
Collapsing Exact Arithmetic Hierarchies

Nikhil Balaji and Samir Datta

Chennai Mathematical Institute
{nikhil,sdatta}@cmi.ac.in

Abstract. We provide a uniform framework for proving the collapse of the hierarchy, NC1(C) for an exact arith-
metic class C of polynomial degree. These hierarchies collapses all the way down to the third level of the AC0-
hierarchy, AC0

3(C). Our main collapsing exhibits are the classes

C ∈ {C=NC
1,C=L,C=SAC

1,C=P}.

NC1(C=L) and NC1(C=P) are already known to collapse [1,18,19].
We reiterate that our contribution is a framework that works for all these hierarchies. Our proof generalizes a proof
from [8] where it is used to prove the collapse of the AC0(C=NC

1) hierarchy. It is essentially based on a polynomial
degree characterization of each of the base classes.

1 Introduction

Collapsing hierarchies has been an important activity for structural complexity theorists through the years [12,21,14,23,18,17,4,11].
We provide a uniform framework for proving the collapse of the NC1 hierarchy over an exact arithmetic class. Using
our method, such a hierarchy collapses all the way down to the AC0

3 closure of the class.
Our main collapsing exhibits are the NC1 hierarchies over the classes C=NC

1, C=L, C=SAC
1, C=P. Two of these

hierarchies, viz. NC1(C=L),NC
1(C=P), are already known to collapse ([1,19,18]) while a weaker collapse is known

for a third one viz. that of AC0(C=NC
1). We reiterate that our contribution is a simple proof that works for all these

hierarchies. Our proof is a generalization of a proof from [8] who used it to prove the collapse of the C=NC
1 hierarchy

and is essentially based on a polynomial degree characterization of each of the corresponding arithmetic classes.
The most well known amongst the exact arithmetic circuit hierarchy collapses is the collapse of the NC1 hierarchy

over C=L. This was proved by using the linear algebraic properties of C=L an elegant and non-trivial argument by
Allender,Beals, and Ogihara [1]. We find it remarkable that our proof does not use any linear algebra (apart from
the characterization of GapL functions as being exactly the functions computed by weakly skew circuits [24], which
involves a certain amount of linear algebra) to prove the collapse to AC0

3(C=L).
The collapse of the NC1 hierarchy over C=P to a constant level of the AC0 hierarchy follows easily from the results

by Ogihara from [19,18]. Our proof is quite orthogonal to the proofs there.
We would like to point out a notational quirk that we carry over from [8] by consistently calling the finite level of

AC0 circuit to which we collapse the various classes as AC0
3 where we actually mean two layers of Boolean gates i.e

∧,∨. The reason for the subscript 3 being that we include negation gates while counting the depth contrary to popular
usage.

1.1 Historical Perspective

Counting classes have been studied from the early days of complexity theory. Gill and Simon [10,22] were the first to
introduce the class PP(Probabilistic polynomial time) which consists of all languages decidable by a nondeterministic
Turing machine in polynomial time in which at least half of the computation paths lead to acceptance. This class
gained importance due to Toda’s theorem (which states that a polynomial time machine with access to a PP oracle is
at least as powerful as the entire polynomial hierarchy) and Beigel, Reingold and Spielman [3] who proved that it is
closed under intersection.

C=P is the humbler cousin of PP though it happens to be one of our main protagonists. It was introduced by Simon
[22] and consists of languages where the acceptance and rejection probability is the same.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 131 (2013)

Fenner, Fortnow and Kurtz[9] introduced the notion of Gap to aid the study of structural complexity of these
counting classes. For a class C, captured by nondeterministic Turing machines, denote by GapC the class of functions
expressible as the difference between the number of accepting and rejecting computations of some nondeterministic
Turing machine. Then C=P is just those languages which have a zero gap (with an NP-machine).

The class C=L and the NC1,AC0 hierarchies over it have also received attention in literature [1,20,13]. In [1] it
was first proved that the NC1 hierarchy over C=L collapses all the way down to the first level of the hierarchy, LC=L.
Further collapse to C=L is not known because this class is not known to be closed under complement.

The class C=NC
1 was probably mentioned explicitly for the first time in [6] where it is shown that (a uniform ver-

sion of) it is contained in Logspace. Various hierarchies over this class including the Boolean, AC0, and the arithmetic
hierarchy were studied in [8].

To the extent of our knowledge, the only previous known occurence of the class C=SAC
1 is in the context of

deciding the properties of monomials computed by arithmetic circuits[16]. The classes SAC1 and its arithmetic analogs
#SAC1,GapSAC1 have been actively investigated in literature [28,2,15].

1.2 Our Results

In this paper, we extend and generalize the framework used in [8] to prove that the NC1(C=K) for a NC1-well-behaved
class1 K collapses to AC0

3(C=K). As a result, we obtain several results as corollaries:

1. AC0(C=NC
1) = NC1(C=NC

1) = AC0
3(C=NC

1), improving on [8].
2. AC0(C=L) = NC1(C=L) = AC0

3(C=L), which gives an alternative proof of [1]
3. AC0(C=SAC

1) = NC1(C=SAC
1) = AC0

3(C=SAC
1).

