
Pseudorandomness for Multilinear Read-Once Algebraic
Branching Programs, in any Order

Michael A. Forbes∗ Ramprasad Saptharishi† Amir Shpilka‡

September 22, 2013

Abstract

We give deterministic black-box polynomial identity testing algorithms for multilinear
read-once oblivious algebraic branching programs (ROABPs), in nO(lg2 n) time.1 Further, our
algorithm is oblivious to the order of the variables. This is the first sub-exponential time
algorithm for this model. Furthermore, our result has no known analogue in the model of
read-once oblivious boolean branching programs with unknown order, as despite recent work
(eg. [BPW11, IMZ12, RSV13]) there is no known pseudorandom generator for this model with
sub-polynomial seed-length (for unbounded-width branching programs).

This result extends and generalizes the result of Forbes and Shpilka [FS12b] that ob-
tained a nO(lg n)-time algorithm when given the order. We also extend and strengthen the
work of Agrawal, Saha and Saxena [ASS12] that gave a black-box algorithm running in time
exp((lg n)Ω(d)) for set-multilinear formulas of depth d. We note that the model of multilinear
ROABPs contains the model of set-multilinear algebraic branching programs, which itself con-
tains the model of set-multilinear formulas of arbitrary depth. We obtain our results by recasting,
and improving upon, the ideas of Agrawal, Saha and Saxena [ASS12]. We phrase the ideas in
terms of rank condensers and Wronskians, and show that our results improve upon the classical
multivariate Wronskian, which may be of independent interest.

In addition, we give the first nO(lg lg n) black-box polynomial identity testing algorithm
for the so called model of diagonal circuits. This model, introduced by Saxena [Sax08] has
recently found applications in the work of Mulmuley [Mul12], as well as in the work of Gupta,
Kamath, Kayal, Saptharishi [GKKS13]. Previously, Agrawal, Saha and Saxena [ASS12], Forbes
and Shpilka [FS12b], and Forbes and Shpilka [FS13] had given nΘ(lg n)-time algorithms for this
class. More generally, our result holds for any model computing polynomials whose partial
derivatives (of all orders) span a low dimensional linear space.

∗Email: miforbes@mit.edu, Department of Electrical Engineering and Computer Science, MIT CSAIL, 32 Vassar
St., Cambridge, MA 02139. This work supported by the Center for Science of Information (CSoI), an NSF Science and
Technology Center, under grant agreement CCF-0939370.
†Email: ramprasad@cmi.ac.in, Microsoft Research India, Bangalore, India.
‡Faculty of Computer Science, Technion — Israel Institute of Technology, Haifa, Israel,

shpilka@cs.technion.ac.il. The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number 257575.

1All logarithms are base 2 in this paper, except where otherwise noted.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 132 (2013)

1 Introduction

Polynomial Identity Testing (PIT for short) is the problem of deterministically deciding whether
a given algebraic circuit computes the identically zero polynomial. Recall that algebraic circuits
are the algebraic analogs of boolean circuits that use the algebraic operations {+,×} to compute
polynomials over an underlying field F. The complexity of the problem comes from the requirement
that the algorithm be deterministic. Indeed, efficient randomized algorithms follow easily from the
Demillo-Lipton-Schwartz-Zippel Lemma [DL78, Sch80, Zip79]. The importance of the PIT problem
stems from its many applications — it is tightly connected to the problem of obtaining lower
bounds for algebraic circuits (see for example, [HS80, KI04, Agr05, DSY09]) and it has applications
in algorithms (see for example, [KUW86, MVV87, AKS04]). For more on PIT see the survey of
Shpilka and Yehudayoff [SY10].

PIT comes in two flavors. In the white-box setting, the algorithm is given the circuit, namely,
it is given the graph of computation. In the black-box setting, the algorithm can access the circuit
only through queries. A black-box PIT algorithm can be observed to be equivalent to a hitting set,
which is a small set of points so that any nonzero polynomial will evaluate to nonzero on one of
these points. Thus, the black-box model allows weaker access, and thus algorithms in this model
are correspondingly stronger results. We seek algorithms in this restricted model, as they more
closely match the performance of the randomized algorithm, which is black-box.

In recent years, there has been much work on PIT focused on restricted models of algebraic
circuits. From the works of Agrawal and Vinay [AV08] and Gupta, Kamath, Kayal and Sapthar-
ishi [GKKS13] it follows that solving PIT for depth-3 circuits would yield a solution to the case of
general algebraic circuits. This has increased the focus on restricted models, and yielded a long line
of works focused on PIT for depth-3 and depth-4 circuits [DS06, KS07, KS11, KS09, SS11, KMSV10,
SV11, SSS11].

Another active line of research has considered models of computation with other types of re-
strictions. One line considers models that are set-multilinear, in particular focusing on set-multilinear
algebraic branching programs (ABPs) [RS05, AMS08, FS12a, FS12b, ASS12, FS13]. One reason for the
focus on this model is that it captures the partial derivative technique that is the main technique
today for proving lower bounds for algebraic circuits. Another reason for the interest shown in this
model is that it is the algebraic analog for the branching program model in boolean complexity. In
fact, the PIT problem for read-once oblivious ABPs (ROABPs) can be viewed as the algebraic analog
of the famous L vs. RL question. Indeed, the PIT algorithm of Forbes and Shpilka [FS12b] for
ROABPs is very close in nature to Nisan’s [Nis92] pseudo-random generator (PRG) for read-once
oblivious (boolean) branching programs, which are a non-uniform version of randomized log-
space Turing machines. For more on ROABPs we refer the reader to the introduction of the paper
Forbes-Shpilka [FS12b].

The work of Forbes and Shpilka [FS12b] highlighted a difference between known results for
the boolean case and the algebraic case. While over the boolean domain we do not have an
improvement to Nisan’s PRG when the branching program is of bounded width, in the algebraic
setting Forbes and Shpilka [FS12b] give an nlgn/ lg lgn PIT algorithm for the case of bounded
width ROABPs, which, intuitively, would correspond to a PRG with seed-length O(lg2 n/ lg lg n).
Obtaining such a seed length in the boolean setting is a long-standing open problem (see [Vad12,
Open Problem 8.6]).

In this work, we obtain new PIT algorithms for ROABPs that, again, do not yet have boolean

2

analogues. Previous work on read-once branching programs, for both the boolean and algebraic
models, only worked for a fixed variable order. That is, the branching program is read-once and
reads each variable in a fixed known order. If this order is known, then black-box PIT algorithms, or
PRG constructions, exist in previous work. However, once the order becomes unknown, much less
is known. However, recently Agrawal, Saha, and Saxena [ASS12] introduced the idea of shifting and
rank concentration, and using these ideas gave black-box PIT algorithms for sub-models of unknown-
order ROABPs. In this work, we extend and reinterpret their ideas, and consequently construct a
quasipolynomial time black-box PIT algorithm for (multilinear) ROABPs when the order of the
variables is unknown. In contrast, in the boolean setting the best algorithm when the order of the
variables is unknown runs in time exp(

√
n), due to Impagliazzo, Meka and Zuckerman [IMZ12].

1.1 The models

In this work, we consider various restricted models of computation, which we now define. They
are all variants, or sub-models, of algebraic branching programs (ABPs). Algebraic branching
programs were first defined in the work of Nisan [Nis91] who proved exponential lower bounds
on the size of non-commutative ABPs computing the determinant or permanent polynomials. We
shall consider several variants of the basic model.
Definition 1.1 (Nisan [Nis91]). An algebraic branching program with unrestricted weights of depth D
and width ≤ r, on the variables x1, . . . , xn, is a directed acyclic graph such that

• The vertices are partitioned in D + 1 layers V0, . . . , VD, so that V0 = {s} (s is the source node),
and VD = {t} (t is the sink node). Further, each edge goes from Vi−1 to Vi for some 0 < i ≤ D.

• max |Vi| ≤ r.

• Each edge e is weighted with a polynomial fe ∈ F[x].

Each s-t path is said to compute the polynomial which is the product of the labels of its edges,
and the algebraic branching program itself computes the sum over all s-t paths of such polynomials.

• In an algebraic branching program (ABP), for each edge e the weight fe(x) is an affine function.
The size is nDr.

• In a read-once oblivious ABP (ROABP) of (individual) degree < d, we have n = D, and there
is some permutation π : [n] → [n] such that for each edge e from Vi−1 to Vi, the weight is a
univariate polynomial fe(xπ(i)) ∈ F[xπ(i)] of degree < d. The size is ndr. We say the variable
order is known if this permutation is the identity permutation, and it is unknown otherwise.

• A polynomial is computed by a width−r commutative ROABP, if it is computable by a width-r
ROABP in every variable order.

• In a set-multilinear algebraic branching program (SMABP) the dn variables {x1, . . . , xdn} are
partitioned into d sets of size n, x = x1 t · · · t xd. For each edge e from Vi−1 to Vi, fe
is a (homogeneous) linear function in the variable set Xi. We say the partition is known if
xi = {x(i−1)n+1, . . . , x(i−1)n+n} and it is unknown otherwise. ♦

3

Note that a polynomial computed by a commutative ROABP is trivially computed by a ROABP.
This class of polynomials coincide with the notion of polynomials with low evaluation dimension, a
notion of Saptharishi, as reported in Forbes-Shpilka [FS12b].

The definition of a SMABP is in line with the term coined by Nisan and Wigderson [NW96] that
defined a set-multilinear monomial to be a multilinear monomial that contains exactly one variable
from each xi and a set-multilinear polynomial as a polynomial consisting of set-multilinear mono-
mials. Thus, it is clear from the definition that a set-multilinear ABP computes a set-multilinear
polynomial. It is also not hard to see that any set-multilinear polynomial can be computed by a
set-multilinear ABP, but perhaps requiring large size.

Another model that we consider in this paper is the so called diagonal circuit model, first defined
by Saxena [Sax08]. While this model is somewhat less motivated than small depth circuits or ABPs,
it has found recent applications in the work of Mulmuley [Mul12] concerning derandomization of
Noether’s Normalization Lemma, see also Forbes-Shpilka [FS13] for a discussion. Furthermore, this
model and the tools used to understand it were used in the recent work of Gupta-Kamath-Kayal-
Saptharishi [GKKS13]. Lastly, this model is the weakest model known for which polynomial-time
black-box PIT algorithms are not currently known.
Definition 1.2 (Diagonal circuits). A diagonal circuit in the n variables x, of degree d, and size s,
computes polynomials f(x) of degree at most d that can be expressed as a sum of s powers of linear
functions. Namely, f(x) =

∑s
i=1 Li(x)di , where each Li is a linear function and di ≤ d. ♦

Diagonal circuits are examples of polynomials where the space of partial derivatives is low-
dimensional. We present the formal definition of this notion in Section 7.

1.2 Our results

We now give a summary of our results, and start by defining the notion of a hitting set, which is
the object we seek to construct.
Definition 1.3 (Hitting Set). Let C be a class of n-variate polynomials, with coefficients in F. A set
H ⊆ Fn is a hitting set for C if for all f ∈ C, f ≡ 0 iff f |H ≡ 0.

The hitting setH is t(n)-explicit if given an index intoH, the corresponding element ofH can be
computed in t(n)-time. ♦

Our main result is an explicit quasipolynomial-size hitting set for multilinear ROABPs, for
unknown variable order. As a special case (see Lemma 2.2), we obtain the same parameter hitting
sets for set-multilinear ABPs, when the partition to the sets is unknown.
Theorem 1 (Hitting set for multilinear unknown order ROABPs, informal version of Theorem 6.5).
Let C be the set of n-variate multilinear polynomials computable by a width-r ROABP in any variable order.
If |F| ≥ poly(n, r), then C has a poly(n, r)-explicit hitting set, of size ≤ poly(n, r)O(lg r·lgn). 4

For polynomials with individual degree d (so each variable has degree d), the exponent in the
hitting set increases by a factor of d. To achieve this result, we used the ideas of Agrawal, Saha and
Saxena [ASS12], who gave results for sub-models of unknown-order ROABPs. As we reinterpret
their ideas, we rederive some of their results. One such result we give below.
Theorem 2 (Hitting set for commutative ROABPs, informal version of Corollary 4.3). Let C be the
set of n-variate polynomials with individual degree < d that are computable by a width-r commutative
ROABPs (and thus computable by a ROABP in every variable order). If |F| ≥ poly(n, d), then C has a
poly(n, d, r)-explicit hitting set, of size ≤ poly(n, d)O(lg r). 4

4

The proofs of the above results, while yielding sub-exponential-size hitting sets, do not readily
suggest a path to obtaining polynomial-size hitting sets. In particular, at first glance it seems
difficult to see how the above proof strategies could yield hitting sets of size no(lgn). However, our
next result shows that for certain sub-models of commutative ROABPs, such as diagonal circuits,
we can in fact achieve nO(lg lgn)-size hitting sets.
Theorem 3 (Informal version of Theorem 7.7). Let C be the set of n-variate polynomials of degree d
computable by size s diagonal circuits. If |F| ≥ poly(n, d, s), then C has a poly(n, d, s)-explicit hitting set,
which has size ≤ poly(n, d, s)O(lg lg(ds)).

Let C be the set of multilinear n-variate polynomials computable by width-r commutative ROABPs. If
|F| ≥ poly(n, r), then C has a poly(n, r)-explicit hitting set, which has size ≤ poly(n, r)O(lg lg r). 4

We also show that the above holds more generally for polynomials with a small space of partial
derivatives, see Section 7. We can also extend the above result, by relaxing the multilinearity of
the commutative ROABP to individual degree d, in which case the exponent grows by a factor of
lg d. In the previous theorem, the resulting exponent was independent of d, but that exponent has a
worse dependence on r.

The proof of our results combines various works. We start by extending and reinterpreting the
ideas of shifting and rank concentration, of Agrawal, Saha and Saxena [ASS12]. We then build on
these techniques by incorporating new recursion schemes, as well as existing tools in the literature
such as the Klivans and Spielman [KS01] generator for sparse polynomials, the generator of Shpilka
and Volkovich [SV09] for read-once formulas, the generator of Forbes and Shpilka [FS12b] for
ROABPs, as well as perfect hash functions.

1.3 Related work

Boolean Pseudorandomness: The PIT problem can be seen as the algebraic analog of the task of
constructing pseudorandom generators for boolean computation. That is, for a class C of boolean
circuits, we can seek to construct a pseudorandom generator (PRG) G : {0, 1}s → {0, 1}n for C, such
that for any circuit C ∈ C on n inputs, we have the ε-closeness of distributions C(G(Us)) ≈ε C(Un),
where Uk denotes the uniform distribution on {0, 1}k. Nisan [Nis92] studied pseudorandom
generators for space-bounded computation, and for space s computation gave a generator with
seed length s = O(lg2 s). Randomized space-bounded computation can be modeled with read-once
oblivious (boolean) branching programs, and these generators apply to this model of computation
as well. Note that in the context of space-bounded derandomization, the order that the randomness
is read is known, as this information is dictated when simulating the space-bounded machine.

Despite Nisan’s result, the seed length has not been improved for general read-once branching
programs, despite much work on the problem (see for example [Nis92, INW94, RR99, NZ96,
BDVY13, SZ11, GMR+12, BRRY10, BV10, KNP11, De11, Ste12, Tzu09, BPW11, RSV13, IMZ12]
among others). While past PRG work for read-once branching programs has examined restricted
branching programs (such as regular or permutation), more recently it has been observed that existing
PRGs depend heavily on the order the variables are read, and Tzur [Tzu09] even showed that
certain instantiations provably fail for adversarially chosen read orders. Starting with the work
of Bogdanov, Papakonstantinou and Wan [BPW11], there have been attempts to obtain PRGs for
read-once branching programs in any variable order. In recent works, Impagliazzo, Meka and
Zuckerman [IMZ12] gave a generator with seed length n1/2+o(1) for general branching programs in
any variable order, and Reingold, Steinke and Vadhan [RSV13] gave a seed-length of O(lg2 n) for

5

constant-width permutation read-once branching programs in any variable order.
In comparison, the work of Forbes and Shpilka [FS12b] studied read-once oblivious (algebraic)

branching programs, and achieved a quasi-polynomial-sized hitting set, which would correspond
to a “seed length” of O(lg2 s) for ABPs of size s. This result is analogous (in some sense) to the
generator of Nisan for space bounded computations. Correspondingly, it only applies when the
variable order of the ROABP is known. Independently, Agrawal, Saha and Saxena [ASS12] gave
results for sub-models of ROABPs, and in their models it is somewhat less natural to assume that
the variable order is known.

