol where Alice sends a message M = M(X,R′, RA) to Bob, so
that the information cost of π is I := I(X;M |Y R′). Then π can be simulated by a one-message
public-coin protocol π′ such that ICµ(π′) ≤ I + log I +O(1).

Proof. We can assume wlog that R′ is a part of M , since I(X;M |Y R′) = I(X;MR′|Y ). Let U be
the message space of the message M . Consider the protocol π′ defined in Figure 1.

1. Using public randomness, Alice and Bob get samples {(ui, pi)}i≥1, where (ui, pi) uniformly
sampled from U × [0, 1].

2. Let P denote the distribution Mx = M |X=x and Q denote the distribution My = M |Y=y.
Alice sends Bob the index of the first sample, s, such that ps < P (us). Bob decodes this
message as being us

Protocol 1: Protocol π′

It is clear that Bob’s decoding of the Alice’s message on input x is distributed according to P = Mx.
What remains is to analyze the information cost of the protocol. Let R denote the random variable
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for the public randomness and let S denote the random variable for Alice’s message (the index).
Then

I(S;X|Y R) = H(S|Y R)−H(S|XY R) = H(S|Y R)

because S is determined by X and R. It seems difficult to get a handle on H(S|Y R), but we can
use the following trick : If someone (who knows X,Y,R) can describe to Bob S using a message
M ′ (i.e. S is fixed given M ′, Y and R), then H(S|Y R) ≤ H(M ′). This is because :

H(S|Y R) +H(M ′|SY R) = H(M ′S|Y R) = H(M ′|Y R) +H(S|M ′Y R) = H(M ′|Y R) ≤ H(M ′).

Note that since Alice doesn’t know Y , she won’t be able to compute M ′ and hence it does not
seem possible for Alice to send the message M using a low communication protocol. To achieve
low communication, interaction seems necessary, and this problem has been well studied in [BR11]
and [BRWY13]. Now let us describe the message M ′. Let P denote the distribution Mx and
Q denote the distribution My. The message will consist of three parts. The first part would be
k = d S|U|e. The second part would consist of the ceiling of the Q-height of the Sth sample i.e.

t = d pS
Q(uS)e. The third part would consist of the index l of the sample Alice wants to send among

indices {(k − 1) · |U|+ 1, . . . , k · |U|} that have Q-height between t− 1 and t.
Now let us look at E[|M ′||X = x, Y = y]. We’ll analyze the lengths of the three different parts of
M ′ separately.

1. For (u, p) randomly sampled from U × [0, 1],

Pr[p < P (u)] =
1

|U|
∑
u∈U

P (u) =
1

|U|

Thus Pr[S > r · |U|] =
(

1− 1
|U|

)r·|U|
≤ e−r. Thus Pr[k > r] ≤ e−r. Thus

E[k] =

∞∑
r=0

Pr[k > r] ≤ 1 +
1

e
+

1

e2
+ . . . = O(1)

Hence E[dlog(k)e] = O(1).

2. For the Sth sample, pS < P (uS). Thus E[dlog(t)e] ≤ E
[
log
(

p
Q(u) + 1

)
|p < P (u)

]
. Since

log(x+ 1)− log(x) ≤ log(e)
x (by Lagrange’s Mean Value Theorem),

log

(
p

Q(u)
+ 1

)
≤ log

(
p

Q(u)

)
+O

(
Q(u)

p

)
Thus

E
[
log

(
p

Q(u)
+ 1

)
|p < P (u)

]
=
∑
u∈U

P (u) ·

(
1

P (u)

∫ P (u)

0
log

(
p

Q(u)
+ 1

)
du

)

≤
∑
u∈U

P (u) ·

(
1

P (u)

∫ P (u)

0
log

(
P (u)

Q(u)
+ 1

)
du

)

≤
∑
u∈U

P (u) ·

(
1

P (u)

∫ P (u)

0
log

(
P (u)

Q(u)

)
+O

(
Q(u)

P (u)

)
du

)
= D(P ||Q) +O(1)
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Hence E[dlog(t)e] ≤ D(P ||Q) +O(1).

