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Abstract

The PCP theorem (Arora et. al., J. ACM 45(1,3)) asserts the existence of proofs that
can be verified by reading a very small part of the proof. Since the discovery of the theorem,
there has been a considerable work on improving the theorem in terms of the length of the
proofs, culminating in the construction of PCPs of quasi-linear length, by Ben-Sasson and
Sudan (SICOMP 38(2)) and Dinur (J. ACM 54(3)).

One common theme in the aforementioned PCP constructions is that they all rely heavily
on sophisticated algebraic machinery. The aforementioned work of Dinur (J. ACM 54(3)) sug-
gested an alternative approach for constructing PCPs, which gives a simpler and arguably more
intuitive proof of the PCP theorem using combinatorial techniques. However, this combinatorial
construction only yields PCPs of polynomial length, and is therefore inferior to the algebraic
constructions in this respect. This gives rise to the natural question of whether the proof length
of the algebraic constructions can be matched using the combinatorial approach.

In this work, we provide a combinatorial construction of PCPs of length n · (log n)
O(log logn),

coming very close to the state of the art algebraic constructions (whose proof length is n ·
(log n)

O(1)). To this end, we develop a few generic PCP techniques which may be of independent
interest.

It should be mentioned that our construction does use low degree polynomials at one point.
However, our use of polynomials is confined to the construction of error correcting codes with a
certain simple multiplication property, and it is conceivable that such codes could be constructed
without the use of polynomials. In addition, we provide a variant of the main construction that
does not use polynomials at all, and has proof length n4 · (log n)

O(log logn). This is already an
improvement over aforementioned combinatorial construction of Dinur.

1 Introduction

1.1 Background and Our Results

The PCP theorem [AS98, ALM+98] is one of the major achievements of complexity theory. A PCP
(Probabilistically Checkable Proof) is a proof system that allows checking the validity of a claim
by reading only a constant number of bits of the proof. The PCP theorem asserts the existence of
PCPs of polynomial length for any claim that can be stated as membership in an NP language. The
theorem has found many applications, most notably in establishing lower bounds for approximation
algorithms.
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The original proof of the PCP theorem by Arora et al. [AS98, ALM+98] was based on algebraic
techniques: Given a claim to be verified, they construct a PCP for the claim by first “arithmetizing”
the claim, i.e., reducing the claim to a related “algebraic” claim about polynomials over finite fields,
and then constructing a PCP for this algebraic claim. The PCP for the algebraic claim, in turn,
requires an arsenal of tools that employ the algebraic structure of polynomials. While those algebraic
techniques are very important and useful, it seems somewhat odd that one has to go through algebra
in order to prove the PCP theorem, since the theorem itself does not refer to algebra. Furthermore,
those techniques seem to give little intuition as to why the theorem holds.

Given this state of affairs, it is an important goal to gain a better understanding of the PCP
theorem and the reasons for which it holds. In her seminal paper, Dinur [Din07]1 has made a big step
toward achieving this goal by giving an alternative proof of the PCP theorem using a combinatorial
approach. Her proof is not only considerably simpler than the original proof, but also seems to shed
more light on the intuitions that underlie the theorem.

However, Dinur’s PCP construction is still inferior to the algebraic constructions in a few aspects.
We believe that it is important to try to come up with combinatorial constructions of PCPs that
match the algebraic constructions in those aspects, as this will hopefully advance our understanding
of the PCP theorem. Two of those aspects, namely the running time of the verification procedure
and the soundness error, have been dealt with in previous works on the subject [DM10, Mei09]. In
this work, we deal with a third aspect that concerns the length of the proofs, to be discussed next.

Let L be a language in NP, and recall that there is a polynomial-time algorithm V that verifies
the membership of a string x in L when given an additional NP-witness. Let t : N→ N denote the
running time of V . The original PCP theorem asserts that in order to verify that x ∈ L, the PCP
verifier needs to use a proof of length poly (t(|x|)) and O(1) queries to the proof. However, using
algebraic techniques, one can construct PCP verifiers that use a proof of length only t · poly log(t)
and O(1) queries [BS08, Din07]2. It is not known whether one can construct such PCPs using a
combinatorial approach such as Dinur’s3.

In addition to the proof length of the PCP verifier, we are also interested in its randomness
complexity, that is, the number of random bits that are used by the verifier. The randomness
complexity of PCP verifiers is usually logarithmic in their proof length, and tends to be more
important than the proof length for applications of PCPs. The original PCP theorem, as well as
Dinur’s proof, yield PCP verifiers that have randomness complexity O(log t). However, the algebraic
constructions of [BS08, Din07] achieve randomness complexity log t+O(log log t).

In this work, we present an (almost) combinatorial construction of PCPs that use proofs of
length t · (log t)O(log log t) and have randomness complexity log t + O(log2 log t), thus coming very
close to the state of the art algebraic constructions. Formally, our main result is the following

Theorem 1.1 (Main theorem). For every time-constructible t : N → N and every language L ∈
NTIME(t), there exists a PCP verifier for L with proof length t · (log (t))O(log log t), randomness
complexity log t+O(log2 log t), query complexity O(1), and rejection probability Ω(1).

In order to prove Theorem 1.1, we develop a few generic PCP techniques that may be of inde-
pendent interest, and are discussed in Section 1.2.

1We mention that the works of [GS00, DR06] have addressed this goal prior to Dinur’s work [Din07], but fell short
of obtaining Dinur’s result.

2In addition, the work of [BKK+13] shows that if one is willing to use nε queries, then for the specific NP language
CircuitSat it is possible to construct (non-uniformly) PCPs of length O(n).

3We mention that the construction of PCPs that have proof length t · poly log (t) uses Dinur’s combinatorial
techniques in addition to the algebraic techniques. Still, the main part of this construction is algebraic.
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Our use of polynomials. As mentioned above, our construction is only “almost” combinatorial.
The only exception is that our construction does use low degree polynomials at one point. However,
our use of polynomials is a very restricted one, and is confined to the construction of error correcting
codes with a certain simple property. Specifically, we only use polynomials to construct a triplet of
linear codes (CA, CB, CM ) that have the following “multiplication property”:

• For every two codewords cA ∈ CA and cB ∈ CB, it holds that cA · cB is a codeword of CM ,
where cA · cB is obtained by coordinate-wise multiplication of cA and cB. The multiplication
is done in the finite field over which the codes are linear.

Such a triplet (CA, CB, CM ) can easily be constructed using low-degree polynomials, e.g., by setting
CA and CB to be Reed-Solomon codes of degree d and setting CM to be a Reed-Solomon code of
degree 2d. Moreover, if the codes CA, CB, and CM are allowed to have quadratic length, then they
can also be constructed without using polynomials [Mei10]. However, in order to achieve the proof
length 1.1 we need the codes CA, CB, and CM to have quasi-linear length, and we do not know
how to construct such codes without using polynomials. Still, a combinatorial construction of such
codes is conceivable.

We also note that we can get purely combinatorial PCPs with proof length t4 · (log (t))O(log log t)

by plugging the latter multiplication codes of [Mei10] into our PCP construction. Moreover, we
believe that it can be pushed down further to t2 · (log (t))O(log log t), but have not verified it. While
this result is far from the state-of-the-art PCPs, it is still a significant improvement over the previous
combinatorial PCPs of [Din07], which have proof length nO(1), where the power is an unspecified
constant that can be expected to be very large. For more details, see Section 7.2.

Extension of our result to PCPPs. We mention that as in previous works in this area,
our construction of PCPs can be extended to yield the stronger notion of PCPs of Proximity
(PCPPs, [BGH+06, DR06]). For details, see Section 2.3.

1.2 Our techniques

Below, we sketch the main steps of our construction and the main techniques that we use.

Constructing PCPs from linear PCPPs. Our first step is reducing the construction of PCPs
to the construction of a simpler object, called linear PCPPs [BHLM09]. Informally, a linear PCPP is
a verifier that, when given a linear subspace W ⊆ Fn and oracle access to a vector w ∈ Fn, verifies
that w ∈ W by making few queries to w and to an alleged proof. In other words, a linear PCPP
is the restriction of the notion of a PCPP [BGH+06, DR06] to the verification of membership in
linear subspaces.

We show that any construction of a linear PCPP implies a construction of a full-fledged PCP,
with a poly-logarithmic loss in the parameters. The construction of the full-fledged PCP is generic,
and uses the linear PCPP as a black box. We believe that this construction is interesting in its own
right, and may be useful for future works4.

Our construction of PCPs from linear PCPPs is performed by combining the linear PCPP with
the multiplication codes that were discussed in Section 1.1. Intuitively, the multiplication codes
allow us to go from verifying linear claims to verifying non-linear claims.

4We note that the work of [BS08] has shown a stronger result, namely, that one can construct a full-feldged PCP
from a linear PCPP that can only verify membership in a Reed-Solomon code (rather than a general linear subspace).
However, their construction is signicantly more complicated than ours, and relies heavily on algebraic machinery.
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Robustization via tensor product codes. Our next step is to note, following [BGH+06, DR06,
BS08, Din07], that it suffices to construct a linear PCPP that makes Õ(

√
n) queries to its oracle and

has proof length Õ(n). Such a linear PCPP can then be composed with itself for O(log log n) times
to yield5 a linear PCPP with a constant number of queries and proof length n · (log n)O(log logn).

In order for us to be able to apply such composition [AS98, ALM+98], the linear PCPP is required
to have a property called robustness [BGH+06, DR06]. The robustness property was achieved in
several previous works by a technique called “robustization” [BGH+06, DR06] (a.k.a. “alphabet
reduction” or “parallelization”). The robustization technique allows one to transform every PCP
with a “block-access” property into a robust PCP. Specifically, the latter property may be viewed as
follows: It is required that the PCP proof can be partitioned to blocks, such that the PCP verifier
always queries only a constant number of the blocks.

In our context, we do not know how to construct a PCP that satisfies the foregoing block-access
property. We therefore generalize the robustization technique such that it can be applied to PCPs
that satisfy a weaker requirement.

To this end, instead of partitioning the proof to blocks, we arrange the proof coordinates in a
matrix. From this point of view, the foregoing block-access property may be viewed as restricting
the PCP verifier to reading a constant number of rows of the matrix. We now generalize the robusti-
zation technique by allowing the PCP verifier to query both rows and columns of the aforementioned
matrix, as long as it queries a constant number of rows and columns.

Both the standard robustization technique and our generalization use error correcting codes.
The standard robustization technique transforms a PCP that has “block-access” into a robust one
by encoding each of the blocks by an error correcting code. In our generalization, we transform
the “row/column-access PCP” into a robust one by encoding the corresponding matrix via a robust
tensor product code [BS06]. This means, roughly, that we first encode the rows of the matrix by an
error correcting code, and then encode the columns of the new matrix by an error correcting code.

We stress that this generalization of the robustization method is generic, and may be useful for
future constructions of PCPs.

Constructing linear PCPPs that make Õ(
√
n) queries. It remains to construct a linear

PCPP that makes Õ(
√
n) queries to its oracle, has proof length Õ(n), and satisfies the relaxed

robustization requirement discussed above. The linear PCPP that we construct verifies that w ∈W
in two stages. In the first stage, the linear subspaceW ⊆ Fn and the vector w ∈ Fn are decomposed
into subspaces W1, . . . ,WÕ(

√
n) ⊆ FÕ(

√
n) and vectors w1, . . . , wÕ(

√
n) ∈ FÕ(

√
n), such that w ∈W if

and only if wi ∈Wi for every i. This is done using a decomposition technique of [Mei09].
In the second stage, the linear PCPP verifies that all the smaller assertions wi ∈ Wi hold

simultaneously. To this end, we begin by considering the special case in which the subspaces
W1, . . . ,WÕ(

√
n) are all identical, and show how to handle this simple case using error correcting

codes. Then, we show how to decompose the general case to a constant number of instances of the
foregoing special case, and handle those instances as before. The latter decomposition is performed
via a novel application of routing networks and of the multiplication codes discussed in Section 1.1.

In the author’s opinion, the second stage of this construction is the most interesting part of this
work.

5We mention that after the composition one also needs to apply a query reduction technique and the gap ampli-
fication theorem of Dinur.
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1.2.1 An alternative construction

In addition to the main construction described above, we also present a variant of this construction
that may be more intuitive at the high level, although it is less modular. In this alternative
construction, instead of constructing a linear PCPP and then transforming it to a PCP, we construct
a PCP directly. In fact, we construct a stronger object, namely, a PCP of Proximity for CircuitEval
[BGH+06]. The latter object is a verifier that, when given a boolean circuit ϕ : {0, 1}m → {0, 1}
and oracle access to x ∈ {0, 1}m, verifies that x satisfies ϕ by making few queries to x and to an
alleged proof.

As in the main construction, constructing PCPP for CircuitEval with the required parameters
boils down to constructing a such PCPP with proof length Õ(n) and query complexity Õ(

√
n). As

before, this is done in two stages: first, the circuit ϕ and the assignment x are decomposed to circuits
ϕ1, . . . , ϕÕ(

√
n) of size Õ(

√
n) and tested assignments x1, . . . , xÕ(

√
n). Then, we verify simultaneously

that for every i, the assignment xi satifies ψi.
The crucial difference between the alternative construction and the main construction is in the

way in which the latter simultaneous verification is done. In the main construction, the bulk of the
work goes into reducing the general case to the simple case in which W1 = . . . = WÕ(

√
n), while

dealing with the simple case is easy. In the alternative construction, reducing the general case to
the simple case in which ϕ1 = . . . = ϕÕ(

√
n) is almost trivial, and the bulk of the work goes into

dealing with the latter simple case.
In order to reduce the general case to the simple case, we use the universal circuits. A universal

circuit U takes as input a circuit ψ and an assignment y to ψ, and outputs ψ(y). Now, observe
that verifying that every assignment xi satisfies the circuit ϕi is equivalent to verifying that the
assignment (ϕi, xi) satisfies the universal circuit U . Hence, we can reduce the general case to the
case where ϕ1 = . . . = ϕÕ(

√
n) = U . A similar idea was used in [Mei09] for different purposes.

It remains to deal with the case where ϕ1 = . . . = ϕÕ(
√
n). This is done by reducing this

case to the linear case. That is, we transform ϕ1 = . . . = ϕÕ(
√
n) and x1, . . . , xÕ(

√
n) into a linear

subspace W and vectors w1, . . . , wÕ(
√
n) , such that it suffices to verify that wi ∈W for every i. As

noted above, dealing with latter linear case is easy. The reduction to the linear case itself is done
using the same technique that is used to reduce PCPs to linear PCPPs in the main construction.

1.3 Organization of this paper

In Section 2, we recall the preliminaries that are required for this work, and state our main technical
result (Theorem 2.5). In Section 3, we show how to construct general PCPs based on linear PCPPs.
In Section 4, we show our generalization of the robustization technique. In Section 5, we present
the construction of linear PCPPs with Õ(

√
n) queries. Finally, in Section 6, we show how to use

the foregoing tools to construct the required PCPs and prove the main theorem (Theorem 1.1). We
discuss the alternative construction and the purely combinatorial construction discussed above in
Section 7.

2 Preliminaries

2.1 Notation

All logarithms in this paper are in base 2. For any n ∈ N we denote [n]
def
= {1 . . . , n}. For a string

x ∈ {0, 1}n and a sequence I of coordinates in [n], we denote by x|I the projection of x to the
coordinates in I.
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For every collection of functions g, f1, . . . , fm : N → N, we denote by g = poly (f1, . . . , fm) the
fact that g is upper bounded by some polynomial in f1, . . . , fm. We use the notation

g = poly log (f1, . . . , fm)

as an abbreviation for
g = poly (log f1, . . . , log fm) .

We say that a function t : N→ N is time-constructible if it can be computed in time poly log t, and
this definition extends naturally to functions of many variables.

For any two strings x, y ∈ {0, 1}n, the relative Hamming distance (or, simply, relative distance)
between x and y is the fraction of coordinates on which x and y differ, and is denoted by dist(x, y)

def
=

|{xi 6= yi : i ∈ [n]}| /n. For every set S ⊆ {0, 1}n and a string x ∈ {0, 1}n we denote dist(x, S)
def
=

miny∈S {dist(x, y)} (if S is empty, then we define dist(x, S) = 1). We say that x is ε-far from S
(respectively, ε-close to S) if dist(x, S) > ε (respectively, dist(x, S) ≤ ε).

2.2 Boolean and linear circuits

In this work we consider two types of circuits: boolean circuits and linear circuits.

Boolean circuits. A boolean circuit is the standard type of circuit, whose wires carry boolean
values and whose gates compute boolean operations. For convenience, we only allow NOT and AND
gates. We will only consider boolean circuits that have a single output. We say that a boolean
circuit ϕ : {0, 1}m → {0, 1} accepts an input x ∈ {0, 1}m if ϕ(x) = 1, and otherwise we say that ϕ
rejects x.

Linear circuits. A linear circuit [Val77] is defined with respect to a finite field F. The wires of
such a circuit carry elements of F, and a every gate of in the circuit computes a linear combination
of its inputs, where the coefficients of the linear combination are elements in F. We will usually
consider linear circuits that have multiple outputs.

Note that every output of the circuit is a linear non-affine function6 of the inputs, and that
every linear function over F can be computed by such circuits. We note that in some previous works
the definition of linear circuits is little different, and allows the circuits to compute affine functions.
The reason we choose not to allow affine functions is that it allows us to state a stronger result (see
Theorem 3.1 below).

We say that a linear circuit ϕ : Fm → Fp accepts an input x ∈ Fm if ϕ(x) = 0 ∈ Ft, and otherwise
we say that ϕ rejects x. Observe that the set of inputs accepted by a linear circuit ϕ : Fm → Fp is a
linear subspace of Fm of dimension at least m− p. We denote the latter subspace by SAT(ϕ), and
say that ϕ accepts SAT(ϕ).

The size and fan-in/fan-out of circuits. For both types of circuits, the size of the circuit
is defined to be the number of wires in the circuit. For convenience, we assume without loss of
generality that all the circuits have fan-in and fan-out that are upper bounded by 2.

2.3 PCPs - definitions and techniques

In this section, we review the relevant background on PCPs, PCPs of Proximity (PCPPs), and linear
PCPPs, as well as recall the techniques of composition, query reduction, and gap amplification.

6The function is non-affine because we did not allow constant gates.
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2.3.1 PCPs

Recall that a PCP verifier for a language L is an algorithm that verifies a claim of the form w ∈ L
by querying few bits from an auxilary proof π. It is common to define a PCP verifier as an oracle
machine that is given oracle access to the proof π and is allowed to make only few queries to this
oracle. In this work, we will use a slightly different definition of PCPs from the PCP literature
[ALM+98], which allows keeping track of some additional important parameters of the PCP.

More specifically, in the definition of PCPs we view the verifier as a machine that outputs its
queries (as a list of coordinates), and a predicate (represented as a circuit) that should be applied
to the answers given to those queries. We view the verifier as accepting if the predicate accepts
the answers to the queries, and otherwise we view the verifier as rejecting. The advantage of this
view is that it allows us to keep track of the complexity of the aforementioned predicate, which is
called the decision complexity of the PCP. This view is also needed in order to apply the composition
technique. Formally, we use the following definition of a PCP verifier.

Definition 2.1 (PCP verifier, following [ALM+98]). Let L ⊆ {0, 1}∗ be a language, and let r, q, `, d :
N → N, ρ : N → (0, 1). A PCP verifier V for L with randomness complexity r, query complexity q,
proof length `, decision complexity d, and rejection ratio ρ, is a probabilistic polynomial time machine
that satisfies the following requirements:

1. Input: The verifier V takes as input a string w.

2. Output: The verifier V outputs a tuple I of coordinates in [`(n)] where |I| ≤ q(n), and a
circuit ψ : {0, 1}|I| → {0, 1} of size at most d(n).

3. Randomness complexity: On every input w, and on every sequence of coin tosses, V tosses
at most r(n) coins.

4. Completeness: For every w ∈ L, there exists a string π ∈ {0, 1}`(n) such that

Pr
[
ψ
(
π|I
)

= 1
]

= 1,

where ψ and I are generated by the verifier V on input w.

5. Soundness: For every string w /∈ L and every string π ∈ {0, 1}`(n), it holds that

Pr
[
ψ
(
π|I
)

= 0
]
≥ ρ(n),

where ψ and I are generated by the verifier V on input w.

Dropping the proof length and query complexity. Definition 2.1 refers to many parameters,
and it will be cumbersome to keep track of all of them. Fortunately, it turns out we can avoid keeping
track of the proof length and the query complexity:

• The query complexity: Clearly, the decision complexity upper bounds the query complex-
ity. Thus, in the rest of this work, we do not keep track of the query complexity of our PCP
verifiers. The upper bound on the decision complexity of our PCPs will yield the required
upper bound on their query complexity.

• The proof length: As is common in the PCP literature, we may assume without loss of
generality that the proof length ` is upper bounded by 2r ·q, where r and q are the randomness
complexity and query complexity of the PCP verifier. This assumption is justified by the fact
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that 2r · q is the maximal number of different coordinates that the PCP verifier may query.
Thus, in the rest of this work, we do not keep track of the proof length of our PCP verifiers and
only keep track of their randomness complexity and decision complexity. The upper bounds
on the randomness complexity and decision complexity of our PCPs will yield the required
upper bound on their proof length.

2.3.2 PCPs of Proximity

A PCP of Proximity (PCPP) is a generalization of a PCP that was introduced independently
by [BGH+06] and [DR06]7, where the latter used the term “Assignment Testers”. A PCPP verifier
takes two inputs:

1. An explicit input that is given on the verifier input tape, and which the verifier is allowed to
read entirely.

2. An implicit input, of which the verifier is only allowed to read a small number of bits.

In order to define the languages that such verifiers accept, we need to consider languages of pairs
(w, x), where w is the explicit input and x is the implicit input. This motivates the following
definition:

Definition 2.2. A pair-language is a relation PL ⊆ {0, 1}∗ × {0, 1}∗. For every x ∈ {0, 1}∗, we
denote PL(w)

def
= {x : (w, x) ∈ PL}.

Definition 2.3. Let PL be a pair language, and let t : N × N → N. We say that PL is decidable
in time t if there exists a Turing machine that on input (w, x) ∈ {0, 1}∗ × {0, 1}∗, runs for at most
t(|w| , |x|) steps, and accepts if and only if (w, x) ∈ PL.

Using Definition 2.2, we can describe the task of PCPP verifiers as follows: Given w, x ∈ {0, 1}∗,
verify that x is close to PL(w) by reading all of w, and a small number of bits from x and from an
additional proof. A PCP verifier can be thought of as a special case of a PCPP verifier in which
the implicit input x is empty. Another interesting special case of a PCPP verifier is the case where
the explicit input w is empty, in which case we can think of the PCPP verifier as verifying that the
string x is close to being a correct claim (i.e., close to a language L) while reading only a constant
number of bits of x and of an auxilary proof. The formal definition of a PCPP verifier that we use
is the following.