4. AC0(C=P) = NC1(C=P) = AC0
3(C=P), which gives an alternative proof of [18]

We prove that such a collapse can be made DLOGTIME-uniform. Note that we need to prove this strict uniformity
of our collapse in order to exploit Venkateswaran’s characterization of NP as exactly those languages that are decidable
by DLOGTIME-uniform semi-unbounded circuit families of exponential size.

1.3 Proof Idea

The unifying feature of the aforementioned classes(C=NC
1, C=L, C=P, C=SAC

1 is that roughly speaking, they can
be viewed as languages accepted by the C=-version of an arithmetic circuit family of polynomial degree. Thus if we
consider arithmetic formulas, arithmetic weakly skew circuits, arithmetic circuits of plynomial size and arithmetic
circuits of exponential size respectively, then imposing the polynomial degree bound gives us exactly the classes
GapNC1,GapL,GapSAC1 and GapP [6,24,26,27]. Applying the C= operator to these arithmetic classes yields our
candidate exact arithmetic classes. We also tacitly use that the class of circuits are closed under composition with
formulas.

The other important point to notice is that the [8] proof which just shows the collapse of the AC0(C=NC
1) hierarchy

to the third level can be extended to a collapse of NC1(C=NC
1). This follows by observing that the level by level

collapse outlined in [8] does not blow up the degree to more than a polynomial value even though we need to perform
it logarithmically many times. This is because of the Cook-Wilson relativization, which can be interpreted as saying
that if the oracle circuits are polynomial degree, so is the final circuit. This idea can then be generalized to any circuit
family of polynomial degree.

A simple but crucial observation makes it possible to extend the results from bounded fan-in circuits in [8] to
circuits where this restriction does not hold e.g. in the cases of C=SAC

1 and C=P. This observation concerning
Vandermonde Determinants is described in Proposition 1 and used in the proof of Lemma 1.

1.4 Organization of the paper

We present preliminaries in Section 2. In Section 3, we state our main result and list some immediate corollaries of
our result. We discuss possible future directions to our work in Section 5.

1 see Definitions 4, 8

2

2 Preliminaries

We mention the standard complexity classes that we will use. For definitions and important results regarding these
classes, we refer the reader to a standard text like [29].

An arithmetic circuit is a directed acyclic graph(DAG) with nodes labelled by {×,+} ∪ X ∪ {−1}, where X is
the set of input variables. Note that −1 is the only constant necessary, and we can use it to generate 1 = (−1)× (−1),
0 = (−1) + 1, and use −1, 0, 1 to generate any integer.

Given an arithmetic circuitC, the formal degree of the circuit is defined inductively as follows: Every input variable
and the constant −1 have degree2 1. If C1 and C2 are two subcircuits of degree d1 and d2 respectively feed in to a ×
gate(+ gate), then the degree of the × gate(+ gate) is d1 + d2(max (d1, d2)).

An (m×m) Vandermonde matrix V is one where the (i, j)-th entry of V , Vij = ij .

Fact 1 The absolute value of determinant of V is equal to
∏
i<j;i,j≤m(j − i) =

∏m
k=1 k!

It is important to note that the determinant of an (m×m)-Vandermonde matrix(with entries that are indeterminates)
can be computed by an arithmetic circuit of degree m. But since we start out with just the constant−1, we will have to
construct these numbers 1, . . . ,m and using them to find the the entries of the matrix, which can be done via repeated
squaring and addition with a circuit of size at most O(m2), depth O(logm) and degree O(m2 logm), for every entry
of the matrix. Also, the value of this determinant is at most

∏m
k=1 k! ≤ (m!)m ≤ mm2

which can be computed by an
arithmetic circuit of size at most O(

(
m
2

)
m2) = O(m4), depth O(logm) and degree O(m4 logm).

We start with the usual definitions of AC0 and NC1 hierarchies over Boolean complexity classes.

Definition 1. Let C be a Boolean complexity class. AC0(C) is the class of languages recognized by AC0 circuits with
additional oracle gates(of unbounded fan-in) for C.

Defining the NC1 hierarchy naively as above will yield a circuit where there could be O(log n) many oracle gates
on any path, will stand in contrast to the definition of NC1 as that of circuits with bounded fan-in gates. The definition
due to Cook and Wilson[7,30] gives a reasonable model, which avoids these problems:

Definition 2. (Cook-Wilson) Let C be a Boolean complexity class. NC1(C) is the class of languages recognized by
NC1 circuits with additional oracle gates for C, where an oracle gate of fan-in k is charged log k towards the depth of
the circuit.

We note that the small blob chains property defined in [8] is essentially modelled by the Cook-Wilson relativization
for NC1 as given in Definition 2.

An easy inclusion follows from the definitions above:

Proposition 1. For any boolean complexity class C, we have:

AC0(C) ⊆ NC1(C)

Next, we abstract the classes of base circuits over which we will consider various hierarchies:

Definition 3. Let K be a class of arithmetic circuits. Then C=K is the class of languages recognized by the circuits
from the class K with an additional gate at the top that compares the output to zero to produce a Boolean output.

We will abuse notation to identify C=K with the class of circuits recognizing the class of represented languages.

Definition 4. Let K1,K2 be classes of circuits then K1 ◦ K2 is the class consisting of circuits with a circuit from K1

at the top, all of whose inputs are circuits from K2. We say that the class K2 is closed under composition with K1 if
K2 ◦ K1 ⊆ K2.

2 Note the non-standard convention to account for the degree of a constant. We do this so as to account for the size and degree
contribution of the Vandermonde matrices, which we will use extensively in our results.