3. For (u, p) randomly sampled from U × [0, 1],

Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)|p > P (u)] ≤ Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)]/Pr[p > P (u)]

= Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)]/(1− 1

|U|
)

≤ 2Pr[(t− 1) ·Q(u) < p ≤ t ·Q(u)]

=
2

|U|
∑
u∈U

Q(u) =
2

|U|

Thus among the indices {(k − 1) · |U| + 1, . . . , k · |U|}, in expectation, there are a constant
number that have Q-height between t− 1 and t. Thus E[dlog(l)e] = O(1).

Note that for the darts appearing before the dart S, the probability of appearing in some
region increases slightly, since they are conditioned on not falling under the histogram of P
but the probability increases at most by a factor of 2.

Hence E[|M ′||X = x, Y = y] ≤ D(Mx||My) +O(1). Now

E[|M ′|] = Ex,y
[
E[|M ′||X = x, Y = y]

]
≤ Ex,y[D(Mx||My)] +O(1) = I(M ;X|Y ) +O(1)

Now we will use the following lemma to bound H(M ′).

Lemma 3.2. Let P be a distribution on the natural numbers such that
∑

n≥1 Pn · dlog(n)e = I.
Then H(P ) ≤ I + log(I) +O(1).

The lemma says that if the expected length of the numbers is bounded by I, then the entropy is
bounded by I+ log(I) +O(1). A bound of I+ 2 log(I) +O(1) or of I+ log(I) + 2 log(log(I)) +O(1)
is easy to get via prefix-free encoding of integers, but the fact that we can bound the entropy by
I + log(I) +O(1) is somewhat surprising.

Using the lemma, we get that H(M ′) ≤ I(M ;X|Y ) + log(I(M ;X|Y )) + O(1), and thus
I(S;X|Y R) ≤ I(M ;X|Y ) + log(I(M ;X|Y )) +O(1). It remains to prove the lemma.

Proof. (Of Lemma 3.2) Let pi be the probability mass on the integers between 2i−1 and 2i i.e.

pi =
∑2i

n=2i−1+1 Pn. Then
∑∞

i=1 i · pi =
∑

n≥1 Pn · dlog(n)e = I.

H(P ) =
∑
n≥1

Pn log

(
1

Pn

)
≤ P1 log

(
1

P1

)
+
∑
i≥1

pi log

(
2i−1

pi

)
= I ±O(1) +H(p)

The inequality follows from log-sum inequality,∑
k

ak log

(
ak
bk

)
≥

(∑
k

ak

)
log

(∑
k ak∑
k bk

)
Then,

∑2i

n=2i−1+1 Pn log(Pn) ≥ pi log(pi/2
i−1). Now let qj be the probability mass of pi from 2j−1+1

to 2j i.e. qj =
∑2j

i=2j−1+1 pi. Then
∑

i≥1 i · pi ≥
∑

j≥1 2j−1 · qj . Thus
∑

j≥1 2j · qj ≤ 2I. Again by
the log-sum inequality,

H(p) ≤ p1 log

(
1

p1

)
+
∑
j≥1

qj log

(
2j−1

qj

)
+O(1) =

∑
j≥1

j · qj +H(q)±O(1)
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We can assume wlog that I is a power of 2. If j = log(2I) + k, for k ≥ 2, then qj ≤ 1
2k

and hence

qj log
(

1
qj

)
≤ k

2k
, since q log

(
1
q

)
is increasing in the interval (0, 1

e ]. Thus
∑

j>log(2I) qj log
(

1
qj

)
=

O(1). Let q =
∑

j>log(2I) qj . Since qlog(2I)+k ≤ 1
2k

,
∑

j>log(2I) j · qj ≤ q · log(2I) +O(1). So all that
is needed is to prove that∑

j≤log(2I)

j · qj +
∑

j≤log(2I)

qj log

(
1

qj

)
≤ (1− q) · log(2I) +O(1)

Let us look at j · qj + log(2I) · qlog(2I) + qj log
(

1
qj

)
+ qlog(2I) log

(
1

qlog(2I)

)
. If we decrease qj and

increase qlog(2I) by the same amount, the rate at which j ·qj+log(2I)·qlog(2I) increases is log(2I)−j.