Definition 2.4 (PCPP verifier, variant of [BGH+05]). Let PL be a pair-language, let r, `, d :
N × N → N, ρ : N × N → (0, 1). A PCPP verifier V for PL with randomness complexity r, proof
length `, decision complexity d, and rejection ratio ρ, is a probabilistic polynomial time machine that
satisfies the following requirements:

1. Input: The verifier V takes as a string w of length n and an integer m (represented in unary).

2. Output: The verifier V outputs a tuple I of coordinates in [m+ `(n,m)], and a circuit
ψ : {0, 1}|I| → {0, 1} of size at most d(n,m).

3. Randomness complexity: On every input (w,m), and on every sequence of coin tosses, V
tosses at most r(n,m) coins.

7We mention that PCPs of Proximity are related to the previous notion holographic proofs of [BFLS91] and to
the work of [Sze99], see [BGH+06] for further discussion.
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4. Completeness: For every input w and a string x ∈ PL(w) of length m, there exists a string
π ∈ {0, 1}`(n,m) such that

Pr
[
ψ
(

(x ◦ π)|I

)
= 1
]

= 1,

where ψ and I are generated by the verifier V on input (w,m). We refer to π as a proof string
that convinces V that x ∈ PL(w).

5. Soundness: For every x ∈ {0, 1}m and every string π ∈ {0, 1}`(n,m), it holds that

Pr
[
ψ
(

(x ◦ π)|I

)
= 0
]
≥ ρ(n,m) · dist (x, PL(w)) ,

where ψ and I are generated by the verifier V on input (w,m). We refer to x as the tested
assignment and to π as the proof string.

Our main PCPP theorem. In this work, we prove the following result, which implies our main
theorem (Theorem 1.1) as a special case.

Theorem 2.5 (Main PCPP theorem). Let t : N× N → N be a time-constructible function and let
PL be a pair-language that is decidable in time t. Then, there exists a PCPP verifier for PL with
randomness complexity log t+O(log2 log t), decision complexity O(1), and rejection ratio Ω(1).

Theorem 2.5 is proved in Section 6. We now show that Theorem 2.5 implies the main theorem,
restated next.

Theorem (1.1, main theorem, restated). For every time-constructible t : N→ N and every language
L ∈ NTIME(t), there exists a PCP verifier for L with proof length t(n) · (log (t(n)))O(log log t(n)),
randomness complexity log t+O(log2 log t), query complexity O(1), and rejection probability Ω(1).

Proof of Theorem 2.5 from Theorem 2.5. Let t : N→ N be a time-constructible function and
let L ∈ NTIME(t) be a language. By definition of NTIME(t), there exists a Turing machine M
such that the following holds: a string w ∈ {0, 1}∗ is in L if and only if there exists a string x ∈ {0, 1}∗
such that M accepts the pair (w, x) in time t(|w|). Now, define

PL
def
= {(w, x) : Maccepts (w, x)in time t(|w|)} ,

let tPL : N × N → N be defined by tPL(n,m) = t(n), and note that PL is a pair language that
is decidable in time t (using the machine M). By Theorem 2.5, there exists a PCPP verifier VPL
for PL that has randomness complexity log tPL + O(log log tPL), decision complexity O(1), and
rejection ratio Ω(1).

We now construct a PCP verifier V for L as follows. For every w ∈ L, a proof π that convinces
V that w ∈ L consists of a string x such that (w, x) ∈ PL and of a proof πPL that convinces VPL
that x ∈ PL(w). When invoked on input w, the verifier V simply emulates VPL.

It is easy to see that V has the required proof length, randomness complexity and query com-
plexity, and that V satisfies the completenss requirement. To see that V has rejection probability ρ,
observe that if w /∈ L, then every string x will satisfy dist (x, L(w)) = 1 (by definition of relative
distance from an empty set), and therefore V will reject with probability at least Ω(1)·1 = Ω(1). �
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2.3.3 Linear PCPPs

We turn to discuss the notion of linear PCPPs [BHLM09]. Informally, a linear PCPP is a PCPP
verifier that checks that a vector w satisfies a linear assertion by reading a small part of w, and of
an alledged proof. A little more formally, a linear PCPP (over a finite field F) is a verifier that takes
as explicit input a linear subspace W ⊆ Fm, read a small number of field elements from a vector
w ∈ Fm and from an additional string π ∈ F∗, accepts with probability 1 if w belongs to W , and
rejects with significant probability if w is far from W . The subspace W is represented by a linear
circuit,

The formal definition of a linear PCPP is similar to the definition of the standard PCPP (Defi-
nition 2.4), with the following differences:

1. The input to the linear PCPP consists of the field F, and of the linear circuit ϕ (which repre-
sents the linear assertion being tested). The field F is represented using some representation
that allows computing field operations in time poly log |F|; for example, if |F| is of size pd

for prime p, then F can be represented by p and an irreducible polynomial of degree d over
GF(p).

2. The implicit input x and proof π are vectors over F rather than boolean strings.

3. The output of the linear PCPP should be a linear circuit over F rather than a boolean circuit.

We turn to present the formal definition of a linear PCPP.

Definition 2.6 (Variant of [BHLM09]). Let r, `, d : N → N, ρ : N → (0, 1). A linear PCPP verifier
V with randomness complexity r, proof length `, decision complexity d, and rejection ratio ρ, is a
probabilistic polynomial time machine that satisfies the following requirements:

1. Input: The verifier V takes as input a finite field F and a linear circuit ϕ : Fm → Fp of size n.

2. Output: The verifier V outputs a tuple I of coordinates in [m+ `(n)], and a linear circuit
ψ : F|I| → Fp′ of size at most d(n).

3. Randomness complexity: On every finite field F and input circuit ϕ, and on every sequence
of coin tosses, V tosses at most r(n) coins.

4. Completeness: For every x ∈ SAT(ϕ) , there exists a string π ∈ F`(n) such that

Pr
[
ψ
(

(x ◦ π)|I

)
accepts

]
= 1,

where ψ and I are generated by the verifier V on input (F, ϕ). We refer to π as the proof of x,
or as the proof that convinces V that ϕ accepts x.

5. Soundness: For every x ∈ Fm and every string π ∈ F`(n), it holds that

Pr
[
ψ
(

(x ◦ π)|I

)
rejects

]
≥ ρ(n) · dist (x,SAT(ϕ)) ,

where ψ and I are generated by the verifier V on input (F, ϕ). We refer to x as the tested
assignment and to π as the proof string.

Remark 2.7. Note that a linear PCPP would have been a special case of a full-fledged PCPP
(Definition 2.4) if it were not for the requirement that it outputs a linear circuit instead of a
boolean circuit. Linear PCPPs were defined by [BHLM09], and are also related to the notion of
linear inner verifier of [GS06].

10



The minimal field size. The above definition of linear PCPPs requires a single verifier to be
able to work with every finite field, rather than requiring the verifier to work only with a fixed finite
field. This is a rather strong definition, and in fact, the actual linear PCPPs that construct are
weaker, and can only work with large finite fields. This motivates the definition of the following
additional parameter of a linear PCPP.

Definition 2.8. Let F : N→ N. We say that a linear PCPP has a minimal field size F if, whenever
it is invoked on a linear circuit ϕ of size n over a field F, it is required that |F| ≥ F (n).

2.3.4 Composition of linear PCPPs

In this section we review the composition technique [AS98, ALM+98]. While this technique is
usually applied to general PCPs and PCPPs, in this work we apply it only to linear PCPPs. Thus,
in this section we describe the specialization of this technique to linear PCPPs rather than its
common instantiation.

The composition technique allows reducing the query complexity and decision complexity of a
linear PCPP verifier Vout (which is referred to as the outer verifier) by “composing” it with another
linear PCPP verifier Vin (which is referred to as the inner verifier). The result of the composition
of Vout and Vin is a verifier Vcomp that behaves roughly as follows: when invoked on input circuit ϕ,
the verifier Vcomp first invokes Vout on ϕ, thus obtaining a circuit ψ, and then invokes Vin on ψ, thus
obtaining a circuit ξ. The verifier Vcomp outputs the circuit ξ as its output circuit. It is easy to
see that if Vout and Vin have decision complexities dout(n) and din(n) respectively, then Vcomp has
decision complexity din(dout(n)), which will typically be much smaller than both dout(n) and din(n).
The cost of applying the composition technique is that the randomness complexity and rejection
ratio of Vcomp are worse than those of Vout and Vin .

In order to lower bound rejection ratio of Vcomp, we need the outer verifier Vout to be robust.
This means, roughly, that if Vout is invoked on an assignment x that is far from satisfying ϕ, then
(x ◦ π)|I will be far on average from satisfying ψ, where I and ψ are the queries and predicate that
Vcomp outputs. More formally, the robustness of a linear PCPP verifier is defined as follows.

Definition 2.9. Let ρ : N→ (0, 1). A linear PCPP verifier is said to have (expected) robustness ρ(n)
if for every input circuit ϕ of size n, a tested assignment x, and a proof string π, it holds that

E
[
dist

(
(x ◦ π)|I ,SAT(ψ)

)]
≥ ρ(n) · dist (x,SAT(ϕ))

Remark 2.10. Observe that expected robustness is a strengthening of the rejection ratio parameter.
That is, if an assignment tester has (expected) robustness ρ, then it must also have rejection ratio
at least ρ. Therefore, whenever we state the robustness of an assignment tester, we avoid stating
its rejection ratio.

We now turn to state the composition theorem. We will use the following composition theorem,
which is a specialization of the composition theorem of [BGH+06, DR06] to linear PCPPs.

Theorem 2.11 (Composition theorem, [BGH+06, DR06]). Let Vout be a linear PCPP verifier
with randomness complexity rout(n), decision complexity dout(n), minimal field size Fout(n), and
robustness ρout(n), and let Vin be a linear PCPP verifier with randomness complexity rin(n), deci-
sion complexity din(n), minimal field size Fin(n), and rejection ratio ρin(n). Then, there exists a
linear PCPP verifier Vcomp that has randomness complexity rout(n)+rin(dout(n)), decision complex-
ity din(dout(n)), minimal field size max {Fout(n), Fin(n), }, and rejection ratio ρout(n) · ρin(dout(n)).
Furthermore, if Vin has robustness ρin(n), then Vcomp has robustness ρout(n) · ρin(dout(n)).
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In addition, the computation of Vcomp (i.e., the sampling of I and ψ) can be performed by a
probabilistic polynomial time universal algorithm with black-box access to Vout and Vin (where the
algorithm itself is independent of Vout and Vin), and that invokes Vout once on an input circuit of
size n and invokes Vin once on an input circuit of size dout(n).

The proof of Theorem 2.11 is a straightforward adaptation of the proof of the composition
theorem in [BGH+06], and we do not include it here.

2.3.5 Decision complexity reduction and rejection ratio amplification of PCPPs

In this section, we review two useful theorems for improving the query complexity, decision com-
plexity, and rejection ratio of PCPPs. The first result, stated next, allows reducing the decision
complexity of a PCPP verifier (and hence, its query complexity) to a constant at the expense of
increasing its randomness complexity and reducing its rejection ratio.

Theorem 2.12 (Decision complexity reduction, folklore). Let PL be a language, and let V be a
PCPP verifier for PL with randomness complexity r(n,m), decision complexity d(n,m), and rejec-
tion ratio ρ(n,m). Then, there exists a PCPP verifier V ′ with decision complexity O(1), randomness
complexity r(n,m) +O (log d(n,m)), and rejection ratio ρ(n,m)/ poly (d(n,m)).

Proof sketch. When invoked on input circuit ϕ, the verifier V ′ acts as follows: the verifier V ′

begins with invoking the verifier V on (w,m), this obtaining an output circuit ψ. Then, the
verifier V ′ transforms ψ into a 3-CNF formula F , using the same technique as that is used in the
Karp reduction of CircuitValue to 3Sat. Finally, V ′ outputs a random clause of F as its output
circuit.

We mention that the transformation of ψ to F requires adding auxilary variables to F . Those
auxilary variables are added to the proof string of V ′ as additional proof coordinates. �

The next result that we review is a corollary of the gap amplification theorem of [Din07] for
assignment testers. This theorem allows increasing the rejection ratio of a PCPP verifier to a
constant at the expense of increasing its randomness complexity. The original theorem of [Din07]
can only be applied to PCPPs with constant decision complexity. By combining this theorem with
the above Theorem 2.12, we obtain the following result.

Theorem 2.13 (Rejection ratio amplification, corollary of [Din07, Thm 9.1]). Let PL be a lan-
guage, and let V be a PCPP verifier for PL with randomness complexity r(n,m), decision complex-
ity d(n,m), and rejection ratio ρ(n,m). Then, there exists a PCPP verifier V ′ with rejection ratio
Ω(1), decision complexity O(1), and randomness complexity r(n,m) +O

(
log d(n,m)

ρ(n,m)

)
.

Remark 2.14. The original theorem stated in [Din07] only doubles the rejection ratio of a PCPP
verifier while increasing its randomness complexity by only a constant term. The above Theo-
rem 2.13 is obtained in two stages: First, we apply Theorem 2.12 to the PCPP verifier, thus
obtaining a PCPP verifier with rejection ratio ρ(n,m)/poly (d(n,m)). Then we apply the original
theorem of [Din07] to the latter PCPP verifier for O

(
log d(n,m)

ρ(n,m)

)
times, thus obtaining a PCPP

verifier with rejection ratio Ω(1) and randomness complexity r(n,m) +O
(

log d(n,m)
ρ(n,m)

)
.
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2.4 Error correcting codes

In this section we review the basics of error correcting codes. We then describe a particular family
of codes to which we refer as multiplication codes, and which will be used in Sections 3 and 5. We
restrict ourselves to linear error correctings codes.

A (linear) code C over a field F with message length k and block length l is an injective linear
function from Fk to Fl (where linearity is over F). The rate RC of the code C is the ratio k/l.

We will sometimes identify C with its image C(Fk). Specifically, we will write c ∈ C to indicate
the fact that there exists x ∈ Fk such that c = C(x). In such case, we also say that c is a codeword
of C. The relative distance of a code C is defined to be δC

def
= minc1 6=c2∈C {dist(c1, c2)}. We will also

use the notation dist(w,C) to denote the relative distance of a string w ∈ {0, 1}l from C, and say
that w is ε-close (respectively, ε-far) from C if dist(w,C) ≤ ε (respectively, if dist(w,C) > ε).

A code C : Fk → Fl is said to be systematic if for every x ∈ Fk it holds that C (x)|[k] = x. By
Gaussian elimination, every linear code may be assumed to be systematic without loss of generality.
All the codes in this paper are assumed to be systematic.

We use the the following fact, which asserts that the existence of asymptotically good codes, i.e.,
codes whose rate and relative distance are constants that are independent of the message length.
Furthermore, we can choose those codes such that the codewords can be identified by a linear circuit
whose size is almost linear in the message length. There are many constructions of codes that satisfy
those properties, and in particular, there are such constructions that do not use algebraic techniques
(e.g., the expander codes of [SS96]).

Fact 2.15. There exist universal constants RC > 0 and δC > 0 such that the following holds: for
every message length k ∈ N and every field F, there exists a systematic code C over F with message
length k, rate at least RC , and relative distance at least δC .

Furthermore, if we denote the block length of C by l, then there exists a linear circuit ϕC over F
of size Õ(k) that takes as input vectors in Fl and accepts a vector if and only if it is a codeword of C
(in other words, SAT(ϕC) = C(Fk)). Finally, there exists an algorithm that on input k and F, runs
in time polynomial in k and log |F|, and outputs the linear circuit ϕC of the corresponding code C.

2.4.1 Multiplication codes

As mentioned in the introduction, in this work we use error correcting codes with a special multipli-
cation property, and we construct those codes by using low-degree polynomials. Those multiplication
codes are used in the construction of full-fledged PCPs from linear PCPPs in Section 3, and in the
construction of linear PCPPs in Section 5. In order to avoid introducing additional notation, we
choose the rate and relative distance of the multiplication codes to be the same as the rate and
relative distance of the codes of Fact 2.15, although it is not necessary.

Fact 2.16. Let RC and δC be the universal constants of Fact 2.15. Then, for every message
length k ∈ N and every field F such that |F| ≥ k/RC , there exists a triplet (CA, CB, CM ) of systematic
codes over F that have the following properties:

1. CA and CB have message length k (the message length of CM may be larger).

2. CA, CB, and CM all have the same block length l, and have rate at least RC and relative
distance at least δC .

3. Multiplication: For every cA ∈ CA and cB ∈ CB it holds that cA · cB ∈ CM .
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Furthermore, there exists a triplet of linear circuits (ϕA, ϕB, ϕM ) over F, where each of the circuits
ϕA, ϕB, ϕM is of size at most Õ(k), takes as input vectors in Fl and accepts a vector if and only if
it is a codeword of CA, CB, or CM respectively. Finally, there exists an algorithm that when given
as input k and F, runs in time that is polynomial in k and log |F|, and outputs the corresponding
triplet (ϕA, ϕB, ϕM ).

Proof sketch. Choose RC to be any constant smaller than 1/2. Take CA and CB to be the Reed-
Solomon codes of degree k − 1 and block length l def= k/RC , and let CM be the Reed-Solomon code
of degree 2k − 2 and block length l. It is easy to show that CA, CB, and CM have the required
properties. �

We refer to (CA, CB, CM ) as a triplet of multiplication codes.

Remark 2.17. The construction of the foregoing multiplication codes is the only place in our
work in which we use low-degree polynomials. We note that is plausible that such codes can be
constructed without the use of algebra. In fact, as we have shown in a previous work [Mei10], such
a triplet can be constructed combinatorially if the block length is allowed to be O(k2). However, in
this work we can not afford such a large block length.

Remark 2.18. The notion of multiplication codes can be seen as a variant of “error-correcting pairs”,
which were introduced by [Köt92, Pel92] in order to generalize the Berlekamp–Welch algorithm. See
also Lecture 11 in [Sud01].

2.5 Routing networks

In our construction of PCPs, we use a special kind of graphs called permutation routing networks (see,
e.g., [Lei92]). In order to motivate this notion, let us think of the vertices of the graph as computers
in a network, such that two computers can communicate if and only if they are connected by an
edge. Suppose that there is some set S of computers in the network such that each computer in S
needs to send a message to some other computer in S, and furthermore that each computer in S
needs to receive a message from exactly one computer in S (in other words, the mapping from source
computers to target computers is a permutation). Then, the property of the routing network says
that we can route the messages in the network such that each computer in the network forwards
exactly one message. Formally, we use the following definition of routing networks.

Definition 2.19. A routing network of order n is a graph G = (V,E) along with a special set of
vertices T ⊆ V of size n, such that the following requirement holds: For every permuation σ on T ,
there exists a set P of vertex-disjoint paths in G that connect each v ∈ T to σ(v) ∈ T .

Routing networks were studied extensively in the literature of distributed computing, and several
constructions of efficient routing networks are known. In particular, we use the following fact on
routing networks, which can be proved by several constructions.

Fact 2.20 (see, e.g, [Lei92]). There exists an infinite family of routing networks {Gn}∞n=1, the
network Gn being of order n, such that the following properties hold.

1. Gn has Õ(n) vertices.

2. The edges of Gn can be colored using 4 colors such that no two edges of the same color share
a vertex.

3. There exists an algorithm that on input n, runs in time poly (n) and outputs Gn.
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4. There exists a polynomial time algorithm that when given as input Gn and a permutation
σ : T → T outputs a set P of vertex-disjoint paths that connect each v ∈ T to σ(v).

3 PCPs and Linear PCPPs.

In this section, we show how to construct a full-fledged PCPP using a linear PCPP as a building
block. Specifically, we prove the following result.

Theorem 3.1. Suppose that there exists a linear PCPP verifier V with randomness complexity r(n),
decision complexity d(n), rejection ratio ρ(n), and minimal field size F (n). Then, for every time-
constructible t : N × N → N and every pair-language PL that is decidable in time t, there exists
a PCPP verifier V ′ for PL with randomness complexity max

{
log t, r

(
Õ(t)

)}
+ O(1), decision

complexity O
(
d
(
Õ(t)

)
· poly log (F (t), t)

)
, and rejection ratio Ω

(
ρ
(
Õ(t)

))
.

This section is divided to three sections: In Section 3.1, we provide a high-level overview of the
proof of Theorem 3.1. Then, in Section 3.2, we show how to construct a PCPP verifier for the
NP-complete language QuadraticEquations by using a linear PCPP. Finally, in Section 3.3,
we complete the proof of Theorem 3.1 by showing how to construct a PCPP verifier for any pair-
language using a PCPP verifier for the language QuadraticEquations.

The language QuadraticEquations. We recall the definition of QuadraticEquations,
which is the pair-language of pairs (E, x) where E is a system of quadratic equations and x is a
satisfying assignment of E. Formally, the pair-language QuadraticEquations consists of pairs
(E, x) such that:

1. E is a system of quadratic equations over boolean variables of the form

m∑
i=1

m∑
j=1

α1,i,j ·Xi ·Xj = β1

...
m∑
i=1

m∑
j=1

αp,i,j ·Xi ·Xj = βp

where X1, . . . , Xm are boolean variables, and α1,1,1, . . . , αp,m,m and β1, . . . , βp are boolean
constants.

2. x ∈ {0, 1}m is an assignment to X1, . . . , Xm that satisfies the system E.

The system E is represented by the list of the indices of non-zero coefficients αk,i,j and by the
vector β def

= (β1, . . . , βp). We define the size of E to be the number of non-zero cofficients αk,i,j .
Note that the size of E is always at least p, or otherwise E would have trivial equations.

Remark 3.2. One may argue that using the pair-language QuadraticEquations is an “alge-
braic step”. However, it is not hard to adjust the proof to work with the NP-complete language
CircuitSat instead of QuadraticEquations. We chose QuadraticEquations only for tech-
nical convenience.
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3.1 Proof overview

Intuitively, the idea that underlies the proof of Theorem 3.1 is that the multiplication codes of
Fact 2.16 allow us to go from verifying linear claims to verifying non-linear claims. Little more
specifically, first note that it suffices to construct a PCPP for QuadraticEquations, since it is
an NP-complete language. Given a system of quadratic equations E and an assignment x to E,
the PCP proof is expected to contain a string y that should contain the value that x assigns to
every quadratic term that appears in E with a non-zero coefficient αk,i,j . Now, E may be viewed
as a system of linear equations over y, so we can use the linear PCPP verifier V on y to check
that y satisfies E. It remains to verify that y is indeed consistent with x, and the point is that this
consistency can be verified by using the multiplication codes together with V .