Thus, motivated by the analogous questions in boolean pseudorandomness, as well as by
the positive results for the unknown order case by Agrawal, Saha and Saxena [ASS12], this work
studies general ROABPs when the order of variables is unknown. We give a quasi-polynomial-sized
hitting set, corresponding to a seed of lengthO(lg3 s) for ABPs of size s. It is an interesting question
as to whether any insights of this paper (and other recent works) can be used to obtain a similar
seed length in the boolean regime, or in general whether there are any formal connections between
algebraic and boolean pseudorandomness for read-once oblivious branching programs.

The Partial Derivative Method: The PIT algorithm of Raz and Shpilka [RS05] works for any
model of computation that outputs polynomials whose space of partial derivatives is (relatively)
low-dimensional.2 Set-multilinear ABPs, non-commutative ABPs, low-rank tensors, and so called
pure algebraic circuits (defined in Nisan and Wigderson [NW96]) are all examples of algebraic mod-
els that compute polynomials with that property, and so the algorithm of Raz and Shpilka [RS05]
works for them. In some sense using information on the dimension of partial derivatives of a given
polynomial is the most applicable technique when trying to prove lower bounds for algebraic
circuits (see e.g., [Nis91, NW96, Raz06, Raz09, RSY08, RY09, GKKS12]) and so it was an interesting
problem to understand whether this powerful technique could be carried over to the black-box
setting. The work Forbes and Shpilka [FS12b] achieved a quasi-polynomial hitting set for this
model when the order of variables is known in advance. Here we remove this restriction thus
providing a black-box analog of Raz and Shpilka [RS05] (for multilinear polynomials), albeit with a
quasi-polynomial running time.

Furthermore, when the polynomial has the property that the set of all of its partial derivatives
spans a low-dimensional space (i.e., of polynomial dimension), then we get a nearly polynomial
time algorithm, namely, an nO(lg lgn) algorithm, as stated in Section 7.

Previous Work: As mentioned before, the work Forbes and Shpilka [FS12b] gave a hitting set of
quasi-polynomial size for the class of ROABPs when the order of variables is known in advance.
The basic idea in that work, which follows the idea of the prior work of Forbes and Shpilka [FS12a],
is that of preserving dimension of linear spaces while reducing the number of variables. To achieve
this reduction, Forbes and Shpilka [FS12b] used a variant of a constrution of Gabizon and Raz
[GR08a] which in this work we refer to as a rank condenser. This is then used in a recursive merge-
and-reduce scheme. In each step, the variables in the ROABP are partitioned into adjacent pairs
according to the variable order, and these variables are merged (in parallel) in a brute-force manner.
This halves the number of variables, but in a certain sense squares the degree of the polynomial. The

2More accurately, it works for the set-multilinear model with a given ordering of the sets and we only consider
derivatives according to variables from consecutive sets. That is, in the ABP model we consider only derivatives
according to variables in adjacent layers.

6

rank condenser then allows these new variables to be sampled pseudorandomly (and in parallel),
such that the degree is then reduced appropriately. Thus, the number of variables is halved, and
no other parameters are changed. However, the pseudorandom sampling requires a “seed” of
length O(lg s), and there are lg n such seeds, giving a total of O(lg n lg s) seed length. Note that this
process crucially uses the variable order, as it needs to know which variables are neighbors and
thus can be merged together.

Recently, Agrawal, Saha and Saxena [ASS12] obtained results on black-box derandomization of
PIT for small-depth set-multilinear formulas (as well as generalizations to when the multilinearity
condition is relaxed), when the partition of the variables into sets is unknown. They obtained a
hitting set of size exp((2h2 lg(s))h+1), for size s formulas of multiplicative-depth h.3 In the language
of pure formulas, they consider pure formulas of multiplicative-depth h. We note that this model
is a strict subset of the more general model of pure formulas which itself is a strict sub-model
of set-multilinear ABP.4 Thus, our result significantly improves upon the multilinear results of
Agrawal-Saha-Saxena [ASS12], and in particular the size of our hitting set does not depend on the
depth of the formula.

In this work we also present black-box PIT results for the model of diagonal circuits, or more
generally, polynomials with a low dimensional space of partial derivatives. Saxena [Sax08] defined
this model as a way capture some of the complexity of depth-4 circuits. He gave a polynomial-time
white-box PIT algorithm, by using algorithm of Raz and Shpilka[RS05]. Later, Saha, Saptharishi and
Saxena [SSS11], generalized Saxena’s results to the so-called semi-diagonal model. Simultaneously
and independently (using very different techniques), Agrawal, Saha and Saxena [ASS12], and
Forbes and Shpilka [FS12b] gave sO(lg s) black-box PIT algorithms for size s semi-diagonal depth-
4 circuits. Later, Forbes and Shpilka [FS13] gave another such algorithm, that was somewhat
simpler. In this work, we give a sO(lg lg s)-size hitting set for diagonal circuits, and the techniques
can be seen as merging the ideas of Agrawal-Saha-Saxena [ASS12], Forbes-Shpilka [FS12b] and
Forbes-Shpilka [FS13].

1.4 Proof technique

The work of Agrawal, Saha and Saxena [ASS12] introduced a new technique which they called
rank-concentration. By shifting the variables x, to x + t for a careful choice of t, they showed
that for depth-3 set-multilinear formulas, they can reduce to the case where the partial derivative
space is spanned by derivatives of small order, which allowed them to conclude that the shifted
polynomial contains a low degree monomial. They then used induction on the depth to obtain
rank-concentration for higher depth formulas as well. Once this is achieved it is relatively easy to
find a nonzero substitution to the polynomial. The main difficulty comes from finding a good shift
that guarantees the rank-concentration property.

In this work we present the idea of Agrawal-Saha-Saxena [ASS12] in the language of rank-
condensers, and of which the notion of a Wronskian is a special case. Specifically, we show that
shifts act on the space of partial derivatives as a rank condenser (see Section 3). This can be phrased
as a Wronskian-result, as it says that the rank of certain matrices of partial derivatives capture
linear independence in multivariate polynomials. Using this terminology we are able to easily

3The multiplicative-depth is the maximal number of product gates in an input-output path. In the bounded depth
model this is essentially half the total depth.

4The usual transformation from formulas to ABPs can be done preserving set-multilinearity.

7

compute good shifts. We believe that the language of rank condensers offers a convenient language
for these results, and thus do not use various notions from Agrawal-Saha-Saxena [ASS12] such as
Hadamard algebras.

We now discuss the notion of a rank condenser (and defer the discussion of Wronskians to
Subsection 3.1), and how shifting can be viewed this way. Let f1(x), . . . , fr(x) be n-variate polyno-
mials. We can express these polynomials as a matrix M whose rows are indexed by monomials
xa and whose columns are indexed by i ∈ [r], such that Ma,i is the coefficient of xa in fi. Note
that this captures all of the information about the fi. In particular, these polynomials are zero iff
the matrix M is zero. More generally, any linear combination of these polynomials is zero iff the
corresponding linear combination of columns of M is zero. We can test if such a linear combination
of the columns M is zero, by reading a subset of the rows, in particular, it suffices to examine a
basis for the row-span of M . However, from an algebraic perspective, we do not have unfettered
query access to M . Rather, some rows (corresponding to monomials) are easier to access than
others. In particular, those monomials of low degree, or even those of small support, are easier to
examine via brute force. Thus, the condition we would like on M is that it has a row-basis among
small-support monomials. In particular, we say the fi have support-` rank concentration if M has
such a basis among support-` monomials. If such rank concentration occurs, it follows that a linear
combination of the fi is nonzero iff it has a nonzero monomial of support-`. Such a monomial can
then be found via brute-force.

However, as the monomial x1x2 · · ·xn shows, small-support rank concentration does not hap-
pen always. However, if we perturb this monomial to

∏
i(xi + 1), then it suddenly does have

small-support rank concentration. Thus, we seek to find a small setH such that some shiftx→ x+α
for some α ∈ H induces small-support rank-concentration. Taking a different perspective, we can
ask for a shift x→ x+ t, where t is an algebraically simple polynomial map.

To show how to construct such shifts t, we need to study how the shifting process affects
the matrix M . First, we see that this action is linear, and thus there is some transfer matrix T (t)
describing its action. As shifting by t then shifting by −t gives the identity map, it follows that
T (t) is invertible. But we want something more, that shifting by t induces rank concentration. In
particular, it follows that shifting to small-support rank concentration means that we want

rank(M) = rank((T (t)[small])M),

where T (t)[small] is the set of rows in T corresponding to small-support monomials. Thus, while
T is square, T (t)[small] is a short, fat matrix. Yet, we still want it to preserve the rank of M after
multiplication. Such matrices we call rank condensers. One primary tool in understanding whether
T is a rank condenser is the following.
Lemma (Informal version of Lemma 3.10). There is a generic recipe to turn any good error-correcting
code into a good rank condenser. 4

Thus, to show T (t)[small] is a rank condenser, we simply show it has some error-correcting code
properties. This establishes that shifting will condense rank, for generic t. However, by itself this
is not helpful as t has too many variables. In the case of a commutative ROABP, as argued in
Agrawal-Saha-Saxena [ASS12], it can be shown that t need only be a good shift for all small sets of
variables, in which case t can be found in quasipolynomial time.

To extend the rank concentration idea to general ROABPs and set-multilinear ABPs, we follow
the merge-and-reduce idea of Forbes and Shpilka [FS12b]. However, the rank condenser used
in that work seemingly can only be implemented if the variable order is known. However, we

8

observe that the shifting idea of Agrawal-Saha-Saxena [ASS12] is actually a rank condenser, and is
insensitive to variable order. However, to implement this, we must create a variant of the shifting
rank condenser, that only seeks to condense rank from a “known basis”. That is, if we seek to
condense all rank, then this will be too expensive. Instead, we shift several times. In each shift, we
progressively make the rank more concentrated, and we save on seed length by only condensing
rank from where we already concentrated it.

To establish the hitting sets of size sO(lg lg s) for sub-models of commutative ROABPS, we need
to combine a variety of tools in this area. The rank concentration idea shows that we can shift
commutative ROABPs such that they only have lg s essential variables, where this is possible for
multilinear commutative ROABPs because of the Klivans-Spielman [KS01] generator. We then
use hashing to reduce the problem to one on these essential variables. However, we will need
to do this in a manner compatible with the read-once nature of the computation, and thus use
the Shpilka-Volkovich [SV09] generator. After these steps, we have a commutative ROABP in
lg s variables, and the Forbes-Shpilka [FS12b] generator, while quasipolynomial, has a very good
dependence on the number of variables of the ROABP. Thus, by composing with this generator, we
then reduce to lg lg s variables, at which point we can interpolate to get a sO(lg lg s)-size hitting set.

1.5 Organization

The paper is organized as follows. In Section 2 we give some basic tools and definitions that we
shall use throughout the paper. In Section 3 we discuss shifts and rank condensers. Section 4
contains the proof of Theorem 2. In Section 5 and Section 6 we prove Theorem 1. Finally, in Section 7
we prove Theorem 3.

1.6 Notation and definitions

For a polynomial f ∈ F[x], we shall use Coeffxa (f) to denote the coefficient of the monomial xa

in f . We will sometimes identify the monomial xa with its exponent vector a. We shall often
encounter Hasse derivatives, where we define ∂xb(f)(t) := Coeffxb (f(x+ t)). We will use ∂xb(f)
for the derivative evaluated at the original variables x. As the derivative is linear, we will also view
the derivative ∂xb as a linear operator acting on F[x], and will also consider linear combinations of
these operators, which we refer to as differential operators. We use Hasse derivatives as they work
well in fields of arbitrary characteristic, but have most of the usual properties of normal derivatives
in zero characteristic. For more, see Dvir-Kopparty-Saraf-Sudan [DKSS09] or Forbes-Shpilka [FS13].

We will use the notation [n] to denote {1, . . . , n}, and JnK to denote {0, . . . , n − 1}. We will
occasionally index vectors and matrices from zero, and will use JnK to denote this, as FJnK×JmK will
denote an n×m matrix, indexed from zero. For a set S and an integer k we denote by

(
S
k

)
the set of

all subsets of S of size k.
We will often work with vectors and matrices, and they will often contain entries that are

polynomials. Operations on polynomials, such as extracting coefficients, or taking derivatives,
will be extended to vectors and matrices coordinate-wise. Vectors, such as f(x) ∈ F[x]r, will be
written in bold, where as matrices, such as F (x) ∈ F[x]n×m will be written with capital letters. We
will also sometimes identify matrices of polynomials in F[x]n×m with vectors of polynomials in
F[x]nm. Given an n ×m matrix M and sets S ⊆ [n] and T ⊆ [m], we use the notation M |S×T to
denote the submatrix of M with rows from S and columns from T . When we do not restrict the
rows (respectively, the columns) of A, we will use the symbol ‘•’ in place of S (respectively, T).

9

When the sets S and T are singletons, we will use the more standard notation of Mi,j to refer to
the (i, j)-th entry of M . Given matrices Mi, their non-commutative product

∏
i∈[n]Mi will have the

natural order associated, that is, the product M1 · · ·Mn. Similarly, for a vector v ∈ Fn and S ⊆ [n]
we denote by v|S the restriction of v to the coordinates of S. In a similar fashion, when we have
two sets of variables (x,y) and a vector v of length |x|+ |y| we denote with v|x the restriction of v
to the coordinates associated with the variables in x, and similarly define v|y.

Similar to the above abuse of notation, we will extend the notion of a ROABP to compute
matrices. That is, we will say a matrix M(x) ∈ F[x]r×r is computable by a width-r ROABP if
M(x) =

∏
i∈[n]Mi(xi) for Mi(xi) ∈ F[xi]

r×r.
For a vector a ∈ Nn, we denote |a|0 = |{i | ai 6= 0}|, |a|1 := a1 + · · ·+ an, |a|∞ = maxi ai, and

a ! = a1! · · · an!. Given a monomial xa, we will say it has (total) degree |a|1, individual degree
|a|∞, and support |a|0. We will define the support of a monomial, denoted supp(xa), to be either
the coordinates {i : ai 6= 0}, or the corresponding variables {xi : ai 6= 0}, and this will depend
on context. For any a < b, we shall set

(
a
b

)
to be zero. Also, for vectors a = (a1, . . . , an) and

b = (b1, . . . , bn), we shall define
(
a
b

)
=
∏
i

(
ai
bi

)
.

For a set of vectors T we denote with dimF(T) the dimension of the vector space spanned by
the vectors in T , over F. For a polynomial f(x) and a variable xi we denote the degree of f in xi by
degxi(f).

2 Tools

In this section we state some known results about ABPs and state some results from the literature
that will be used throughout the paper.

ABPs and Iterated Matrix Multiplication: We start by giving the well known equivalence of
ABPs and iterated matrix multiplication (see, e.g., Lemma 3.1 of Forbes-Shpilka [FS12b]).
Lemma 2.1. Let f ∈ F[x] be computed by a depth D, width ≤ r ABP with unrestricted weights, such that
the variable layers are V0, . . . , VD. For 0 < i ≤ D, define Mi ∈ F[x]Vi−1×Vi such that the (u, v)-th entry
in Mi is the label on the edge from u ∈ Vi−1 to v ∈ Vi, or 0 if no such edge exists. Then, f(x) is a linear
combination of the entries in

∏
i∈[d]Mi(x) := M1(x)M2(x) · · ·MD(x).

Further, for an ABP, the matrix Mi has entries that are affine forms, and for a ROABP of individual
degree < d, the matrix Mi has entries which are univariate polynomials in xπ(i) of degree < d (where
π is the permutation determining the order of variables). For a set-multilinear ABP on the variable sets
x = x1 t x2 t · · · t xd the matrix Mi has entries that are linear forms in the variables xi. 4

Given the above, we will focus on iterated matrix multiplication, in particular for matrices that
are all r × r. Further, as it is more amenable to recursion, we will more focus on the matrix product∏
iMi(x) than the polynomial f(x).