Also
(
q log

(
1
q

))′
= log(e) ·

(
ln
(

1
q

)
− 1
)

. The difference in rates for qlog(2I) and qj is log
(

1
qlog(2I)

)
−

log
(

1
qj

)
. So as long as

log

(
1

qj

)
− log

(
1

qlog(2I)

)
≤ log(2I)− j

increasing qlog(2I) and decreasing qj (by the same amount) will increase
∑

j≤log(2I) j · qj
+
∑

j≤log(2I) qj log
(

1
qj

)
. Thus we can assume wlog that, qj ≤

qlog(2I)
2log(2I)−j . Now for these values of qj , it

is easy to check that
∑

j≤log(2I) qj log
(

1
qj

)
= O(1). Also

∑
j≤log(2I) j ·qj ≤ (1−q)·log(2I) is trivially

true. This completes the proof. Note that it is not always true that
∑

j≤log(2I) qj log
(

1
qj

)
= O(1)

but for the distribution maximizing
∑

j≤log(2I) j · qj +
∑

j≤log(2I) qj log
(

1
qj

)
, this is true.

We mention a few easy corollaries :

Corollary 3.3. Let X,Y be inputs to Alice and Bob respectively distributed according to a dis-
tribution µ. Suppose that π is a private-coin r-round protocol with information cost ICµ(π) = I.
Then π can be simulated by a r-round public-coin protocol π′ with information cost ICµ(π′) ≤
I + r log(I/r) +O(r).

Proof is in the appendix.

Our upper bound also improves slightly the bound of Harsha et al. [HJMR07]. In their setting,
Alice wants to send a message M with I(M ;X) = I to Bob using low communication and public-
randomness is allowed. They give protocol with communication cost I + log(I) + log(log(I)) + . . ..
We can get a bound of I + log(I) +O(1) which is tight (even in terms of public-coin information)
as shown by the lower bound in next section. The savings essentially come from the surprising
Lemma 3.2.

Corollary 3.4. Suppose Alice wants to help Bob to sample from the distribution M |X = x and
they have access to shared randomness. Let I(M ;X) = I. Then there exists a public-coin protocol
π with expected communication ≤ I + log(I) +O(1), which achieves this task.

Proof. Note that since Bob has no input, Alice actually knows the message M ′ in the proof of
Theorem 3.1 in this case. Huffman encoding of M ′ gives the desired protocol, since H(M ′) ≤
I + log(I) +O(1).
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4 Lower Bound

Now we give an example where Theorem 3.1 is tight. Alice is given a uniformly random string
x ∈R {0, 1}n. Let M(x, i) denote a message distributed according to x1, . . . , xi−1, x̄i, bi+1, . . . , bn,
where bj ’s are random bits ∼ B1/2 and x̄i denotes the flip of bit xi.
Given x, Alice’s task, T, is to transmit a message distributed according to M(x, I), where I ∈R
{1, 2, . . . , n}. Note that Bob has no input in this task.
First let us bound the private-coin information complexity of this task. Given x, Alice can privately
sample I and send M ∼M(x, I). Then the information cost of this protocol is I(M ;X) = H(M)−
H(M |X). It is clear that H(M) = n.

H(M |X) = Ex[H(M |X = x)]

Denote M |X = x by M |x. For strings x, y ∈ {0, 1}n with x 6= y, let j(x, y) denote the first index
of disagreement between x and y i.e. index j s.t. xj 6= yj . Then

Pr[M |x = y] =
1

n
· 1

2n−j(x,y)

if x 6= y and 0 if x = y.

H(M |x) =
∑
y

Pr[M |x = y] log

(
1

Pr[M |x = y]

)

=
n∑
j=1

2n−j · 1

n
· 1

2n−j
log(n · 2n−j) + 0

= log(n) +
1

n

n∑
j=1

(n− j)

= n/2 + log(n)− 1/2

The second equality follows from the fact that there are 2n−j strings y with j(x, y) = j, when
j ∈ {1, . . . , n}. This gives

I(M ;X) = n/2− log(n) + 1/2

The following lemma lower bounds the information complexity of a public round protocol for the
task T. Note that the strategy of sampling I publicly would have an information cost ≈ n/2.

Lemma 4.1. Let Π be a one round public-coin protocol (using public randomness R) such that
there is a deterministic function g such that g(Πx, R) is distributed according to M(x, I). Then
I(Π;X|R) ≥ n/2−O(1).