To be more concrete, the verifier V ′ acts as follows. Let CA, CB, and CM be the triplet
of multiplication codes of Fact 2.16. The verifier V ′ constructs two projections of the string x,
denoted a and b, such that y = a · b (where the multiplication is coordinate-wise). The verifier
V ′ expects the proof to contain the encodings ca def

= CA(a) and cb def
= CB(b), as well as the vector

c′
def
= CA(a) · CB(b) ∈ CM . Note that the string y is a substring of c′, since CA, CB, and CM are

systematic. Now, V ′ invokes V to verify that y and β satisfy the system E, where E is viewed as a
linear system over y and over the vector β def

= (β1, . . . , βp), and where y is retrieved from c′ and β
is taken from the explicit input. V also verifies that ca, cb and c′ are indeed legal codewords of CA,
CB and CM .

It remains for V to verify that the vectors ca, cb, and c′ in the proof string are constructed as
expected. To this end, observe that CA(a) and CB(b) are obtained from x via a linear transformation,
and hence V ′ verifies the consistency of ca and cb with x simply by invoking V . In order to verify
the consistency of c′ with ca and cb, the verifier V ′ checks that the vectors c′ and ca · cb agree on a
random coordinate. The soundness of the latter check is proved using the relative distance of CM .

3.2 PCPPs for quadratic equations from linear PCPPs

In this section, we show how to construct a PCPP verifier for QuadraticEquations using a linear
PCPP verifier. This construction is the main technical step in the proof of Theorem 3.1. Let V be
a linear PCPP verifier with randomness complexity r(n), decision complexity d(n), rejection ratio
ρ(n), and minimal field size F (n). We construct a PCPP verifier V ′ for QuadraticEquations with
randomness complexity max

{
logO(n), r

(
Õ(n)

)}
, decision complexity d

(
Õ(n)

)
·poly log (F (n), n),

and rejection ratio Ω
(
ρ
(
Õ(n)

))
.

Fix a system of quadratic equations E of size n over m variables (i.e., E has n non-zero coeffi-
cients), and an assignment x to E. Let RC and δC be the universal constants from Fact 2.15, and
let F be a finite field of characteristic 2 and of size at least max {F (n), n/RC}. By Fact 2.16, there
exists a a triplet of multiplication codes (CA, CB, CM ) of message length n over F with rate RC ,
relative distance δC , and block length lM = n/RC .

In addition, by Fact 2.15, there exists a code C of message length p over F with rate RC , relative
distance RC , and block length lC = p/RC . Let us denote by cβ = C(β) the encoding of the vector
of free coefficients β def

= (β1, . . . , βp) by C.

The proof strings of V ′. Suppose that x satisfies E. We describe how to construct the proof
string that convinces V ′ that x satisfies E, or more formally, that x ∈ QuadraticEquations(E).

We begin by arranging the quadratic terms that appear in E with a non-zero coefficient in
an arbitrary fixed order, and define y ∈ {0, 1}n to be the string whose i-th bit is the value that
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x assigns to the i-th quadratic term Xu ·Xv. Observe that E induces a system of homogenous linear
equations over y and β. In addition, we define two strings a, b ∈ {0, 1}n as follows: The i-th bit of
a is the value that x assigns to the first factor of the i-th quadratic term Xu ·Xv in E (according
to some arbitrary order of the factors), and b is defined similarly for the second factors. Observe
that y = a · b (with the multiplication being coordinate-wise).

Now, let us view x, y, a, and b, as vectors over F by embedding {0, 1} in F. We define ca and
cb to be the encodings of a and b via CA and CB respectively, and define c′ = ca · cb. Note that
c′ ∈ CM , and that since CA, CB, and CM are systematic, it holds that (c′)|[n] = y.

Finally, we define the proof string that convinces V ′ that x satisfies E as the concatenation of
ca, cb, c′, and an additional string π to be described next. The string π is a proof string of the linear
PCPP verifier V that convinces V that the vector

x ◦ · · · ◦ x︸ ︷︷ ︸
blM/mc

◦ca ◦ cb ◦ c′ ◦ cβ ◦ · · · ◦ cβ︸ ︷︷ ︸
blM/lCc

satisfies the following linear assertions:

1. ca, cb, c′, and cβ are legal codewords of CA, CB, CM , and C respectively.

2. The blM/mc copies of x are indeed equal to each other, and so are the blM/lCc copies of cβ .

3. y and β satisfies the system of linear equations induced by E, where y is retrieved from c′ and
β is retrieved from cβ .

4. The strings a and b are consistent with the first copy of x in π′, where a, and b are retrieved
from ca, and cb respectively. Here, consistency means that the occurences of the value of each
xi in a and b are indeed consistent with xi.

Note that the way we defined the proof string π′, it is a vector over F rather than a binary string.
However, π′ can be converted to a binary string by representing every element of F by a binary
string of length dlog |F|e.

The action of V ′. We turn to describe the action of V ′ on input E when given access to an
assignment x to E, and to purported proof π′ of the form

ca ◦ cb ◦ c′ ◦ π

The verifier V ′ performs the following checks, while recycling randomness:

1. V ′ invokes V to verify that the vector

u
def
= x ◦ · · · ◦ x︸ ︷︷ ︸

dlM/me

◦ca ◦ cb ◦ c′ ◦ cβ ◦ · · · ◦ cβ︸ ︷︷ ︸
dlM/lCe

satisfies the linear assertions listed above. To this end, V uses π as its proof string.

2. V ′ chooses uniformly at random k ∈ [lM ] and checks that (ca)k ·
(
cb
)
k

= (c′)k.

The implementation of the foregoing checks is mostly straightforward. However, few comments are
in place:
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1. In order to invoke V , the verifier V ′ needs to construct a linear circuit ϕ that will serve as the
input to V . The circuit ϕ is a linear circuit that takes as input the vector u defined above and
accepts if and only if u satisfies the linear assertions listed above. Moreover, we would like ϕ
to be of size Õ(n). The only issue that is not straightforward in the construction of such a
circuit ϕ is verifying the first assertion, namely, that ca, cb, c′, and cβ are legal codewords of
CA, CB, CM , and C respectively.
In order to verify this assertion, V ′ generates linear circuits ϕA, ϕB, ϕM , ϕC of size Õ(n)
that check membership in the codes CA, CB, CM , and C. Recall that by Facts 2.15 and 2.16,
such linear circuits can be computed in polynomial time. The verifier V ′ then combines the
circuits ϕA, ϕB, ϕM , ϕC into the construction of ϕ in the natural way.

2. The verifier V makes queries to the vector u defined above. However, this vector can not
be constructed explicitly by V ′. Thus, V ′ needs to emulate V in a way that will simulate
access to u without constructing it explicitly. To this end, V ′ takes the tuple of queries I that
V outputs, and modifies the queries in this tuple in the straightforward way. For example,
every query in I that is directed to a coordinate of the dlM/me copies of x in u is modified to
a coordinate of x in the oracle of V ′.
One exception is the queries to the copies of cβ . The vector cβ is not found in the oracle of V ′,
but is rather constructed explicitly by V ′. Thus, in order to emulate the queries to cβ , the
verifier V ′ removes them from the tuple I completely. Then, V ′ takes the circuit ψ that V
outputs, and hard-wires the answers to the latter queries to the corresponding inputs of ψ.

3. The verifier V ′ is required to output a boolean circuit ψ′, while the verifier V outputs a
linear circuit ψ over F. To deal with this issue, ψ′ emulates ψ by replacing the gates of ψ
with boolean circuits that compute the corresponding field operations over F. By assumption,
there are such boolean circuits of size poly log |F|. In particular, ψ′ replaces each input gate
of ψ, which takes as input an element of F, with log |F| boolean input gates that are fed with
the boolean representation of the the latter element of F.

The randomness complexity and decision complexity of V ′. We turn to discuss the ran-
domness complexity and decision complexity of V ′. To this end, we first upper bound the size of
the linear circuit ϕ. We begin by noting, as discussed above, that the linear circuit ϕ that is given
as input to V is of size Õ(n) if constructed approporiately.

Next, in order to analyze the randomness complexity of V ′, observe that V ′ uses at most r(|ϕ|)
random bits in order to emulate V , and uses at most logO(n) random bits to choose the coordinate k.
Since V ′ uses the same random bits for those two operations, the total randomness complexity of
V ′ is indeed max

{
logO(n), r

(
Õ(n)

)}
.

In order to analyze the decision complexity of V ′, observe that the circuit ψ′ performs O(|ψ|) =
O (d(|ϕ|)) field operations in order to emulate ψ, and an additional one field operation in order to
check that cak ·cbk = (c′)k. Since every field opeation can be computed by a circuit of size poly log |F|,
it follows that the decision complexity of V ′ is d (|ϕ|) · poly log |F| = d

(
Õ(n)

)
· poly log (F (n), n).

The rejection ratio of V ′. It remains to analyze the rejection ratio of V ′. Fix an assignment x
to E and a proof string π′ of the form

ca ◦ cb ◦ c′ ◦ π.
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Let ε be the relative distance of x to the nearest satisfying assignment of E. We show that the
boolean circuit ψ′ rejects (x ◦ π′)|I′ with probability at least Ω

(
ρ
(
Õ(n)

))
· ε. First, observe that

if the vector
u

def
= x ◦ · · · ◦ x︸ ︷︷ ︸

blM/|x|c

◦ca ◦ cb ◦ c′ ◦ cβ ◦ · · · ◦ cβ︸ ︷︷ ︸
blM/lCc

is min
{
δC
40 ,

ε
10

}
-far from satisfying the linear circuit ϕ, then by the soundness of V it holds with

probability at least

Ω
(
ρ
(
Õ(n)

))
·min

{
δC
32
,
ε

10

}
= Ω

(
ρ
(
Õ(n)

))
· ε

that the linear circuit ψ rejects (u ◦ π)|I , in which case ψ′ rejects (x ◦ π′)|I′ as required. Thus, we

may assume that the vector u is min
{
δC
40 ,

ε
10

}
-close to a vector u that satisfies ϕ. The vector u

must be of the form
u

def
= x ◦ · · · ◦ x︸ ︷︷ ︸

blM/|x|c

◦ca ◦ cb ◦ c′ ◦ cβ ◦ · · · ◦ cβ︸ ︷︷ ︸
blM/lCc

where x ∈ Fm, and where ca, cb, c′, and cβ are codewords of CA, CB, CM , and C respectively.
Furthermore, the vectors a def

= ca|[q] and b
def
= cb|[q] are consistent with x in the same sense in which

the vectors a and b are supposed to be consistent with x, and the vectors y def
= (c′)|[q] and β = cβ|[p]

satisfy E, where E is viewed as a linear system.
Next, we claim that dist(x, x) ≤ ε/2. Otherwise, we would have had that dist (u, u) > ε/10,

since the strings x ◦ · · · ◦ x and x ◦ · · · ◦ x form 1/5 fraction of u and u respectively. It follows that
x is not a satisfying assignment of E (since x is ε-far from every satisfying assignment). Similarly,
it must hold that dist(cβ, cβ) ≤ δC/2, since otherwise we would have had that dist (u, u) > δC/10.
This implies that cβ = cβ , since cβ and cβ are legal codewords of C.

Now, we claim that ca · cb 6= c′. Otherwise, the string y would have contained the correct value
of each quadratic term of E under the assignment x, and therefore in such case the vector y and
the vector β could not satisfy E as a linear system. It thus holds that ca · cb 6= c′, and since both
ca · cb and c′ are codewords of CM , it follows that dist

(
ca · cb, c′

)
≥ δC .

Finally, it must hold that each of ca,cb,c′ are δC
8 -close to ca,cb,c′ respectively, or otherwise

we would have had dist (u, u) > δC/40, since ca,cb,c′ and ca,cb,c′ form 1/5 fraction of u and u
respectively. This, together with the fact dist

(
ca · cb, c′

)
≥ δC , implies that dist(ca · cb, c′) ≥ δC/2.

This implies that with probability at least δC/2 = Ω
(
ρ
(
Õ(n)

))
, it holds that cak · cbk 6= (c′)k, in

which case the boolean circuit ψ′ rejects as required. This concludes the analysis of the rejection
ratio of V ′.

3.3 General PCPPs from PCPPs for quadratic equations

We now complete the proof of Theorem 3.1 by showing how to construct a PCPP verifier for every
pair language using a PCPP verifier for QuadraticEquations. The construction is straightfor-
ward, and is based on the NP-completeness of QuadraticEquations.

Let VQE be the PCPP verifier for QuadraticEquations that was constructed above. Let
t : N × N × N be a time-constructible function, and let PL be a pair-language that is decidable
in time t. We show how to construct a PCPP verifier VPL for PL with randomness complexity
max

{
log t, r

(
Õ(t)

)}
+ O(1), decision complexity O

(
d
(
Õ(t)

)
· poly log (F (t), t)

)
, and rejection
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ratio Ω
(
ρ
(
Õ(t)

))
. We begin with the following fact, which can be obtained by combining the

efficient reduction of Turing machines to circuits of [PF79] with the Karp reduction of CircuitSat
to QuadraticEquations.

Fact 3.3. There exists an algorithm that when given as input a pair (w,m) for w ∈ {0, 1}∗ and
m ∈ N, runs for Õ (t(|w| ,m)) steps, and outputs a system of quadratic equations Ew of size
Õ (t(|w| ,m)) over boolean variables X1, . . . , Xm and Z1, . . . , Zs (for s = Õ (t(|w| ,m))), such that
Ew satisfies the following property.

• A string x ∈ {0, 1}m belongs to PL(w) if and only if there exists a string z ∈ {0, 1}s such that
x ◦ z is a satisfying assignment of Ew.

A natural way to construct VPL now would be the following: For every (w, x) ∈ PL, the proof
string that convinces VPL that x ∈ PL(w) would consist of an assignment z for which x ◦ z is a
satisfying assignment of Ew, and of a proof string that convinces VQE that x ◦ z satisfies Ew. The
verifier VPL would work by emulating VQE to verify that x ◦ z is a satisfying assignment of Ew.

The above construction almost works, but there is still one issue that needs to be resolved: if
x is very short compared to z, it could be the case that x is far from L(w) yet x ◦ z is close to a
satisfying Ew. In order to resolve this issue, we introduce copies ds/me of x into Ew, such that the
“x part” and “z part” in the assignment of Ew are of comparable lengths. More formally, we use
the following easy corollary of Fact 3.3.

Corollary 3.4. There exists an algorithm that when given as input a pair (w,m) for w ∈ {0, 1}∗
and m ∈ N, runs for Õ (t(|w| ,m)) steps, and outputs a system of quadratic equations E′w of size
Õ (t(|w| ,m)) over boolean variables

X1
1 , . . . , X

1
m, X

2
1 , . . . , X

2
m, . . . , X

ds/me
1 , . . . , Xds/mem , Z1, . . . , Zs,

(for s = Õ (t(|w| ,m))), such that Ew satisfies the following two properties:

1. A string x ∈ {0, 1}m belongs to PL(w) if and only if there exists a string z ∈ {0, 1}s such that

x ◦ · · · ◦ x︸ ︷︷ ︸
ds/me

◦z

is a satisfying assignment of E′w.

2. An assignment x1 ◦ · · · ◦ xds/me ◦ z satisfies E′w, only if that x1 = · · · = xds/me.

Proof sketch. The system E′w is constructed from the system Ew of Fact 3.3 by replacing the
variables X1, . . . , Xm with the variables X1

1 , . . . , X
1
m, . . . , X

ds/me
1 , . . . , X

ds/me
m , and adding to Ew the

equations Xj
i = Xj+1

i for every i ∈ [m] and j ∈ [ds/me − 1]. �

We turn to describe the PCPP verifier VPL. For every (w, x) ∈ PL, the proof string πPL that
convinces VPL that x ∈ PL(w) consists of an assignment z for which x ◦ · · · ◦ x︸ ︷︷ ︸

ds/me

◦z is a satisfying

assignment of E′w, and of a proof string πQE that convinces VQE that x ◦ · · · ◦ x︸ ︷︷ ︸
ds/me

◦z satisfies E′w.

Now, when VPL is invoked on input (w,m), tested assignment x, and proof string πPL = z ◦ πQE,
the verifier VPL emulates the action of VQE on input E′w, tested assignment x ◦ · · · ◦ x︸ ︷︷ ︸

ds/me

◦z, and proof

string πQE, by redirecting the queries of VQE accordingly.
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It is easy to verify that VPL has the required randomness complexity and decision complexity.
It remains to analyze the rejection ratio of VPL. Let w ∈ {0, 1}∗ and let x ∈ {0, 1}m be a string
that is ε-far from L(w)∩{0, 1}m. Then, it holds that x ◦ · · · ◦ x ◦ z is

(
1
2 · ε

)
-far from satisfying E′w,

since the copies of x form at least half of the vector x ◦ · · · ◦ x︸ ︷︷ ︸
ds/me

◦z. Thus, the verifier VQE rejects E′w

and x ◦ · · · ◦ x ◦ z with probability at least Ω
(
ρ
(
Õ (t(|w| ,m))

))
· 12 · ε. This, in turn, implies that

VPL rejects w and x with probability at least Ω
(
ρ
(
Õ (t(|w| ,m))

))
· ε, as required. This concludes

the proof of Theorem 3.1.

4 A Generalization of the Robustization Technique

Our construction of PCPs uses the composition technique in order to reduce the decision complexity
of our linear PCPPs (see details in Section 6). As explained in Section 2.3.4, in order to apply
composition, we need our linear PCPPs to be robust. This property was achieved in previous works
by a technique called “robustization” [BGH+06, DR06], which can not be applied to our linear
PCPPs. In order tor resolve this issue, we generalize the robustization technique such that it can
be applied to our linear PCPPs.

This section is organized as follows. In Section 4.1 below, we review the standard robustization
method. Then, in Section 4.2, we describe our generalization of the robustization method, and
sketch the proof of our generalized robustization theorem. Before providing the full proof, we recall,
in Section 4.3, the notion of tensor product codes, which are the main tool that we use in the proof.
Finally, in Section 4.4, we provide the full proof of our generalized robustization theorem.

Remark 4.1. Although all the results in this section are stated for linear PCPPs, their analogues
for general PCPPs can be proved using roughly the same proofs.

4.1 Background on the robustization technique

The robustization technique [BGH+06, DR06] (a.k.a. “alphabet reduction”), allows transforming
every linear PCPP with a certain query structure into a robust linear PCPP. Basically, the linear
PCPP should have the property that the tested assignment and proof strings can be partitioned
into blocks, such that the verifier always queries only a constant number of blocks. Formally, this
property is defined as follows.

Definition 4.2. Let V be a linear PCPP verifier with proof length `(n), and let b ∈ N. We say
that V has b-block access if for every circuit ϕ, the following holds. Let n and m denote the size
and input length of ϕ respectively. Then, there exists a partition B1 ] . . . ] Bp = [m+ `(n)] such
that when V is invoked on ϕ and outputs a queries tuple I, the queries in I always consists of whole
sets Bj1 , . . . , Bjb′ where b

′ ≤ b (the sets Bj1 , . . . , Bjb′ may not be distinct). Moreover, we require
that each Bj either contains only assignment coordinates (i.e., from [m]) or contains only proof
coordinates (i.e., from [m+ `(n)]− [m]).

The sets B1, . . . , Bp are referred to as the blocks of V with respect to ϕ, or simply as blocks. We
refer to the blocks that contain assignment coordinates as the assignment blocks, and to the blocks
that contain proof coordinates to as the proof blocks.

The robustization technique yields the following result.

Theorem 4.3 (Robustization, variant of [Mei09]). Suppose that there exists a linear PCPP verifier
V that has has b-block access, and also has randomness complexity r(n), decision complexity d(n),
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rejection ratio ρ(n), and minimal field size F (n). Then, there exists a linear PCPP verifier V ′ that
has robustness Ω(ρ(n)/b), and also has randomness complexity O (r(n)), decision complexity O(b ·
d(n)), and minimal field size F (n).

The verifier V ′ is constructed roughly as follows. The proof is expected to contain the encoding
of each of the blocks via an error correcting code. The verifier V ′ emulates the verifier V , but
whenever V queries a block, the verifier V ′ also queries the purported encoding of the block, and
verifies that it is indeed the legal encoding of the block.

To see that V ′ is robust, observe that whenever V rejects, at least one of the blocks that V
queries must be modified in order to make V accept. Hence, in order to make V ′ accept, both the
aforementioned block and its encoding must be modified. However, modifying the latter encoding
to another legal encoding requires flipping many coordinates, and therefore the view of V ′ is far
from any accepting view.

Theorem 4.3 versus the robustization of [BGH+06, DR06, Mei09]. While we did not
provide a proof for Theorem 4.3, we note that Theorem 4.3 could be proved for general PCPPs
rather than linear PCPPs. Such a theorem would be an extension of [BGH+06, Lemma 2.13] and
[DR06, Lemma 3.6], since [BGH+06, Lemma 2.13] only deals with PCPs (rather than PCPPs),
[DR06, Lemma 3.6] only deals with the case in which the assignment blocks are singletons, and
both results require all proof blocks to be of the same size. Theorem 5.23 of [Mei09] is very similar
to the above Theorem 4.3, but makes additional requirements from the original verifier V in order
to support a better running time of the resulting verifier V ′.

4.2 Robustization of PCPPs with row/column access

Unfortunately, our linear PCPPs do not have b-block access. In order to resolve this issue, we define
a relaxation of the block access property, which we call row/column access, and prove a more general
robustization theorem that applies to PCPs with the latter property. Informally, the property of
row/column access means that the tested assignment and the proof string can be arranged in
matrices, such that the verifer always queries at most a constant number of rows and columns of
those matrices. The formal definition is as follows.

Definition 4.4. Let V be a linear PCPP verifier with proof length `(n). We say that V has
b-row/column access if for every circuit ϕ, there exist matrices Mx and Mπ such that the following
holds. The entries of Mx and Mπ are in one-to-one correspondence with the coordinates in [m]
and [m+ `(n)] \ [m] respectively; and the queries tuple I always consists of some whole rows and
columns of Mx and Mπ, and at most b such whole rows and columns (not necessarily distinct).
Moreover, we require that every row and column of Mπ is in I with non-zero probability.

If a row (respectively, column) of Mx or Mπ is wholly contained in I, we say that V queries this
row (respectively, column). We refer to the matrix Mx and Mπ as the assignment matrix and proof
matrix of V with respect to ϕ, or simply as the assignment matrix and proof matrix.

Remark 4.5. Note that if a verifier V has b-block access with all the blocks being of the same
size, then V may also be viewed as having b-row/column access while querying only rows of the
matrices Mx and Mπ. In this sense, the property of row/column access is a generalization of the
block access property, since it allows the verifier to query both columns and the rows.

Remark 4.6. Note that in some cases it may not be possible to arrange the assignment coordinates
in a matrix in a non-trivial way. For example, if m is a prime, then the only way to arrange the
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assignment in a matrix is to choose a matrix with only one row or column. This issue can be
solved by allowing the assignment matrix to be padded with few dummy coordinates. In order to
streamline the presentation, we ignore this issue in this work, and refer the reader to [Mei09, Thm
5.23] for a proof that deals with this issue.