3

Definition 5. (Cook-Wilson for Arithmetic Classes) Let K be an arithmetic complexity class of polynomial formal
degree. A special case when K is composed with itself O(log n) many times is denoted by,

K(l) =

O(logn) times︷ ︸︸ ︷
K ◦ K . . . ◦ K

where along any path in the K(l) circuit, the product of the degrees of K circuits is bounded by a polynomial in the
number of input variables to the K(l) circuit.

Throughout the paper, we use a very specific type of AC0 circuit, namely, an AC0
3 circuit which is essentially a

boolean circuit of depth 3 consisting of an ∨ gate at the root, followed by a layer of ∧ gates, which are fed by C=K or
coC=K oracle gates. We will refer to such circuits as AC0

3(C=K) circuits.
We call a circuit connected if the underlying undirected acyclic graph is connected.

Definition 6 (Toda[24]). A gate in a circuit is said to be weakly skew if for any multiplication gate α with children β
and γ,one of the two sub-circuits Cβ or Cγ is only connected to the rest of the circuit by the wire going to α. A weakly
skew circuit is one where all the multiplication gates are weakly skew.

The following is a simple consequence of this definition:

Proposition 2 (Toda[24]). Every formula is a weakly skew circuit.

3 Exact Arithmetic Hierarchies

Definition 7. Some examples of natural arithmetic circuit classes are as follows:

– Kform are formulas of polynomial size
– Kwskew are weakly skew circuits of polynomial size
– Kpoly are circuits of polynomial degree and polynomial size
– Kexp are circuits of polynomial degree and exponential (= 2n

O(1)

) size

Throughout this paper, we will be interested in uniform versions of the classes above. Unless mentioned otherwise,
all the arithmetic circuit families we mention are DLOGTIME-uniform.

Proposition 3. We prove the following for the aforementioned circuit classes:

1. C=Kform = C=NC
1

2. C=Kwskew = C=L
3. C=Kpoly = C=SAC

1

4. C=Kexp = C=P

Proof. Some of the above follow from well-known results:

1. Follows from the simulation of formulas by arithmetic straight-line programs due to Ben-Or and Cleve [5].
2. Follows from Toda’s characterization of determinant using weakly skew circuits[24].
3. Follows from Venkateswaran’s uniform circuit characterization of SAC1 as consisting of languages recognized by

circuit families having polynomial degree and polynomial size[27,26].
4. Follows from Venkateswaran’s uniform circuit characterization of NP as consisting of languages recognized by

circuit families having polynomial degree and exponential size.[27]
ut

Notice that skew circuits which yield the usual definition of GapL are not closed under composition with formulas
(because formulas are not necessarily skew circuits). Thus we have to use the alternative(and equivalent) definition of
GapL in terms of weakly skew circuits and in this case all formulas are indeed weakly skew.

One of the key things in our collapse is the ability to compose two different circuit families.

4

Definition 8. Given an arithmetic class K, consider the following:

(i) Kform ⊆ K
(ii) K ⊆ Kexp.

(iii) K ◦ K ⊆ K
(iv) K(l) ⊆ K.

We call K, AC0-well-behaved if it satisfies (i), (ii), (iii) and NC1-well-behaved if it satisfies (i), (ii), (iv).

It is easy to see that every NC1-well-behaved class of circuits K is also AC0-well-behaved.This is an easy conse-
quence of Definition 8. Note that Theorem 1 already entails a collapse of AC0(C=K) by the observation that NC1-
well-behaved implies AC0-well-behaved. We show that if one is interested in the collapse of AC0(C=K) then it is
sufficient for K to be AC0-well-behaved, which is a weaker notion.

Our main goal in this paper is to study the AC0 and NC1 reducibilities to C=K. AC0(C=K)(respectively NC1(C=K))
is the class consisting of languages which can be decided by constant depth(respectively O(log n)-depth), polynomial
size circuits consisting of ∧, ∨, ¬ and C=K gates. Our main theorem is the following:

Theorem 1. For every NC1-well-behaved class K the exact hierarchy NC1(C=K) collapses to AC0
3(C=K).

Proof. First we recall some terminology from [8]. Let C be a circuit from NC1(C=K). Then a blob consists of the
subcircuit rooted at some equality gate g in the circuit where the equality gates in the sub-circuit are replaced by new
formal variables. In other words it consists of a single oracle gate. A blob chain consists of a root to leaf path in the
NC1 circuit and includes all the equality gates (aka oracle gates) along the path.

We need a generalization of a lemma from [8] which shows that a circuit of two blob layers i.e. a blob with its input
blobs can be replaced by a shallow Boolean circuit (AC0

3) with a single layer of blobs below it. In this “flattening”
process the degree and the size of the circuit increase by an extent we explicate in the lemma.

In [8] this lemma was proved in the context of C=NC
1 but can be generalized to any C=K since the only property

of GapNC1 used in its proof was that it was a class of arithmetic circuits closed under composition with logarithmic
depth polynomial size formulas; and this is true for all well-behaved K by definition.