Set-Multilinear and ROABPs: We note here that set-multilinear ABPs can be expressed as multi-
linear ROABPs of slightly larger width, and thus will focus on ROABPs.

Lemma 2.2. Let f(x1, . . . ,xd) be computed by a set-multilinear ABP of width-r. Then f can be computed
by a multilinear ROABP of width-2r in the dn variables, in some variable order.

10

Proof: Consider first a single homogeneous linear form L in some partition xi, so that L(xi) =∑
j∈[n] ai,jxi,j . Note that [

1 L(xi)
0 1

]
=
∏
j∈[n]

[
1 ai,jxi,j
0 1

]
.

Now consider any r × r matrix Mi(xi) in a set-multilinear ABP. By using the above transformation,
and appealing to block-matrix multiplication, we can construct width-2r matrices Mi,j so that∏
j∈[n]M

′
i,j(xi,j) embeds Mi(xi). Further, as this embedding is regular, it follows there are 2r × 2r

matrices P and Q such that P ·
∏
j∈[n]M

′
i,j(xi,j) · Q = Mi(xi). Incorporating P and Q into the

product, shows that Mi(xi) can be computed by the requisite ROABP. Applying this argument to
each partition xi and multiplying the resulting matrices gives the result.

PIT results: The first PIT result that we need is a generator of Klivans and Spielman [KS01] for
sparse polynomials. We will not need to hit sparse polynomials themselves, but rather will need
the hashing properties of this generator that allow us to reduce to fewer variables.
Theorem 2.3 (Klivans-Spielman generator [KS01]). Let |F| ≥ poly(n, d), where m = Θ(lognd s). Then
there is a poly(n, d,m)-explicit polynomial GKS

n,d,s : Fm × Fm → Fn such that

• For all i ∈ [n], the polynomial (GKS
n,d,s)i has individual degree ≤ poly(n, d).

• For every set S ⊆ F[x] of n-variate monomials of individual degree < d, such that |S| ≤ s, there is
some α ∈ Fm such the polynomials {(GKS

n,d,s(t,α))a}xa∈S are nonzero, distinct monomials in t. 4

The above is a slight variation of the work of Klivans and Spielman [KS01], and it can be
constructed using their techniques. That is, take p a prime of size poly(n, d), and consider the
substitution xi ← tk

i (mod p), so that xa ← ta(k) (mod p) (at least, when examining the substitution
modulo tp), where a(k) =

∑
aik

i can be regarded as a polynomial of degree ≤ n. Thus, it follows
that two monomials xa and xb agree under this substitution with probability ≤ n/p = 1/poly(n, d)
for a random k ∈ Zp. By using the α to interpolate through these choices of k, this yields the

m = 1 construction. For m > 1, one takes xi ← t
ki1 (mod p)
1 · · · tk

i
m (mod p)
m , and observes that two

monomials then agree with probability ≤ 1/poly(n, d)m. Taking a union bound over s2 possible
collisions amongst the monomials in S shows that some value of the {kj}j , and thus of α ∈ Fm,
will yield distinct monomials in t.

Another important tool is the generator of Shpilka-Volkovich [SV09].
Theorem 2.4 (Shpilka-Volkovich generator [SV09]). Let F be a field of size > n. Let ξ0, ξ1, . . . , ξn
be distinct elements in F, and ` ∈ [n]. Then there is a poly(n, `)-explicit polynomial map
GSV
n,`(y1, . . . , y`, z1, . . . , z`) ∈ F[y, z]n, such that

(GSV
n,`(y, ξi1 , . . . , ξi`))k =

∑
j:ij=k

yj ,

for 0 ≤ ij ≤ n, and k ∈ [n]. Specifically, (GSV
n,`)k =

∑
j∈[`] 1zj=ξk · yj , where 1z=ξk is a univariate

polynomial in z with degree ≤ n. 4
That is, the 1z=ξk are the Lagrange interpolation polynomials, so that 1zj=ξk = δj,k. Note that

this generator is in a sense `-wise independent. That is, by setting the zj appropriately, we can

11

insert the y variables into any ` of the x variables. Note that the setting zj ← ξ0 zeroes out the
appropriate yj in the polynomial map (a convenience for handling < `-wise positions), where as
zj ← ξi for i ≥ 1 sends yj to the xi slot. It follows if a polynomial f depends on only ` of the
variables in x then f 6≡ 0 iff f ◦GSV

n,` 6≡ 0. However, GSV
n,` also has the property that it hits polynomials

with small-support, see Lemma 3.4, which is more relevant for this paper.
We shall need some more tools for later theorems, and for the sake of clarity we shall state them

as and when we need.

3 Shifts, Rank Condensers, and Rank Concentration

In this section we will explore the properties of the shifting map f(x) 7→ f(x + t). Following
Agrawal-Saha-Saxena [ASS12] and Forbes-Shpilka [FS12b], we will look not just at one polynomial
at a time, but rather at a set of polynomials, as these polynomials will represent intermediate
computations in the computation. Given a vector of polynomials f = (f1, . . . , fr) ∈ F[x]r, we
associate to it a matrix M such that Ma,i is the coefficient of xa in the polynomial fi. Thus, M
will have r columns. The rows of M are drawn from all monomials in x of low degree, where the
degree bounds will depend on the context.

The above discussion uses the language of coefficients of monomials. This is equivalent to a
notion of a Hasse derivative, the derivative language is sometimes more natural and thus will
be used below. Thus, we will think of the matrix M with Ma,i = ∂xa(fi)(0). Thus, the row of M
associated with a is the r-dimensional vector ∂xa(f)(0).

Given this matrix, we can then study its rank, as well as its row span. Clearly, the rank is
≤ r by construction. Further, the polynomials are all zero iff the rank is 0. If the polynomials are
nonzero, then there is some basis of the row span of M , which yield derivatives ∂xa(f)(0) that are
nonzero vectors. If we can access these derivatives efficiently, this will allow us to decide if f is
zero or not. To capture this, we follow Agrawal-Saha-Saxena [ASS12] and define the notion of rank
concentration.
Definition 3.1 (Rank concentration). For a vector of polynomials f ∈ F[x]r, and a set of monomials
S ⊆ F[x], we shall say that f is rank concentrated on S at α ∈ Fn if the derivatives of f with respect
to the monomials in S span all of the derivatives of f . That is,

span {∂xa(f)(α)}a∈S = span {∂xa(f)(α)}a .

In particular, if f is rank concentrated on the set of monomials of support size at most `, then we
shall say that f is support-` rank concentrated. ♦

In this paper, we will frequently abuse this notation and apply it to matrices of polynomials
F ∈ F[x]n×m, where we identify F[x]n×m ≡ F[x]nm. In the above definition we have two vector
spaces to consider, the span of derivatives in S, and the span of all derivatives. Note that the
second vector space does not depend on the underlying point α, as stated in the following lemma,
which follows from polynomial interpolation and the fact that Hasse derivatives are exactly the
coefficients of the polynomial.
Lemma 3.2. Let f ∈ F[x]r be a vector of polynomials, each of degree ≤ d, and suppose |F| > d. Then for
any α ∈ Fn, span{∂xa(f)(α)}a = span{f(β)}β∈Fn . 4

The goal of Agrawal-Saha-Saxena [ASS12], as well as this work, is to construct small sets of α’s
such that f must have small-support rank concentration at one such α. The next two lemmas show

12

why this suffices for polynomial identity testing. The first lemma shows that small-support rank
concentration implies the existence of a small-support monomial with nonzero coefficient.

Lemma 3.3. Let f ∈ F[x]r be a vector of polynomials that is support-` rank concentrated at α ∈ Fn. Let
g(x) := 〈β,f〉 :=

∑
i∈[r] βifi, for β ∈ Fr. Then g(x) is nonzero iff there is a small-support monomial xa

with |a|0 ≤ ` such that Coeffxa (h) 6= 0, where h(x) := g(x+α).

Proof: First, observe that h 6≡ 0 iff g 6≡ 0.
⇐= : Clearly if Coeffxa (h) 6= 0, then h 6≡ 0, so g 6≡ 0.
=⇒ : That g 6≡ 0, and thus h 6≡ 0 implies there is some b such that

0 6= Coeffxb (h)

= Coeffxb (〈β,f(x+α)〉)
= 〈β,Coeffxb (f(x+α))〉
= 〈β, ∂xb(f)(α)〉 .

By the rank concentration we have that ∂xb(f)(α) ∈ span{∂xa(f)(α)}|a|0≤`, from which it follows
that there is some a with |a|0 ≤ ` such that 〈β, ∂xa(f)(α)〉 is nonzero. By identical logic as the
above, this inner-product equals Coeffxa (h), yielding the claim.

Thus, polynomial identity testing for polynomials with rank concentration reduces to the
case when the polynomials have nonzero small support monomial. We now show how to use
the generator of Shpilka-Volkovich [SV09] to hit such polynomials. Note that the ability to hit
such polynomials does not follow from the usual naı̈ve probabilistic method proof, as while
such polynomials can be consider “simple” they are too numerous to use a naı̈ve union bound.
Note that Agrawal-Saha-Saxena [ASS12] did not use the Shpilka-Volkovich [SV09] generator to
hit polynomials with a small-support monomial, and instead used sufficiently many inputs of
low-hamming-weight. Indeed, that the SV-generator works in the below lemma can be proven by
observing that this generator contains such low-hamming-weight strings in its image. However,
the generator perspective will be crucial for our improvement from nO(lgn) to nO(lg lgn) for hitting
sets for diagonal circuits, as given in Section 7.

Lemma 3.4. Let F be a field with |F| > n. Let f ∈ F[x] be such that f is nonzero iff there is some a with
|a|0 ≤ ` such that Coeffxa (f) 6= 0. Then f 6≡ 0 iff f ◦ GSV

n,` 6≡ 0.

Proof: ⇐= : This is clear.
=⇒ : Consider the monomial xa of support size ≤ ` in f with nonzero coefficient. Let

supp(a) = {xi1 , . . . , xik} be its support for k ≤ `. In GSV
n,` of Theorem 2.4, take zj = ξij for j ∈ [k].

For j ∈ [`] \ [k], take zj = ξ0. It follows then that the variables outside supp(a) will receive zero
from GSV

n,`, and inside supp(a) they will receive a distinct variable from y. It follows then the
monomials containing support outside supp(a) are zeroed out, and those inside are preserved. As
the monomial xa has a nonzero coefficient, it follows that f ◦ GSV

n,` 6≡ 0 with this partial setting of
the y, z, and thus is also true without any setting of y, z.

Putting these two lemmas together, we get the following corollary.
Corollary 3.5 (Rank concentration to Hitting sets). Let f ∈ F[x]r be a vector of polynomials that is
support-` rank concentrated at α ∈ Fn. Let g(x) := 〈β,f〉 :=

∑
i∈[r] βifi, for β ∈ Fr. Then g(x) 6≡ 0 iff

g ◦ (GSV
n,` +α) 6≡ 0.

13

Furthermore, g ◦ (GSV
n,`+α) depends on 2` variables and has degree≤ n deg(h). Hence such polynomials

g have a hitting set of size poly(n,deg(h))2`. 4
We now explore conditions on the points α that guarantee small-support rank concentration.

We begin with an example.

3.1 Rank Concentration as a Wronskian

To illustrate how to achieve rank concentration, consider the case when the polynomials in f are
univariate of degree ≤ d. In this case, we will seek that the rank is concentrated on low-degree
derivatives (as all derivatives in this setting are trivially support-1). Specifically, we will want rank
to be concentrated on the first r derivatives. Let us write the vectors of all degree derivatives ∂xi(f)
at the point t ∈ F in matrix form, yielding

f1(t) · · · fr(t)
(∂xf1)(t) · · · (∂xfr)(t)

...
. . .

...
(∂xdf1)(t) · · · (∂xdfr)(t)

 .
That the rank is concentrated on low-degree means that the row-span of the first r rows, denoted
V , equals the span of all of the rows, denoted W . As V ⊆W , this will happen iff rankV = rankW .
However, the columns of the above matrix are the coefficients of the polynomials fi when expanded
around t, and thus the column-rank of this matrix equals the rank of of the polynomials {f1, . . . , fr}
as vectors in the vector space F[x]. Invoking row-rank equalling column-rank, it follows that the
rank is concentrated at t in the first r rows iff the row-rank of these rows equals the rank of the fi in
F[x].

The first r rows of the above matrix are known as the Wronskian of {f1, . . . , fr}, and it is
classically known (for fields of polynomially large characteristic) that the rank (over F(t)) of this
matrix equals the rank of the polynomials {f1, . . . , fr} as vectors in the vector space F[x] (see,
for example, Bostan-Dumas [BD10] for a proof). Thus, by expressing this rank condition via
determinants, it follows that there is a degree ≤ rd polynomial p(t) such that if p(a) 6= 0, then f has
degree < r rank concentration at a. Thus, at least in this example, we see that rank concentration
happens almost everywhere, and where it fails is a simple algebraic condition we can avoid by
brute-force.

In this work, we will need to generalize the above Wronskian in various ways. First, we will have
multivariate polynomials. A multivariate Wronskian is known (again, see Bostan-Dumas [BD10]),
but in our application it only guarantees low-degree rank concentration, while this paper needs
small-support rank concentration. Further, much of the existing literature on Wronskians focus on
fields of (polynomially) large characteristic, while we seek results over any characteristic. We note
that several recent results in algebraic complexity (for example [CGK+13, KS12]) have been limited
to characteristic zero because of their dependence on the classical Wronskian.

Recently Guruswami and Kopparty [GK13] explored the notion of a subspace design, and
observed that they are in a sense dual to Wronskians. To obtain results over any characteristic,
they introduced what they call a folded Wronskian, in reference to the folded Reed-Solomon
codes of Guruswami-Rudra [GR08b]. They noted that this folded Wronskian was used in Forbes-
Shpilka [FS12a] and Guruswami-Wang [GW13] in different guises.

14

In this work, we extend existing knowledge of Wronskians. First, we observe that the underlying
algebraic object in the above is the notion of a rank condenser, which we define in Subsection 3.2,
where we give a general recipe for constructing rank condensers from error-correcting codes. That
the (multivariate or univariate) Wronskian matrix characterizes the rank of polynomials can be
expressed as saying that at certain derivative-related matrix is a good rank condenser. To prove
this fact, we will show that this derivative-related matrix has code-like properties. Further, we
observe that the folded Wronskian of Guruswami-Kopparty [GK13] can interpreted as a being a
Wronskian using a different notion of derivative. Specifically, the Wronskian uses the q-derivative,
a q-analogue of the usual derivative, see Kac and Cheung [KC02]. We note that Bostan, Salvy,
Chowdhury, Schost and Lebreton [BSC+12] observed the relation between folded Reed-Solomon
codes and q-derivatives.

In this version of the paper, we will develop the tools needed to achieve small-support rank
concentration for multivariate polynomials over any characteristic, and this will only use Hasse
derivatives. This can be easily interpreted as establishing a “small-support multivariate Wron-
skian” result, that works over any characteristic. In a future version of this work, we will give a
multivariate rank condenser (that is a Wronskian) that simultaneously guarantees small-support
and low-degree rank concentration, over any characteristic, appealing to q-derivatives in nonzero
characteristic. This will strictly improve the classically known multivariate Wronskian, which may
be of independent interest (for example, to the above works using Wronskians).

In the next sections, we will define the notion of a rank condenser, and give a construction based
on the parity check matrix of a good error-correcting code. We shall then show that small-support
derivatives have such a code structure, which will give the needed results for small-support rank
concentration.