Proof. Since Π is a deterministic function of X and R,

I(Π;X|R) = H(Π|R)−H(Π|X,R) = H(Π|R)

Let J be a random variable that denotes the first index of disagreement between g(Π, R) and
X (Note that J is well defined because of the distribution of M). Fix a value of R = r. Let

11



pj = Pr[J = j|R = r]. Note that the probability is just over random X. Let µ denote the
distribution of Π|R = r and let µj be the distribution of Π|R = r, J = j. Then

µ =
n∑
j=1

pj · µj

Let us analyze the distribution µj . Let Sr(j) be the set of x’s which lead to J = j i.e.

Sr(j) = {x ∈ {0, 1}n : j(x, g(Π(x, r), r)) = j}

Note that |Sr(j)| = pj · 2n. Fixing Π = t and R = r fixes g(Π, R) = g(t, r). Then

Pr[Π = t|R = r, J = j] ≤ |{x ∈ Sr(j) : j(x, g(t, r) = j)}|
|Sr(j)|

≤ 2n−j

pj · 2n
=

1

pj · 2j

The first inequality is because if R = r, J = j are fixed, the event Π = t implies that j(x, g(t, r)) = j.
The second inequality follows from the fact that there are 2n−j x’s with j(x, g(t, r)) = j.

Claim 4.2. H(µ) ≥
∑n

j=1 j · pj −O(1).

Given the claim, we can bound H(Π|R) as follows :

H(Π|R) = Er∼R[H(Π|R = r)]

≥ Er∼R
n∑
j=1

j · pj −O(1)

=

n∑
j=1

j · 1

n
−O(1)

= n/2−O(1)

The inequality follows from the claim. The second equality follows from the fact that Er∼RPr[J =
j|R = r] = Pr[J = j] = 1

n .

Proof. (Of Claim 4.2) Increasing a larger probability and decreasing a smaller probability by the
same amount always lowers the entropy of a distribution(

p log

(
1

p

))′
−
(
q log

(
1

q

))′
= log

(
q

p

)
< 0 if q < p

We are given a µj where the mass of every entry µj(z) does not exceed 2−j/pj . Therefore, we can
replace µj with a uniform distribution on a set Lj of Lj entries, where Lj = max(1, bpj ·2jc) (given
any z1, z2 with 0 < µj(z1), µj(z2) < 1/Lj we can make sure that one of them becomes 0 or that
one of them becomes 1/Lj without increasing the entropy). Note that it is always the case that
Lj > pj · 2j−1.

Therefore, we can assume wlog that each µj is uniform on a set Lj of size Lj . Consider the
process of selecting an index K according to the distribution pj , and then Z ∼ µK . Our goal is to
show that H(Z) ≥

∑n
j=1 j · pj −O(1). We have

H(KZ) = H(K) +H(Z|K) =

n∑
j=1

pj log(Lj/pj) >

n∑
j=1

pj log(pj · 2j−1/pj) =

n∑
j=1

j · pj − 1,
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and H(Z) = H(KZ)−H(K|Z). Therefore, it suffices to show that H(K|Z) = O(1).
We define a subset S of j’s for which pj is “small”:

S := {j : pj < 2−j}.

Note that for j /∈ S we have pj · 2j ≥ 1, and therefore Lj = bpj · 2jc, and pj · 2j−1 < Lj ≤ pj · 2j .
Denote by χS the indicator random variable for the event K ∈ S. We have

H(K|Z) ≤ H(K,χS |Z) = H(χS |Z)+H(K|χSZ) ≤ 1+Pr[K ∈ S]H(K|Z,K ∈ S)+Pr[K /∈ S]H(K|Z,K /∈ S).

The second inequality is because χS is a boolean random variable. We bound the two terms
separately. Assuming S 6= ∅, denote pS :=

∑
j∈S pj .

Pr[K ∈ S]H(K|Z,K ∈ S) ≤ Pr[K ∈ S]H(K|K ∈ S) = pS ·
∑
j∈S

pj
pS

log
pS
pj
≤
∑
j∈S

pj log
1

pj
<

1 +
∑

j≥2,j∈S
pj log

1

pj
≤ 1 +

n∑
j=2

2−j log
1

2−j
= O(1).