Lemma 1. (Rephrased from [8]) Let C0(x), C1(y), . . ., Cm(y) be m+1 circuits from C=K. Let, f : y 7→ C0(C(y))
be the function computed by feeding in the circuits Ci for i > 0 as inputs of C0. Then, f is also computed by the
following AC0

3(C=K) circuit:

m∨
i=1

zi(y) =

m∨
i=1

[Si,0(C
′(y)) ∧ Si,1(C ′(y)) ∧Bi(C ′(y))]

Notice that, have used abbreviations, x = (x1, . . . , xm),y = (y1, . . . , yn), and similarly C,C ′ to simplify nota-
tion. More importantly, C ′i are functions inK, Si,0 is a C=K circuit, Si,1 is a C6=K circuit, and Bi from C6=K. Further,
the size and the degree of the entire circuit is bounded by O(ms0) + O(m8s) and O(m9d + d0d) respectively. Here
s0 is the size of C0, s is the sum of sizes of the Ci’s (for i > 0), d0 is the degree of C0 and d is the sum of degrees of
Ci’s for i > 0.

Emulating [8] we can use Lemma 1 to collapse two levels of blobs into one with an AC0
3 circuit at the top. The

AC0
3 circuit can be converted to a an element of Kform (the proof of the lemma shows that the AC0

3 circuit is an
unambiguous formula and straightaway arithmetization will preserve the value). Assuming we start with a AC0

k(C=K)
circuit, then the closure of K under composition with Kform allows us to convert the circuit to the form AC0

k−1(C=K)
i.e. with depth one lesser than earlier. Since we need to repeat this operation k times the size remains bounded by
nO(k) times the size of the original circuit and the degree by the degree of the original circuit raised to a power
which is O(k). Notice that this seems to work only for AC0 relativizations because the naı̈ve upper bounds on the size
and degree become quasipolynomial when we repeat the collapse logarithmically many times as necessitated by NC1

relativizations. We show in Lemma 3 that this not the case.

5

Proof. (of Lemma 1)
Our proof is a quantitative version of the one used in [8]. There, given an AC0(C=K) circuit, one applies Lemma

1 O(k) times, where k is the depth of the AC0(C=K) circuit, to get the required AC0
3(C=K) circuit.

Notice that the AC0
3 circuit defined by:

m∨
i=1

zi(y) =

m∨
i=1

[Si,0(C
′
1(y), . . . , C

′
m(y)) ∧ Si,1(C ′1(y), . . . , C ′m(y)) ∧Bi(C ′1(y), . . . , C ′m(y))]

implements the predicate that asserts that there is a subset of circuits from C1(y), . . . Cm(y) that all evaluate to 1
on y. To this end, one implements the following three clauses Si,0, Si,1 and Bi which evaluate to 1 simultaneously if
and only if there is a subset of circuits {Cj(y)} of size i, for i, j ∈ [m] such that on input y all these i circuits evaluate
to a 1 and the circuit Bi(C1(y), . . . , Cm(y)) also evaluates to a 1. We use Tzamaret’s construction[25] to implement
the functions Si,0 and Si,1:

Let Y = {C ′1(y), C ′2(y), . . . , C ′m(y)}. Consider the polynomial Ri(Y) =
∑
S⊆Y ;|S|=i

∏
j∈S C

′
j where C ′j come

from the set Y consisting ofm variables. Notice that the product of polynomials,
∏l
i=1(xi+z) =

∑m
j=0Ri(Y)zj . We

can recover the polynomials Ri(Y), given values to the variables in Y by evaluating the polynomials in z at (m+ 1)
distinct values of z, via interpolation.

V ×


R1(Y)
R2(Y)

...
Rm(Y)

 =


∏m
i=1 C

′
i(y)∏m

i=1(C
′
i(y) + 1)
...∏m

i=1(C
′
i(y) +m)


where V is a (m + 1) × (m + 1) Vandermonde matrix(and hence invertible) where for 0 ≤ i, j ≤ m,Vij = ij .

Note that V can be precomputed, since it is a constant. Now we can compute the symmetric polynomial Ri as follows:

Ri(C
′
1, . . . , C

′
m) =

m∑
j=0

V −1ij

m∏
k=1

(C ′k(y) + j)

Notice that, here Si,0(respectively Si,1) are C=K(respectively C 6=K) functions respectively where the underlying
K functions are respectivelyRi(C ′1(y), . . . , C

′
m(y)) andRi+1(C

′
1(y), . . . , C

′
m(y)). The third clauseBi(C ′1(y), . . . , C

′
m(y)

is actually emulating our original circuit whereas the other two clauses are essentially used to eliminate the = tests.
Also, the AC0

3 circuit is actually a formula which makes the AC0
3(C=K) circuit unambiguous and hence one can use

the fact that Kform ⊆ K to infer that K ◦ Kform ⊆ K.
We further claim that the predicate

∨m
i=1 zi(y) above is true for precisely one value of i ∈ [m].

Claim. For all y ∈ {0, 1}n,

C0(C1(y), C2(y), . . . , Cm(y)) 6= 0 ⇐⇒ ∃i ∈ [m] : zi(y)

Proof. For a given y, let ry denote the number of circuits C ′i that evaluate to a non-zero value at y. Then,

1. Si,0(C ′1(y), . . . , C
′
m(y)) is 0 when i > ry because the symmetric polynomial on m variables, where each mono-

mial has exactly i variables, is always 0 when i > ry , since at least one of the variables in the product is 0.
2. Si,1(C ′1(y), . . . , C

′
m(y)) is 0 exactly when i < ry , because of the same reason as above – the monomials are

made up from only the non-zero variables, and hence the polynomial is always non-zero.
3. Hence, zi(y) is false whenever i 6= ry .

ut

So, there is exactly one choice of i, equal to the number of Cis which are non-zero, where the first two clauses of
the predicate evaluate to true for all strings y. What happens to the third clause Bi at this particular i? One wants this
clause to evaluate to a 0 whenever C0(C1(y), C2(y), . . . , Cm(y)) is 0 and otherwise evaluate to 1.