3.2 Rank Condensers from Good Codes

In this section we define rank condensers, and show how they can be generically constructed
from error correcting codes, following the Cauchy-Binet proof strategy of Dvir, Gabizon and
Wigderson [DGW09] (Dvir, Gabizon and Wigderson [DGW09] also had a notion of a rank extractor,
but with a different notion of rank) and Forbes and Shpilka [FS12a]. We begin with the definition
of rank condensers (which, given the parameters, could be considered as lossless).
Definition 3.6 (Rank Condenser Generator). A matrix E(t) ∈ F[t]n×m is said to be a (seeded)
rank condenser (generator) for rank r if for every matrix M ∈ Fm×k of rank ≤ r, we have that
rankF(t)(E(t) ·M) = rankF(M). ♦

Note that in the above definition, the notion of rank changes, as one rank is over the field of
rational functions F(t), and the other rank is over F. This will be the setting we work in, but it is
sometimes more convenient to think in terms of the base field F, leading to the following definition.
Definition 3.7 (Rank Condenser Hitting Set). A collection E ⊆ Fn×m is said to be a (seeded) rank
condenser (hitting set) for rank r if for every matrix M ∈ Fm×k of rank ≤ r, there is some E ∈ E such
that rankF(E ·M) = rankF(M). ♦

Remark 3.8. A more natural definition of a (linear) condenser would be a family of linear maps ϕi :
Fm → Fn, such that for any subspace V ⊆ Fm of rank ≥ r, there is some i such that rankϕ(V) = r.
It can be readily seen that this is equivalent to the hitting set definition above. If n = r, then one
can consider this an extractor. ♦

15

By interpolation over t, the generator notion yields the hitting set. Conversely, one can construct
a generator by interpolating a curve through the collection E . See Shpilka and Volkovich [SV09] for
more on generators versus hitting sets within polynomial identity testing.

In what follows, we will omit the terms “seeded”, “generator” and “hitting set” when it is clear
from context. Before turning to the construction, we need one more definition, that of a monomial
order (see Cox, Little and O’Shea [CLO06] for more on monomial orderings).
Definition 3.9. A monomial ordering is a total order ≺ on the nonzero monomials in F[x] such that

• For all a ∈ Nn, 1 ≺ xa.

• For all a, b, c ∈ Nn, xa ≺ xb implies xa+c ≺ xb+c ♦

For concreteness, one can consider the lexicographic ordering on monomials, which is easily
seen to be a monomial ordering. We now give our first rank condenser construction.

Lemma 3.10. Let E(t) ∈ F[t]n×m, with E = Λ(t)−1 ·H ·W (t) such that

• Λ(t) ∈ F[t]n×n is a diagonal matrix, whose diagonal entries are nonzero monomials.

• H ∈ Fn×m is the parity check matrix of an error correcting code of distance > r. That is, every r
columns of H are linearly independent.

• W (t) ∈ F[t]m×m is a diagonal matrix, whose diagonal entries are nonzero distinct monomials.

Then E(t) is a rank condenser for rank r.
Furthermore, let dmax

i = max
S∈([m]

r)
∑

j∈S degtiW (t)j,j and dmin
i = min

S∈([m]
r)
∑

j∈S degtiW (t)j,j .

Let Ci ⊆ F \ {0} have size |Ci| > dmax
i − dmin

i . Then E = {E(t)}∀i,ti∈Ci is a rank condenser for rank r.

Proof: Consider any matrix M ∈ Fm×k of rank s ≤ r.
k > s: We show the claim by reducing to the case to when k = s, which we prove next. Let

M ′ ∈ Fm×s be a submatrix of M formed by taking s linearly independent columns of M . It
follows then that rankF(M ′) = rankF(M) ≥ rankF(t)(E(t)M) ≥ rankF(t)(E(t)M ′) = rankF(M ′),
where we use that row-rank equals column-rank. More specifically, the first inequality uses
that row-spanF(t)(E(t)M) ⊆ row-spanF(t)(M) and that rankF(M) = rankF(t)(M), and the second
inequality uses that col-spanF(t)(E(t)M ′) ⊆ col-spanF(t)(E(t)M). From this, we see that all inequal-
ities must be met with equality, so rankF(M) = rankF(t)(E(t)M).

k = s: AsW is diagonal with monomial entries, it inducesw : [m]→ F[t] weighting the columns
of H , indexed by [m], with monomials in F[t] (thus, w(i) = Wi,i). Let ≺ be some monomial order
on F[t]. As the monomials in W are distinct, the order ≺ also defines a total order on [m], which we
will also call ‘≺’, abusing notation.

AsM ∈ Fm×s is rank s, there are sets T ⊆ [m] of size s such that det(M |T×•) 6= 0. As the weights
in w are distinct by hypothesis on W , standard greedy/matroid arguments (for example, as seen in
Lemma 5.3 with J = ∅) imply that there is a unique T0 ⊆ [m] of size s such that det(M |T0×•) 6= 0,
and that minimizes w(T0) in the ≺-order, where w(T) :=

∏
i∈T w(i). Further, as every s columns of

H are linearly independent, it follows that there an S ⊆ [n] of size s such that det(H|S×T0) 6= 0. We
now use this set to show that the rank is extracted, via the following claim.

Claim. det((E(t)M)|S×•) = det((Λ(t)−1HW (t)M)|S×•) 6= 0.

16

Proof: As Λ(t) is diagonal with nonzero diagonal entries, and the determinant is multiplicative, we
see that

det((Λ(t)−1HW (t)M)|S×•) = det(Λ(t)|S×S)−1 det((HW (t)M)|S×•).
As E(t) is a matrix with polynomial entries, it follows that det((E(t)M)|S×•) is a polynomial,
so det(Λ(t)|S×S) is nonzero and divides det((HW (t)M)|S×•). Thus, it suffices to show that
det((HW (t)M)|S×•) = det((HW (t))|S×• · M) is not zero. To analyze this determinant, we in-
voke the Cauchy-Binet formula (for example, see Forbes and Shpilka [FS12a] for a proof), which
we quote below.
Lemma (Cauchy-Binet Formula). Let m ≥ n ≥ 1. Let A ∈ Fn×m, B ∈ Fm×n. Then det(AB) =∑

T∈([m]
n) det(A|•×T) det(B|T×•) 4

Applying this formula, we see that

det((HW (t))|S×• ·M) =
∑

T∈([m]
s)

det((HW (t))|S×T) det(M |T×•)

as W is diagonal and the determinant is multiplicative,

=
∑

T∈([m]
s)

det(H|S×T) det(M |T×•)
∏
i∈T

W (t)i,i

= det(H|S×T0) det(M |T0×•)w(T0) +
∑

T∈([m]
s)

det(H|S×T) det(M |T×•)w(T)

using the choice of T0 and the uniqueness of its weight, there is a c ∈ F \ {0},

= c · w(T0) + (terms of weight � w(T0))

from which it follows that det((HW (t))|S×• ·M), and thus det((E(t)M)|S×•), are nonzero polyno-
mials in t, as there is no cancellation of the nonzero term c · w(T0). �

The above claim shows that the n×smatrixE(t)M has an s×sminor of rank s, so rankF(t)(E(t)·
M) = s = rankF(M) as desired.

hitting set: We derive the hitting set rank condenser from the generator via interpolation. In
particular, we need to form a large enough cube of evaluation points to ensure that the nonzero
polynomial det((E(t)M)|S×•) assumes a nonzero value. As the cube avoids zero in each entry,
we can divide out the terms contributed by Λ(t). Thus, it remains to hit det((HW (t))|S×• ·M).
Examining the above expression given by the Cauchy-Binet formula, it follows that dmax

i is the
maximum degree in which ti appears, and dmin

i is the minimum. As ti 6= 0, we can divide out by
the minimum degree, leaving a polynomial with degree in ti of dmax

i − dmin
i , for each i. Standard

polynomial interpolation then shows that the determinant assumes a nonzero value at some point
in the cube C1 × C2 × · · · , so that rankF(E(t)M) = rankF(M) at that point, as desired.

Remark 3.11. By taking H so that Hi,j = ωij , where ω has large multiplicative order, H is then the
parity check matrix of the dual Reed-Solomon code. The resulting rank condenser is the one of
Forbes and Shpilka [FS12a], who used it (with some modification) to construct rank-metric codes
meeting a bound of Roth [Rot91] over algebraically closed fields (Roth [Rot91] also gave such
constructions). ♦

17

3.3 Small-Support Rank Concentration via Rank Condensers

The above recipe shows how to construct a rank condenser in a certain way. Here, we show how to
instantiate this recipe, by showing that the shifting map f(x) 7→ f(x+ t) has code-like properties.
Consider how this shifting changes the coefficients of f ,

f(x+ t) =
∑
b

Coeffxb (f) (x+ t)b =
∑
b

Coeffxb (f)
∑
a

(
b

a

)
xatb−a. (3.12)

Thus, the coefficient of xa in f(x+ t) equals
∑
bCoeffxb (f)

(
b
a

)
tb−a. This linear transformation is

summarized in the following construction.
Construction 3.13. Let n ≥ 1, d ≥ 0. Let T (t) ∈ F[t]JdK

n×JdKn be the transfer matrix of the shift map
f(x) 7→ f(x + t) when acting on n-variate polynomials of individual degree < d, when these
polynomials are expanded in the monomial basis. That is, Ta,b =

(
b
a

)
tb−a = ∂xa(xb)(t).

Alternatively, this matrix changes basis, from expressing f in terms of its Hasse derivatives at 0
to expressing f in terms of its Hasse derivatives at t.

Define Sr to be the set of all monomials xa of individual degree < d, such that |a|0 ≤ blg rc.
Define Tr(t) to be the submatrix T |Sr×•. ♦

Remark. For the reader acquainted with the work of Agrawal-Saha-Saxena [ASS12], we note that
our matrix T is similar to the transfer matrix considered in that work. Specifically Equation (4) and
Lemma 10 of [ASS12] are captured by our definition of T and Equation (3.12). The main difference
is that [ASS12] state and prove their results in the language of Hadamard algebras while we simply
work with polynomials. ♦

We will now work to show that Tr is a rank condenser. To do so, we start with the following
combinatorial lemma. This lemma is similar to the sorting argument of Claim 18 in Agrawal-Saha-
Saxena [ASS12], and is vaguely related to the notion of “partial IDs” as explored in Wigderson-
Yehudayoff [WY12].

Lemma 3.14. Let b1, . . . , br ∈ Σn be distinct strings. Then there is an i0 ∈ [r] and |S| ⊆ [n] with
|S| ≤ lg r such that (bi0)|S 6= (bi)|S for i 6= i0.

Proof: By induction on r.
r = 1: This is vacuous, as i 6= i0 never occurs, so i0 = 1 and S = ∅ satisfy the requirements.
r > 1: As the bi are distinct, there is some coordinate j ∈ [n] such that the (bi)|j are not all

the same. Let σ ∈ Σ be the minimum frequency symbol appearing as (bi)|j for some i. Let
T := {i : (bi)|j = σ} ⊆ [r], so that |T | ≤ r/2 by choice of σ. Apply the induction hypothesis to the
{bi : i ∈ T} as strings in Σ[n]\{j}, which is possible as the strings in T agree in the j-th position, so
are still distinct with this position is removed. Thus yields an i′0 ∈ T and a set S′ ⊆ [n] \ {j} such
that |S′| ≤ lg r − 1 and (bi′0)|S′ 6= (bi)|S′ for i ∈ T \ {i′0}. Take i0 := i′0, and S := S′ ∪ {j}. Then for
(bi0)|S 6= (bi)|S for any i 6= i0, where this disagreement occurs in S′ for i ∈ T , and occurs at position
j for i /∈ T .

This combinatorial lemma shows that in any set of strings there is a small “fingerprint” that
distinguishes some string from all the others. In our situation, strings will be (exponent vectors of)
monomials, and we will try to distinguish monomials via derivatives. The above fingerprint will
allow our derivatives to be of small-support. We now build these derivatives, starting with the
univariate case.

18

Lemma 3.15. Fix d ≥ 0. For j ∈ JdK, there is a differential operator ∆j =
∑

k∈JdK ck∂xk such that
∆j(x

i)(1) = 1i=j .

Proof: Consider the matrixD ∈ FJdK×JdK such thatDi,j := ∂xi(x
j)(1) =

(
j
i

)
. Note that this is an upper

triangular matrix, with 1’s along the diagonal. Thus, this matrix is invertible, and letC be its inverse.
Define ck := Cj,k. Thus ∆j(x

i)(1) =
∑
Cj,k∂xk(xi)(1) =

∑
Cj,kDk,i = (C|j×•) · (D|•×i) = 1i=j , as

desired.

Note that in the above, if we used normal (non-Hasse) derivatives then the diagonal of D
would not have 1’s, and D would not be invertible in sufficiently small characteristic. We can now
combine the fingerprint of strings, with the univariate derivatives, to yield multivariate derivatives
isolating some monomial.

Lemma 3.16. Let xb1 , . . . ,xbr be distinct monomials on the n variables x, and of individual degree < d.
Then there is a set T ⊆ [n] with |T | ≤ blg rc, a differential operator

∆ =
∑

supp(a)⊆T
|a|∞<d

ca∂xa (3.17)

and an i0 ∈ [r] such that ∆(xbi)(1) = 1i=i0 .

Proof: Lemma 3.14 yields the set T ⊆ [n] with |T | ≤ blg rc, and the index i0 ∈ [r]. We now construct
∆. For j ∈ T , let ∆j =

∑
k∈JdK cj,k∂xkj

be the differential operator provided by Lemma 3.16 so

that ∆j(x
b
j) = 1b=(bi0)|j . Now let ∆ =

∏
j∈T ∆j , where this product is the composition of the

operators. Recalling that ∂xa∂yb = ∂xayb for disjoint variables x,y, we see that ∆ has the form of
Equation 3.17. Now consider ∆(xbi). As ∆j only affects variable xj , it follows that

∆(xbi)(1) =
∏
j∈T

∆j

(
x

(bi)|j
j

)
(1) ·

∏
j /∈T

(x
(bi)|j
j)(1)

=
∏
j∈T

1(bi)|j=(bi0)|j ·
∏
j /∈T

1

= 1i=i0 ,

where the last equality used the isolating properties of T .

The above shows that we can distinguish some monomial from an entire set, using small-
support derivatives. Straightforward induction shows we can extend this to every monomial in the
set.
Corollary 3.18. Let xb1 , . . . ,xbr be distinct monomials on the n variables x, and of individual degree < d.
Then there is a permutation π : [r]→ [r], and differential operators ∆1, . . . ,∆r such that

∆i(x
bπ(j))(1) =

{
1 i = j

0 j < i
.

Further, each ∆i is a linear combination of derivatives (of individual degree < d) with support contained in a
set of size ≤ blg ic. 4

19

The above corollary shows that for any set of monomials we can construct a set of differential
operators whose application on these monomials induces a triangular matrix, which clearly has
full rank. We can thus use this to derive the needed properties of the Tr matrix.

Lemma 3.19. Assume the setup of Construction 3.13. Then Tr(1) is the parity check matrix of a distance
> r code. That is, every r columns are linearly independent.

Proof: Let b1, . . . , br be r distinct monomials indexing columns in T . Consider the differential
operators from Corollary 3.18. The operators ∆i (evaluated at 1) acts on the monomials bj and
produces a vector vi ∈ Fr. By construction, each ∆i is a linear combination of support ≤ blg rc
derivatives, and thus vi a linear combination of the rows of Tr (when restricted to the columns
induced by b1, . . . , br). As the vi form a triangular system (in some column ordering), it follows
that the rows of Tr, when restricted to the columns induced by b1, . . . , br, have rank r. As row-
rank equals column-rank, it follows the columns indexed by the bj are linearly independent, as
desired.

Thus, the Tr(1) matrix is a parity check matrix of a code of distance > r. The above sections
showed how to use such matrices to get a rank condenser. Before we do so, we introduce the
following definition. It will allow us to encapsulate the essential properties of the shifts t needed to
ensure rank condensation.
Definition 3.20. Let g : Fm × Fm′ → Fn be a polynomial map. It is an individual degree < d, `-wise
independent monomial map if for every S ⊆ [n] of size ≤ `, there is an α ∈ Fm′ such that polynomials
{g(t,α)a}supp(a)⊆S,|a|∞<d are nonzero, distinct monomials in t. ♦

As a trivial example, if we have n independent variables, these form an n-wise independent
monomial map. Note the order of quantification, that the choice of α can depend on the set S.
When this is applied, the values for αwill be interpolated over some cube, which will implicitly
union bound over all S. We now put the ingredients together to get our rank condenser.