Our main result in this section is the following analogue of the known robustization theorem
(Theorem 4.3) for linear PCPPs that have row/column access. Unfortunately, this theorem suffers
from signifcantly worse parameters than Theorem 4.3. In particular, it increases the decision com-
plexity by an additive term 2r(n). Fortunately, this theorem is sufficient for our needs, since in our
target application the randomness complexity r(n) will be logarithmic in the decision complexity.

Theorem 4.7 (Robustization for PCPs with row/column access). Suppose that there exists a linear
PCPP verifier V that has b-row/column access and also has randomness complexity r(n), decision
complexity d(n), rejection ratio ρ(n), and minimal field size F (n). Then, there exists a linear PCPP
verifier V ′ that has robustness Ω(ρ(n)/b3) and also has randomness complexity r(n)+O(1), decision
complexity O(b · d(n) + 2r(n)), and minimal field size F (n).

We turn to sketch the proof of Theorem 4.7, and provide the full proof in Section 4.4. We first
note that we can assume without loss of generality that V does not query the columns of Mx, but
rather queries only the rows of Mx (this assumption is justified by Lemma 4.14). Hence, V may be
thought of as having block access with respect toMx, amd therefore queries toMx can be robustized
using the standard robustization technique of Theorem 4.3. In the following sketch, we ignore the
queries to Mx and focus on the queries of V to Mπ.

It is tempting to try to deal with the queries to Mπ by adapting the proof of Theorem 4.3. Such
a proof would require the proof string of V ′ to contain the encoding of every row and column of
Mπ via an error correcting code. Then, the verifier V ′ would read the encoding of every row and
column that are queried by V and check that it is a legal encoding.

To analyze the robustness of this verifier V ′, one would argue that that if most of the rows and
columns in the proof string V ′ are close to an accepting view of V ′, then one could decode them
to the corresponding nearest legal codewords, and thus obtain a proof string that convinces V to
accept x. Since such a proof string can not exist only if x is far from a satisfying assignment, this
would lead to a contradiction and thus establish the soundness of V ′.

However, the foregoing argument fails. The reason is that the purported encodings of the rows
and columns of Mπ may be inconsistent. That is, the proof string might contain encodings whose
encoded messages do not agree on the intersections of the rows and columns. Such an inconsistency
will fail the above argument, because in such a case there would not be a decode the proof string
in a way that is consistent with both the rows and the columns.

In order to resolve this issue, we use tensor prodcut codes, which are reviewed below in Sec-
tion 4.3. In short, given a code C with block length l, the tensor code C ⊗ C is the code whose
codewords are exactly the l × l matrices N such that every row and every column of N is a code-
word of C. The key property of tensor codes that is important for us the following: Let N ′ be a
matrix that is close to a codeword N of C ⊗C. Then, for most of the rows and columns of N ′, the
closest codeword of C is the corresponding row or column of N . In particular, this means that the
messages encoded by most rows and columns of N ′ are consistent with each other, which solves the
consistency problem we had before.

We now construct the verifier V ′ as follows. The proof string of V ′ is expected to contain the
encoding Nπ of Mπ via a tensor code C ⊗C. It can be shown that Nπ contains the encoding via C
of every row and column of Mπ. The verifier V ′ emulates the original verifier V , and whenever the
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original verifier V queries a row or a column of Mπ, the verifier V ′ also queries the encoding of this
row or column in Nπ and verifies that this encoding is correct.

In order to show that V ′ is robust, fix a purported encoding N ′π of Mπ that are given in the
proof string of V ′. We first note that if N ′π is close to a legal codeword of C ⊗ C, then we can
use the foregoing property of tensor codes to argue that most of the rows and columns of N ′π are
consistent, and the analysis discussed above would go through.

It remains to verify thatN ′π is close to be a legal codeword of C⊗C. To this end, we require C⊗C
to have a robust tester. This means, roughly, that there exists a robust linear PCPP verifier that is
only capable of verifying the assertion that a matrix is close to a legal codeword of C ⊗ C (rather
than verifying any linear assertion). Tensor codes satisfying this requirement can be constructed
combinatorially using a few methods (see [BS06, DSW06, BV09b, BV09a, Vid11]). The verifier V ′

will invoke the robust tester of C ⊗ C to verify that N ′π is close to C ⊗ C, and then proceed as
before.

Remark 4.8. The foregoing description oversimplifies things a little. In particular, note that the
foregoing property of the tensor codes only guarantees that most of the rows and columns are
consistent, and not all of them. Thus, in general it could be the case that V always queries the
inconsistent rows and columns. In order to handle this issue, we begin the construction by modifying
V such that queries rows and columns according to the uniform distribution, and then proceed
as before. The latter transformation is implemented by a vairant of the expander-replacement
technique of [PY91].

4.3 Tensor product codes

In this section, we review the notion of tensor product of codes, and present some of its properties.
See [MS88] and [Sud01, Lect. 6 (2.4)] for the basics of this subject. While in the overview of
Section 4.2 we focused on a tensor code C ⊗ C, which is obtained by taking the tensor product of
a code C with itself, in the following discussion we consider a more general definition that allows
taking the tensor product of two different codes.

Definition 4.9 (Tensor codes). Let Crow : Fkrow → F`row , Ccol : Flcol → Flcol be codes. The tensor
product code Crow⊗Ccol is a code of message length krow ·kcol and block length lrow · lcol that encodes
a message x ∈ Fkrow·kcol as follows: In order to encode x, we first view x as a kcol × krow matrix,
and encode each of its rows via the code Crow, resulting in a kcol× lrow matrix x′. Then, we encode
each column of x′ via the code Ccol. The resulting lcol × lrow matrix is defined to be the encoding
of x via Crow ⊗ Ccol.

The following fact lists some of the basic and standard properties of the tensor product operation.

Fact 4.10. Let Crow : Fkrow → Flrow , Ccol : Fkcol, → Flcol be codes with rates Rrow, Rcol and relative
distances δrow, δcol respectively. The following properties hold:

1. The code Crow ⊗ Ccol has rate Rrow ·Rcol and relative distance δrow · δcol.

2. An lcol × lrow matrix N over F is a codeword of Crow ⊗ Ccol if and only if all the rows of N
are codewords of Ccol and all the columns of N are codewords of Ccol.

3. If Crow and Ccol are systematic, then the message encoded by a codeword N of Crow ⊗ Ccol is
the top-left kcol × krow submatrix of N .
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The next claim formalizes the property of tensor product codes that was mentioned in Section 4.2,
and is used to ensure the consistency of the rows and the columns in the analysis of the robustness
of V ′.

Claim 4.11. Let Crow : Fkrow → F`row , Ccol : Flcol → Flcol be codes with relative distances δrow, δcol
respectively, and let N ′ be an lcol× lrow matrix over F that is ε-close to a codeword N of Crow⊗Ccol.
For every i ∈ [lcol], we say that the i-th row of N ′ decodes well if the codeword of Crow that is closest to
the i-th row of N ′ is the i-th row of N . The definition of a column of N ′ that decodes well is similar.
Then, it holds that at least (1− 2ε/δrow) fraction of the rows of N ′ and at least (1− 2ε/δcol) fraction
of the columns of N ′ decode well.

Proof. We prove the claim only for the rows of N ′, and the proof for the columns is similar.
Suppose, for the sake of contradiction, that more than 2ε/δ fraction of the rows of N ′ do not
decode well. Observe that each row of N ′ that does not decode well must be δrow/2-far from
the corresponding row of N (or otherwise the corresponding row of N would have been the closest
codeword of Crow). This implies that the relative distance ofN ′ fromN must be more than (2ε/δrow)·
(δrow/2) > ε, thus contradicting the assumption that N ′ is ε-close to N . It follows that at most
2ε/δrow fraction of the rows of N ′ do not decode well, as required. �

As explained in Section 4.2, the proof of Theorem 4.7 uses tensor codes that have a robust tester.
Those tensor codes also have the good properties of the good codes of Fact 2.15. The properties of
those tensor codes are summarized by the following fact, which can be established using the works
of [BS06, DSW06, BV09b, BV09a, Vid11].

Fact 4.12. Let RC , δC > 0 be the universal constants of Fact 2.15, and let ρC > 0 be a universal
constant. For every fiinit field F, there exists an infinite sequence of systematic linear codes {Ck}∞k=1

over F that satisfies the following properties:

1. For every k ∈ N, the code Ck has message length k, rate RC and relative distance δC .

2. For every k ∈ N, there exists a linear circuit ϕk over F of size O(k) that accepts a vector if
and only if it is a codeword of Ck (in other words, SAT(ϕk) = Ck(Fk)). Furthermore, there
exists a algorithm that on input k and F, runs in time that is polynomial in k and log |F|, and
outputs the linear circuit ϕk of the corresponding code Ck over F.

3. Robust testing of Ck1 ⊗ Ck2: There exists a probabilistic algorithm VT that behaves as
follows. Let F be a finite field, let k1, k2 ∈ N and let l1 and l2 be the block lengths of Ck1
and Ck2. When invoked on input k1, k2,F, the algorithm runs in time poly (k1, k2, log |F|),
tosses at most log (max {k1, k2}) +O(1) coins, and outputs a queries tuple I of coordinates in
[l1 · l2] and a linear circuit ψ that satisfy the following requirements:

(a) Completeness: for every codeword N ∈ Ck1 ⊗ Ck2, it holds that ψ accepts N|I with
probability 1.

(b) Robust soundness: for every vector N ∈ Fl1·l2, it holds that

E
[
dist

(
N|I ,SAT(ψ)

)]
≥ ρT · dist (N,Ck1 ⊗ Ck2) .

(c) Decision complexity: The linear circuit ψ is always of size at most O(max {k1, k2}).
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Remark 4.13. Note that circuit ϕk that recognizes Ck is of linear size, which is better than the
corresponding circuit of Fact 2.15, which has only almost-linear size. In fact, for our purposes, we
could have also assumed that ϕk has only almost-linear size as well. We chose to assume that ϕkT
has linear size because this choice improves the parameters of Theorem 4.7. Since this theorem may
be useful for other works, we preferred to use the best parameters possible. We note that such a
circuit ϕk of linear size can be obtained by choosing the sequence {Ck}∞k=1 to be the expander codes
of [SS96].

4.4 Proof of Theorem 4.7

In this section we provide the full proof of Theorem 4.7. As explained in Remark 4.8, our first step
is to modify V such that it queries rows and columns according to the uniform distribution. More
formally, we have the following lemma, which is proved by a variant of the expander-replacement
technique of [PY91]. Since this is not the focus of this paper, we defer the proof of the lemma to
Appendix A.

Lemma 4.14. Suppose that there exists a linear PCPP verifier V that has randomness complex-
ity r(n), decision complexity d(n), rejection ratio ρ(n), and minimal field size F (n), and that
has b-row/column access. Then, there exists a linear PCPP verifier VU with randomness com-
plexity rU (n) = r(n) + O(1), decision complexity dU (n) = O(b · d(n) + 2r(n)), rejection ratio
ρU (n) = Ω(ρ(n)/b2), minimal field size F (n), and O(b)-row/column access, and which satisfies
the following properties:

• VU queries every row of the assignment matrix with equal probability, and always queries at
least one such row.

• VU does not query the columns of the assignment matrix.

• VU queries every row of the proof matrix with equal probability, and same goes for the columns.

We turn to the prove Theorem 4.7. Fix a linear PCPP verifier V that has randomness com-
plexity r(n), decision complexity d(n), rejection ratio ρ(n), and minimal field size F (n), and that
has b-row/column access. Let VU denote the linear PCPP verifier that is obtained by applying
Lemma 4.14 to V .

In the rest of this section, we use VU to construct a linear PCPP verifier V ′ that has robust-
ness Ω(ρ(n)/b3) and also has randomness complexity r(n) +O(1), decision complexity O(b · d(n) +
2r(n)), and minimal field size F (n). Let F be a finite field of size at least F (n), and fix a linear
circuit ϕ : Fm → Ft of size n over F. Let Mx and Mπ be the assignment matrix and proof matrix
of VU with respect to ϕ.

We denote by kx,row, kx,col, kπ,row, kπ,col the dimensions ofMx andMπ, i.e.,Mx is a kx,col×kx,row
matrix and Mπ is a kπ,col× kπ,row matrix. Let Cx

def
= Ckx,row , Cπ,row

def
= Ckπ,row , and Cπ,col

def
= Ckπ,col

be the codes from Fact 4.12 with message lengths kx,row, kπ,row, and kπ,col respectively. Note that
we did not define a code for the columns of Mx: since VU only queries the rows Mx, we do not need
to encode its columns.

The proof strings of V ′. We begin the description of V ′ by describe its proof strings. Fix an
assignment x ∈ Fm that satisfies ϕ. We define the proof string π′ that convinces V ′ that ϕ accepts x
as follows: Let Nx be the matrix obtained by encoding every row of Mx by Cx, and let Nπ be the
matrix that is obtained by encoding the proof matrix Mπ of VU via Cπ,row⊗Cπ,col. Note that since
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Cx, Cπ,row, and Cπ,col are systematic, it holds that Mx is the kx,col × kx,row leftmost submatrix of
Nx, and that similarly, Mπ is the kπ,col × kπ,row top-left submatrix of Nπ.

We now choose the proof string π′ such that the concatenated vector x ◦ π′ consists of the
matrices Nx and Nπ. More specifically, the proof string π′ consists of the matrix Nπ, and of the
matrix Nx except for its leftmost kx,col × kx,row submatrix, where the latter submatrix is excluded
since it is identical to x.

The action of V ′. We proceed to describe the action of V ′ on input ϕ. For convenience, we think
of V ′ as testing a fixed assignment x given a fixed proof string π′. Suppose that the vector x ◦ π′
consists of two matrices Nx and Nπ, and let Mx and Mπ denote corresponding submatrices of Nx

and Nπ respectively. The verifier V ′ performs the following checks, while recycling randomness:

1. V ′ invokes the robust tester VT (from Fact 4.12) to test that Nπ is a legal codewords of Cπ,row⊗
Cπ,col respectively.

2. V ′ emulates the action of VU on Mx and Mπ. Recall that VU queries at most b rows and
columns of Mx and Mπ. The verifier V ′ queries the corresponding rows and columns of Nx

and Nπ, and extracts from them the corresponding rows and columns of Mx and Mπ. The
verifier V ′ then checks that VU would have accepted those rows and columns of Mx and Mπ,
and that those rows and columns of Nx and Nπ are legal codewords of the corresponding
codes.

For convenience, let us denote by ψ′ and I ′ the linear circuit and queries tuple that V ′ outputs.
Let us denote by ψU and IU the linear circuit and queries tuple that VU outputs when it is invoked
by V ′. Let us denote by ψT and IT the predicates and queries tuples that VT outputs when it is
invoked on Nπ.

We need to make one more modification in the foregoing construction: The queries tuple I ′ of
V ′ consists of IT (which is used in the first check above), and of a collection of rows and columns
of Nx and Nπ (which are used in the second check above). We would like all of those parts to
have roughly the same “weight” in I ′, that is, we would like each of them to constitute more or less
the same fraction of I ′. Moreover, we would like each of the rows and columns of Nx and Nπ to
constitute the same fraction of I ′,

To this end, we modify the queries tuple I ′ such that it contains multiple copies of IT such that
the total number of coordinates in those copies constitutes 1/8 fraction of the coordinates in I’. We
also add multiple copies of each row and column of Nx and Nπ, such that each of those sets of copies
constitute at least 1/8b fraction of the coordinates in I ′. We also modify the output predicate ψ′

of V ′ such that it checks that queries that query the same coordinate are given the same answer,
and in particular, that all the copies of the same string are equal to each other.

The randomness complexity and decision complexity of V ′. We turn to analyze the ran-
domness complexity and decision complexity of V ′. Let

k = max {kπ,row, kπ,col}

It is not hard to see that the randomness complexity r′(n) and decision complexity d′(n) of V ′

satisfy

r′(n) ≤ max {rU (n), log k}+O(1)

d′(n) ≤ dU (n) +O (k) ,
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where rU (n) = r(n) + O(1) and dU (n) = O(b · d(n) + 2r(n)) are the randomness complexity and
decision complexity of VU respectively, and the dependence on k comes from the invocation of VT .
In order to obtain the desired upper bounds on r′ and d′, we show that rU (n) ≥ log (k) and that
dU (n) ≥ O(k). This will imply that r′(n) = r(n) + O(1) and that d′(n) = O(b · d(n) + 2r(n)), as
required.

Recall that we assume that the verifier V queries both rows and columns of Mπ, and that it
queries whole rows and columns. This immediately implies that d(n) ≥ k and hence dU (n) =
O(d(n)) ≥ O(k). As for the randomness complexity, recall that the definition of row/column access
requires that V queries every row and column of the proof matrix with non-zero probability, and
this implies in particular that its randomness complexity must be at least log k.

4.4.1 The robustness of V ′

It remains to show that V ′ has robustness Ω(ρ(n)/b3). Fix an assignment x to ϕ that is ε-far from
SAT(ϕ), and let π′ be a proof string. We show that

E
[
dist

(
(x ◦ π)|I′ ,SAT(ψ′)

)]
≥ Ω(ρ(n)/b3) · ε. (1)

Let Nx and Nπ be the matrices contained in x ◦ π′, and let Mx and Mπ be their corresponding
leftmost kx,col × kx,row and top-leftmost kπ,col × kπ,row submatrices respectively. Let Ndec

x be the
matrix obtained by decoding each row of Nx to the closest codeword of Cx. Let Ndec

π be the legal
codeword Cπ,row⊗Cπ,col that is closest to Nπ. LetMdec

x andMdec
π be the corresponding kx,col×kx,row

and kπ,col × kπ,row submatrices of Ndec
x and Ndec

π respectively.
Let τ be a threshold to be defined next. We divide our analysis to two cases: the case in

which Nx or Nπ are τ -far from Ndec
x or Ndec

π respectively, and the case in which both Nx and Nπ

are τ -close to Ndec
x or Ndec

π respectively. Let ρU = Ω(ρ(n)/b2) denote the rejection ratio of VU .
Then, we define τ by

τ
def
= RC · δC · ρU · ε/4 · b = Ω(ρ(n)/b3) · ε.

We turn to analyze each of the latter cases separately.

Nx or Nπ are τ-far from Ndec
x or Ndec

π . We deal separately with Nx and Nπ. If Nπ is τ -far
from Ndec

π , we obtain Inequality 1 above immediately from the robustness of the tester VT . To see
it, observe that the robustness of VT (Fact 4.12) implies that

E
[
dist

(
Nπ|IT ,SAT(ψT )

)]
≥ ρT · τ

where IT and ψT denote the outputs of VT when invoked on Nπ. By our construction of V ′, the
copies of IT form 1/8 fraction of the coordinates of I ′, and therefore it follows that

E
[
dist

(
(x ◦ π)|I′ ,SAT(ψ′)

)]
≥ 1

8
· ρT · τ ≥ Ω(ρ(n)/b3) · ε,

as required.
Suppose now that Nx is τ -far from Ndec

x . Recall that kx,col is the number of rows of Nx. For
every j ∈ [kx.col], let δj denote the relative distance of the j-th row of Nx from Cx. Since Nx is τ -far
from Ndec

x , it holds that

1

kx,col
·
kx,col∑
j=1

δj ≥ τ.
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Due to the properties of VU , we know that the verifier V ′ queries every row of Nx with the same
probability - let us denote this probability by p. Moreover, we know that V ′ always queries at least
one row of Nx, and therefore p ≥ 1/kx,col. For every j ∈ [kx,col], let us denote by 1j an indicator
variable indicating whether the j-th row is queried by V ′. Since every row of Nx that is queried
by V ′ forms 1/8b fraction of I ′, it follows that

E
[
dist

(
(x ◦ π)|I′ ,SAT(ψ′)

)]
≥ 1

8b
· E

kx,col∑
j=1

δj · 1j


=

1

8b
·
kx,col∑
j=1

δj · p

≥ 1

8b
· 1

kx,col
·
kx,col∑
j=1

δj

≥ 1

8b
· τ

= Ω(ρ(n)/b3) · ε,

as required.

Nx and Nπ are τ-close to Ndec
x and Ndec

π . We begin by noting that in this case, it must hold
thatMx is τ/RC-close toMdec

x . To see it, note thatMx forms RC fraction of the coordinates of Nx,
since RC the rate of Cx, and recall that we assume that Nx is τ -close to Ndec

x . We also note that
τ/RC < ε/2.

Recall that we say that a row of Nπ decodes well if the codeword of Cπ,row to which it is closest
is the corresponding row of Ndec

π , and that the same goes for the columns. In addition, we will say
that a row (respectively, a column) ofMπ decodes well if the corresponding (respectively, a column)
of Nπ decodes well.

Let us denote by xdec the matrix Mdec
x when viewed as an assignment to ϕ, and let πdec be

the matrix Mdec
π viewed as a proof string of V . In this notation, we get that dist

(
x, xdec

)
< ε/2.

On the other hand, dist (x,SAT(ϕ)) = ε, and therefore by the triangle inequality it holds that
dist

(
xdec,SAT(ϕ)

)
≥ ε/2. By the rejection ratio of VU , it holds that ψU rejects

(
xdec ◦ πdec

)
|IU

with probability at least ρU · ε/2. We now show that with probability at least ρU · ε/4, it holds that

1. ψU rejects
(
xdec ◦ πdec

)
|IU

, and

2. all the rows and columns of Mπ whose coordinates are contained in IU decode well.

We will later show that whenever the above two conditions hold, it also holds that (x ◦ π′)|I′ is
Ω(1/b)-far from SAT(ψ′), and this will imply the required robustness.

By Claim 4.11, it holds that a uniformly distributed row of Nπ decodes well with probability at
least

1− τ/δC
and that the same holds for a uniformly distributed column of Nπ. Since the rows and columns of
Mπ constitute RC fraction of the rows and columns of Nπ, it holds a uniformly distributed row of
Mπ decodes well with probability at least

1− τ

RC · δC
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and that the same holds for a uniformly distributed column ofMπ. Now, recall that VU queries each
row of Mπ with equal probability, and that the same goes for the columns of Mπ. Furthermore, VU
queries at most b rows and columns of Mπ. By the union bound, it follows that all the rows and
columns of Mπ that are queried by VU decode well with probability at least

1− b · τ
RC · δC

= 1− ρU · ε
4

.

By combining the latter bound with the fact that ψU rejects
(
xdec ◦ πdec

)
|IU

with probability at
least ρU · ε/2, and using the union bound, it follows that with probability at least ρU · ε/4 both
Conditions 1 and 2 above hold simultaneously. We conclude by showing that whenever those two
conditions hold, it holds that (x ◦ π′)|I′ is Ω(1/b)-far from Wψ′ , and this will imply the required
robustness.