6

Let G(y) =
∏
C′

j(y)6=0 C
′
j(y). If ∀i ∈ [m], C ′i(y) = 0, Define G(y) = 1. Hence, G(y) is always non-zero by our

definition. Plug in G(y) instead of 1 and −G(y) instead of −1 in C0, . . . , Cm, and weigh each of the Cis by G(y) to
eliminate the = gate. This results in a circuit of the form C0(C

′
1, . . . , C

′
m) where C ′1, . . . , C

′
m are functions from the

class K.
Since the initial NC1(C=K) was of polynomial degree, the predicate implemented blows up the output of the circuit

by a number which is at most polynomially many bits long. Since Bi(C ′1(y), . . . , C
′
m(y)) is exactly the function

C0(C1(y), C2(y), . . . , Cm(y)), the claim follows. ut

One is left with the task of constructing functions in class K which can implement the functions Si,0 and Si,1.

Claim. For all i ∈ [m], there existK functionsNi andDi such that, Si,0(C1(y),C2(y), . . . , Cm(y)) = N i
m(y)/Di

m(y).

Proof. The symmetric functions are constructed using the expression:

Ri(C
′
1, . . . , C

′
m) =

m∑
j=0

V −1ij

m∏
k=1

(C ′k(y) + j)

The implementation of Si,0 and Si,1 via Tzamaret’s technique requires constructing and inverting a (m × m)-
Vandermonde matrix, which requires size O(m4) from the analysis in Section 2. Since V is an integer matrix, each of
the entries of V −1 can be written as ratio of integers(the denominator being det(V) =

∏
i<j(j − i)). So, to compute

Ri(C
′
1, . . . , C

′
m), we have Di(y) = det(V) and Ni(y) =

∑m
j=0 V

−1
ij

∏m
i=1(Ci(y) + j). We can multiply the whole

equation by det(V) and this is equivalent to computing det(V)Ni(y) =
∑m
j=0 det(V)V −1ij

∏m
i=1(Ci(y) + j). ut

Naı̈vely, it would seem like the determinants of the Vandermonde matrices get multiplied, at each level, leading to
an explosion in the degree. But, notice that by Fact 1, at every level, the denomianator will be just maxi∈[m]det(Vi),
where Vi,the Vandermonde matrix of dimension (i × i), is the denominator that percolates up as a result of previous
collapses. This will remove the need to carry around the symmetric function as a numerator-denominator pair. Since
we replace 1 with G(y) and −1 with −G(y) in our circuit Bi, in order to bound the size and the degree, one has to
make sure that the size and degree of the expression det(V)Ni(y) is bounded by a polynomial in the number of input
variables.

The size of the circuit resulting from the collapse is O(ms0 + m8s): Si,0 and Si,1 contribute O(m8s) each for
every value of i, and considering the fact that the boolean OR is overm values of i, their total contribution to the size is
O(m9s). The clause Bi contributes O(ms0 +ms): the circuit at the top, C0 contributes s0 for each AND gate(totally
O(ms0), and its inputs are of size s, adding up toO(ms) size. Hence the total size of the circuit resulting from a single
collapse is O(m8s+ms0).

In case of the degree, one really has to bound maxi∈[m] degree[zi(y)]. The degree of the circuit is at most
O(m8 log2md)(this is in order to account for V −1 which is written as a ratio of determinant of cofactor matrices
and det(V)). Hence the degree of the whole circuit obtained as a result of a single collapse is at most (degree of Si,0 +
degree of Si,1 + degree of Bi) ≤ O(m8 log2md) +O(m8 log2md) +O(d0d) ≤ O(m8 log2md+ d0d) , where d0 is
the degree of C0 and d is the sum of degrees of Cis. Thus we get the size and degree bounded as claimed in Lemma 1.

ut

Now we show how to do a careful analysis of the collapse in case of NC1 relativizations which allows us to
conclude that the size and degree do not become too large. The key is to use basic counting along with Cook-Wilson
condition on NC1-relativization which allows us to conclude the following:

Proposition 4. Consider an NC1(C=K) circuit C with size, height and number of inputs s(C), h(C) and n(C) re-
spectively. Then,

– the number of distinct maximal blob chains is upper bounded by s(C).
– the product of the fan-ins of the oracle gates along a blob-chain is upper bounded by (n(C))c1 for some constant
c1 depending on the circuit family;

7

Next we bound the total size of the flattened circuit. Lemma 2 shows that, for the K(l) circuits obtained as a result
of the collapse, indeed K(l) = K.

Lemma 2. The size of the flattened circuit is upper bounded by: ncs2, where s is the sum of sizes of the circuits
corresponding to oracle gates and c is a constant depending on the family of circuits (and n is the number of inputs to
the original circuit).