Corollary 3.21. Assume the setup of Construction 3.13. Let g : Fm × Fm′ → Fn be an individual degree
< d, n-wise independent monomial map. Then Tr(g(t, s)) is a rank condenser for rank r.

Proof: Fix the α ∈ Fm′ guaranteed by the monomial map g, when asking for independence on all n
variables, so that we can now regard g(t,α) as a polynomial map in F[t]. Now note that (Tr(t))a,b =(
b
a

)
tb−a = (ta)−1 · Tr(1) · tb. Thus, we can decompose Tr(g(t,α)) = Λ(t,α)−1 · Tr(1) ·W (t,α),

where Λ, Tr(1) and W fit the hypothesis of Lemma 3.10, as g is n-wise independent monomial map
for degree < d, and by Lemma 3.19. Thus, Tr(g(t,α)) is a rank condenser for rank r. Removing the
substitution of s, it follows that Tr(g(t, s)) is a rank condenser as well.

Reinterpreting the above, we get the main result of this section, showing how to achieve rank
concentration (recall Definition 3.1).

Corollary 3.22. Let f ∈ F[x]r be polynomials of individual degree < d on the n-variables x. Let g :
Fm×Fm′ → Fn be an individual degree< d, n-wise independent monomial map. Then f has support-blg rc
rank concentration at g(t, s) over the field F(t, s).

Proof: Expand the polynomials f in terms of their Hasse derivatives at zero, giving the matrix M ,
so that Mb,i = ∂xb(fi)(0). Consider the multiplication Tr(g(t, s)) ·M . By Corollary 3.21 it follows

20

that rankF(t,s) Tr(g(t, s))M = rankFM . Thus, Tr(g(t, s))M and M have the same F(t, s)-row-span.
From the definition of Tr and Equation 3.12, we then get that

spanF(t,s){∂xa(f)(g(t, s))}|a|0≤blg rc
|a|∞<d

= row-spanF(t,s)(Tr(g(t, s))M)

= row-spanF(t,s)(M)

= spanF(t,s){∂xa(f)(0)}a
= spanF(t,s){∂xa(f)(g(t, s))}a

where we used Lemma 3.2 in the last equality to change the point of derivation.

4 Hitting Sets for Commutative ROABPs

In this section, we give nO(lgn)-size hitting sets for polynomials that are computed by ROABPs in all
variable orders, and thus are in some sense commutative. This class is also characterized by having
low evaluation dimension a concept of Saptharishi, as reported in Forbes-Shpilka [FS12b], who gave
nO(lgn)-size hitting sets for this class. The analysis of the hitting sets will follow quickly from the
rank concentration results of Subsection 3.3, and can be seen as an alternative proof of some of
the results of the work of Agrawal-Saha-Saxena [ASS12].5 While this does not improve upon the
parameters of the results of Agrawal-Saha-Saxena [ASS12] or Forbes-Shpilka [FS12b], we will see in
Section 7 how to combine the rank concentration ideas with the generator of Forbes-Shpilka [FS12b]
(using techniques from hashing, and the generator of Shpilka-Volkovich [SV09]) to obtain nO(lg lgn)

size hitting sets for certain subclasses of these polynomials, such as diagonal circuits.
We begin by showing that for commutative ROABPs, establishing small-support rank concen-

tration for all n variables follows from small-support rank concentration for all size-Ω(lg r) subsets
of variables. Establishing rank concentration for these small subsets of variables can then be done
by brute-force using the rank condensers of Subsection 3.3.

Theorem 4.1. Let F (x) ∈ F[x]r×r be of individual degree < d, and be computed by a width-r commutative
ROABP. Let g(t, s) be an individual degree < d, (blg r2c + 1)-wise independent monomial map. Then,
F (x) has support-blg r2c rank concentration at g(t, s) over the field F(t, s).

Proof: Consider some derivative ∂xa0 (F), with a0 ∈ JdKn. We wish to show that this derivative,
evaluated at g(t, s), is contained in the F(t, s)-span of the derivatives of small-support, evaluated at
g(t, s). Thus, if the derivative is already support ≤ blg r2c, then this is trivial. Now consider when
this is not true. Thus, we can partition the monomial xa0 into yb0zc0 such that y has blg r2c + 1
variables and b0 has full-support.

As F is computable by a width-r commutative ROABP, we can express it then as F (x) =
F (y, z) = G(y) ·H(z), for G ∈ F[y]r×r and H ∈ F[z]r×r.6 By bilinearity of matrix multiplication,

5This section does not give nO(lgn)-size hitting sets for depth-3 set-multilinear polynomials, one of the core results of
Agrawal-Saha-Saxena [ASS12]. The results of Section 6 do cover this class of polynomials, by giving a nO(lg2 n)-size hitting
set for a more general model. However, the techniques of this section do recover the Agrawal-Saha-Saxena [ASS12] result,
essentially by changing xji 7→ xi,j in all of our arguments. This changes the transfer matrix, and the set of monomials
that the monomial map must preserve. However, the techniques (to show the transfer matrix is a rank condenser, that
we can shift using low-wise independent maps, etc.) can be adapted to these changes in a straightforward manner.

6This is where we use the commutativity of the ROABP.

21

we can factor the derivative as ∂xa0 (F) = ∂yb0 (G) · ∂zc0 (H). Now observe that the output of g(t, s),
when restricted to y, is still an individual degree< d, (blg r2c+1)-wise independent monomial map.
Thus, as y has ≤ blg r2c+ 1 variables, it follows from Corollary 3.22 that G(y) has support-blg r2c
rank concentration at g(t, s)|y, over F(t, s). Rephrasing, this means that

∂yb0 (G)(g(t, s)|y) ∈ spanF(t,s){∂yb(G)(g(t, s)|y)}|b|0≤blg r2c.

Invoking again the bilinearity of matrix multiplication, it follows that we can multiply the above
equation by ∂zc0 (H), yielding

∂xa0 (F)(g(t, s)) = ∂yb0 (G)(g(t, s)|y) · ∂zc0 (H)(g(t, s)|z)

∈ spanF(t,s){∂yb(G)(g(t, s))∂zc0 (H)(g(t, s)|z)}|b|0≤blg r2c
⊆ spanF(t,s){∂xa(F)(g(t, s))}|a|0<| supp(a0)|.

Thus, this shows that for any derivative ∂xa0 (F) with support > blg r2c, its evaluation at g(t, s)
is contained in the F(t, s)-span of derivatives with smaller support. Applying this argument
repeatedly (each time with a new partition xa0 = yb0zc0) thus yields the claim.

Thus, the above shows that given the appropriate monomial map, we can achieve small-support
rank concentration for commutative ROABPs. We now observe that the generator of Shpilka and
Volkovich [SV09] gives such a monomial map.

Lemma 4.2. Let F be a field with |F| > n. Then the SV-generator GSV
n,` : F`× F` → Fn of Theorem 2.4 is an

individual degree < d, `-wise independent monomial map.

Proof: As argued in Lemma 3.4, for any subset S ⊆ [n] of size ≤ `, we can set the z variables
appropriately such that |S| of the y variables are exactly planted into the positions x|S . It is then
clear that this is a monomial map, and all individual degree < d monomials of this map are
distinct.

Thus, we have seen that shifting by a monomial map yields rank concentration, how to construct
such a monomial map, and how rank concentration yields hitting sets. Putting this all together, we
obtain hitting sets as presented in the following corollary.

Corollary 4.3. Let |F| > nd. Let f(x) ∈ F[x] be of individual degree < d, and be computed by a width-r
commutative ROABP. Then f 6≡ 0 iff f ◦ GSV

n,1+2b2 lg rc 6≡ 0.
In particular, there is a poly(n, d)O(lg r) size poly(n, d, r)-explicit hitting set for width-r commutative

ROABPs on n variables, of individual degree < d.

Proof: generator: We have by definition that f is a linear combination of the entries of F (x), where
F (x) is computed by a matrix-valued commutative ROABP (recall Lemma 2.1). By Theorem 4.1
it follows that F ◦ GSV

n,b2 lg rc+1 is support-blg r2c rank concentrated. Thus, Corollary 3.5 shows

that f 6≡ 0 iff f ◦
(
GSV
n,b2 lg rc + GSV

n,b2 lg rc+1

)
6≡ 0, where GSV

n,b2 lg rc(y, z) and GSV
n,b2 lg rc+1(y′, z′) are on

disjoint variables. However, the SV-generator construction of Theorem 4.1 is additive, in that as
polynomial maps we have the equality GSV

n,b2 lg rc(y, z) + GSV
n,b2 lg rc+1(y′, z′) = GSV

n,1+2b2 lg rc(y
′′, z′′),

where y′′ = (y,y′) and z′′ = (z, z′).
hitting set: The hitting set is the evaluation of GSV

n,1+2b2 lg rc on a sufficiently large product space
of inputs, and the correctness follows from interpolation. That is, f ◦ GSV only has 1 + 2b2 lg rc
variables, and individual degree < nd.

22

Note that the SV-generator is in some sense an algebraic analogue of `-wise independence.
However, it is not the case that any `-wise independent map will fool commutative ROABPs. For
example, the polynomial x1 + · · ·+ xn is computable in this model, but is not fooled by the n− 1
independent polynomial map given by (x1, x2, . . . , xn−1,−(x1 + · · ·+ xn−1)).

To improve the above hitting sets of size no(lgn), note that there are two sources of nΘ(lgn)

factors in the above construction: the monomial map used to shift into rank concentration, and the
conversion from rank concentration to hitting sets. In Section 7, we will see an improved way to
convert from rank concentration to hitting sets, that will only result in an nO(lg lgn) overheard, but
will be specific for commutative ROABPs. Unfortunately, no such improvement to the monomial
map is yet known, but one can give a better monomial map when the individual degree of the
polynomials is small. This alternative monomial map is based on the hashing ideas of Klivans-
Spielman [KS01].

Lemma 4.4. Let |F| ≥ poly(n, d). Then the KS-generator GKS
n,d,d`

: (FO(` lognd d))2 → Fn of Theorem 2.3 is
a poly(n, d, `)-explicit, individual degree < d, `-wise independent monomial map.

Proof: Note that for any subset S ⊆ [n] of size ≤ `, there are at most d` monomials of individual
degree < d. Thus, it follows from Theorem 2.3 that the KS-generator with sparsity s = d` will map
these monomials distinctly, as desired.

Note that the above KS-generator monomial map is better than the SV-generator mono-
mial map when d is small, as we will be taking ` = lg r. As the individual degree of the KS-
generator is poly(n, d), and we have O(lognd d

`) variables, interpolating through this generator
yields poly(n, d)O(` lognd d) = poly(d`) many points. In particular, when d = O(polylog(r, n)), this
will yield poly(n, r)O(lg lg(nr)) shifts such that one shift will yield rank concentration. In contrast,
the SV-generator adds ` new variables, and multiplies their degree from d to dn, as the generator
has degree n. Thus, even when d is small the number of shifts needed will be Ω(nlg r). We will
exploit this further in Section 7, where we show techniques for reducing the complexity of hitting
polynomials with rank concentration.

Lastly, we note that while the SV-generator is sufficient for the commutative ROABP results, it
will not be sufficient for the results on general ROABPs with unknown orders in Section 6. Instead,
the KS-generator will be used.

5 Condensing Rank from Matrices with a Known Basis

This section will develop a new recipe for constructing (a variant of) rank condensers from error-
correcting codes, and will then instantiate it with the transfer matrix of Subsection 3.3. That is, while
the rank condenser recipe of Lemma 3.10 is sufficient for the results in Section 4 on commutative
ROABPs, the results of Section 6 about unknown-order ROABPs need rank condensers that have
smaller “seed length” than the above result. In the context of Lemma 3.10, this means that the
condition on the matrix W , that all monomials are distinct, is too stringent. We will want to apply a
rank condenser in the setting with many variables, and keeping all such monomials distinct would
prevent the construction of generators inputting few variables. To achieve better parameters, we
will weaken the requirements on the rank condenser.

In particular, observe that the above rank condenser is in some sense “information theoretic”,
as the matrices involved are all completely written down, without any notion of “simplicity”. To

23

achieve better parameters, we can impose that the matrices we wish to extract from are simple in
some sense. Here, we will restrict to condensing rank from matrices that have a row-basis in some
known “medium-sized” subset of the rows — small enough so the seed length can decrease, but
large enough so that the problem is non-trivial. In particular, we will try to construct the following
type of rank condenser.
Definition 5.1 (Rank Condenser Generator for Known Bases). A matrix E(t) ∈ F[t]n×m is said to
be a (seeded) rank condenser (generator) for rank r and rows P ⊆ [m] if for every matrix M ∈ Fm×k of
rank ≤ r such that rankF(M) = rankF(M |P×•), we have that rankF(t)(E(t) ·M) = rankF(M). ♦

An obvious approach to construct the above would be to ignore the rows outside P , by zeroing
out parts of the rank condenser, and plugging in a rank condenser for the P . However, this is not
compatible with the black-box access of polynomials. Thus, we must consider rank condensers that
naturally arise in the shifting/partial-derivative process.

In particular, we will relax the restriction, on the matrix W of Lemma 3.10, that all monomials
are distinct. Recall though, that in the above rank condenser, this distinctness property drove the
uniqueness of the minimum weight term, which was crucial in showing that some determinant
does not vanish in the Cauchy-Binet sum. If non-distinctness of these weights is allowed, then
the weight minimization may not be unique and hence the corresponding monomial could be
canceled out. To ensure uniqueness, it will be enough that the small weights are distinct. In the
rank condenser context, this will correspond to the rows in the P getting distinct weights, and that
these distinct weights are smaller than any non-distinct weights. As this regime in greedy/matroid
optimization seems somewhat less standard, we prove the required uniqueness property. For
concreteness, we only discuss this optimization within our context, but the results apply to any
matroid. We begin with a property of the greedy algorithm.

Lemma 5.2. Let M ∈ Fn×m be a matrix of rank r. Using some total order ≺ on [m], greedily choose r
linearly independent columns (at each step, pick the least-≺-indexed column that increases the rank of the
chosen vectors), and denote this set T = {i1, . . . , ir} with i1 ≺ · · · ≺ ir. Let T ′ ⊆ [m] be any set of r
linearly independent columns, and denote T ′ = {i′1, . . . , i′r} with i′1 ≺ · · · ≺ i′r. Then T � T ′ point-wise,
that is, ij � i′j for j ∈ [r]. Further, if T 6= T ′, then ij0 ≺ i′j0 for some j0 ∈ [r].

Proof: Suppose not, so that T 6� T ′, for contradiction. Let j0 be the first j ∈ [r] such that ij � i′j .
Denote Tk = {i1, . . . , ik} and T ′k = {i′1, . . . , i′k} for k ∈ [r]. Thus Tj0−1 indexes r − 1 linearly
independent columns and T ′j0 indexes r linearly independent columns. By the Steinitz Exchange
Lemma of linear algebra, it follows there is some i′j1 ∈ T

′
j0
\ Tj0−1 such that Tj0−1 ∪ {i′j1} indexes r

linearly independent columns. Using that i′j1 � i
′
j0
≺ ij0 , it follows that there is some j2 ∈ [j0 − 1]

such that ij2 ≺ i′j1 ≺ ij2+1.
When Tj2 is being greedily extended to Tj2+1, the least rank-increasing column after all elements

in Tj2 will be chosen. By hypothesis, ij2+1 was chosen. However, as adding i′j1 increases the rank
of Tj0−1, and Tj2 ⊆ Tj0−1, it follows that adding i′j1 increases the rank of Tj2 . As ij2 ≺ i′j1 ≺ ij2+1,
it follows that ij2+1 could not have been chosen, as i′j1 is a better choice, yielding the desired
contradiction. Thus T � T ′ point-wise, as desired.

If T 6= T ′, then not all indices can be equal, so by the above ij0 ≺ i′j0 for some j0.

We next state the uniqueness lemma when minimizing the monomial weight of bases of the
columns of a matrix, when only the small weights are distinct. As above, this statement can be
interpreted for general greedy/matroid optimization, but for concreteness we only discuss our

24

context. Note that the usual setting for greedy/matroid optimization is maximization with distinct
weights. In the below setting, we have minimization and thus we minimize only over full-rank sets
of columns, as else the empty set is trivially the minimum weight set. Further, in our applications it
is crucial that we allow some weights to be repeated. While the resulting uniqueness result follows
from standard arguments, it is somewhat non-standard so we include it for completeness.