Fix a sequence ω of random bits for V ′ for which both Conditions 1 and 2 hold. Recall that we
denote by ψU , ψ′, IU , and I ′ be the predicates and queries tuples that VU and V ′ output. Let w′ be
a satisfying assignment of ψ′ closest to (x ◦ π′)|I′ , and let wU be the satisfying assignment for ψU
obtained by taking the corresponding rows and columns of Mx and Mπ from w′. By assumption,
ψU rejects

(
xdec ◦ πdec

)
|IU

, and therefore there exists a coordinate on which
(
xdec ◦ πdec

)
|IU

and wU
disagree - let us denote this coordinate by i.

Let us assume that i belongs to Mdec
π - the case where i belongs to Mdec

x is similar but simpler,
because one needs not worry about whether the rows of Mx decode well. Without loss of generality,
assume that the this coordinate belongs to a row of Mdec

π that is queried by IU - if the coordinate
belongs to a column ofMdec

π , then the argument is analogous. Let j be the index of the row ofMdec
π

to whichi belongs.
Now, by assumption, the j-th row of Nπ decodes well, and therefore its nearest codeword of

Cπ,row is the j-th row of Ndec
x . On the other hand, the assignment w′ contains an assignment to the

j-th row8 that is another codeword of Cπ,row. It therefore follows that the j-th row of Nπ is at least
δC/2-far from the corresponding part of w′. Finally, the copies of the j-th of Nπ constitute 1/8 · b
fraction of I ′, so it follows that

dist
((
x ◦ π′

)
|I′ ,SAT(ψ′)

)
≥ 1

8 · b
· δC

2
= Ω(1/b),

as required.

5 Construction of Linear PCPPs with
√
n Queries

In this section, we explain how to construct a linear PCPP that have proof length Õ(n), query
complexity Õ(

√
n), and rejection ratio Ω(1), and that has O(1)-row/column access. Later, in

Section 6, we will compose this linear PCPP with itself for O(log log n) times to obtain a linear
PCP with constant query complexity and proof length n · (log n)O(log logn). More formally, our main
result in this section is the following:

Theorem 5.1. There exists a linear PCPP with randomness complexity 1
2 log n + O(log log n),

decision complexity Õ(
√
n), minimial field size Õ(

√
n), rejection ratio Ω(1), and O(1)-row/column

access.
8In fact, it contains multiple copies of such an assignment, but since w′ satisfies ψ′, all those copies must be equal

to each other.
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This section is organized as follows: In Section 5.1 below, we define an auxiliary object called lin-
ear simultaneous PCPP (abbreviated SPCPP), and state a construction of such object (Theorem 5.5).
Then, in Section 5.2, we prove Theorem 5.1 based on Theorem 5.5. Finally, in Section 5.3, we prove
Theorem 5.5 by constructing the required SPCPPs.

5.1 Simultaneous PCPPs

Intuitively, an SPCPP is a variant of a linear PCPP verifier, which verifies many linear assertions
rather than just one. The verification is simultaneous, in the sense that if at least one of the linear
assertions is far from being correct, then the verifier rejects with noticeable probability. A bit more
formally, an SPCPP verifier takes an input linear circuits ϕ1, . . . , ϕt, gets oracle access to vectors
x1, . . . , xt and to a proof string π, and is required to reject if xi is far from SAT(ϕi) for at least one i.
In our application, we will use the SPCPP to verify t = Õ(

√
n) linear assertions of size s = Õ(

√
n)

each, by using ˜O(
√
n) queries.

Definition 5.2. Let r, d, `, F : N×N→ N, ρ : N×N→ (0, 1). A linear simultaneous PCPP (SPCPP)
verifier V with randomness complexity r, decision complexity d, proof length `, rejection ratio ρ,
and minimal field size F is a probabilistic polynomial time machine that satisfies the following
requirements:

1. Input: The verifier V takes as input a finite field F and t linear circuits ϕ1, . . . , ϕt : Fm → Fp
of size s. The field F is required to be of size at least F (t, s).

2. Output: The verifier V outputs a tuple I of coordinates in [t ·m+ `(t, s)], and a linear circuit
ψ : F|I| → Fp′ of size at most d(t, s).

3. Randomness complexity: On every finite field F and input circuits ϕ1, . . . , ϕt, and on every
sequence of coin tosses, V tosses at most r(t, s) coins.

4. Completeness: For every x1 ∈ SAT(ϕ1), . . . , xt ∈ SAT(ϕt) , there exists a string π ∈ F`(t,s)
such that

Pr
[
ψ
(

(x1 ◦ . . . ◦ xt ◦ π)|I

)
accepts

]
= 1,

where ψ and I are generated by the verifier V on input (F, ϕ1, . . . , ϕt). We refer to π as the
proof of x1, . . . , xt, or as the proof that convinces V that ϕ1, . . . , ϕt accept x1, . . . , xt.

5. Soundness: For every x1, . . . , xt ∈ Fm such that xi is ε-far from SAT(ϕi) for some i ∈ [t]
and some ε > 0, and for every string π ∈ F`(t,s), it holds that

Pr
[
ψ
(

(x1 ◦ . . . ◦ xt ◦ π)|I

)
rejects

]
≥ ρ(t, s) · ε,

where ψ and I are generated by the verifier V on input (F, ϕ1, . . . , ϕt). We refer to x1, . . . , xt
as the tested assignments and to π as the proof string.

Remark 5.3. The above definition of linear SPCPP can easily be generalized to a definition of
a general (non-linear) simultaneous PCPP. We are not aware of such a notion in the literature.
However, in retrospect, the tensor product lemma of [Mei09] (following [DR06]) may be viewed as
a construction of a general SPCPP.
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SPCPPs with row/column access. Recall that our goal is to construct linear PCPPs that have
the row/column access property (Definition 4.4), which is important since we use it later to make
the linear PCPP robust. To this end, we will also want our SPCPPs to have row/column access
as well. Recall that a linear PCPP verifier is said to have b-row/column access if the coordinates
of the tested assignment and the proof string can be arranged in matrices Mx and Mπ, such that
the verifier always queries at most b rows and columns of Mx and Mπ. The same definition can
be applied to linear SPCPPs. Actually, we will want our SPCPPs to satisfy the following stronger
property, which will be used shortly below in Theorem 5.2.

Definition 5.4. An SPCPP verifier V is said to have strong b-row/column access if it has b-
row/column access, and furthermore, the rows of the assignment matrix are the tested assignments
x1, . . . , xt (i.e., the i-th row is the vector xi).

Our construction of SPCPPs. The main technical part of this section is the construction of
the following SPCPPs.

Theorem 5.5. There exists an SPCPP verifier with randomness complexity log(t+s)+O(log log(s)),
decision complexity Õ(t + s), minimial field size O(s), rejection ratio Ω(1), and strong O(1)-
row/column access.

5.2 Proof of Theorem 5.1 from Theorem 5.5

5.2.1 Proof idea

We wish to construct a linear PCPP of randomness complexity ≈ 1
2 log n and decision complex-

ity ≈
√
n, using the SPCPPs of Theorem 5.5. Fix a linear circuit ϕ of size n, tested assignment x,

and a proof string π. We wish to verify that x is close to SAT(ϕ).
The most straightforward way to verify that x is close to SAT(ϕ) is to invoke the SPCPP

with with ϕ being the only input circuit and x being the only tested assignment. In other words,
we invoke the the SPCPP with t = 1, s = n. Unfortunately, using this choice of t and s with
Theorem 5.5 would result in randomness complexity ≈ log n and decision complexity ≈ n, which
are too large.

The “right” way to set the parameters of the SPCPP is t ≈
√
n, s ≈

√
n: this would give

us randomness complexity ≈ 1
2 log n and decision complexity ≈

√
n, as required. In order to be

able to invoke the SPCPP with t ≈
√
n, s ≈

√
n, we need to transform ϕ into an “equivalent”

collection of circuits ψ1, . . . , ψ≈
√
n, each being of size ≈

√
n. This can be done by an object

called robust circuit decomposition, constructed in [Mei09] (abbreviated decomposition). Using our
terminology, the decomposition of [Mei09] is a linear PCPP that does not satisfy the standard
soundness property, but is rather only guaranteed to reject non-satisfying assignments with non-
zero probability. However, when it does reject a non-satisfying assignment, it does so robustly. More
formally, the decomposition satisfies the following property:

• Suppose the decomposition is given input circuit ϕ, tested assignment x and proof string π. If
x is ε-far from SAT(ϕ), then with non-zero probability, the decomposition outputs an output
circuit ψ and queries tuple I such that (x ◦ π)|I is Ω(ε)-far from SAT(ψ).

Moreover, the decomposition of [Mei09] has randomness complexity 1
2 log n+O(log log n) and deci-

sion complexity Õ(
√
n).

Given the decomposition of [Mei09], we construct our linear PCPP as follows: suppose our linear
PCPP verifier is given an input circuit ϕ, tested assignment x, and proof string π. Our verifier will
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start by invoking the decomposition of [Mei09] on ϕ, x, and π, and on all t = Õ(
√
n) possible

sequences of random coins. The result is a sequence of output circuits ψ1, . . . , ψt of size Õ(
√
n) and

queries tuples I1, . . . , It. Next, for every j ∈ [t], we define xj
def
= (x ◦ π)|Ii . Our verifier will finish by

invoking the SPCPP of Theorem 5.5 on input circuits ψ1, . . . , ψt and tested assignments x1, . . . , xt.
The soundness of this linear PCPP is argued as follows: If x is ε-far from SAT(ϕ), then by the

property of the decomposition, there exists some i ∈ [t] such that xi is Ω(ε)-far from SAT(ψi). This
implies, by the soundness of the SPCPP, that the SPCPP verifier rejects with probability Ω(ε), as
required.

The non-trivial issue is to show that the linear PCPP has O(1)-row/column access, which is
discussed next. To this end, we use the following additional property of the decomposition, called
“matrix access”: The tested assignment x and the proof string π can be arranged in matrices Mx

and Mπ such that every xi consists of O(1) whole rows of those matrices, in a way that satisfies
few additional technical properties. By combining the latter property with the strong row/column
access of the SPCPP, it is possible to show that our linear PCPP has O(1)-row/column access.

5.2.2 The formal proof

We begin by giving a formal statement of the robust circuit decomposition of [Mei09] in the following
lemma, which can be proved using tools from [Mei09] (see discussion at the end of this section for
details).

Lemma 5.6 (Follows from [Mei09]). There exists a linear PCP D with randomness complexity
1
2 log n+O(log log n), and decision complexity Õ(

√
n). Instead of satisfying the standard soundness

requirement, D satisfies the following soundness requirement:

• For every x ∈ Fm and every string π ∈ F`(n), there exists some sequence of random bits on
which D outputs a linear circuit ψ and queries tuple I such that

dist
(

(x ◦ π)|I ,SAT(ψ)
)
≥ ρD · dist (x,SAT(ϕ)) ,

where ρD is a universal constant.

Furthermore, D has the following “matrix access” property: This means that D has b′-block access
for some arbitrarily large b′, and moreover, it satisfies the following properties.

• There is some universal constant bD such that D always query at most bD distinct blocks
(though it may query many copies of the same block).

• All the assignments blocks are of the same length and all the proof blocks are of the same
length.

• D always queries the same number of assignment blocks and the same number of proof blocks.
In other words, the queries tuple I always contains at most the same number of assignment
blocks and the same number of proof blocks.

• In the tuple I, the blocks are written consecutively. In other words, the tuple I consists of the
coordinates of first block, then the coordinates of the second block, etc. Moreover, the order of
the coordinates inside the block is the same for all its occurrences in every tuple I, for every
sequence of random bits of D.

• In each tuple I, the assignment blocks always precede the proof blocks.
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Remark 5.7. The definition of “matrix access” may seem arbitrary. The motivation for this def-
inition will become apparent when we prove below that the linear PCPP we construct has O(1)-
row/column access.

We turn to proving Theorem 5.1, restated next.

Theorem (5.1, restated). There exists a linear PCPP with randomness complexity 1
2 log n+O(log log n),

decision complexity Õ(
√
n), rejection ratio Ω(1), and O(1)-row/column access.

Let D be the decomposition of Lemma 5.6, and let V the the SPCPP of Theorem 5.5. We
construct a linear PCPP verifier V ′ with the desired parameters. Fix an input circuit ϕ of size n,
a tested assignment x for ϕ, and a proof string π′ for V ′. The verifier V ′ expects π′ to consist of a
proof string πD for D and a proof string πV for V .

The action of V ′. When given ϕ as input, the verifier V ′ acts as follows:

1. First, V ′ invokes D on ϕ and on all possible sequences of random bits. Let ψ1, . . . , ψt and
I1, . . . , It be the linear circuits and queries tuples that D outputs on all the possible sequences
of random bits. Note that since D has randomness complexity 1

2 log n+O(log log n), it holds
that t = Õ(

√
n), and enumerating over all t sequences of random bits can be done in polyno-

mial time. Furthermore, the linear circuits ψ1, . . . , ψt are of size Õ(
√
n) due to the decision

complexity of D.

2. Next, V ′ emulates V on input ψ1, . . . , ψt, thus obtaining a linear circuit η and a queries
tuple J .

3. Note that the queries tuple J contains coordinates of the string

u
def
= (x ◦ πD)|I1 ◦ . . . ◦ (x ◦ πD)|It ◦ πV . (2)

On the other hand, the verifier V ′ is required to output a queries tuple J ′ that contains
coordinates of the following string:

v
def
= x ◦ πD ◦ πV

The verifier V ′ now constructs J ′ by translating the coordinates of u in J into the correspond-
ing coordinates of v in the obvious way.

4. Ther verifier V ′ modifies J ′ such that every coordinate in J ′ appears at most once. That is,
if a coordinate appeared in J ′ more than once, then all its copies except one are removed.
The verifier V ′ also modifies the linear circuit η such that input gates that correspond to
different copies of the same coordinate are replaced by a single input gate, thus obtaining a
linear circuit η′.

5. The verifier V ′ concludes by outputting the linear circuit η′ and queries tuple J ′.

The parameters of V ′. Let r, d, F and ρ be the randomness complexity, decision complexity,
minimial field size, and rejection ratio of V respectively. It is not hard to see that V ′ has randomness
complexity r(Õ(

√
n), Õ(

√
n)) = 1

2 log n + O(log log n), decision complexity d(Õ(
√
n), Õ(

√
n)) =

Õ(
√
n), and minimal field size F (Õ(

√
n), Õ(

√
n)) = Õ(

√
n). It remains to analyze the rejection

ratio of V ′.
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Suppose that x is ε-far from SAT(ϕ). Then, by the soundness of the decomposition D, there
exists some index i ∈ [t] such that

dist
(

(x ◦ π)|Ii ,SAT(ψi)
)
≥ ρD · ε.

Recall the definition of the string u in Equation 2 above. By the soundnes of the SPCPP V , it
follows that η′ rejects u|J ′ with probability at least

ρ(Õ(n), Õ(n)) · ρD · ε = Ω(ε).

This implies that V ′ has rejection ratio Ω(1), as required.

The row/column access of V ′. We conclude by showing that V ′ has O(1)-row/column access.
Recall that D has matrix access, which means that the tested assignment x and proof string πD can
be arranged in matricesMx andMD such that every queries tuple Ii queries at most bD distinct rows
of those matrices. Furthermore, recall that V has strong bV -row/column access for some universal
constant bV . This means that the string πV can be arranged in a matrix MV , such that the V
queries at most bV rows and columns of the matrix MV , and of the matrix MI whose rows are the
strings (x ◦ πD)|I1 , . . . , (x ◦ πD)|It .

We begin by defining the assignment and proof matrices of V ′. We define the assignment
matrix of V ′ to be Mx, the assignment matrix of D. We define the proof matrix of V ′ to be the
matrix constructed from MD and MV by writing one of them above the other, and adding dummy
coordinates to make sure that all the rows are of the same length. Let us denote the resulting proof
matrix by Mπ′ .

We now show that V ′ queries at most O(bD · bV ) = O(1) rows and columns of Mx and Mπ′ . We
start with the rows. By the row/column access of V , the queries tuple J ′ contains at most bV rows
of the matrices MI and MV . The rows of MV are rows of Mπ′ , so they pose no problem. As for
rows ofMI , recall that each row ofMI is a string (x ◦ πD)|Ii . By the matrix access of D, the queries
tuple Ii contains at most bD distinct rows of Mx and MD. Since rows of MD are rows of Mπ′ , it
follows that the queries tuple J contains at most bD · bV distinct rows of Mx and Mπ′ . Finally, since
V ′ constructs J ′ such that it contains at most one copy of each coordinate, we get that J ′ contains
at most bD · bV rows, as required.

We turn to upper bound the number of columns queried by V ′. By the row/column access of V ,
the queries tuple J ′ contains at most bV columns of MI and MV . Columns of MV are contained in
columns of Mπ′ , so they pose no problem. The tricky part is to handle the columns of MI . The
crucial observation here is that due to the matrix access of D, every column of MI is contained in a
column of Mx or MD. Indeed, this observation was the reason that matrix access was defined this
way in [Mei09].

To see why the latter observation is correct, fix a queries tuple Ii of D, let h ∈ [|Ii|], and let k
be the h-th coordinate in Ii. Now, observe that given the index h alone, one can decide whether
the coordinate k belongs to an assignment block or a proof block of D, and compute the offset of k
within the block. This can be done without knowing k itself due to the matrix access of D. This
can be seen as follows:

• Recall that the matrix access implies that all the assignment blocks of D are of the same
length, say la.

• Moreover, every tuple Ii reads the same number of assignment blocks, say pa, and the assign-
ment blocks precede the proof blocks in Ii.
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• Thus, the coordinate k belongs to an assignment block if and only if h ≤ la · pa.

• Furthermore, if k does belong to an assignment block, then its offset in the block exactly
((h− 1) mod la) + 1.

• If k belongs to a proof block, its offset in the block can be determined similarly.

Finally, this means that for every column h of MI , one of the following holds:

• All the coordinates of MI belong to assignment blocks of D, and have the same offset in the
corresponding blocks.

• All the coordinates of MI belong to proof blocks of D, and have the same offset in the
corresponding blocks.

In the first case the h-th column of MI is contained in a column of Mx, and in the second case it is
contained in a column of MD. This concludes the proof of Theorem 5.1.

Deriving Lemma 5.6. A few comments on how to derive Lemma 5.6 from [Mei09] are in place:

1. While all the definitions and proofs in [Mei09] are written in terms of boolean (non-linear)
circuits, they work equally well for our case of linear circuits.

2. While the Lemma 5.6 is not stated explicitly in [Mei09], it can be proved easily by combining
Definitions 6.1 and 6.3, Lemma 6.4, and Proposition 8.5 there.

3. A small issue that needs attention is that Proposition 8.5 of [Mei09] does not state that the
fact that D queries at most bD distinct blocks. However, this property can be observed by
examining the proof. In short, the reason that this property holds is that the decomposi-
tion that Proposition 8.5 takes as input has O(1)-block access, and the decomposition that
Proposition 8.5 outputs queries only copies of the blocks that were queried by the input
decomposition, and copies of their encodings.

5.3 Construction of SPCPPs

In the rest of this section, we construct the linear sPCPPs of Theorem 5.5, restated next.

Theorem (5.5, restated). There exists an SPCPP verifier with randomness complexity log(t+ s) +
O(log log(s)), decision complexity Õ(t+s), minimial field size O(s), rejection ratio Ω(1), and strong
O(1)-row/column access.

We construct the SPCPP in four steps:

1. We first describe how to construct an SPCPP for the simple special case in which all the input
circuits ϕ1, . . . , ϕt are the same. This is done in Section 5.3.1.

2. Then, we show how to construct an SPCPP for a more interesting case, which we call colorable
constraint systems, by reducing it to few instances of the foregoing simple case. This is done
in Section 5.3.2.

3. Next, we show how to transform arbitrary linear circuits ϕ1, . . . , ϕt into a colorable constraint
system. This is done in Section 5.3.3.

4. Finally, we combine the results of the two last steps to construct an SPCPP for the genral
case. This is done in Section 5.3.4
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5.3.1 A simple case

We begin with constructing an SPCPP verifier V for the case in which all the input circuits ϕ1, . . . , ϕt
are the same. The following construction works for every field, and places no limitation on the field
size.

Lemma 5.8. There exists an SPCPP verifier that works only when all its input circuits are equal,
and has randomness complexity log(t+s) +O(1), decision complexity Õ(t+s), rejection ratio Ω(1),
and strong O(1)-row/column access.

Fix an input circuit ϕ def
= ϕ1 = . . . = ϕt of size s, a finite field F, tested assignments x1, . . . , xt ∈

Fm, and a proof string π. Let W = SAT(ϕ). We construct an SPCPP verifier V that verifies
that x1, . . . , xt ∈W .

Let Mx be the t×m matrix whose rows are the tested assignments x1, . . . , xt. Let C : Ft → Fl
be a systematic linear code (as in Fact 2.15) of message length t, rate RC and relative distance δC .
Let N be the l ×m matrix obtained by encoding the columns of Mx via C. Note that since C is
systematic, the first t rows of N are just the matrixMx. The verifier V expects the proof matrixMπ

to consist of the last l − t rows of N .
The motivation for defining the matrix N lies in the following observation: if x1, . . . , xt ∈ W ,

then all the rows of N belong to W as well, including the rows that are not in Mx. This is true
since all the rows of N are linear combinations of rows of Mx. As we will see in Claim 5.9 below, if
one of the xi’s does not belong to W , then many rows of N do not belong to W .

This motivates the following construction of V : Let Mx and Mπ be the assignment and proof
matrices of V . Let N ′ be the l ×m matrix whose first t rows are Mx and whose last l − t rows are
Mπ. The matrix N ′ is expected to be equal to N , but might be different. The verifier V performs
the following two checks while recycling randomness:

1. V chooses a row of N ′ uniformly at random and checks that it belongs to W .

2. V chooses a column of N ′ uniformly at random and checks that it is a legal codeword of C.

The verifier V accepts if and only if both checks accept. It is easy to see that the randomness
complexity of V is indeed at most log(t + s), and that it has strong 2-row/column access. To see
that V has decision complexity Õ(t + s), observe that checking that a row of N ′ is in W can be
done by the input circuit ϕ itself (which has size s), and that checking that a column of N ′ is a
codeword of C can be done by a linear circuit of size ˜O(t) by Fact 2.15. It remains to analyze the
rejection ratio of V . The crux of our argument is the following (standard) result.

Claim 5.9. Let W0 ⊆ Fm0 be a linear space, and let N0 be a l×m0 matrix whose columns are legal
codewords of C. If at least one row of N0 does not belong to W0, then at least δC fraction of the
rows of N0 do not belong to W0.

Before proving Claim 5.9, let us first see how to use it to analyze the rejection ratio of V .
Suppose that for some ε > 0 there exists i ∈ [t] such that xi is ε-far from W . As a warm-up, first
assume that all the columns of N ′ are legal codewords of C, i.e., that N ′ = N . Note that the i-th
row of N ′, which is just xi, does not belong to W by assumption. Thus, by applying Claim 5.9 with
N0 = N ′ and W0 = W , it follows that at least δC fraction of the rows of N ′ do not belong to W .
This implies that V rejects with probability at least δC ≥ Ω(ε), as required.