Proof. We use the recurrence:

S(g) = 3f9g
∑

h:parent(h)=g
S(h) + sgfg (1)

≤ 3f9g
∑

h:parent(h)=g
S(h) + s2g (Since fg ≤ sg) (2)

Here S(g) is the total size of the sub-circuit below gate g after flattening, sg is the original size of the K-circuit
for just the gate g and fg is the fan-in of g. Let us further denote by hg the height of g. Then the recurrence has the
solution:

S(g) = 3hg

∑
g′:g′ is a descendant of g

 ∏
h∈B(g,g′)

f9h

 s2g′


where B(g, g′) denotes the blob-chain between g and g′.

Let g0 be the root of the circuit, then from Proposition 4. The products of the fan-ins in the sum above is upper
bounded by nc1 where n = n(C) is the number of inputs of the circuit. Also, hg0 is bounded by c′2 log n for some
constant c′2, since the reduction is an NC1 reduction. Hence, S(g0) ≤ nc

∑
g sg

2. ut

Finally we bound the degree of the flattened circuit, which is crucial to proving our collapse:

Lemma 3. The degree of the flattened circuit is bounded by nc
′

where c′ is a constant depending on the original
circuit family.

Proof. The degree of a well-behaved circuit on t inputs is at most tc
′
1 for some constant c′1 depending on the circuit

family (since a circuit family is a subclass of Kexp circuits which have a polynomial degree. Now, we have the
recurrence:

D(g) = f9g dg
∑

h:parent(h)=g
D(h)

where we define D(g) to be the degree of the flattened circuit at g and dg its original degree as a circuit in K. This
has the solution:

D(g) =
∑

B:B is a maximal blob-chain rooted at g

(∏
h:h∈B

(f9hf
c′1
h)

)

Thus, D(g0) ≤ s(C)n(c
′
1+1)c1 ≤ nc

′
, using the bounds from Proposition 4 for the first inequality and observing that

the fan-in of any oracle gate and the size of the NC1 circuit is bounded by n. ut

Hence we have proved that for each equality gate in the final circuit, the degree remains polynomial via composition
with formulas which means the circuit rooted at the equality gate is in C=K, and the overall circuit in AC0

3(C=K).
This completes the proof of the theorem.

We now document some consequences of Theorems 1:

Corollary 1. NC1(C=NC
1) = AC0

3(C=NC
1)

Proof. Formulas are AC0-well-behaved since they are clearly closed under composition with formulas and have poly-
nomial degree. The fact that they are NC1-well-behaved follows from additional observation, namely the arithmetic
Cook-Wilson outlined in Definition 5. ut

8

Corollary 2. NC1(C=L) = AC0
3(C=L)

Proof. Weakly skew circuits are closed under composition withKform sinceKform circuits are weakly skew(Proposition 2).
Also, the polynomials computable by weakly skew circuits of polynomial size are also computable by determinants
of polynomial sized matrices by [24]. Hence the former have polynomial degrees Thus weakly skew circuits are AC0-
well-behaved. To prove that weakly skew circuits are NC1-well-behaved, it is sufficient to note that, weakly skew
circuits composed with themselves O(log n)-many times, remain weakly skew due to the arithmetic Cook-Wilson in
Definition 5. ut

Corollary 3. NC1(C=SAC
1) = AC0

3(C=SAC
1)

Proof. Formulas of polynomial size have polynomial degree, thus polynomial degree circuits of polynomial size are
closed under composition with them completing the proof that they are AC0-well-behaved. Similarly, polynomial
degree circuits composed with themselves O(log n)-many times still have polynomial formal degree, and hence NC1-
well-behaved. ut

Corollary 4. NC1(C=P) = AC0
3(C=P)

Proof. This also follows exactly from the same reasoning as the one for C=SAC
1 circuits. ut

4 Uniformity

We have proved that NC1(C=K) collapses to AC0
3(C=K). In this section we show that such an AC0

3(C=K) family is
DLOGTIME-uniform, when the original NC1(C=K) circuit family is DLOGTIME-uniform.

Following [29], we call our AC0
3 circuit uniform, if the following language can be decided in O(log n) time by a

deterministic turing machine: LDC = {〈y, g, p, b〉}, where

– |y| = n

– g is the number of a gate v in Cn
– p ∈ {0, 1}∗ such that if p = ε, then b encodes the type of the gate from the basis of the circuit family and if p is

the binary representation of k, then b is the number of the k-th predecessor gate to v wrt to a fixed ordering on the
gates in the circuit.

We encode every gate g in the given circuit NC1(C=K) C by a concatenation of two labels (ge, gi). ge is an
external encoding which assigns labels lexicographically to every C=K gate in C. gi is an internal encoding which
assigns labels to the +,×,= gates which constitute the C=K gates. More precisely, given 〈y, g, p, b〉, we have y = 1n,
g = (ge, gi). ge is aO(log n) length string (since the underlying circuit is a NC1 circuit the total number of bits needed
to uniquely address a gate in the circuit is O(log n) + maxπ

∑
g∈π log fanin(g) = O(log n), where the maximum is

taken over all paths π in the circuit) by the definition of oracle circuits in the Cook-Wilson model). gi is of length
O(log n)(since each of the C=K gates is poly-sized)3.