Lemma 5.3. Let M ∈ Fn×m be a matrix of rank r. Let ≺ be a monomial ordering on F[x], and let
w : [m] → F[x] weight the columns in M with monomials in F[x]. Suppose the partition [m] = I t J
is so that w is injective on I , and that w(i) ≺ w(j) for all i ∈ I and j ∈ J . Suppose further that the
rank(M |•×I) = r. Then there is a unique set T ⊆ [m] of size r, with rank(M |•×T) = r, that minimizes
w(T) :=

∏
i∈T w(i) with respect to the monomial order. Further, T ⊆ I .

Proof: The monomial order, as a total order on F[x], induces a partial order on [m] via the weight
function w. Extend this partial order arbitrarily to a total order on [m], and denote it by ‘≺’ also,
abusing notation. From this it follows that for i, i′ ∈ [m], i ≺ i′ implies w(i) � w(i′). Thus, it follows
that I comes before J in the ≺-order on [m].

Choose the set T of r linearly independent columns greedily, using the ≺-order on [m]. As
there is some set of r linearly independent columns T ′ ⊆ I , it follows from Lemma 5.2 that
T � T ′ point-wise, so then T ⊆ I , as I comes before J in the ≺-order on [m]. Now consider any
set T ′ ⊆ [m] of r linearly independent columns, with T 6= T ′. Again, T � T ′, so in particular
w(T) � w(T ′). However, using Lemma 5.2 further, we see there is some index j0 ∈ [r] so that
ij0 ≺ i′j0 when we write T = {i1, . . . , ir} and T ′ = {i′1, . . . , i′r}. As ij0 ∈ T ⊆ I , and the weights
in I are distinct and all strictly below the weights in J , it follow that w(ij0) ≺ w(i′j0). From this
it follows that w(T) ≺ w(T ′). Thus T ⊆ I is the unique minimizer of the weight w over sets of r
linearly independent columns.

To use this uniqueness lemma in our rank condenser, we need a notion of what a “small” weight
will be. Here, we will use a new variable u, such that the smallness of a monomial will correspond
to its degree in u.

Lemma 5.4. Fix d ≥ 0. Let Ed(t, u) ∈ F[t, u]n×m, with Ed = Λ(t, u)−1 ·H ·W (t, u) such that

• Λ(t, u) ∈ F[t, u]n×n is a diagonal matrix, whose diagonal entries are nonzero monomials.

• H ∈ Fn×m is the parity check matrix of an error correcting code of distance > r. That is, every r
columns of H are linearly independent.

• W (t, u) ∈ F[t, u]m×m is a diagonal matrix, whose diagonal entries are nonzero monomials. The
monomials in W (t, u)|Pd×Pd are distinct, where Pd = {j : j ∈ [m], deguW (t, u)j,j < d}.

Then E(t, u) is a rank condenser for rank r and rows Pd.

Proof: Consider any matrix M ∈ Fm×k of rank s ≤ r with rankF(M) = rankF(M |Pd×•).
k > s: Choose the submatrix M ′ ∈ Fm×s of M , such that M ′ has rank s. As rankF(M |Pd×•) = s

we can choose M ′ so that rankF(M ′|Pd×•) = s also. Now apply the k = s case, just as in the proof
of Lemma 3.10.

k = s: As in the proof of Lemma 3.10, W induces a weight function w : [m]→ F[t, u]. Let ≺ be a
lexicographic monomial order on F[t, u], such that u comes before all variables in t. It then follows
from that Lemma 5.3 applies, using the partition [m] = Pd t ([m] \ Pd), so that there is a unique set

25

T0 ⊂ [m] such that det(M |T0×•) 6= 0 minimizing w(T0) with respect to the ≺-order. The rest of the
proof then follows exactly as in the proof of Lemma 3.10.

With this new recipe, we now instantiate it with the transfer matrix of Subsection 3.3. To do so,
we need now the notion of a monomial map with independence with respect to total degree.
Definition 5.5. Let g : Fm × Fm′ → Fn be a polynomial map. It is a total-degree-(< D) independent
monomial map if there is an α ∈ Fm′ such that the polynomials {g(t,α)a}|a|1<D ⊆ F[t] are nonzero,
distinct monomials in t. ♦

Note that the main difference from Definition 3.20 is that now we consider monomials in many
variables whereas previously we only considered monomials in ` variables. We also now restrict
the total degree, so in the above D should be considered small. The variable u of Lemma 5.4 is used
to grade with respect to degree, and thus take advantage the the total degree is not too large.

We now use such maps to get a rank condenser.

Corollary 5.6. Assume the setup of Construction 3.13. Let g : Fm × Fk → Fn be an total-degree-(< D)
independent monomial map. Then Tr(u · g(t, s)) is a rank condenser for rank r and rows corresponding to
monomials of total degree < D.

Proof: Fix the α ∈ Fm′ guaranteed by the monomial map g, so that we can now regard g(t,α)
as a polynomial map in F[t]. As in Corollary 3.21, we can express Tr(ug(t,α)) = Λ(u, t,α)−1 ·
Tr(1) ·W (u, t,α). As before, Λ and Tr(1) fit the hypothesis of Lemma 5.4, where for the latter we
use Lemma 3.19. Further, W (u, t,α) has the desired monomial distinctness properties as g is a
monomial map with independence up to total degree < D. Thus, Tr(ug(t,α)) is a rank condenser
for rank r. Removing the substitution of s, it follows that Tr(ug(t, s)) is a rank condenser as
well.

Reinterpreting the above in terms of rank concentration, we get the main result of this section.

Corollary 5.7. Let f ∈ F[x]r be polynomials of individual degree < d on the n-variables x. Let g :
Fm × Fm′ → Fn be an total degree-(< d`) independent monomial map. Then if f has support-` rank
concentration at α ∈ Fn, then f has support-blg rc rank concentration at α + u · g(t, s) over the field
F(u, t, s).

Proof: Expand the polynomials f in terms of their Hasse derivatives at α, giving the matrix
M , so that Mb,i = ∂xb(fi)(α). Let Pd` ⊆ JdKn index the rows of M given by monomials of
total degree < d`. Thus Pd` contains all monomials with support ≤ `. Thus, by hypothesis
rankF(M) = rankF(M |Pd`×•).

Now consider the multiplication Tr(ug(t, s)) · M . By Corollary 5.6 it follows that
rankF(u,t,s) Tr(ug(t, s))M = rankFM . Thus, Tr(ug(t, s))M and M have the same F(u, t, s)-row-
span. Thus, as in Corollary 3.22, we have that the definition of Tr and Equation 3.12 imply that,

spanF(u,t,s){∂xa(f)(α+ ug(t, s))}|a|0≤blg rc
|a|∞<d

= row-spanF(u,t,s)(Tr(ug(t, s))M)

= row-spanF(u,t,s)(M)

= spanF(u,t,s){∂xa(f)(α)}a
= spanF(u,t,s){∂xa(f)(α+ ug(t, s))}a

where, again, we used Lemma 3.2 in the last equality to change the point of derivation.

26

Note that α could be a polynomial map in auxiliary variables t′ (and this will happen in later
sections), in which case the above lemma would use the field F(t′).

6 Hitting Sets for Unknown Order ROABPs

In this section, we present hitting sets of size poly(d, n, r)d lg r·lgn for ROABPs on n variables, width-r
and individual degree < d, when the order of the variables is unknown. While this gives worse
parameters than the size-poly(d, n, r)lgn hitting set of Forbes-Shpilka [FS12b] results for ROABPs,
that hitting set only worked for a fixed variable order. Further, while the results of this section have
a poor dependence on the individual degree d, note that d = 2 is sufficiently interesting, as it covers
all of the set-multilinear models considered by Agrawal-Saha-Saxena [ASS12].

The results of Section 4 showed that, in commutative ROABPs, rank concentration can be
achieved in n variables by reducing it to achieving rank concentration in all size-Θ(lg r) subsets of
variables. Then, rank concentration can be brute-force achieved in quasipolynomial time. However,
this connection crucially used commutativity to reorder the variables, and seems to break down
otherwise.

In considering general ROABPs, we will still use shifts to concentrate rank on smaller-support
derivatives. However, instead of relying on a single shift, we will shift lg n times, each time halving
the support of the derivatives needed. While the rank concentration results of Subsection 3.3 can
achieve this, such results are too expensive when applied to all n variables at once. Instead, we will
use the rank concentration results of Section 5, which allow each shift to build on previous shifts.

More specifically, suppose we have two ROABPs F (x) and G(y), each with support-` rank
concentration. First, we observe a simple merge, that is, F (x)G(y) has support-2` rank concentra-
tion. By itself, this merge step contains no work. Now we seek to reduce the support. This can be
done with a rank condenser, and in particular, since FG has support-2` rank concentration, FG
has a “known basis” that we can condense. In this case, the result of Corollary 5.7 will condense to
support-lg r2, using a single shift of (x,y). Thus, if we take ` = lg r2, then this merge-and-reduce
process has doubled the number of variables, while maintaining support-` rank concentration. By
applying this lg n times, we can shift n-variate ROABP into small-support rank concentration.

Given the proof outline, we begin the formalities by observing that rank concentration of two
ROABPs on disjoint variables implies rank concentration of their product. The proof shares the
bilinearity-based ideas of Theorem 4.1, but we must now preserve the order of the variables.

Lemma 6.1. Let x and y be disjoint sets of n variables. Consider F (x) ∈ F[x]r×r and G(y) ∈ F[y]r×r.
Then if F (x) is support-` rank concentrated at α ∈ Fn and G(y) is support-k rank concentrated at β ∈ Fn,
then F (x)G(y) is support-(`+ k) rank concentrated at (α,β).

Proof: Consider a derivative ∂xa0yb0 (FG). The rank concentration implies that

∂xa0 (F)(α) ∈ spanF{∂xa(F)(α)}|a|0≤`

and
∂yb0 (G)(β) ∈ spanF{∂yb(G)(β)}|b|0≤k

27

Thus, as matrix multiplication is bilinear, and the variables x and y are disjoint, it follows that

∂xa0yb0 (FG) = ∂xa0 (F)(α)∂yb0 (G)(β)

∈ spanF{∂xa(F)(α)∂yb(G)(β)}|a|0≤`,|b|0≤k
= spanF{∂xayb(FG)(α,β)}|a|0≤`,|b|0≤k
⊆ spanF{∂zc(FG)(α,β)}|c|0≤`+k

where z = (x,y).

Note that if we take α and β as polynomial maps in auxiliary variables t (as will happen later),
then the above lemma still holds simply by changing the field F under consideration to the field
F(t).

This lemma shows that we can combine support-` rank concentration on disjoint sets of n
variables into support-2` rank concentration on 2n variables. However, this process does not
change the ratio of the support to the number of variables. Nevertheless, by applying the rank
condenser of Corollary 5.7, we can compress back down to support-blg r2c, as we summarize in the
following corollary.
Corollary 6.2. Let x and y be disjoint sets of n distinct variables. Let F (x) ∈ F[x]r×r and G(y) ∈ F[y]r×r

be of individual degree < d, and have support-` rank concentration at α,β ∈ Fn respectively.
Let g(t, s) be an independent monomial map for total degree < 2d` mapping into the 2n variables

(x,y), where u, t and s are new variables. Then F (x)G(y) has support-blg r2c rank concentration at
(α,β) + (u · g(t, s)|x, u · g(t, s)|y) over the field F(u, t, s). 4

We now apply the above corollary recursively. We maintain blocks of variables that have
support-lg r2 rank concentration, and then merge pairs of blocks. This raises the support to 2 lg r2,
which is then brought back down to lg r2 with a shift. In this entire process, the variables (and
their blocks) will respect the order of the ROABP. However, this order is only needed to be known
for the analysis, as the construction is oblivious to it. In particular, we can construct the needed
monomial maps in a way oblivious to the order, as seen in Lemma 6.4 below. We now prove that
this scheme works.

Lemma 6.3. Let n ≥ 0, N = 2n and d, r ≥ 1. Let g : Fm × Fm′ → FN be an independent monomial map
for total degree < 2d(blg r2c+ 1). Define Gn,d,r : (F×Fm×Fm′)n → FN to be the polynomial map defined
by

Gn,d,r(u1, t1, s1, . . . , un, tn, sn) =
∑
i∈[n]

ui · g(ti, si).

Let π be a permutation π : [N]→ [N]. Let F (x) =
∏
i∈[N]Mi(xπ(i)), where for i ∈ [N], Mi(xπ(i)) ∈

F[xπ(i)]
r×r is of individual degree < d. Then F (x) has support-(blg r2c + 1) rank concentration at

G((ui, ti, si)i∈[n]) over the field F((ui, ti, si)i).

Proof: We proceed by induction on n.
n = 0: In this case, we have a single variable x and the matrix F (x). The generator G is then

the zero polynomial map, as the summation defining it is empty. Thus, F (x) clearly has support-1
rank concentration at 0, as there is only 1 variable to consider. As 1 ≤ blg r2c+ 1, the claim follows.

n > 0: Divide the 2n variables in half, into y and z, respecting the order xπ(1), . . . , xπ(N). Thus,
we can write F (x) = G(y)H(z). Now note that g(·, ·)|y is a good monomial map for y, and similarly

28

g(·, ·)|z is a good monomial map for z. Thus, if we apply the induction hypothesis on these cases,
using their respective pieces of the monomial map g, it follows that G is support-(blg r2c+ 1) rank-
concentrated at

∑
i∈[n−1] ui · g(ti, si)|y, and similarly H is support-(blg r2c+ 1) rank-concentrated

at
∑

i∈[n−1] ui · g(ti, si)|z. It follows then from Corollary 6.2 that F (x) = G(y)H(z) is support-
(blg r2c+ 1) rank concentrated at ∑

i∈[n−1]

ui · g(ti, si)|y,
∑

i∈[n−1]

ui · g(ti, si)|z

+ (un · g(tn, sn)|y, un · g(tn, sn)|z)

=

∑
i∈[n]

ui · g(ti, si)|y,
∑
i∈[n]

ui · g(ti, si)|z

 = Gn,d,r((ui, ti, si)i∈[n]),

as desired.

We now instantiate the above corollary with specific monomial maps for individual degree.
We begin by noting that the SV-generator does not yield such a monomial map. That is, for any
monomial xa of low-total-degree (for example degree d lg r, as in the above lemma), the generator
GSV
n,d lg r(y, z) will have some setting z ← αa so that xa is preserved as a monomial in y. However,

the choice of αa will depend on a, and thus a different monomial xb of low degree may be zeroed
out in the substitution z ← αa. That is, we need that there exists a (single) setting of z that preserves
all relevant monomials, whereas the SV-generator reverses the order of these quantifiers. Thus, we
will instead use the KS-generator as alluded to above, as recorded in the next lemma.

Lemma 6.4. Let |F| ≥ poly(n, d). Then the KS-generator GKS
n,d,nD

: (FO(D lognd n))2 → Fn of Theorem 2.3
is a poly(n, d,D)-explicit, independent monomial map for total degree < D.

Proof: By writing n-variate monomials of total degree k as strings in [n]k, it follows that there are
≤
∑

k∈JDK n
k = nD−1

n−1 ≤ nD monomials in n variables of total degree < D. Thus, it follows from
Theorem 2.3 that the KS-generator with sparsity s = nD will map these monomials distinctly, as
desired.

Combining the above, we get the desired hitting sets for ROABPs with unknown variable order,
yielding the main result of this paper.

Theorem 6.5 (Main). Let n ≥ 0, N = 2n, d, r ≥ 1 and |F| ≥ poly(N, d). Define G′N,d,r : (F ×
(FO(d lg r·logNdN))2)n → FN be the polynomial map defined by

G′N,d,r(u1, t1, s1, . . . , un, tn, sn) =
∑
i∈[n]

ui · GKS
N,d,N2d(blg r2c+1)(ti, si).

Then, for i ∈ [N], the polynomial (G′N,d,r)i has individual degree ≤ poly(N, d). Further, G′N,d,r is
poly(N, d, r) explicit.