The last inequality is because the function x log 1/x is monotone increasing on the interval (0, 1/e),
and we have 0 < pj < 2−j < 1/e for j ∈ S, j ≥ 2.

Finally, we need to show Pr[K /∈ S]H(K|Z,K /∈ S) = O(1). We will in fact show that
H(K|Z,K /∈ S) = O(1). We have

H(K|Z,K /∈ S) = Ez∼Z|K/∈SH(K|Z = z,K /∈ S). (1)

Fix any value of z such that Pr[K /∈ S|Z = z] > 0. We can precisely describe the distribution q of
K|Z = z,K /∈ S. Denote Tz := {j : j /∈ S, z ∈ Lj}. Order the elements of Tz in increasing order,

and index them: Tz = {j1 < j2 < . . . < jk}. Then the distribution q puts weight qr :=
pjr/Ljr

q on

jr, where q :=
∑k

r=1 pjr/Ljr . We have for each r:

qr ≤
pjr/Ljr
pj1/Lj1

<
pjr/(pjr · 2jr−1)

pj1/(pj1 · 2j1)
= 2j1−jr+1 ≤ 22−r.

The second inequality follows from Ljr > pjr · 2jr−1 and Lj1 ≤ pj1 · 2j1(since j1 /∈ S) . qr ≤ 22−r

implies that H(q) = O(1). Therefore we have H(K|Z = z,K /∈ S) = O(1) for each z, and by (1)
this implies H(K|Z,K /∈ S) = O(1), and completes the proof.
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Appendix

Proof. (Of corollary 3.3) It follows by applying Theorem 3.1 to the messages round by round.
Denote the protocol transcript by Π = Π1,Π2, . . . ,Πr. Assume Alice and Bob send alternate
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messages with Alice sending Π1. Then

ICµ(π) = I(Π;X|Y R′RB) + I(Π;Y |XR′RA)

=
∑
i≤r

I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) +

∑
i≤r

I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA)

=
∑

i odd,i≤r
I(Πi;X|YΠ1Π2 . . .Πi−1R

′RB) +
∑

i even,i≤r
I(Πi;Y |XΠ1Π2 . . .Πi−1R

′RA)

The second equality is chain rule for mutual information and the last equality follows from the
fact that for odd i, Πi is a function of Π1Π2 . . .Πi−1 and X and for even i, Πi is a function of
Π1Π2 . . .Πi−1 and Y . Now, after the messages Π1 = m1,Π2 = m2, . . . ,Πi−1 = mi−1 have been sent
(assume i odd), Alice can send Πi using public randomness via a message Π′i and public randomness
R such that (apply Theorem 3.1 to the inputs XY |Π1 = m1,Π2 = m2 . . .Πi−1 = mi−1)

I(Π′i;X|Y,Π1 = m1,Π2 = m2, . . . ,Πi−1 = mi−1, R) ≤ I(Πi;X|YΠ1 = m1,Π2 = m2 . . .Πi−1

= mi−1R
′RB) + log(I(Πi;X|YΠ1 = m1,Π2 = m2, . . .Πi−1 = mi−1R

′RB)) +O(1)

This gives by taking expectations and by concavity of log

I(Π′i;X|YΠ1Π2 . . .Πi−1R) ≤ I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) + log(I(Πi;X|YΠ1Π2 . . .Πi−1R

′RB))

+O(1)

Also by Fact 2.10, I(Π′i;X|YΠ′1Π′2 . . .Π
′
i−1R) = I(Π′i;X|YΠ1Π2 . . .Πi−1R). This is because Π′1, . . . ,Π

′
i−1,

Y , R determine Π1,Π2, . . .Πi−1 and Π′1Π′2 . . .Π
′
i−1 → Y RΠ1Π2 . . .Πi−1 → Π′iX is a Markov chain.

Thus

ICµ(π′) ≤
∑

i≤r,i odd

I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB) +

∑
i≤r,i odd

log(I(Πi;X|YΠ1Π2 . . .Πi−1R
′RB))+

∑
i≤r,i even

I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA) +

∑
i≤r,i odd

log(I(Πi;Y |XΠ1Π2 . . .Πi−1R
′RA)) +O(r)

≤ I + r log(I/r) +O(r)

The last inequality follows from concavity of log.
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