Next, suppose that some of the columns of N ′ are not legal codewords of C. Let T denote the
set of those columns. If |T | /m ≥ ε, then V rejects with probability at least ε, and we are done.
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Suppose that |T | /m < ε. We choose N0 be the matrix obtained from N ′ by removing the columns
in T , and let W0 be the vector space obtained by projecting W to the coordinates in [m]− T .

Now, observe that the xi|[m]−T can not belong to W0, or otherwise xi would have been ε-close
to W . Thus, N0 is a matrix whose columns are all legal codewords of C, and whose i-th row does
not belong to W0. It follows by Claim 5.9 that at least δC fraction of the rows of N0 do not belong
to W0. This implies that at least δC fraction of the rows of N ′ do not belong to W , and hence V
rejects with probability at least δC ≥ Ω(ε), as required.

Proof of Claim 5.9. Without loss of generality, assume that the first row of N0 does not belong
to W0, and denote this row by x. Let w⊥ be any vector that is orthogonal to W0 but is not
orthogonal to x (such w⊥ must exist, by the assumption that x /∈ W ). Now, let v def

= N0 · w⊥, i.e.,
v is the result of the matrix multiplication of N0 and w⊥). Observe that

1. v is a codeword of C, since it is a linear combination of columns of N0, which are codewords
of C.

2. v is a non-zero vector. To see it, the note that first coordinate of v must be non-zero, since
the first row of N0 is not orthogonal to w⊥.

We conclude that v is a non-zero codeword of C, and therefore at least δC fraction of its coordinates
are non-zero. However, for each non-zero coordinate of v, the corresponding row of N0 is not
orthogonal to w⊥ and thus does not belong to W0. Hence, at least δC fraction of the rows of N0 do
not belong to W0, as required. �

5.3.2 The case of colorable constraint systems

We proceed to show a construction of an SPCPP for circuits ϕ1, . . . , ϕt that are a colorable constraints
system (CCS), to be defined below. We will later show that any sequence of circuits ϕ1, . . . , ϕt can
be transformed into a CCS.

Informally, we say that a collection of circuits ϕ1, . . . , ϕt : Fm → Fp forms a CCS if the subspaces
SAT(ϕ1), . . . ,SAT(ϕt) can be described by a collection S of linear constraints that can be “legally
colored” using few colors. Roughly, we say that a coloring of the constraints in S is legal if constraints
of the same color do not share coordinates. The idea that underlies our construction of an SPCPP
for a CCS is that in a CCS can be decomposed to few monochromatic systems of constraints, such
that each system can be reduced to the simple case discussed above.

Colorable constraint systems. We begin by formally defining the notion of a linear constraint,
and the set of linear constraints associated with a linear circuit. Given a vector space W ⊆ Fm and
a vector s ∈ Fm, we say that s is a (linear) constraint of W if s is orthogonal to all the vectors in W .
We say that a constraint s touches a coordinate i ∈ [m] if si 6= 0. We say that a vector space W is
described by a set S of constraints of W if S spans all the constraints of W (i.e., S spans the dual
space W⊥).

Let ϕ be a linear circuit, and let W = SAT(ϕ). Recall that a vector v ∈ Fm belongs to W if
and only if ϕ(v) is the all-zeroes vector. Now, observe that every output gate of ϕ corresponds to a
constraint of W , simply by taking the linear combination that the gate computes and presenting it
as a vector. We define the set of constraints of ϕ to be the set of all the constraints that correspond
to output gates of ϕ. We are now ready to define the notion of a CCS.

Definition 5.10 (Colorable constraints system). Let χ ∈ N, let ϕ1, . . . , ϕt : Fm → Fp be linear
circuits, and let S1, . . . , St ⊆ Fm be the corresponding sets of constraints. We say that ϕ1, . . . , ϕt
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form a χ-colorable constraints system (abbreivated χ-CCS) if the union S def
= S1 ∪ . . . ∪ St satisfies

the following requirement: The constraints in S can be colored by χ colors, such that

• For each Si, if s1 6= s2 ∈ Si have the same color, then s1 and s2 touch disjoint sets of
coordinates.

• For each Si and Sj , i 6= j, if s1 ∈ Si and s2 ∈ Sj have the same color, then they either
touch disjoint sets of coordinates, or touch exactly the same coordinates (but may differ on
the coefficients).

In this section we prove the following theorem, which constructs a SPCPP that only works for
CCSs.

Lemma 5.11. There exists an SPCPP verifier V that works only when its input circuits form a
χ-CCS, and when it is given the corresponding coloring as an additional input. The verifier V has
randomness complexity log(t + s) + O(log log s), decision complexity Õ(χ · (t + s)), minimial field
size O(s), rejection ratio Ω(1), and strong O(χ)-row/column access.

In the rest of this section, we describe the construction of the verifier V . Fix input circuits
ϕ1, . . . , ϕt, tested assignments x1, . . . , xt ∈ Fm, and proof string π. Let S1, . . . , St be the corre-
sponding sets of constraints, let S def

= S1 ∪ . . .∪ St. Suppose that we are given a coloring of S using
χ colors as in Definition 5.10, represented as a list containing the color of each output gate of each
circuit ϕi.

High level view of the construction. Our strategy is to construct for each color c ∈ [χ] a
collection of vectors xc1, . . . , xct ∈ Fm and a subspace U c ⊆ Fm such that the following holds: The
circuits ϕ1, . . . , ϕt accept x1, . . . , xt (respectively) if and only if the vectors xc1, . . . , xct all belong to U c

for every color c ∈ [χ]. The point is that verifying that xc1, . . . , xct belong to U c can be done using the
simple-case SPCPP of Lemma 5.8 above. The proof string π will be required to contain the vectors
xc1, . . . , x

c
t , as well as additional information that allows verifying their consistency with x1, . . . , xt,

and proof strings for the invocation of the simple-case SPCPP.
For each color c ∈ [χ] and i ∈ [t], we define the vector xci as follows: Let zci ∈ Fm be the

vector obtained by summing all the constraints s ∈ S of color c. Then, we define xci
def
= xi · zci ,

where the multiplication is done coordinate-wise. In other words, we define xci by setting each
coordinate j ∈ [m] of xci as follows. If the coordinate j is touch by a constraint s ∈ Si of color c,
then we define (xci )j = (xi)j · sj . Otherwise, we define (xci )j = 0. Note that those two definitions
are indeed equivalent, since every coordinate j can be touched by at most one constraint of color c
in Si.

Next, we define the subspace U c ⊆ Fm as follows. Let s1, . . . , sk ∈ S be all the constraints of
color c (over all input circuits). For each constraint si, let s′i be the inidicator vector of the support
of si, In other words, for each j ∈ [m], we define (s′i)j = 1 if (si)j 6= 0, and (s′i)j = 0 otherwise.
We now define U c to be the subspace described by the constraints s′1, . . . , s′k. As we prove below
in Claim 5.12, it holds that ϕ1, . . . , ϕt accept x1, . . . , xt (respectively) if and only if the vectors
xc1, . . . , x

c
t all belong to U c for every color c ∈ [χ]. The crucial observation here is that for every

xi and s ∈ Si of color c, it holds that 〈xi, s〉 = 〈xci , s′〉. Thus, if the proof string π indeed contains
vectors xc1, . . . , xct that are constructed as defined above, we are done.

It remains to verify that the vectors xc1, . . . , xct are obtained from x1, . . . , xt as expected. To
this end, we use multiplication codes. Let (CA, CB, CM ) be the multiplication codes of Fact 2.16.
The verifier expects the proof string π to contain, for every i ∈ [t] and c ∈ [χ], codewords cA ∈ CA
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and cM ∈ CM that are supposed to be equal to CA(xi) and CA(xi) · CB(zci ) respectively. Note
that xci is supposed to be a substring of CA(xi) · CB(zci ) because the codes are systematic, so if
cM = CA(xi) ·CB(zci ), we can extract xci from it. In order to check that cM = CA(xi) ·CB(zci ), the
verifier chooses a random coordinate j and checks that (cM )j = (cA)j ·CB(zci )j (note that the verifier
can compute CB(zci ) on its own). If cA and cM are indeed codewords of CA and CM respectively,
then the distance of CM guarantees the soundness of this test.

Finally, the verifier should verify that cA and cM are indeed legal codewords of CA and CM
respectively, and this should be done for all xi’s simultaneously. However, this check can be done
using the simple-case SPCPP of Lemma 5.8. We conclude this overview by proving our claim
regarding the subspaces U c.

Claim 5.12. For every i ∈ [t], it holds that xi ∈ SAT(ϕi) if and only if xci ∈ U c for every c ∈ [χ].

Proof. Fix i ∈ [t]. For the rest of the proof, we say that a vector s′ is the indicator of a constaint
s ∈ S if s′ is the indicator vector of the support of s, as described above in the definition of U c.

For the first direction, assume that xci ∈ U c for every c ∈ [χ]. We prove that xi ∈ SAT(ϕi). Let
s ∈ Si be an arbitrary constraint of SAT(ϕi). It suffices to prove that 〈xi, s〉 = 0. Suppose that s
is of color c, and let s′ be the indicator of s. By assumption, xci ∈ U c, and therefore 〈xci , s′〉 = 0.
Now, by the construction of xci , it holds that 〈xi, s〉 = 〈xci , s′〉 = 0, as required.

For the second direction, assume that xi ∈ SAT(ϕi). Fix c ∈ [χ]. We prove that xci ∈ U c. Let
s′ be one of the constraints that we used to describe U c. It suffices to prove that 〈xci , s′〉 = 0. We
now consider two cases:

1. Suppose there exists some constraint s ∈ Si of color c such that s′ is the indicator of s. Then,
by the construction of xci , it holds that 〈xci , s′〉 = 〈xi, s〉 = 0, where the second equality follows
since xi ∈ SAT(ϕi).

2. Otherwise, let s ∈ S − Si be of color c such that s′ is the indicator of s. We claim that for
every coordinate j ∈ [m] that is touched by s, it holds that j is not touched by any constraint
of color c in Si. By the definition of xci , this implies that all the coordinates touched by s′ are
zeroed in xci , and therefore 〈xci , s′〉 = 0, as required.
To see why the above claim is true, suppose that j was touched by some constraint s0 ∈ Si
of color c. Then, s0 and s would have shared the coordinate j. On the other hand, s and s0
can not touch exactly the same coordinates, since if they did, s′ would have been an indicator
of s0 ∈ Si. It follows that s and s0 share a coordinate without touching exactly the same
coordinate, thus contradicting the definition of legal coloring.

�

The construction of V . We turn to give a detailed description of the SPCPP verifier V . Let VS
be the simple-case SPCPP of Lemma 5.8. Let (CA, CB, CM ) be the triplet of multiplication codes
of Fact 2.16, such that CA and CB have message length m, and let us denote the block length of CA,
CB, CM by l. Recall that CA, CB, CM have rate RC and relative distance δC , where RC and δC
are universal constants.

The verifier V expects the string x1 ◦ . . . ◦ xt ◦ π to consist of the following matrices:

1. A t × l matrix N , whose rows are the encodings of x1, . . . , xt via CA. Note that since CA is
systematic, the first m coordinates of the i-th row of N contain xi.

2. For each color c ∈ [χ], a matrix N c whose i-th row is CA(xi) · CB(zci ), where z
c
i is defined as

in the high level description above.
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3. A proof matrix for each of the invocations of the simple-case SPCPP VS described below.

Let us denote by N , N c the matrices that are actually given in the string x1 ◦ . . . ◦ xt ◦ π, which
might or might not be equal to the matrices N , N c defined above. The verifier V also constructs,
for each color c ∈ [χ], a t× l matrix Zc whose i-th row is CB(zci ) - note that V can compute Zc from
the inputs circuits ϕ1, . . . , ϕt directly, without making any queries. The verifier V now performs
the following checks while recycling randomness:

1. The verifier V invokes VS to verify that all the rows of N are codewords of CA.

2. For each color c ∈ [χ], the verifier V invokes VS to verify that all the rows of N c are codewords
of CM , whose projection to the first m coordinates belongs to U c. Here, U c is defined as in
the high level description above.

3. The verifier V chooses a uniformly distributed coordinate j ∈ [l]. Then, for every color c ∈ [χ],
the verifier V checks that the j-th column of N c equals to the coordinate-wise multiplication
of the j-th columns of N and Zc.

Observe that the foregoing invocations of VS indeed correspond to the simple case of Section 5.3.1:
in each such invocation, all the rows of the corresponding matrix are checked for membership in
the same subspace. This concludes the description of the SPCPP verifier V . We turn to analyze its
parameters.

The minimial field size. In order for the codes CA, CB and CM to exist, the field F must be of
size at least l = O(m) = O(s). Thus, the minimial field size of V is O(s).

The randomness and decision complexity of V . In order to analyze the randomness and
decision complexity of V , we first need to bound the size of the linear circuits on which V invokes VS :

1. For the first check above, V invokes VS on a linear circuit that verifies membership in CA. By
Fact 2.16, V can construct such a linear circuit of size Õ(m) = Õ(s).

2. For the second check above, V invokes VS on a conjunction of a linear circuit that verifies
membership in CM and a linear circuit that verifies membership in U c. Again, by Fact 2.16,
a linear circuit that verifies membership in CM can be of size Õ(m) = Õ(s). As for verifying
membership in U c, note observe that verifying membership in U c can be done by a linear
circuit of size O(m) = O(s): to see it, U c is described by a collection of constraints such that
no two of them share a coordinate (since they are of the same color).

Therefore, VS is only invoked on linear circuits of size at most Õ(s). Now, let rS(t, s) and dS(t, s) de-
note the randomness and decision complexity of VS respectively. In order to analyze the randomness
complexity of V , observe that the invocations of VS require rS(t, Õ(s)) ≤ log(t + s) + O(log log s)
random bits, and choosing the random coordinate j ∈ [l] requires log l ≤ log s+O(1) random bits.
Since V recycles the randomness used in the different checks, we get that the randomness complexity
of V is log(t+ s) +O(log log s), as required.

We turn to analyze the decision complexity of V . Each of the invocations of VS outputs a linear
predicate ψ of size dS(t, Õ(s)) = Õ(t+s). Moreover, the third check can be implemented by a linear
circuit of size O(t): in particular, note that computing the multiplication of a column of N and a
column of Zc is a linear operation, since the column Zc can be computed by V and be hard-wired
to the linear circuit as a constant scalar. Summing up the sizes of all those linear circuits, it follows
that the decision complexity of V is Õ (χ · (t+ s)), as required.
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The rejection ratio of V . Suppose that there exists an assignment xi that is ε-far from SAT(ϕi).
We prove that V rejects with probability at least Ω(ε). Let us denote by ρS the (constant) rejection
ratio of VS . Let

τ
def
= min {RC · ε, δC/3} .

Clearly, if one of the invocations of VS rejects with probability at least ρS · τ , then we are done.
Thus, we may assume without loss of generality that all the invocations of VS reject with probability
at most ρS · τ . This implies that:

1. Every row of N is τ -close to CA.

2. For each color c ∈ [χ], every row of N c is τ -close to a codeword of CM , whose projection to
the first m coordinates belongs to U c.

Let Ndec be the matrix whose rows are obtained by decoding the rows of N to the closest codeword
of CA. For every color c ∈ [χ], let N c,dec be defined similarly with respect to N c and CM . We
consider two cases:

• For the first case, we assume that for every c ∈ [χ], the matrix N c,dec is equal to the coordinate-
wise multiplication of the matrices Ndec and Zc. Let us denote by xdeci the projection of the
i-th row of Ndec to the first m coordinates, and for each color c ∈ [χ], let xc,deci denote the
projection of the i-th row of N c,dec. By assumption, for each color c ∈ [χ], it holds that
xc,deci ∈ U c, and that xc,deci = xdeci · zci . Thus, by Claim 5.12, it follows that xdeci ∈ SAT(ϕi).
Now, by assumption, the i-th row of N is τ -close to the i-th row of Ndec. Since the rate of
CA is RC , it follows that xi is ε-close to xdeci (as τ/RC ≥ ε). However, this implies that xi is
ε-close to SAT(ϕi), which contradicts the definition of xi.

• For the second case, we assume the opposite. That is, we assume that for some c ∈ [χ], the
matrix N c,dec is different from the coordinate-wise multiplication of the matrices Ndec and Zc.
For every matrix M , let us denote by Mk→ the k-th row of M . Then, for some index k ∈ [t]
it holds that

N c,dec
k→ 6= Ndec

k→ · Zck→ = Ndec
k→ · CB(zck).

Now, N c,dec
k→ is a codeword of CM by definition, and Ndec

k→ · CB(zck) is a codeword of CM by
the multiplication property of CA, CB, and CM . Thus, N c,dec

k→ and Ndec
k→ · CB(zck) must differ

on at least δC fraction of their coordinates. By the triangle inequality, it follows that N c
k→

and Nk→ · CB(zck) must differ on at least δC − 2 · τ ≥ δC/3 fraction of the coordinates. This
implies that the third check of V rejects with probability δC/4 = Ω(ε), as required.

This concludes the analysis of the rejection of V .

The row/column access of V . We conclude by showing that V has strong O(χ)-row/column
access. To this end, we first define the assignment and proof matrices of V . Observe that the
assignment matrix Mx is determined by the “strongness” requirement to be the the matrix whose
rows are x1, . . . , xt. Moreover, observe that the assignment matrix is exactly them leftmost columns
of the matrix N . We define the proof matrix Mπ to be the matrix obtained by concatenating the
l − m rightmost columns of the matrix N , the columns of the matrices N c, and the columns of
the proof matrices for the invocations of VS . If necessary, we add dummy coordinates to make Mπ

rectangular.
Now, since VS has strong 2-row/column access, every invocation of VS query at most 2 rows and

columns of the assignment and proof matrices of this invocation. Observe that for the invocation
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of VS on the matrix N , the matrix N serves as the assignment matrix of VS . Therefore, whenever
this invocation of VS queries a row (respectively, a column) of its assignment matrix, this query
can be emulated by querying two rows (respectively, one column) of Mx and Mπ. Moreover, when-
ever VS queries a row or column of its proof matrix, this query can be emulated by querying the
corresponding row or column of Mπ.

For each invocation of VS on a matrix N c, the matrix N c serves as the assignment matrix of VS .
Thus, each row or column of its assignment and proof matrices is contained in the a corresponding
row or column of Mπ.

Summing up, it follows that the invocations of VS can emulated by querying at most O(χ) rows
and columns of Mx and Mπ. In addition, the third check of V queries an a column of N and a
column of N c for each c ∈ [χ], and all those columns are columns of either Mx or Mπ. We conclude
that V has O(χ)-row/column access, as required.

5.3.3 Reducing the general case to CCS

In this section, we show that how to transform arbirarily linear circuits ϕ1, . . . , ϕt to O(1)-CCS (i.e.,
CCS with O(1) colors). We will use this reduction to construct SPCPPs in Section 5.3.4 below.
The basic idea of the reduction is that every constraint system can be embedded on any routing
network, and in particular one may choose a routing network whose edges can be colored using few
colors. It should be mentioned that while the idea of embedding a constraint system on a routing
network has been used in several prior works (e.g. [BFLS91, PS94]), the use of this technique for
reducing a general constraint system to a CCS is new.

In order to embed a system of linear constraints on a routing network, we add auxiliary variables
to the system in a way that essentially does not change the solution space. This notion of adding
auxiliary variables while “essentially” not changing the solution space is captured by the following
notion of extension.

Definition 5.13. Let W ⊆ {0, 1}m and let l ∈ N. We say that a subspace W ′ ⊆ {0, 1}m+l is an
extension of W if it satisfies the following property: A vector x ∈ {0, 1}m belongs to W if and only
if there exists a vector y ∈ {0, 1}l such that x ◦ y ∈W ′.

In the foregoing Definition 5.13, the vector y represents the assignment to the auxiliary variables,
and the fact that the solution space remains intact is captured by the fact that the projection of
W ′ to the coordinates in [m] yields W . Our reduction of a general constraint system to a CCS can
now be stated as follows.

Lemma 5.14. There exists a polynomial time algorithm that takes as input linear circuits ϕ1, . . . , ϕt :
Fm → Fp of size s, and outputs circuits ϕ′1, . . . , ϕ

′
t : Fm′ → Fp′ that form an O(1)-CCS, such that for

each i ∈ [t] the subspace SAT(ϕ′i) is an extension of SAT(ϕi). Furthermore, the circuits ϕ′1, . . . , ϕ
′
k

are of size Õ(s), and it holds that m′ = Õ(s).

In the rest of this section we sketch prove Lemma 5.14. Fix a collection of circuits ϕ1, . . . , ϕt of
size s, let Wi = SAT(ϕi) for every i, and let S1, . . . , Sk be sets of linear constraints corresponding
to ϕ1, . . . , ϕt. For each Wi, we denote by W ′i

def
= SAT(ϕ′i) the extension of Wi that we seek to

construct.

Warm-up. As a warm-up, consider the case in which every set Si is a collection of disjoint equality
constraints. More formally, we consider the case in which every constraint s ∈ Si takes the value 1
in one coordinate, the value −1 in a second coordinate, and 0 everywhere else. Moreover, we assume
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that every coordinate is touched by at most one constraint in Si. We show that in this case, the
sets S1, . . . , St can be extended to a 4-CCS.

We would like to construct for each Wi a subspace W ′i ⊆ Fm′ which is an extension of Wi,
such that W ′1, . . . ,W ′t form a 4-CCS. The idea that underlies the construction is the following. We
identify every coordinate in [m′] with a vertex of a routing network G (see Section 2.5). We then
embed each equality constraint of the set Si on a path in G that connects the coordinates touched
by the constraint. The 4-colorability of the corresponding constraints system follows from the fact
that G is 4-edge colorable. We turn to explain this construction in detail.

Let G def
= Gm be a routing network of order m obtained from Fact 2.20. Recall that G has

m′
def
= Õ(m) vertices, and that it has a special set of vertices T with the following property: For

every permutation σ : T → T , one can find in polynomial time a collection P of vertex-disjoint
paths that connect each vertex v ∈ T to σ(v). We identify the vertices of G with the coordinates
in [m′], and identify the vertices of T with the coordinates of [m].

We now construct a set S′i of constraints that describes the subspaceW
′
i ⊆ Fm′ for each i ∈ [t] as

follows. We find a collection P of vertex-disjoint paths on G, such that for each equality constraint
s ∈ Si, there is a path in P that connects the coordinates that s touches. Then, for each edge e of
G, we put in S′i an equality constraint between the endpoints of e if and only if e participates in
one of the aforementioned vertex-disjoint paths.