Further, for any N -variate f(x) ∈ F[x] of individual degree < d, computed by a ROABP of width ≤ r
in some variable order, f 6≡ 0 iff f ◦ (G′N,d,r + GSV

blg r2c+1
) 6≡ 0.

Thus, for any N , there is a poly(N, d)O(d·lg r·lgN) size poly(N, d, r)-explicit hitting set for width-r
ROABPs on N variables, of individual degree < d, in any variable order.

29

Proof: generator: That the G′+GSV generator above is correct follows from instantiating Lemma 6.3
with the monomial map of Lemma 6.4.

degree, explicitness: These follow from Theorem 2.3.
hitting set: The hitting set follows by interpolating the polynomial f◦(G′+GSV). This polynomial

has individual degree poly(N, d), and has lgN · O(d lg r · logdN N) + O(lg r) variables. Thus,
the number of points in the interpolation is poly(N, d)O(d lg r·lgN ·logNdN)+O(lg r) = NO(d lg r·lgN) ·
poly(N, d)O(lg r) = poly(N, d)O(d lg r·lgN).

We now briefly comment on why our methods have a poor dependence on the individual degree
of the polynomial f . Based on our paradigm of merge-and-reduce, as embodied by Corollary 6.2,
we seek to move from support-lg r2 rank concentration, merge to support-2 lg r2 concentration,
and then reduce back to support-lg r2 concentration. To do this reduction step, we use a rank
condenser, that condenses rank from a known-basis. This known-basis is among the monomials of
support-2 lg r2. Ideally, we could construct a rank condenser that condenses just from this basis.
However, as discussed in Section 5, our rank condenser must be compatible with black-box access
to polynomials. The notion of “support” of a monomial is not easily compatible with black-box
access, and so it unclear how to make small-support monomials both distinct, as well as “smaller”
than all large-support monomials, such that the uniqueness arguments of Section 5 (when we have
that all small weights are distinct) can be applied.

Thus, as we cannot condense from small-support monomials, the above results observe that
when the individual degree d is small, small-support and low-degree become nearly equivalent
notions. The notion of being low-degree is then compatible with black-box access to polynomials,
via homogenization, and thus the results proceed as detailed above.

7 Better Hitting Sets for Commutative ROABPs

In Section 4 we gave quasipolynomial-size hitting sets for the class of commutative ROABPs. In this
section, we improve these nO(lgn) results to nO(lg lgn), for two subclasses of commutative ROABPs:
diagonal circuits, and commutative ROABPs with small individual degree.

To understand this improvement, recall the strategy of Section 4, which involved two different
parts. First, we found a small set of shifts, such that we could shift the polynomial into small-
support rank concentration, and this yielded a nonzero monomial of small support. As mentioned
at the end of Section 4, we do not have good ways to reduce the number of shifts needed, and thus
focus on improving the second step, which is where we try to hit a commutative ROABP that is
promised to have a small support monomial. To do this, we used Lemma 3.4, which composed the
polynomial f with the SV-generator GSV

n,`, where ` is the size of the small-support monomial, and
observed that f 6≡ 0 iff f ◦ GSV

n,` 6≡ 0. We then interpolated this generator into a hitting set.
If we wish to improve the hitting sets under the promise of a support-` monomial, it seems

that properties of f must be used, as otherwise it seems unlikely hitting sets smaller than poly(n)`

can be devised as there are too many such polynomials to hit. To take advantage of f , we thus
ask: what is the complexity of f ◦ GSV

n,`? Note that it has 2` ≈ lg r variables, which is quite small. If
f ◦ GSV

n,` itself can be expressed as a small circuit, then we could use PIT for this class. In particular,
if we have hitting sets for size-s, n-variate circuits in this class of size poly(s, n)lgn, then this would

30

yield the desired result, as n ≈ lg r in this new circuit class. While this strategy can work7 for
diagonal circuits, this section will give a different composition that work more generally for any
commutative ROABP with the promise of a small-support monomial.

To hit such commutative ROABPs with a support-` monomial, we will first hash the n original
variables to ≈ ` buckets, and then give each bucket its own variable. Some hash function in the
family will hash each variable of the support-` monomial distinctly, which will allow us to ensure
that this monomial is not canceled out, thus preserving non-zeroness. However, we now would
like to also preserve the property of being a ROABP. Without modification, using the SV-generator
will result in a polynomial that is not read-once in the variables z. We resolve this issue by giving
each bucket its own SV-generator for support-1. By commutativity, we can reorder the n variables
such that they are grouped by the buckets they hash into. Thus, each bucket is then read-once,
which implies that we now have an ROABP in ≈ ` variables. We can then apply the hitting set
result of Forbes-Shpilka [FS12b] as it has the desired poly(s, n)lg ` = poly(s, n)lg lg s dependence.

We now turn to the details. We begin by quoting the tools we will need. We begin by quoting
results showing that diagonal circuits, and the more general notion of “low rank” polynomials,
have a small-support monomial, without any shifting.

Lemma 7.1. For f(x) ∈ F[x], define

dim(∂(f)) := dimF{∂xa(f)}a

to be the dimension of its partial derivatives, over the field F. Then f is computed by a width-dim(∂(f)),
individual degree < (deg f + 1) commutative ROABP. Further, f 6≡ 0 iff it contains a nonzero monomial
of support ≤ lg r. In particular, if f is computed by a diagonal circuit of size s, then dim(∂(f)) ≤
poly(s,deg(f)).

Proof: The structural results relating diagonal circuits, dimension of partial derivatives, and com-
mutative ROABPs, are due to Saptharishi, as reported in Section 6 of Forbes-Shpilka [FS12b]. The
small-support monomial result is due to Theorem 6.9 in Forbes-Shpilka [FS13].

We note that Agrawal-Saha-Saxena [ASS12] gave a set of shifts, of polynomial size, that will
shift any diagonal circuit to have small-support, while the above shows that no shift is needed.

We now quote the hitting set of Forbes-Shpilka [FS12b] for ROABPs with variable order x1 <
· · · < xn. Note that commutative ROABPs are ROABPs in any variable order, so fixing the variable
order is not a restriction in this setting. While this hitting set is of quasipolynomial size, and the
hitting sets of Section 4 for commutative ROABPs are also of quasipolynomial size, the exponents
of these quasipolynomials are qualitatively different in their dependencies on the parameters. The
former is of the form polylgn, and the latter is always at least dlg r. Thus, as we are seeking to reduce
the number of variables n, only the former is in a position to use this improvement.
Theorem 7.2 (Forbes-Shpilka hitting set [FS12b]). Let |F| ≥ poly(n, d, r). There is a poly(n, d, r)-
explicit, polynomial map GFS

n,d,r : FO(lgn) → Fn of degree poly(n, d, r), such that for any f(x) computed by
n-variable, individual degree < d, width-r ROABP, we have that f 6≡ 0 iff f ◦ GFS

n,d,r 6≡ 0. 4
Finally, we will need the usage of good hash functions, and we now define the particular

property we need.
7It can be shown that when f is a (depth-3) diagonal circuit, then f ◦ GSV

n,` is computable by a depth-4 diagonal circuit
in ≈ lg r variables. The hitting sets for depth-4 diagonal circuits of Forbes-Shpilka [FS12b] are of desired poly(s, n)lgn

form, thus giving the nO(lg lgn) result for depth-3 diagonal circuits.

31

Definition 7.3. A family H = {h : [n] → [m]} is a (n,m, `)-perfect hash function family if for every
S ⊆ [n] of size |S| ≤ `, there is an h ∈ H such that h is injective on S. ♦

There is an extensive literature on such hash functions. Mehlhorn [Meh82] gave matching lower
and (non-constructive) upper bounds on the size ofH in such a family. Schmidt and Siegel [SS89]
gave optimal constructive upper bounds in a certain regime of parameters. However, for our
range of parameters we can more simply use pairwise independent hash functions, as seen in the
following standard lemma, which we instantiate with explicit pairwise independent hash functions
(for example, see Carter and Wegman [CW79] or the survey of Vadhan [Vad12]).
Lemma 7.4. LetH be a family of pairwise independent hash functions from [n]→ [m], where m ≥ `2. Then
H is a (n,m, `)-perfect hash function family. In particular, there is an poly(n,m, `)-explicit (n,m, `)-perfect
hash family with m = 2dlg `

2e and |H| ≤ poly(n,m, `). 4
We now turn to the actual construction. One part of the construction will simply interpolate

through the different hash functions in the hash family. More interestingly, we will hash the n
variables into buckets, giving each bucket its own SV-generator.
Construction 7.5. Let H be a (n,m, `)-perfect hash family. Let |F| > |H|, n. Associate a distinct
element ηh ∈ F for each h ∈ H. Define GH : (F2)m × F→ Fn by(

GH
n,m,`(y1, . . . , ym, z1, . . . , zm, u)

)
i

:=
∑
h∈H

(
GSV
n,1(yh(i), zh(i))

)
i
· 1u=ηh

for i ∈ [n], where 1w=ηh denotes the Lagrange interpolation polynomial for the points {ηh}h∈H, of
degree ≤ |H|. ♦

In words, for every function h ∈ H we assign the SV generator on variables (yk, zk) to the
x-variables that were mapped by h to the k-th bucket. We now give the desired properties of this
construction.

Lemma 7.6. Assume the setup of Construction 7.5, and the setup of the SV-generator of Theorem 2.4. Let
f(x) ∈ F[x] be computed by a width-r, individual degree < d, commutative ROABP. Suppose that f has
a nonzero support-(≤ `) monomial. Then there is a value of α ∈ F such that f ◦ GH

n,m,`(y,y
dn2
, α) is a

nonzero width-r, individual degree < d2n4, commutative ROABP in m variables.

Proof: f ◦ GH 6≡ 0: Let the nonzero support-(≤ `) monomial be xa. Let S = supp(a) ⊆ [n], thus
|S| ≤ `. It follows that there is some hash h ∈ H such that h is injective on S. Let α← ηh. Thus, we
have that (GH

n,m,`(y, z, α))i = (GSV
n,1(yh(i), zh(i)))i. For j ∈ [m], set zj ← ξh−1(j)∩S , where h−1(j) ∩ S

is the unique element in S that hashes to j, or otherwise we take it to be 0. Call this assignment
z ← ξ0.

Recalling that taking zj ← ξ0 zeroes out the corresponding yj , and that taking zj ← ξk makes
yj only appear in the k-th output slot, we see that GH

n,m,`(y, ξ0, α)) places distinct variables of
y into the set supp(xa), and otherwise outputs 0. It follows that f ◦ GH

n,m,`(y, ξ0, α)) contains
exactly those monomials in f whose support is contained in supp(xa), and there is no cancellation.
Therefore, the nonzero monomial xa survives this assignment, thus f ◦ GH

n,m,`(y, ξ0, α)) 6≡ 0 and
hence f ◦ GH

n,m,`(y, z, α)) 6≡ 0.
Now note that f has individual degree < d, and thus total degree < dn. The generator GH

n,m,`

has individual degree ≤ n in y and z. It follows that f ◦ GH
n,m,`(y, z, α) has individual degree < dn2

32

in each variable in y and z. Thus, applying the Kronecker substitution it follows that we can
substitute z ← ydn

2
and preserve nonzero-ness.

individual deg < d2n4: As argued above, before the substitution “z ← ydn
2
” we had individual

degree < dn2, and the substitution multiplies this by another dn2 factor.
f ◦ GH has a small commutative ROABP: Let π : [m] → [m] be any permutation, so that we

wish to show that f ◦ GH has a small ROABP in the variable order yπ(1), . . . , yπ(m). Note that π
induces an partial order≺ on [n] via the hash function h chosen above. That is, say that for i, j ∈ [n]
that i ≺ j if π−1(h(i)) < π−1(h(j)). Now extend≺ to a total order on [n] arbitrarily, and also call the
induced permutation σ : [n]→ [n]. Thus, σ is the permutation that orders the variables according
to ≺.

As f has a commutative ROABP, it follows that f(x) is a linear function of the entries of a
matrix-valued ROABP F (x) =

∏
i∈[n]Mi(xσ(i)) for Mi(xσ(i)) ∈ F[xσ(i)]

r×r of individual degree

< d. Now we plug in the above generator, and this yields that f ◦ GH
n,m,`(y,y

dn2
, α) is a linear

combination of the entries of∏
i∈[n]

Mi

((
GH
n,m,`(y,y

dn2
, α)
)
σ(i)

)
=
∏
i∈[n]

Mi

(
GSV
n,1

(
yh(σ(i)), y

dn2

h(σ(i))

))
=
∏
j∈[m]

∏
h(σ(i))=π(j)

Mi

(
GSV
n,1

(
yπ(j), y

dn2

π(j)

))
=
∏
j∈[m]

M ′j(yπ(j))

where the above products are always increasing in i ∈ [n] and j ∈ [m] (so that this respects the
non-commutativity of this matrix product, via the choice of π and σ), and

M ′j(yπ(j)) :=
∏

h(σ(i))=π(j)

Mi

(
GSV
n,1

(
yπ(j), y

dn2

π(j)

))
so that M ′j(yπ(j)) ∈ F[yπ(j)]

r×r. It follows that we have expressed f ◦ GH as a width-r ROABP in
the order defined by π, and as π was arbitrary, it follows that f ◦ GH has a width-r commutative
ROABP.

Thus, we have shown that commutative ROABPs with small-support monomials can have
their number of variables essentially reduced to the size of that small-support monomial. We now
combine this with the results of Forbes-Shpilka [FS12b] to derive our improved hitting sets.

Theorem 7.7. Let |F| ≥ poly(n, d, r, `). There is a poly(n, d, r, `)-explicit, polynomial map GH+FS
n,d,r,` :

FO(lg `) → Fn of degree poly(n, d, r, `), such that for any f(x) ∈ F[x] computed by a width-r, individual
degree < d commutative ROABP, where f 6≡ 0 iff f has a nonzero support-(≤ `) monomial, we have that
f 6≡ 0 iff f ◦ GH+FS

n,d,r,` 6≡ 0.
In particular, when |F| ≥ poly(n, d, s), the class of size-s, n-variable, total degree d diagonal cir-

cuits has poly(n, d, s)-explicit hitting sets of size poly(n, d, s)O(lg lg(ds)). More generally, when |F| ≥
poly(n, r), the class of n-variate polynomials f with dim(∂f) ≤ r has poly(n, r)-explicit hitting sets of size
poly(n, r)O(lg lg r).

Similarly, if |F| ≥ poly(n, d, r), the class of width-r, n-variable, individual degree < d commutative
ROABPs has a poly(n, d, r)-explicit hitting set of size poly(n, dlg r) · poly(n, d, r)O(lg lg r).

33

Proof: ⇐= : Clear.
=⇒ : By assumption, f 6≡ 0 and has a support-(≤ `) monomial. We can instantiate the hashing

generator GH of Lemma 7.6 with the perfect hashing family of Lemma 7.4, so that f ◦ GH
n,O(`2),`

is nonzero and computable by a width-r, individual degree poly(d, n), commutative ROABP
on O(`2) variables, for some value of the variable u. It thus follows from Theorem 7.2 that
f ◦ GH

n,O(`2),` ◦ G
FS
O(`2),poly(n,d),r

6≡ 0, as this was true for some value of u, so is also true when u is
symbolic. Taking GH+FS := GH ◦ GFS with the relevant parameters, we see that this generator has
the desired explicitness, degree bound, and number of variables.

diagonal/low-rank circuits: Lemma 7.1 recalled that nonzero low-rank polynomials have,
without shifting, a nonzero monomial of support O(lg(sd)) (or O(lg r) for low-rank circuits), and
are computed by commutative ROABPs of width-poly(s, d) (or width-poly(r) for low-rank circuits),
so applying the above generator and interpolating gives the result.

low individual degree commutative ROABPs: Given such an f , we can shift it to have support-
O(lg r) rank concentration, by instantiating Theorem 4.1 with the O(lg r)-wise independent mono-
mial map from the KS-generator given in Lemma 4.4. This poly(n, d, r)-explicit monomial map
has individual degree poly(n, d), and O(lg r · lognd d) variables. As this gives a small-support
monomial, we can then hit f by adding in the GH+FS generator above, and then interpolate the
entire polynomial. The KS-generator will use poly(n, dlg r) possible values, and this will multiply
on the number of values from the GH+FS generator.