We will analyze a typical scenario in our collapse - Given a circuit of the form C = C1 ◦ C2 ◦ C3 (see Figure 1),
where C1, C2 and C3 are C=K circuits, we collapse C2 and C3 to obtain a circuit C ′ = C1 ◦ C ′2 ◦ C ′3 (see Figure 2).
Here C ′2 is a circuit of the form ∨ ◦ ∧ and C ′3 is a layer of C=K circuits. We prove that the collapse of C to C ′ can
be made DLOGTIME-uniform and then show that under the Cook-Wilson property, such collapses can be combined
to make the collapse of NC1(C=K), DLOGTIME-uniform.

Claim. For every NC1-well-behaved class K, DLOGTIME-uniform C=K ◦ C=K ◦ C=K = DLOGTIME-uniform
AC0

3(C=K).

3 Note that from [27] C=P is exactly characterized by DLOGTIME-uniform semi-unbounded circuits of 2n
O(1)

size and logarith-
mic depth and in this case the labels of the gate themselves will be strings of length nO(1)

9

C3 C2

C=K

C=K

C=K

...

C=K

C1...

C=K

1

2

m

...

Fig. 1. A circuit of the form C1 ◦ C2 ◦ C3 = C=K ◦ C=K ◦ C=K

C′2

C′3

∧

C=K

C 6=K

C=K
...

C=K

C 6=K

C=K

∨

S1,0

S1,1

B1

...

∧
Sm,0

Sm,1

Bm

∨

...
C1

...

Fig. 2. The collapsed circuit obtained from the circuit C1 ◦ C2 ◦ C3 above of the form C1 ◦ C′2 ◦ C′3 = C=K ◦ ∨ ◦ ∧ ◦ C=K

10

Proof. Assuming the DLOGTIME-uniformity and the aforementioned labelling scheme of C, we will now see how to
decide the connection language of C ′ when we have access to the connection language of C. First we explain how we
label C ′ from C: The labels of C1 carry over from C to C ′. For the ∨ ◦ ∧ circuit C ′2 we give new set of external and
internal labels similar toC. This takesO(log n) many bits. There are two kinds of circuits inC ′3: circuits computing the
symmetric functions, which are built via interpolation by symmetric polynomials, using the Vandermonde matrix and
circuits of the form C=K◦K (see Lemma 1). From Fact 1, it is clear that the entries of this matrix can be computed by
circuits of polynomial size, which are labelled usingO(log n) bits. The circuit of the form C=K◦K inC ′3 is essentially
C2 to which the inputs are symmetric functions of C3. Even here we assign a concatenation of external and internal
encoding of the circuits from C2 and C3 respectively, which are O(log n) bits long.

In each of C1, C
′
2, C

′
3, we identify three kinds of gates which we call α0, αcon, αmid. α0 gates are either the output

gate or the input gates of C ′. αcon are gates which connect Ci to Ci+1 for i ∈ {1, 2}. For example, the root gate of
C1, the ∨ gate in C ′2 and the = gate in C ′3 are αcon type gates - their parents and children are not of type αcon. αmid
gates are those whose parents and children are both αmid or αcon. The internal gates of C1 and C3 are gates of type
αmid. Note that all the gates in C ′ belong to one of these three categories.

So now we are ready to describe the label of a gate in C ′. It is of the form 〈y, g, p, b〉 as above where g is now
the concatenation of the external labels of the path to the nearest = ancestor to the gate and the internal label of the
gate in C. For example, the label of a gate in C ′3 would consist of the concatenation of external labels of C1, C

′
2, and

the internal label of the gate in C ′3. If p is ε, then b is the type of the gate, which could be ∧,∨,C=K. Else the binary
number encoded by the string p points to the position of the gate according to our fixed ordering. Note that at the end
of one collapse, the label lengths increase by atmostO(log n) bits(namely the bits required to internally label the ∨◦∧
system arising out of the collapse. With the above labelling convention, now there are two tasks to be accomplished:

1. Given a label of a gate g in C ′, we have to verify if it is indeed a valid label.
2. Given labels of gates g, h is g a parent/child of h?

The validity of a label is easily checked: One has to check if the concatenation of labels leads to a valid external
and internal encoding by querying the DLOGTIME machine for the original circuit C and check if its a α0, αmid or
αcon gate. For example, Given two gates, deciding if one is the parent/child of the other can be done by checking if
the label of one of them is a prefix of the other, and if yes, verifying if the gate types of the parent and child is valid
according to the relation between αs specified above.

ut

Now we prove that such a labelling convention leads to easily checking the validity of a label and connections in
the collapse from Theorem 1.

Claim. For every NC1-well-behaved class K, DLOGTIME-uniform NC1(C=K) = DLOGTIME-uniform AC0
3(C=K).

Proof. To label the final AC0(C=K) circuit, we concatenate the labels of the intermediate collapses. This might seem
like it requires labels of length O(log2 n) since the circuit we started out with had labels of length O(log n) and the
NC1(C=K) circuit requiresO(log n) collapses to reduce it to an AC0(C=K) circuit. But just as in the proof of Theorem
1, the Cook-Wilson property ensures that the length of the labels is O(log n). This is because, even though we do the
collapse as many as O(log n) times, the increase in label lengths is only due to the ∨◦∧ block. Recall that the number
of ∧ gates created in 1 is exactly equal to the fan-in of the oracle gate above, and the Cook-Wilson relativization model
bounds the product of fan-ins along any path to a polynomial in the number of inputs. This also bounds the number of
new gates created, and hence they can be labelled by O(log n)-many bits.

ut

5 Conclusion and Open Problems

We provide sufficient conditions on arithmetic circuits under which the NC1 hierarchy over the corresponding exact
arithmetic class collapses. Natural extensions can include proving similar results for more powerful reducibilities

11

like Boolean Formula reductions or even Logarithmic Boolean Formula reductions (which do not satisfy the “small-
blob-chains” property or equivalently do not follow Cook-Wilson relativization). An appropriately defined notion of
SAC1-reductions is another intriguing possibility.