It should be clear that each W ′i is an extension of Wi. To see that W ′1, . . . ,W ′t form a 4-CCS,
let S ′ def= S′1 ∪ . . .∪ S′k and observe that every constraint in S ′ is an equality constraint between the
endpoints of some edge of G. Now, recall that by Fact 2.20, the network G is 4-edge colorable. This
implies the constraints in S ′ can be colored using 4 colors such that no two constraints of the same
color touch the same coordinate. Thus, W ′1, . . . ,W ′k and S ′ satisfy Definition 5.10 with χ = 4. This
concludes the construction.

Handling arbitrary linear circuits. It remains to show how to transform arbitrary linear cir-
cuits ϕ1, . . . , ϕt to an O(1)-CCS as in Claim 5.14. The proof strategy is to construct for each
subspace Wi an extension Ui ⊆ F2s that is described by constraints of two types: The constraints
of the first type form an O(1)-CCS. The constraints of the second type are equality constraints. We
then complete the proof by handling the second type equality constraints in the same way as in the
“warm-up” case of Section 5.3.3.

We turn to describe how to construct the subspace Ui ⊆ F2s. For each wire v of ϕi, we associate
v with two coordinates in [2s], denoted vin and vout. A vector y belongs to Ui if and only if it
satisfies the following two types of constraints

1. Consistency constraints: For every wire v in ϕi, we have the linear constraint yvin = yvout .

2. Computation constraints: For each gate g in ϕi, we have the constraints defined as follows.
Recall that g computes a linear combination of its inputs. Let us denote by α1, α2 ∈ F the
coefficients of this combination, such that when given inputs x1 and x2, the gate g outputs
α1 · x1 + α2 · x2. Let v1 and v2 be the incoming wires of g and let v3 and v4 be its outgoing
wires. Then, the constraints that correspond to g are yvout3

= α1 · yvin1 + α2 · yvin2 and yvout4
=

α1 · yvin1 + α2 · yvin2 .
In addition, for each output wire v of ϕi, we have a constraint of the form yvout = 0.

Observe that each Ui is indeed an extension of Wi.
Now, let us re-arrange the coordinates in [2s] such that, if a gate g of ϕi has incoming wires v1,

v2 and outgoing wires v3, v4, then the coordinates vin1 , vin2 , vout3 , vout4 are consecutive as numbers.
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The crucial observation is that when using this ordering, the computation constraints touch the
same coordinates for every subspace Ui. In other words, in terms of coloring, the only difference
between distinct subspaces Ui, Uj is the consistency constraints. We use this property to argue that
the computation constraints form a CCS.

More specifically, observe that using the latter ordering, the coordinates of [2 · s] can be par-
titioned to disjoint quadruples, such that each computation costraint of any subspace Ui touches
only coordinates within a single quadruple. This means that the support of each constraint in any
Ui can be one of at most 16 possible supports - which are all the possible subsets of a set of four
coordinates. It follows that we can color the computation constraints using 16 colors, such that the
following holds: for every two computations constraints, not necesarily of the same subspace Ui, that
have the same color, either the constraints have the same support, or they have disjoint supports.
In other words, the computation constraints of the subspaces U1, . . . , Ut are O(1)-CCS9.

It remains to handle the consistency constraints. This is done as in the “warm-up” case of
Section 5.3.3, by embedding the consistency constraints on a routing network, and coloring them
using additional 4 colors. Note that this embedding requires to construct for each Ui an extension
W ′i ⊆ Fs′ for m′ = Õ(s). Finally, we take W ′1, . . . ,W ′t to be the required 20-CCS. Note that each
W ′i is indeed an extension of Wi, since W ′i is an extension of Ui which is in turn an extension of Wi.

5.3.4 Proof of Theorem 5.5

In this section, we finish the proof of Theorem 5.5, restated next, by combining Lemma 5.11 with
Lemma 5.14.

Theorem (5.5, restated). There exists an SPCPP verifier with randomness complexity log(t+ s) +
O(log log(s)), decision complexity Õ(t+s), minimial field size Õ(s), rejection ratio Ω(1), and strong
O(1)-row/column access.

We construct a SPCPP verifier V with the required parameters. Fix linear circuits ϕ1, . . . , ϕt :
Fm → Fp of size s, tested assignments x1, . . . , xt, and proof string π. The verifier V starts by
invoking the algorithm of Lemma 5.14 on the circuits ϕ1, . . . , ϕt, thus obtaining linear circuits
ϕ′1, . . . , ϕ

′
t : Fm′ → Fp′ that are O(1)-CCS, and such that SAT(ϕ′i) is an extension of SAT(ϕi) for

each i ∈ [t]. Moreover, it holds that m′ = Õ(s) and the circuits ϕ′1, . . . , ϕ′t are of size Õ(s).
We would now like to invoke the SPCPP for CCSs of Lemma 5.11 on ϕ′1, . . . , ϕ

′
t. However,

before we do it, we first apply a standard “reweighting” trick to make sure that the original tested
assignments form half of the new tested assignments. To this end, for each linear circuit ϕ′i, the
verifier V constructs a new linear circuit ϕ′′i : Fm′′ → Fp′′ that is defined as follows. Let l = dm′/me.
The circuit ϕ′′i takes as input a vector x′′ of length m′′ = (l − 1) ·m + m′, and accepts if and only
if the following two conditions hold:

• The first l ·m coordinates of x′′ contain l identical copies of a vector x ∈ Fm.

• The last m′ coordinates of x′′i form a vector x′ ∈ Fm′ that is accepted by ϕ′i. Note that the
first m coordinates of x′ contain the vector x from the first condition.

Clearly, the linear circuit ϕ′′i can be implemented in size Õ(s), and SAT(ϕ′′i ) is an extension
of SAT(ϕi). It is also easy to see that the linear circuits ϕ′′1, . . . , ϕ′′t form an O(1)-CCS: we can use
the coloring of ϕ′1, . . . , ϕ′t to color the constraints of the second condition above, and an additional
color to color the equality constraints of the first condition.

9In fact, a more careful examination shows that 5 colors are sufficient.
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Let us denote by VC the SPCPP verifier for CCSs of Lemma 5.11. The verifier V expects the
proof string π to contain vectors y1, . . . , yt such that xi ◦ yi ∈ SAT(ϕ′i) for each i ∈ [t] (note that
we use here ϕ′i and not ϕ′′i ). Now, for each i ∈ [t], let

x′′i = xi ◦ . . . ◦ xi︸ ︷︷ ︸
l

◦yi.

The proof string π is also expected to contain a proof string πC that convinces VC that ϕ′′1, . . . , ϕ′′t
accept x′′1, . . . , x′′t . The verifier V finishes by emulating VC on tested assignments x′′1, . . . , x′′i and
proof string πC , and and accept if and only VC accepts. Observe that this emulation can be
performed simply by redirecting the queries of VC to the copies of xi in x′′i to the corresponding
coordinates of xi.

It is not hard to see that the randomness complexity, decision complexity, and minimal field
size of V are log(t + s) + O(log log(s)), Õ(t + s), and Õ(s) respectively. Furthermore, the strong
O(1)-row/column access of V follow easily from the strong O(1)-row/column of VC . It remains to
analyze rejection ratio of V .

Let ρC be the (constant) rejection ratio of VC . Suppose that xi is ε-far from SAT(ϕi) for some
i ∈ [t] and ε > 0. Then, since the copies of xi form half of the vector x′′i , it follows that x

′′
i is ε/2-far

from SAT(ϕ′′i ). This implies that VC rejects x′′1, . . . , x′′t with probability at least ρC · ε/2. It follows
that V rejects with probability at least ρC · ε/2 ≥ Ω(ε), as required.

6 Proof of the main theorems

In this section, we show how to prove our main theorems, restated below, by combining the tools
that were developed in the previous sections.

Theorem (1.1, main theorem, restated). For every time-constructible t : N→ N and every language
L ∈ NTIME(t), there exists a PCP verifier for L with proof length t ·(log (t))O(log log t), randomness
complexity log t+O(log2 log t), query complexity O(1), and rejection probability Ω(1).

Theorem (2.5, main PCPP theorem, restated). Let t : N× N→ N and let PL be a pair-language
that is decidable in time t. Then, there exists a PCPP verifier for PL with randomness complexity
log t+O(log2 log t), decision complexity O(1), and rejection ratio Ω(1).

As we showed in Section 2.3.2, Theorem 2.5 implies Theorem 1.1, so it suffices to prove Theorem 2.5.
Fix a time-constructible function t : N × N → N and a pair-language PL that is decidable in
time t. We construct PCPPs with the required parameters for PL. Our starting point is the
linear PCPP that was constructed in Theorem 5.1, which we denote here by V1. The verifier V1 has
randomness complexity 1

2 log n+O(log log n), decision complexity Õ(
√
n), minimial field size Õ(

√
n),

rejection ratio Ω(1), and O(1)-row/column access. We begin by applying the robustization technique
of Theorem 4.7 to V1, resulting in a linear PCPP verifier V2 that has randomness complexity
1
2 log n+O(log log n), decision complexity Õ(

√
n), and robustness Ω(1).

Our next step is to compose V2 with itself for log logn times10, resulting in a linear PCPP
verifier V3 that has randomness complexity log n + O(log2 log n), decision complexity O(1), and
rejection ratio 1/ poly log n. Then, we apply the transformation of linear PCPPs to (general) PCPPs
of Theorem 3.1, resulting in a PCPP verifier V4 for PL, which has randomness complexity log t +
O(log2 log t), decision complexity O(log t), and rejection ratio 1/poly log t.

10Formally, this is done by applying for log log n times the universal algorithm whose existence is stated in Theo-
rem 2.11, each time setting Vout to be the result of the previous iteration.
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Finally, we apply transformation of Theorem 2.13 to V5, which reduces the decision complexity
to O(1) and amplifies the rejection ratio to Ω(1) using Dinur’s gap amplification technique. This
results in a PCPP verifier V6 for PL, which has randomness complexity log t+O(log2 log t), constant
decision complexity, and constant rejection ratio. Note that by the standard bounds that werre
discussed in Section 2.3.1, the verifier V6 has proof length t · (log t)O(log log t) and constant query
complexity. We conclude that V6 is the required PCPP verifier.

7 Variations of our construction

7.1 Alternative construction

In this section we sketch an alternative proof for our main theorems. This advantage of this alter-
native proof is that it might give more intuition for why our construction works, and may be easier
to understand at the high level. The disadvantage of this proof is that it is less modular than the
construction presented in the foregoing sections. We turn to sketch the proof in more detail.

We would like to construct a PCPP verifier with randomness complexity log t + O(log2 log t),
decision complexity O(1), and rejection ratio Ω(1). We will focus on constructing PCPP for the
pair-language of CircuitEval, which consists of pairs (ϕ, x) where ϕ : {0, 1}m → {0, 1} is a boolean
circuit of size n, and x ∈ {0, 1}m is a satisfying assignment of ϕ. It suffices to construct a PCPP
for CircuitEval that has randomness complexity log n+O(log2 log n), decision complexity O(1),
and rejection ratio Ω(1), since such a PCPP would imply the required PCPPs for any pair-language
via standard techniques.

This time, we construct the PCPP directly, rather than first constructing a linear PCPP and
then transforming it to a general PCPP. As in our previous construction, it suffices to construct
a PCPP for CircuitEval with randomness complexity 1

2 log n+O(log log n), decision complexity
Õ(
√
n), rejection ratio Ω(1), and (poly log n)-row/column access. Given such a PCPP, one can

obtain the final PCPP by applying robustization, composition, and gap amplification, as we did in
Section 6 above. Moreover, as in Section 5, it actully suffices to construct SPCPPs. Here, we use a
variant of SPCPPs that works with boolean circuits rather linear circuits defined as follows.

Definition 7.1. Let r, d, `, F : N × N → N, ρ : N × N → (0, 1). A (general) simultaneous PCPP
(SPCPP) verifier V with randomness complexity r, decision complexity d, proof length `, and rejec-
tion ratio ρ is a probabilistic polynomial time machine that satisfies the following requirements:

1. Input: The verifier V takes as input t boolean circuits ϕ1, . . . , ϕt : {0, 1}m → {0, 1} of size s.

2. Output: The verifier V outputs a tuple I of coordinates in [m+ `(t, s)], and a boolean circuit
ψ : {0, 1}|I| → {0, 1} of size at most d(t, s).

3. Randomness complexity: On every input circuits ϕ1, . . . , ϕt, and on every sequence of coin
tosses, V tosses at most r(t, s) coins.

4. Completeness: For every x1 ∈ SAT(ϕ1), . . . , xt ∈ SAT(ϕt), there exists a string π ∈ {0, 1}`(t,s)
such that

Pr
[
ψ
(

(x1 ◦ . . . ◦ xt ◦ π)|I

)
= 1
]

= 1,

where ψ and I are generated by the verifier V on input (ϕ1, . . . , ϕt).

47



5. Soundness: For every x1, . . . , xt ∈ {0, 1}m such that xi is ε-far from SAT(ϕi) for some i ∈ [t]

and some ε > 0, and for every string π ∈ {0, 1}`(t,s), it holds that

Pr
[
ψ
(

(x1 ◦ . . . ◦ xt ◦ π)|I

)
= 0
]
≥ ρ(t, s) · ε,

where ψ and I are generated by the verifier V on input (ϕ1, . . . , ϕt).

As in Section 5, it suffices to construct the SPCP stated in the following theorem. In what
follows, the definition of strong row/column access is adapted to general SPCPPs in the natual way.

Theorem 7.2. There exists a (general) SPCPP verifier with randomness complexity log(t + s) +
O(log log(s)), decision complexity Õ(t+s), rejection ratio Ω(1), and strong (poly log n)-row/column
access.

Now, the main difference between the construction presented in this section and the previous
construction is the way we construct the SPCPPs of Theorem 7.2. We first recall how we constructed
the linear PCPPs in previous construction: We first constructed SPCPPs for the simple case in
which all the input circuits ϕ1, . . . , ϕt were identical, which was relatively easy. Then, the bulk of
the work went into reducing the general case to a constant number of instances of this simple case.
In contrast, in the current construction, reducing the general case to the foregoing simple case is
almost trivial, and the bulk of the work is required to handle the simple case.

We first explain how to reduce the general case to the simple case in which ϕ1 = . . . = ϕt. The
key tool that we use is universal circuits. Roughly, a universal circuit U is a boolean circuit that
takes as input a boolean circuit ϕ and an assignment x to ϕ, and outputs ϕ(x). It is possible to
construct such circuits of quasilinear size. Now, suppose we wish to construct a general SPCPP
that is invoked on arbitrary circuits ϕ1, . . . , ϕt and tested assignments x1, . . . , xt. Then, instead of
trying to verify directly that each input circuit ϕi accepts the assignment xi, we can verify that
the universal circuit U accepts the assignments (ϕ1, x1), . . . , (ϕt, xt). Using the latter idea, we are
left with the task of verifying that t identical copies of U verify t tested assignments, which brings
us to the simple case discussed above, as required. We note that in order to implement this idea
some more technical work is required, and refer the reader to [Mei09, Section 5.7] for a detailed
implementation of a similar idea.

Constructing an SPCPP for the simple case. It remains to construct an SPCPP verifier V
that is invoked on a circuit ϕ of size s and tested assignments x1, . . . , xt for ϕ, and verifies that all
the tested assignments satisfy ϕ (as in Definition 7.1). As noted above, this task would have been
easy if ϕ was linear. Thus, our strategy will be to reduce ϕ to a linear circuit ϕL. To this end, we
use the same technique that we used in Theorem 3.1 to reduce the construction of general PCPPs
to linear PCPPs.

In order to use this technique in the current context, we would like to take a different view of
Theorem 3.1. Rather than viewing this theorem as a construction a general PCPP using a linear
PCPP, we we view this theorem as a construction of the following “weird PCPP”, which is described
in the following theorem. Basically, this “weird PCPP” outputs small queries tuple I and boolean
predicate ψ, just like a standard PCPP, but in addition outputs a large linear circuit ϕL which may
access the whole tested assignment and proof string. The weird verifier accepts only if both the
small predicate ψ and the linear circuit ϕL accept.

Theorem 7.3 (Alternative view of Theorem 3.1). Let ` : N→ N be a function such that `(n) = Õ(n).There
exists probabilistic polynomial time machine VL (the “weired PCPP”) that satisfies the following re-
quirements:
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1. Input: The verifier VL takes as input a boolean circuit ϕ : {0, 1}m → {0, 1} of size n.

(a) Output: The verifier VL outputs a tuple IL of coordinates in [m+ `(n)], a boolean circuit
ψL : {0, 1}|IL| → {0, 1} of size at most poly log n, and a linear circuit ηL : Fm+`(n) → Fp
over a field F of size O(n).

2. Randomness complexity: On every input circuit ϕ, and on every sequence of coin tosses,
VL tosses at most log n+O(log log n) coins.

3. ηL is deterministic: The linear circuit ηL is independent of the coin tosses of VL.

4. Completeness: For every x ∈ SAT(ϕ) , there exists a string π ∈ {0, 1}`(n) such that
ηL (x ◦ π) accepts, and

Pr
[
ψL

(
(x ◦ π)|IL

)
accepts

]
= 1

where ψL and IL are generated by the verifier VL on input ϕ, and where in the second equation,
the binary string x ◦ π is viewed as encoding a vector over F.

5. Soundness: For every x ∈ {0, 1}m and every string π ∈ {0, 1}`(n), one of the following holds

Pr
[
ψL

(
(x ◦ π)|IL

)
rejects

]
≥ ρ(n) · dist (x,SAT(ϕ))

dist (x ◦ π,SAT(ηL)) ≥ Ω (dist (x,SAT(ϕ)))

where ψL and IL are generated by the verifier VL on input ϕ, and where in the second equation,
the binary string x ◦ π is viewed as encoding a vector over F.

Let us go back to the construction of the SPCPP verifier V . When invoked on input circuit ϕ,
tested assignments x1, . . . , xt, and proof string π, the verifier V starts by invoking the weird ver-
ifier VL on ϕ, thus obtaining a queries tuple IL, a boolean predicate ψL of size poly log s, and a
linear circuit ηL of size O(s). The SPCPP verifier V expects the proof string π to contain proof
strings π1, . . . , πt, where πi is a proof string for VL that satisfies that:

• ψL accepts (xi ◦ πi)IL .

• ηL accepts xi ◦ πi, when viewed as encoding a vector over F.

Now, the point is that the first condition can be verified simultaenously for all the tested assignments
x1, . . . , xt by using only t · poly log s queries, simply by invoking ψL separately on each (xi ◦ πi)IL .
The second condition can be verified simultaenously for all the tested assignments x1, . . . , xt by
using the linear SPCPP for the simple case of Section 5.3.1, i.e., by invoking it on input circuit ηL
and tested assignments x1 ◦ π1, . . . , xt ◦ πt.

More formally, the verifier V invokes the linear SPCPP VS of Lemma 5.8 on ηL, thus obtaining
linear circuit ψS of size Õ(t + s) and a queries tuple IS . The verifier V also expects the proof
string π to contain a proof string πS for this invocation of VS , where πS is thought of as a vector
over F this is represented in binary in π. Finally, the verifier V outputs:

• A queries tuple I which consists of the coordinates of all the strings (xi ◦ πi)IL , and also of
the coordinates in the queries tuple IS .

• A boolean predicate ψ that accepts if and only if the following conditions hold:
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– ψL accepts (xi ◦ πi)IL for each i ∈ [t].
– ψS accepts

((x1 ◦ π1) ◦ . . . ◦ (xt ◦ πt) ◦ πS)|IS

when viewed as a vector over F.

It is not hard to see that V has decision complexity Õ(t + s). It is also not hard to prove that
V has rejection ratio Ω(1), by combining the soundness properties of the weird verifier VL and the
linear SPCPP VS . It is also possible to show, using a careful implementation, that V has strong
poly log(n)-row/column access.

The only issue that requires some attention is the randomness complexity. The construction
of V as we described it above has randomness complexity ≈ 2 log(t + s), which is too much. The
reason is that we need ≈ log(s) random bits to invoke the weird verifier VL, and another ≈ log(t+s)
random bits to invoke the linear SPCPP VS . The solution is to use the same random bits in both
invocations. However, at a first glance, one may worry that this would harm the soundness of V :
Recall that V invokes VS on ηL, which was output by VL. If VS uses the same random bits as VL, it
may seem as if the random bits of VS depend on its input ηL, in which case VS is not guaranteed to
be sound. The crucial observation here is that by Theorem 7.3, the linear circuit ηL is independent
of the random bits used by VL. This means that the random bits used by VS are indeed independent
of ηL, even though they are shared with VL. Therefore, the soundness analysis can be performed as
before. This concludes our proof sketch of Theorem 7.2.

7.2 Purely combinatorial construction

In this section, we show that it is possible to modify our construction such that it does not use
polynomials at all, thus obtaining a purely combinatorial construction. However, this modification
comes at the cost of increasing the proof length to t4 · (log n)O(log logn). We believe that using the
ideas of Section 7.1, it is possible to improve the foregoing proof length to t2 ·(log t)O(log log t), but we
have not verified it. While this result is far from the state-of-the-art PCPs, it is still an improvement
over the previous combinatorial PCPs of [Din07], which have proof length nO(1), where the power
is an unspecified constant that can be expected to be very large.

Recall that we used polynomials only to construct the multiplication codes of Fact 2.16. Now,
it was shown in [Mei10] that it is possible to construct multiplication codes of quadratic length
without using polynomials. Thus, in order to remove the polynomials from our construction, we use
the multiplication codes of [Mei10] instead of the polynomial codes of Fact 2.16. The following fact
states the properties of the multiplication codes that we use, which can be obtained via a simple
modification of [Mei10, Proposition 3.10].

Fact 7.4 (Variant of [Mei10, Proposition 3.10]). There exist constants δC , RC > 0 such that for
every finite field F and every k ∈ N the following holds: there exists a triplet (CA, CB, CM ) of
systematic linear codes over F that have the following properties:

1. Multiplication: For every cA ∈ CA and cB ∈ CB it holds that cA · cB ∈ CM .

2. CA and CB have message length k, and CM has message length k2.

3. CA, CB, and CM all have block length ` def
= k2/RC , and relative distance δC .

Furthermore, the exists an algorithm that when given as input k and F, runs in time that is polyno-
mial in k and log |F|, and outputs linear circuits ϕA, ϕB, and ϕM of size Õ(k2) that recognize CA,
CB, and CM respectively.
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Recall that we used the multiplication codes in two places: we used them in order to transform
a linear PCPP to a general PCPP in Section 2.16, and in order to construct linear SPCPPs for
CCSs in Section 5.3.2. By substuting the codes of Fact 7.4 into those constructions, we obtain the
following analogues of Theorem 3.1 and Lemma 5.11.

