
Bounds for the Query Complexity of Approximate Equilibria

Paul W. Goldberg
Department of Computer Science,

University of Oxford
email: Paul.Goldberg@cs.ox.ac.uk

Aaron Roth
Department of Computer and Information Science,

University of Pennsylvania
email: aaroth@cis.upenn.edu

September 27, 2013

Abstract

We analyze the number of payoff queries needed to compute approximate correlated equi-
libria. For multi-player, binary-choice games, we show logarithmic upper and lower bounds on
the query complexity of approximate correlated equilibrium. For well-supported approximate
correlated equilibrium (a restriction where a player’s behavior must always be approximately
optimal, in the worst case over draws from the distribution) we show a linear lower bound which
separates the query complexity of well supported approximate correlated equilibrium from the
standard notion of approximate correlated equilibrium.

Finally, we give a query-efficient reduction from the problem of verifying an approximate well-
supported Nash equilibrium to the problem of computing a well supported Nash equilibrium,
where the additional query overhead is proportional to the description length of the game. This
gives a polynomial-query algorithm for computing well supported approximate Nash equilibria
(and hence correlated equilibria) in concisely represented games. We identify a class of games
(which includes congestion games) in which the reduction can be made not only query efficient,
but also computationally efficient.

1 Preliminaries

This paper compares the query complexity of alternative game-theoretic solution concepts. Instead
of a game G being presented in its entirety as input to an algorithm A, we assume that A may
submit queries consisting of strategy profiles, and get told the resulting payoffs to the players in G.
This model is appealing when G has many players, in which case a naive representation of G would
be exponentially-large. Assuming G is known to belong to a given class of games G, this gives
rise to the question of how many queries are needed to find a solution, such as exact/approximate
Nash/correlated equilibrium. One can study this question is conjunction with other notions of
cost, such as runtime of the algorithm. An appealing aspect of query complexity is that it allows
new upper and lower bounds to be obtained, providing a mathematical criterion to distinguish the
difficulty of alternative solution concepts, as discussed in more detail below.

We consider queries that consist of pure-strategy profiles, and in which the answer to any query
is the payoffs that all the players receive from that profile. In this paper we mostly focus on n-player
binary-action games, which have 2n pure profiles. In the context of approximate equilibria, we use ε

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 136 (2013)

to denote the bound on a player’s incentive to deviate, and we make the standard assumption that
all payoffs lie in the range [0, 1]. We are interested in algorithms whose query complexity is at most
polynomial in n, which of course means that only a very small fraction of a game’s profiles may be
queried. The solution concepts we consider are ε-approximate correlated equilibrium (ε-CE), and
ε-approximate well-supported correlated equilibrium (ε-WSCE), defined below.

Notation. We have n players denoted by the numbers {1, 2, . . . , n}. Let Ai be the set of possible
actions, or pure strategies, of player i and let A = A1 × . . . × An be the set of pure profiles. In
this paper we assume all players have the same number m of pure strategies, i.e. |Ai| = m for all
i. ui : A −→ R denotes player i’s utility function. Generally G will denote a class of games, and
G denotes a specific game. Gn denotes n-player binary-choice games, where binary-choice means
m = 2.

1.1 Alternative definitions of approximate correlated equilibrium

We review the notions of exact and approximate correlated equilibrium, and introduce the definition
of well-supported approximate CE.

A probability distribution ψ on A is a correlated equilibrium if for every player i, all pure
strategies j, k ∈ Ai we have ∑

a∈A:ai=j

ψ(a)[ui(k, a−i)− ui(a)] ≤ 0. (1)

An ε-approximate correlated equilibrium (ε-CE) is a distribution ψ where for every player i, every
function f : Ai −→ Ai, we have∑

a∈A
ψ(a)[ui(f(ai), a−i)− ui(a)] ≤ ε. (2)

The above definition is based on swap regret, from [6], although other definitions (e.g. based on
internal regret) are possible. An alternative definition from [19] of correlated ε-equilibrium replaces
the RHS of (1) with ε > 0. The definitions are not quite the same: an ε-CE is a correlated
ε-equilibrium, while a correlated ε-equilibrium need only be a mε-CE.

An ε-approximate coarse correlated equilibrium (ε-CCE) is a distribution ψ in which for all
players i, strategies j, ∑

a∈A
ψ(a)[ui(j, a−i)− ui(a)] ≤ ε.