It may also be an interesting idea to give similar uniform proofs for the NC1 hierarchies over the better known
classes PNC1,PL,PSAC1,PP where we already know collapses for the second[17] and the last [4] hierarchies and
also of the AC0(PNC1)-hierarchy [8].

Acknowledgements

We thank Eric Allender, Vikraman Arvind, Sourav Chakraborty, Meena Mahajan, Prajakta Nimbhorkar and B.V.Raghavendra
Rao for helpful discussions. The second author would like to thank the organisers of the Dagstuhl seminar on ”Alge-
braic and Combinatorial Methods in Computational Complexity” where many of the previously mentioned discussions
took place. We thank the anonymous referees for helpful comments.

References

1. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Computational
Complexity 8(2), 99–126 (1999)

2. Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: depth reduction and size lower bounds.
Theoretical Computer Science 209(1), 47–86 (1998)

3. Beigel, R., Reingold, N., Spielman, D.A.: PP is closed under intersection. Journal of Computer and System Sciences 50(2),
191–202 (1995)

4. Beigel, R., Fu, B.: Circuits over pp and pl. J. Comput. Syst. Sci. 60(2), 422–441 (2000)
5. Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. SIAM Journal on Computing 21,

54–58 (1992)
6. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 computation. Journal of Computer and System

Sciences 57, 200–212 (1998), preliminary version in Proceedings of the 11th IEEE Conference on Computational Complexity,
1996, 12–21

7. Cook, S.: A taxonomy of problems with fast parallel algorithms. Information and Control 64, 2–22 (1985)
8. Datta, S., Mahajan, M., Rao, B.V.R., Thomas, M., Vollmer, H.: Counting classes and the fine structure between nc1 and l. In:

Proceedings of the 35th international conference on Mathematical foundations of computer science. pp. 306–317. MFCS’10
(2010)

9. Fenner, S.A., Fortnow, L.J., Kurtz, S.A.: Gap-definable counting classes. Journal of Computer and System Sciences 48(1),
116–148 (Feb 1994)

10. Gill, J.: Computational complexity of probabilistic turing machines. SIAM Journal on Computing 6(4), 675–695 (1977)
11. Gottlob, G.: Collapsing oracle-tape hierarchies. In: IEEE Conference on Computational Complexity. pp. 33–42 (1996)
12. Hemachandra, L.: The strong exponential hierarchy collapses. In: Structure in Complexity Theory Conference. IEEE Computer

Society (1987)
13. Hoang, T.M., Thierauf, T.: The complexity of the characteristic and the minimal polynomial. Theor. Comput. Sci. 295, 205–222

(2003)
14. Immerman, N.: Nondeterministic space is closed under complementation. SIAM Journal on Computing 17(5), 935–938 (Oct

1988)
15. Limaye, N., Mahajan, M., Rao, B.: Arithmetizing classes around nc 1 and l. STACS 2007 pp. 477–488 (2007)
16. Mengel, S.: Conjunctive Queries, Arithmetic Circuits and Counting Complexity. Ph.D. thesis, Universität Paderborn (2012)
17. Ogihara, M.: The PL hierarchy collapses. SIAM J. Comput. 27(5), 1430–1437 (1998)
18. Ogihara, M.: Equivalence of NCk and ACk−1 closures of NP and Other Classes. Inf. Comput. 120(1), 55–58 (1995)
19. Ogiwara, M.: Generalized theorems on relationships among reducibility notions to certain complexity classes. Mathematical

Systems Theory 27(3), 189–200 (1994)
20. Santha, M., Tan, S.: Verifying the determinant in parallel. Computational Complexity 7(2), 128–151 (1998)
21. Schöning, U., Wagner, K.W.: Collapsing oracle hierarchies, census functions and logarithmically many queries. In: STACS.

pp. 91–97 (1988)
22. Simon, J.: On some central problems in computational complexity (1975)
23. Szelepcsényi, R.: The method of forced enumeration for nondeterministic automata. Acta Informatica 26(3), 279–284 (1988)
24. Toda, S.: Classes of arithmetic circuits capturing the complexity of computing the determinant. IEICE Transactions on Infor-

mation and Systems E75-D, 116–124 (1992)

12

25. Tzamaret, I.: Studies in Algebraic and Propositional Proof Complexity. Ph.D. thesis, Tel Aviv University (2008)
26. Venkateswaran, H.: Properties that characterize LogCFL. Journal of Computer and System Sciences 42, 380–404 (1991)
27. Venkateswaran, H.: Circuit definitions of nondeterministic complexity classes. SIAM J. on Computing 21, 655–670 (1992)
28. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proceedings of 6th Structure in

Complexity Theory Conference. pp. 270–284 (1991)
29. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York Inc. (1999)
30. Wilson, C.B.: Relativized circuit complexity. J. Comput. Syst. Sci. 31(2), 169–181 (1985)

13

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