Note that the last result on commutative ROABPs becomes (nr)O(lg lg r) when d = O(1).

Acknowledgements

This work was done while the first two authors were visiting the third. The first two authors would
like to thank Chandan Saha for explaining the work of Agrawal-Saha-Saxena [ASS12] to them.

References

[Agr05] M. Agrawal. Proving lower bounds via pseudo-random generators. In Proceedings of
the 25th FSTTCS, volume 3821 of LNCS, pages 92–105, 2005.

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathematics, 160(2):781–
793, 2004.

[AMS08] V. Arvind, P. Mukhopadhyay, and S. Srinivasan. New results on noncommutative and
commutative polynomial identity testing. In Proceedings of the 23rd Annual CCC, pages
268–279, 2008.

[ASS12] M. Agrawal, C. Saha, and N. Saxena. Quasi-polynomial hitting-set for set-depth-∆
formulas. Electronic Colloquium on Computational Complexity (ECCC), 19(113), 2012.

[AV08] M. Agrawal and V. Vinay. Arithmetic circuits: A chasm at depth four. In Proceedings of
the 49th Annual FOCS, pages 67–75, 2008.

[BD10] A. Bostan and P. Dumas. Wronskians and linear independence. American Mathematical
Monthly, 117(8):722–727, 2010.

34

http://doi.ieeecomputersociety.org/10.1109/CCC.2008.22
http://doi.ieeecomputersociety.org/10.1109/CCC.2008.22
http://eccc.hpi-web.de/report/2012/113/
http://eccc.hpi-web.de/report/2012/113/

[BDVY13] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudayoff. Pseudorandomness for width-2
branching programs. Theory of Computing, 9:283–293, 2013.

[BPW11] A. Bogdanov, P. A. Papakonstantinou, and A. Wan. Pseudorandomness for read-once
formulas. In FOCS, pages 240–246, 2011.

[BRRY10] M. Braverman, A. Rao, R. Raz, and A. Yehudayoff. Pseudorandom generators for
regular branching programs. In Proceedings of the 51st annual FOCS, pages 40–47, 2010.

[BSC+12] A. Bostan, B. Salvy, M. F. I. Chowdhury, É. Schost, and R. Lebreton. Power series
solutions of singular (q)-differential equations. In ISSAC, pages 107–114, 2012.

[BV10] J. Brody and E. Verbin. The coin problem and pseudorandomness for branching
programs. In Proceedings of the 51st annual FOCS, pages 30–39, 2010.

[CGK+13] A. Chattopadhyay, B. Grenet, P. Koiran, N. Portier, and Y. Strozecki. Factoring bivariate
lacunary polynomials without heights. In ISSAC, pages 141–148, 2013.

[CLO06] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms: An Introduction to
Computational Algebraic Geometry and Commutative Algebra. Springer, 2006.

[CW79] J. L. Carter and M. N. Wegman. Universal classes of hash functions. J. Comput. Syst.
Sci., 18:143–154, 1979.

[De11] A. De. Pseudorandomness for permutation and regular branching programs. In IEEE
Conference on Computational Complexity, pages 221–231, 2011.

[DGW09] Z. Dvir, A. Gabizon, and A. Wigderson. Extractors and rank extractors for polynomial
sources. Computational Complexity, 18(1):1–58, 2009.

[DKSS09] Z. Dvir, S. Kopparty, S. Saraf, and M. Sudan. Extensions to the method of multiplicities,
with applications to kakeya sets and mergers. In FOCS, pages 181–190, 2009.

[DL78] R. A. DeMillo and R. J. Lipton. A probabilistic remark on algebraic program testing.
Inf. Process. Lett., 7(4):193–195, 1978.

[DS06] Z. Dvir and A. Shpilka. Locally decodable codes with 2 queries and polynomial identity
testing for depth 3 circuits. SIAM J. on Computing, 36(5):1404–1434, 2006.

[DSY09] Z. Dvir, A. Shpilka, and A. Yehudayoff. Hardness-randomness tradeoffs for bounded
depth arithmetic circuits. SIAM J. on Computing, 39(4):1279–1293, 2009.

[FS12a] M. A. Forbes and A. Shpilka. On identity testing of tensors, low-rank recovery and
compressed sensing. In Proceedings of the 44th annual STOC, pages 163–172, 2012.

[FS12b] M. A. Forbes and A. Shpilka. Quasipolynomial-time identity testing of non-
commutative and read-once oblivious algebraic branching programs. Electronic Collo-
quium on Computational Complexity (ECCC), 19(115), 2012.

[FS13] M. A. Forbes and A. Shpilka. Explicit Noether normalization for simultaneous conjuga-
tion via polynomial identity testing. Electronic Colloquium on Computational Complexity
(ECCC), 20:33, 2013.

35

http://dx.doi.org/10.4086/toc.2013.v009a007
http://dx.doi.org/10.4086/toc.2013.v009a007
http://dx.doi.org/10.1109/FOCS.2011.57
http://dx.doi.org/10.1109/FOCS.2011.57
http://doi.ieeecomputersociety.org/10.1109/FOCS.2010.11
http://doi.ieeecomputersociety.org/10.1109/FOCS.2010.11
http://doi.acm.org/10.1145/2442829.2442848
http://doi.acm.org/10.1145/2442829.2442848
http://doi.ieeecomputersociety.org/10.1109/FOCS.2010.10
http://doi.ieeecomputersociety.org/10.1109/FOCS.2010.10
http://doi.acm.org/10.1145/2465506.2465932
http://doi.acm.org/10.1145/2465506.2465932
http://dx.doi.org/10.1109/CCC.2011.23
http://dx.doi.org/10.1007/s00037-009-0258-4
http://dx.doi.org/10.1007/s00037-009-0258-4
http://doi.ieeecomputersociety.org/10.1109/FOCS.2009.40
http://doi.ieeecomputersociety.org/10.1109/FOCS.2009.40
http://doi.acm.org/10.1145/2213977.2213995
http://doi.acm.org/10.1145/2213977.2213995
http://eccc.hpi-web.de/report/2013/033
http://eccc.hpi-web.de/report/2013/033

[GK13] V. Guruswami and S. Kopparty. Explicit subspace designs. Electronic Colloquium on
Computational Complexity (ECCC), 20:60, 2013.

[GKKS12] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. An exponential lower bound for
homogeneous depth four arithmetic circuits with bounded bottom fanin. Electronic
Colloquium on Computational Complexity (ECCC), 19:98, 2012.

[GKKS13] A. Gupta, P. Kamath, N. Kayal, and R. Saptharishi. Arithmetic circuits: A chasm at
depth three. Electronic Colloquium on Computational Complexity (ECCC), 20(26), 2013.

[GMR+12] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. P. Vadhan. Better pseudorandom
generators from milder pseudorandom restrictions. In Proceedings of the 53rd Annual
FOCS, pages 120–129, 2012.

[GR08a] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields.
Combinatorica, 28(4):415–440, 2008.

[GR08b] V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity: Error-
correction with optimal redundancy. IEEE Transactions on Information Theory, 54(1):135–
150, 2008.

[GW13] V. Guruswami and C. Wang. Linear-algebraic list decoding for variants of reed-solomon
codes. IEEE Transactions on Information Theory, 59(6):3257–3268, 2013.

[HS80] J. Heintz and C. P. Schnorr. Testing polynomials which are easy to compute (extended
abstract). In Proceedings of the 12th annual STOC, pages 262–272, 1980.

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In
Proceedings of the 53rd annual FOCS, pages 111–119, 2012.

[INW94] R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algo-
rithms. In Proceedings of the 26th annual STOC, pages 356–364, 1994.

[KC02] V. Kac and P. Cheung. Quantum calculus. Universitext. Springer-Verlag, New York,
2002.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[KMSV10] Z. S. Karnin, P. Mukhopadhyay, A. Shpilka, and I. Volkovich. Deterministic identity
testing of depth 4 multilinear circuits with bounded top fan-in. In Proceedings of the
42nd Annual STOC, pages 649–658, 2010.

[KNP11] M. Koucký, P. Nimbhorkar, and P. Pudlák. Pseudorandom generators for group
products: extended abstract. In STOC, pages 263–272, 2011.

[KS01] A. Klivans and D. Spielman. Randomness efficient identity testing of multivariate
polynomials. In Proceedings of the 33rd Annual STOC, pages 216–223, 2001.

[KS07] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. Computational
Complexity, 16(2):115–138, 2007.

36

http://eccc.hpi-web.de/report/2013/060
http://eccc.hpi-web.de/report/2012/098
http://eccc.hpi-web.de/report/2012/098
http://eccc.hpi-web.de/report/2013/26/
http://eccc.hpi-web.de/report/2013/26/
http://doi.ieeecomputersociety.org/10.1109/FOCS.2012.77
http://doi.ieeecomputersociety.org/10.1109/FOCS.2012.77
http://dx.doi.org/10.1007/s00493-008-2259-3
http://dx.doi.org/10.1109/TIT.2007.911222
http://dx.doi.org/10.1109/TIT.2007.911222
http://dx.doi.org/10.1109/TIT.2013.2246813
http://dx.doi.org/10.1109/TIT.2013.2246813
http://doi.acm.org/10.1145/195058.195190
http://doi.acm.org/10.1145/195058.195190
http://dx.doi.org/10.1007/978-1-4613-0071-7
http://doi.acm.org/10.1145/1993636.1993672
http://doi.acm.org/10.1145/1993636.1993672

[KS09] N. Kayal and S. Saraf. Blackbox polynomial identity testing for depth 3 circuits. In
Proceedings of the 50th Annual FOCS, pages 198–207, 2009.

[KS11] Z. S. Karnin and A. Shpilka. Black box polynomial identity testing of generalized
depth-3 arithmetic circuits with bounded top fan-in. Combinatorica, 31(3):333–364, 2011.

[KS12] N. Kayal and C. Saha. On the sum of square roots of polynomials and related problems.
TOCT, 4(4):9, 2012.

[KUW86] R. M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect matching is in random
NC. Combinatorica, 6(1):35–48, 1986.

[Meh82] K. Mehlhorn. On the program size of perfect and universal hash functions. In FOCS,
pages 170–175, 1982.

[Mul12] K. Mulmuley. Geometric complexity theory V: Equivalence between blackbox deran-
domization of polynomial identity testing and derandomization of Noether’s normal-
ization lemma. In FOCS, pages 629–638, 2012.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion.
Combinatorica, 7(1):105–113, 1987.

[Nis91] N. Nisan. Lower bounds for non-commutative computation. In Proceedings of the 23rd
Annual STOC, pages 410–418, 1991.

[Nis92] N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NW96] N. Nisan and A. Wigderson. Lower bound on arithmetic circuits via partial derivatives.
Computational Complexity, 6:217–234, 1996.

[NZ96] N. Nisan and D. Zuckerman. Randomness is linear in space. J. of Computer and System
Sciences, 52(1):43–52, 1996.

[Raz06] R. Raz. Separation of multilinear circuit and formula size. Theory of Computing, 2(1):121–
135, 2006.

[Raz09] R. Raz. Multi-linear formulas for permanent and determinant are of super-polynomial
size. J. ACM, 56(2), 2009.

[Rot91] R. Roth. Maximum-rank array codes and their application to crisscross error correction.
IEEE Transactions on Information Theory, 37(2):328–336, 1991.

[RR99] R. Raz and O. Reingold. On recycling the randomness of states in space bounded
computation. In Proceedings of the 31st annual STOC, pages 159–168, 1999.

[RS05] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005.

[RSV13] O. Reingold, T. Steinke, and S. P. Vadhan. Pseudorandomness for regular branching
programs via fourier analysis. In APPROX-RANDOM, pages 655–670, 2013.

37

http://dx.doi.org/10.1007/s00493-011-2537-3
http://dx.doi.org/10.1007/s00493-011-2537-3
http://doi.acm.org/10.1145/2382559.2382560
http://dx.doi.org/10.1007/BF02579407
http://dx.doi.org/10.1007/BF02579407
http://doi.ieeecomputersociety.org/10.1109/SFCS.1982.80
http://doi.ieeecomputersociety.org/10.1109/FOCS.2012.15
http://doi.ieeecomputersociety.org/10.1109/FOCS.2012.15
http://doi.ieeecomputersociety.org/10.1109/FOCS.2012.15
http://dx.doi.org/10.4086/toc.2006.v002a006
http://doi.acm.org/10.1145/1502793.1502797
http://doi.acm.org/10.1145/1502793.1502797
http://doi.acm.org/10.1145/301250.301294
http://doi.acm.org/10.1145/301250.301294
http://dx.doi.org/10.1007/978-3-642-40328-6_45
http://dx.doi.org/10.1007/978-3-642-40328-6_45

[RSY08] R. Raz, A. Shpilka, and A. Yehudayoff. A lower bound for the size of syntactically
multilinear arithmetic circuits. SIAM J. on Computing, 38(4):1624–1647, 2008.

[RY09] R. Raz and A. Yehudayoff. Lower bounds and separations for constant depth multilin-
ear circuits. Computational Complexity, 18(2):171–207, 2009.

[Sax08] N. Saxena. Diagonal circuit identity testing and lower bounds. In ICALP (1), pages
60–71, 2008.

[Sch80] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.
ACM, 27(4):701–717, 1980.

[SS89] J. P. Schmidt and A. Siegel. On aspects of universality and performance for closed
hashing (extended abstract). In Proceedings of the 21st annual STOC, pages 355–366, 1989.

[SS11] N. Saxena and C. Seshadhri. Blackbox identity testing for bounded top fanin depth-3
circuits: the field doesn’t matter. In Proceedings of the 43rd Annual STOC, pages 431–440,
2011.

[SSS11] C. Saha, R. Saptharishi, and N. Saxena. A case of depth-3 identity testing, sparse
factorization and duality. Electronic Colloquium on Computational Complexity (ECCC),
18:21, 2011.

[Ste12] T. Steinke. Pseudorandomness for permutation branching programs without the group
theory. Electronic Colloquium on Computational Complexity (ECCC), 19:83, 2012.

[SV09] A. Shpilka and I. Volkovich. Improved polynomial identity testing for read-once
formulas. In APPROX-RANDOM, pages 700–713, 2009.

[SV11] S. Saraf and I. Volkovich. Black-box identity testing of depth-4 multilinear circuits. In
Proceedings of the 43rd annual STOC, pages 421–430, 2011.

[SY10] A. Shpilka and A. Yehudayoff. Arithmetic circuits: A survey of recent results and open
questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

[SZ11] J. Sı́ma and S. Zák. Almost k-wise independent sets establish hitting sets for width-3
1-branching programs. In CSR, pages 120–133, 2011.

[Tzu09] Y. Tzur. Notions of weak pseudorandomness and GF(2n)-polynomials. Master’s thesis,
Weizmann Institute of Science, 2009.

[Vad12] S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science,
7(1-3):1–336, 2012.

[WY12] A. Wigderson and A. Yehudayoff. Population recovery and partial identification. In
FOCS, pages 390–399, 2012.

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. In EUROSAM, pages
216–226, 1979.

38

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

http://dx.doi.org/10.1007/s00037-009-0270-8
http://dx.doi.org/10.1007/s00037-009-0270-8
http://dx.doi.org/10.1007/978-3-540-70575-8_6
http://doi.acm.org/10.1145/73007.73041
http://doi.acm.org/10.1145/73007.73041
http://eccc.hpi-web.de/report/2011/021
http://eccc.hpi-web.de/report/2011/021
http://eccc.hpi-web.de/report/2012/083
http://eccc.hpi-web.de/report/2012/083
http://doi.acm.org/10.1145/1993636.1993693
http://dx.doi.org/10.1007/978-3-642-20712-9_10
http://dx.doi.org/10.1007/978-3-642-20712-9_10
http://eccc.hpi-web.de/resources/pdf/tzur.pdf
http://dx.doi.org/10.1561/0400000010
http://doi.ieeecomputersociety.org/10.1109/FOCS.2012.14
http://dx.doi.org/10.1007/3-540-09519-5_73