Theorem 7.5 (Purely combinatorial variant of Theorem 3.1). Suppose that there exists a linear
PCPP verifier V with randomness complexity r(n), decision complexity d(n), rejection ratio ρ(n),
and minimal field size F (n). Then, for every time-constructible t : N × N → N and every pair-
language PL that is decidable in time t, there exists a PCPP verifier V ′ for PL with randomness
complexity max

{
2 log t, r

(
Õ(t2)

)}
+O(1), decision complexity O

(
d
(
Õ(t2)

)
· poly log (F (t))

)
, and

rejection ratio Ω
(
ρ
(
Õ(t2)

))
.

Lemma 7.6 (Purely combinatorial variant of Lemma 5.11). There exists an SPCPP verifier V that
works only when its input circuits form a χ-CCS, and when it is given the corresponding coloring as
an additional input. The verifier V has randomness complexity log(t + s2) + O(log log s), decision
complexity Õ(χ · (t+ s2)), rejection ratio Ω(1), and strong O(χ)-row/column access.

Next, we discuss how to construct a linear PCPP using Lemma 7.6. By substituting Lemma 7.6
into our construction of SPCPPs in Section 5.3.4, we obtain SPCPPs with the same parameters as
in Lemma 7.6. In order to obtain linear PCPPs, we would like to combine those SPCPPs with the
circuit decomposition of Lemma 5.6. However, it is now no longer optimal to decompose a linear
circuit of size n to t = Õ(

√
n) circuits of size Õ(

√
n). Instead, the optimal choice is t = Õ(n2/3)

and s = Õ(n1/3). Fortunately for us, it is not hard to modify to proof of Lemma 5.6 in [Mei09] to
yield such a decomposition. Using such a decomposition and the foregoing SPCPPs, we obtain the
following construction of linear PCPPs.

Theorem 7.7 (Purely combinatorial variant of Theorem 5.1). There exists a linear PCPP with
randomness complexity 2

3 log n+O(log log n), decision complexity Õ(n2/3), rejection ratio Ω(1), and
O(1)-row/column access.

Note that Theorem 7.7 does not mention a minimial field size - the reason is that this construction
works for every field size, since the codes of Fact 7.4 exist for every field size. In other words, the
minimal field size can be taken to be 2.

We proceed as in Section 6. We robustize the linear PCPPs of Theorem 7.7 using Theorem 4.7,
thus obtaining a linear PCPP with robustness Ω(1), randomness complexity 2

3 log n+O(log log n),
and decision complexity Õ(n2/3). We then compose the latter verifier with itself for log 2

3
log n

times, thus obtaining a linear PCPP with randomness complexity11 2 log n+O(log2 log n), decision
complexity O(1), and rejection ratio 1/ poly log n. Next, we apply Theorem 7.5 to transform the
latter linear PCPP to a general PCPP of randomness complexity 4 log t + O(log2 log t), decision
complexity O(1), and rejection ratio 1/ poly log t. Finally, we apply Theorem 2.13 to the latter
PCPP, thus obtaining the following result.

Theorem 7.8 (Purely combinatorial variant of Theorem 2.5). Let t : N × N → N and let PL be
a pair-language that is decidable in time t. Then, there exists a PCPP verifier for PL with proof
length t4 · (log t)O(log log t), randomness complexity 4 log t + O(log2 log t), decision complexity O(1),
and rejection ratio Ω(1).

11The reason the randomness complexity is 2 logn + O(log2 logn) is as follows: the O(log2 logn) comes from
accumulating a term of O(log log n) every iteration for O(log logn) iterations. As for the 2 logn term, note that
the i-th composition increases the randomness complexity by (2/3)i · logn. Thus, the total randomness complexity
accumulated this way is at most

∑∞
i=1 (2/3)

i · logn = 2 logn, as required.
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Note that while our linear PCPP had proof length n2 · (log n)O(log logn), our final PCPP has
proof length t4 · (log t)O(log log t). The reason for this loss is the use of Theorem 7.5. We believe
that it is possible to avoid this loss by constructing general PCPPs directly, as done in Section 7.1,
rather than first constructing linear PCPPs and then converting them to general PCPPs. However,
we have not verified this claim.

Acknowledgement. The author is grateful to Oded Goldreich for many useful discussions and
ideas, and for comments that significantly improved the presentation of this work.
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A Expander-replacement for linear PCPPs with row/column access

In this appendix, we prove Lemma 4.14, restated below, which converts a linear PCPP verifier V
that has row/column access into one that queries the rows and the columns according to the uniform
distribution.

Lemma (4.14, restated). Suppose that there exists a linear PCPP verifier V that has random-
ness complexity r(n), decision complexity d(n), rejection ratio ρ(n), and minimal field size F (n),
and that has b-row/column access. Then, there exists a linear PCPP verifier VU has randomness
complexity rU (n) = r(n) + O(1), decision complexity dU (n) = O(b · d(n) + 2r(n)), rejection ra-
tio ρU (n) = Ω(ρ(n)/b2), minimal field size F (n), and O(b)-row/column access, and satisfies the
following properties:

• VU queries every row of the assignment matrix with equal probability, and always queries at
least one such row.

• VU does not query the columns of the assignment matrix.

• VU queries every row of the proof matrix with equal probability, and same goes for the columns.

The following definition will be useful.

Definition A.1. We say that a linear PCPP verifier V that has row/column access queries the
assignment matrix rows uniformly if it satisfies the first two properties of Lemma 4.14 above.

Fix a linear verifier V as in Lemma 4.14. We construct the verifier VU in two main steps: In the
first step (Section A.2),we construct from V an intermediate verifier VI that queries the assignment
matrix rows uniformly. Then, in the second step (Section A.3), we construct VU from VI .

A.1 Expanders

Before diving into the proof of Lemma 4.14, we review the basics of expanders, which are used in
the proof. Expanders are graphs with certain properties that make them extremely useful for many
applications in theoretical computer science. Below we give a definition of expanders that suits our
needs.

Definition A.2. Let G = (V,E) be a dG-regular graph. Let E
(
S, S

)
be the set of edges from a

subset S ⊆ V to its complement. We say that G has edge expansion h if for every S ⊆ V such that
|S| ≤ |V | /2 it holds that ∣∣E(S, S)

∣∣ ≥ h · dG · |S| .
A useful fact is that there exist constant degree expanders over any number of vertices:

Fact A.3 ([Din07, Lemma 2.2]). There exist dG ∈ N and hG > 0 such that there exists a polynomial-
time constructable family {Gn}n∈N of dG-regular graphs Gn on n vertices that have edge expansion
hG (such graphs are called expanders).
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A.2 The intermediate verifier VI.

In this section, we construct the intermediate verifier VI that queries the assignment matrix uni-
formly.The construction is rather simple, and in order to save space, we only provide a sketch of
the construction. The following proposition summarizes the properties of VU .

Proposition A.4. Suppose that there exists a linear PCPP verifier V that has randomness com-
plexity r(n), decision complexity d(n), rejection ratio ρ(n), and minimal field size F (n), and that
has b-row/column access. Then, there exists a linear PCPP verifier VI that queries the assign-
ment matrix rows uniformly, and which has randomness complexity rI(n) = r(n) + O(1), decision
complexity dI(n) = O(b · d(n)), rejection ratio ρI(n) = Ω(ρ(n)), minimal field size F (n), and O(b)-
row/column access.

The basic idea that underlies the construction of VI is to modify the proof matrix such that
it contains a copy of the assignment matrix. Then, the queries of V to the assignment matrix
are redirected by VU to the copy of the assignment matrix in the proof matrix. VU also performs
additional queries to verify the consistency of the assignment matrix and its copy. The point is that
the latter consistency check can be done while querying the assignment matrix uniformly.

The most straightforward way to verify the consistency of the assignment matrix and its copy
in the proof matrix is to choose a random column of the assignment matrix and verify that it
is consistent with the corresponding column in the copy. This would have worked, except that
the randomness complexity r(n) may be too small to afford choosing a random column. In order
to resolve this issue, we observe that since the verifier must query every assignment coordinate
with non-zero probability, it means that if the randomness complexity is small, then the decision
complexity must be large. This means that we can afford to read a set of columns rather than just
a single column. Therefore, we can economize on the randomness complexity by partitioning the
matrix to disjoint sets of columns, and query a random set. More details follow.

Let V be a linear PCPP verifier that has randomness complexity r(n), decision complexity d(n),
rejection ratio ρ(n), and minimal field size F (n), and that has b-row/column access. Fix a linear
circuit ϕ of size n over m inputs, and let us denote by Mx and Mπ the assignment matrix and proof
matrix of V with respect to ϕ.

The proof strings of VI . Let x be a satisfying assignment to ϕ. We describe the proof string πI
that convinces V that ϕ accepts x by describing the corresponding proof matrix MπI : The rows of
matrixMπI consist of the rows ofMπ, and of copies of the rows ofMx. Since the rows ofMx andMπ

may be of different lengths, the rows of MπI also include dummy proof coordinates that complete
the length of the shorter rows to the length of the longer rows. This concludes the description of πI .

The action of VI . Let x ∈ Fm be an assignment to ϕ, and let πI be a proof string of VI . We
sketch the action of VI on ϕ, x and πI . Assume that the dimensions of the assignment matrix are
rx × cx. Without loss of generality, we assume that cx ≥ rx (otherwise, we modify V to work with
the transpose of the assignment matrix). Let a def

= min {b, bd(n)/rxc}. Let Mx be the assignment
matrix of VI , and let us denote by M ′x the purported copy of Mx that is contained in MπI . The
verifier VI performs the following two checks, while recycling the randomness:

1. The verifier VI partitions the assignment matrix Mx arbitrarily into disjoint sets of at most
a columns, Then, VI chooses set of columns uniformly at random, and verifies that those
columns in Mx are equal to the corresponding rows of M ′x.
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2. The verifier VI emulates V on ϕ, and whenever V queries a row or a column of its assignment
matrix or proof matrix, the verifier VI redirects the query to the corresponding row or column
of MπI When the emulation of V is finished, VI verifies that V accepted.

The parameters of VI . It should be clear that VI has O(b)-row/column access, that it queries
every row of Mx with equal probability, and that it does not queries columns of Mx. To see that VI
has decision complexity O(b·d(n)), observe that every row and column ofMx orMπI that VI queries
is of length at most d(n), and that VI queries at most b rows and columns. This implies that VI
outputs circuits ψ with at most O(b · d(n)) input gates, and it is easy to verify that those circuits
have at most O(b · d(n)) non-input gates.

In order to show that VI has rejection ratio Ω (ρ(n)), let x be an assignment to ϕ that is ε-far
from SAT(ϕ). Let x′ be the assignment to ϕ that can be extracted from the matrix M ′x in MπI ,
and let Mπ be the proof matrix of V that is contained inside MπI . We consider two cases: If
dist (x′,SAT(ϕ)) > ε/2, then V rejects M ′x and Mπ with probability at least ρ(n) · ε/2. Otherwise,
it holds that dist(x, x′) > ε/2, and therefore the consistency check of V must reject with probability
at least ε/2. In both cases, the rejection probability is at least Ω (ρ(n)) · ε, so the rejection ratio
of VI is at least Ω (ρ(n)).

Finally, we show that VI has randomness complexity r(n) +O(1). It should be clear that VI has
randomness complexity max {r(n), log (dcx/ae)}. Now, observe that⌈cx

a

⌉
= O(

cx
a

)

= O(
rx · cx
d(n)

)

= O(
m

d(n)
).

Next, note that 2r(n) · d(n) ≥ m, since VI must query every assignment coordinate with non-zero
probability, and 2r(n) ·d(n) is the maximal number of coordinates that VI queries in all of its possible
invocations. This implies that ⌈cx

a

⌉
= O(

m

d(n)
) = O(2r(n)).

It follows that the randomness complexity of VI is at most

max {r(n), log (dcx/ae)} ≤ max
{
r(n), log

(
O(2r(n))

)}
= r(n) +O(1)

as required.

A.3 The final verifier VI

We turn to construct the final verifier VU from the verifier VI , by using the expander replacement
technique of [PY91]. The crux of the construction is the following transformation, which modifies
a linear verifier such that it queries every row of the proof matrix with the same probability. Of
course, due to symmetry, the latter transformation can also be applied to the columns rather than
the rows. We thus construct the verifier VU by first applying the latter transformation to VI and to
the rows, and then applying the transformation again to the resulting verifier and to the columns.
We turn to state the latter transformation formally.

Proposition A.5. Suppose that there exists a linear PCPP verifier V that has randomness complex-
ity r(n), decision complexity d(n), rejection ratio ρ(n), minimal field size F (n), and b-row/column
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access, and that queries the assignment matrix rows uniformly. Then, there exists a linear PCPP
verifier V ′ that has randomness complexity r(n) + O(1), decision complexity O(d(n) + 2r(n)), re-
jection ratio Ω (ρ(n)/b), minimal field size F (n), and O(b)-row/column access, that queries the
assignment matrix rows uniformly, and that satisfies the following additional properties for every
linear circuit ϕ: let Mπ and Mπ′ be the proof matrices of V and V ′ with respect to ϕ respectively.
Then,

• V ′ queries every row of Mπ′ with equal probability.

• Mπ′ and Mπ have the same number of columns, and for each column of Mπ′ the probability
that it is queried by V ′ is equal to the probability that the corresponding column of Mπ is
queries by V .

It remains to prove Proposition A.4. Fix a linear verifier V .

The proof strings of V ′. Let x ∈ Fm be a satisfying assignment for ϕ. We describe the proof
string π′ that convinces V ′ that x satisfies ϕ, by describing the corresponding proof matrix Mπ′ .
Let π be the proof string that convinces V that x satisfies ϕ, and letMπ be the corresponding proof
matrix. The proof matrix Mπ′ consists of several copies of each row of Mπ, where the number of
copies of a given row of Mπ is proportional to the probability that the row is queried by V .

More formally, we define the matrix Mπ′ as follows: Let rπ be the number of rows of Mπ. For
every j ∈ [rπ], and for every sequence of random bits ω on which V queries the j-th row of Mπ,
the matrix Mπ′ contains a row that is identical to the j-th row of Mπ. We index this row of Mπ′

by (j, ω). For every j ∈ [rπ], we refer to the corresponding rows of Mπ′ as the copies of the j-th row
of Mπ in Mπ′ , and denote the set of indices (j, ·) by Cj .

Remark A.6. Note that every row of Mπ appears in Mπ′ at least once. To see why, recall that the
definition of row/column access requires that V queries every row and column of the proof matrix
with non-zero probability.

The action of V ′. We turn to describe the action of V ′. Let Mπ′ be the proof matrices and V ′

with respect to ϕ. Let Mx be the assignment matrix, which is common to V and V ′, with respect
to ϕ. Informally, V ′ performs the steps:

1. The verifier V ′ tosses a sequence ω of random bits for V .

2. The verifier V ′ emulates V on input ϕ and randomness ω, and redirects the queries of V as
follows:

(a) We denote by Mπ the hypothetical proof matrix that the emulation of V queries.

(b) Whenever V queries the j-th row of Mπ, the verifier V ′ queries the (j, ω)-th row of Mπ′ .

(c) Queries to the assignment matrix Mx are left without a change.

(d) Queries to columns of Mπ are emulated in the natural way: Whenever V queries the i-th
column of Mπ, the verifier V ′ queries the i-th column of Mπ′ . Then, V ′ checks that for
each coordinate j of the i-th column of Mπ, all the purported copies of this coordinate
in the i-th column of Mπ′ are equal, and rejects otherwise. Finally, V ′ extracts from the
i-th column of Mπ′ a corresponding assignment to the i-th column of Mπ in the natural
way, and feeds it to the emulation of V as an answer to the query.
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3. If the emulation of V rejects, then V ′ rejects.

4. For each row j of Mπ that is queried by V on ω, the verifier V ′ does the following: the verifier
V ′ chooses a random pair of copies pair of copies of the j-th row of Mπ in Mπ′ , and checks
that those copies are indeed equal. The latter pair of copies is chosen in a randomness-efficient
manner using an expander, see details below.

5. The verifierV ′ accepts if the foregoing copies are equal, and rejects otherwise.

We conclude the description of V ′ by explaining how the pair of copies of the j-th row is chosen
in Step 4 above. Recall that the copies of the j-th row of Mπ in Mπ′ are indexed by pairs of the
form (j, ω′) where ω′ is a seqeunce of random bits, and that we denote by Cj the set of those indices.
Now, the first copy in the pair is (j, ω), where ω is the sequence of random bits used in the emulation
of V . In order to choose the second copy in the pair, the verifier V ′ constructs an expander graph
(Fact A.3) whose vertices are identified with the indices in Cj . Then, the second copy in the pair is
a random neighbor of (j, ω) in the expander.

It is easy to see that V ′ has the required randomness complexity and decision complexity, and
that it satisfies the additional properties required by Proposition A.5. It remains to analyze the
rejection ratio of V ′.

The rejection ratio of V ′

Let x ∈ F be an assignment to ϕ that is ε-far from SAT(ϕ), and let π′ be a proof string of V ′.
Let ρ def

= ρ(|ϕ|) be the rejection ratio of V . Let Mx and Mπ′ be the corresponding proof matrices.
We show that V ′ rejects x ◦ π′ with probability at least Ω (ρ/b) · ε. Let Mπ be the matrix that is
constructed from Mπ′ by plurality voting, that is, the j-th row of Mπ is equal to the string that
appears a maximal number of times among the rows in Cj . By assumption, V rejects x ◦Mπ with
probability at least ρ · ε.

We first introduce some notation. If (j, ω) is an index of a row of Mπ′ , we say that (j, ω) is
a faulty copy if the corresponding row of Mπ′ differs from the j-th row of Mπ, which is just the
plurality value. For each j, let pj be the probability that V queries the j-th row, let αj denote the
fraction of faulty copies among the copies of the j-th row of Mπ in Mπ′ . We say that V queries a
faulty copy if the emulation of V tosses a sequence ω of random bits and queries a row j such that
(j, ω) is faulty copy. Let us denote by Qj the event that V queries the j-th row of Mπ, by Fj the
probability that it queries a faulty copy of the j-th row of Mπ, and by F =

⋃
Fj the probability

that it queries any faulty copy.
Let α =

∑
j pj · αj . We consider two cases: the case in which α ≤ ρ · ε/2 and the case in which

α > ρ · ε/2. Intuitively, the first case means that there is a negligible fraction of faulty copies.
In this case we claim that the action of V ′ on Mπ′ behaves similarly to the action of V on Mπ,
and therefore V ′ rejects with sufficiently large probability. The second case means that there is
a noticeable fraction of faulty copies, in which case the consistency checks make V ′ reject with
sufficiently large probability. We turn to analyze each of the cases formally.

The case of α ≤ ρ · ε/2. Clearly, if V rejects x ◦Mπ but does not query any faulty copy, then V ′

must reject as well. We therefore get that

Pr
[
V ′ rejects

]
≥ Pr [V rejects and ¬F ]

≥ Pr [V rejects]− Pr [F ]

≥ ρ · ε− Pr [F ] .

58



We now show that Pr [F ] ≤ α ≤ ρ · ε/2, and this will imply that V ′ rejects with probability
at least ρ · ε/2:

Pr [F ] ≤
∑
j

Pr [Fj ]

=
∑
j

Pr [Fj and Qj ] (3)

=
∑
j

Pr [Fj |Qj ] · Pr [Qj ]

=
∑
j

Pr [Fj |Qj ] · pj

(see below) =
∑
j

αj · pj (4)

= α,

where Equality 4 follows by observing that, conditioned on the event that V queries the j-th row,
the copy of the j-th row that it queries is uniform over the all the copies.

The case of α > ρ · ε/2. We begin the analysis of this case by proving, for every j, a lower bound
on the probability that V ′ rejects conditioned on the event that V queried the j-th row. Fix an
index j, and let us condition on the event that V queries the j-th row (i.e., Qj). Recall that V ′

checks the consistency of a pair (j, ω), (j, ω′) of copies of the j-th row. By definition, if Mπ′ assigns
different values to the rows in (j, ω) and (j, ω′), then V ′ rejects.

Next, recall that (j, ω′) is a uniformly distributed neighbor of (j, ω) in an expander over the
set of copies Cj . Moreover, as we observed at the end of the previous case, the index (j, ω) is
uniformly distributed over Cj . Therefore, the pair of copies (j, ω), (j, ω′) is distributed like a
uniformly distributed edge of the expander. This implies that the probability that V ′ rejects is
lower bounded by the probability that a random edge in the expander connects two copies that
assign different values to the j-th row ofMπ. To lower bound the latter probability, we use the edge
expansion of the expander. Specifically, if we denote by dG and hG the (constant) degree and edge
expansion of the expanders from Fact A.3, we show in Claim A.7 below that the latter probability
is at least 1

2 · hG · dG · αj . This implies that

Pr
[
V ′ rejects|Qj

]
≥ 1

2
· hG · dG · αj .

It follows that ∑
j

Pr
[
V ′ rejects|Qj

]
· Pr [Qj ] ≥

1

2
· hG · dG ·

∑
j

αj · pj

=
1

2
· hG · dG · α

≥ hG · dG · ρ · ε/4.

Finally, we claim that ∑
j

Pr
[
V ′ rejects|Qj

]
· Pr [Qj ] ≤ b · Pr

[
V ′ rejects

]
,
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and this would imply that V ′ rejects with probability at least Ω(ρ/b) · ε, as required. In order to
establish the latter inequality, we note that every possible sequence of random bits of V ′ is counted
in at most b terms Pr [V ′ rejects|Qj ] ·Pr [Qj ]. To see it, observe that a sequence of coin tosses for V ′

is counted in a term Pr [V ′ rejects|Qj ] · Pr [Qj ] only if on thissequence, the emulation of V queries
the j-th row. Since the emulation of V always queries at most b rows, the required bound follows.

Claim A.7. Fix a row j. The probability that a random edge ((j, ω), (j, ω′)) in the expander over
Cj satisfies (Mπ′)(j,ω) 6= (Mπ′)(j,ω′) is at least 1

2 · hG · dG · αj.

Proof. Let us partition the Cj to sets Cj,1, . . . , Cj,t such that two copies (j, ω), (j, ω′) are in the
same set Cj,i if and only if (Mπ′)(j,ω) = (Mπ′)(j,ω′). In other words, each set Cj,i corresponds to a
single value that is assigned to Mπ by some row of Mπ′ . Without loss of generality, assume that
the larget set is C1, which means that C1 is the set of non-faulty copies. Let us denote by αj,i the
density of the set Cj,i in Cj . Observe that

αj =
t∑
i=2

αj,i,

and that αj,i ≤ 1
2 for every i ≥ 2 (since C1 is the larget set).

The probability that we wish to lower bound is the fraction of edges whose endpoints lie in two
distinct sets. Now, by the edge expansion, the fraction of edges leaving each set Cj,i for i ≥ 2 is
at least hG · dG · αj,i (here we used the fact that αj,i ≤ 1

2). Thus, the latter probability is lower
bounded by

1

2
·

t∑
i=2

hG · dG · αj,i =
1

2
· hG · dG · αj ,

as required (the factor of 1
2 is in order to avoid double-counting of edges). �
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