In general an ε-CE is an ε-CCE, but the converse does not hold.1 However, in the case of binary-
choice games (the class of games we mainly consider here) an ε-CE is an ε-CCE, while an ε-CCE
is a 2ε-CE, hence the two notions are basically the same from the perspective of our interest in
asympototic query complexity in terms of n and ε.

An ε-well-supported approximate correlated equilibrium (ε-WSCE) imposes the more demanding
requirement that after a player observes his own action, his expected gain from switching to any
other action is at most ε. It can be precisely defined by saying that for any player i, strategies
j, k ∈ Ai, letting p = Pra∼ψ[ai = j],∑

a∈A:ai=j

ψ(a)ui(k, a−i)−
∑

a∈A:ai=j

ψ(a)ui(j, a−i) ≤ pε

1For example, in the game of rock-paper-scissors, the uniform distribution over the 3 strategy profiles in which
both players play the same strategy is a CCE but not a CE.

2

which is equivalent to E[ui(k, a−i)]−E[ui(j, a−i)] ≤ ε, where the expectations are w.r.t. ψ restricted
to profiles where i plays j.

Thus, an ε-WSCE is a correlated pε-equilibrium. One way to understand this new definition
is to observe that if

∑
a∈A:ai=j ψ(a) is small (meaning that it is unlikely that in a random profile,

player i plays j) then putting some given ε > 0 into the RHS of (1) constitutes more slackness
than would be the case if

∑
a∈A:ai=j ψ(a) were large. The definition of ε-WSCE corresponds to an

attempt to redress this variable slackness.
ε-WSCE is a refinement of approximate CE that is analogous to well-supported approximate

Nash equilibrium, studied in [17, 10, 14, 3]. In an ε-Nash equilibrium (ε-NE), a player’s payoff is
allowed to be up to ε worse than his best response. The motivation behind the “well-supported”
refinement is that in an ε-NE, it may still be the case that a player allocates positive probability to
some strategy whose payoff is more than ε worse than his best response. Such behavior is disallowed
in a well-supported ε-NE. Under this more demanding definition of approximate Nash equilibrium,
the values of ε known to be achievable in polynomial time (in the context of bimatrix games) are
accordingly higher; ε-NE can be computed for ε slightly above 1

3 [26] while for ε-WSNE, the best
value known is slightly less than 2

3 [10]. (On the other hand, it is also known from [7] that a PTAS
for ε-NE would imply a PTAS for ε-WSNE.) For the games studied in this paper, we will see that
the payoff query complexity of ε-WSCE is strictly higher than than the query complexity of ε-CE.

Observation 1 Let G be a game and fix ε > 0. The set of ε-WSCE of G is convex.

Proof. Let ψ and ψ′ be two ε-WSCE of G. We show that ψ′′ = λψ + (1− λ)ψ′ is also a ε-WSCE
(for λ ∈ (0, 1)). Suppose strategy profile s is sampled from ψ′′ and some player i observes his action
a, i.e. his marginal observation of s on his own behavior. If there was some action a′ that would
pay i more then ε more (in expectation) then one (or both) of ψ or ψ′ would have to have that
property.

Example 1 In the directed path graphical game Gn, each player i ∈ {1, 2, . . . , n} has 2 actions,
0 and 1. Player 1 gets paid 1 for playing 1 and 0 for playing 0. For i > 1, player i gets paid 1 for
copying player i− 1 and 0 for playing the opposite action.

Observations about Example 1: In an exact Nash equilibrium of Gn, all players play 1 with
probability 1. Furthermore it is not hard to see that for ε < 1, the only ε-WSCE requires all players
to play 1 with probability 1. In an ε-Nash equilibrium of Gn, for small ε all players play 1 with
high probability. For example, putting ε = 1

100 , it can be proved by induction on i that player i
plays 1 with probability > 9

10 .
By contrast, for any ε > 0 there exist ε-CE where the probability that i plays 1 can decrease

towards 0 as i increases. Specifically, let z ∼ U [0, 1]; if z ∈ [rε, (r+ 1)ε] let players {1, . . . , r} play 1
and let the other players play 0. It can be checked that the resulting distribution over pure-strategy
profiles in an ε-approximate CE.

These observations indicate that for some games, there are many approximate correlated equi-
libria that are ruled out when the “well-supported” requirement is imposed.

1.2 Related work

The papers of Fearnley et al. [9], Hart and Nisan [20], Barman and Babichenko [4], and Babichenko [3]
also study query complexity of equilibria of multiplayer games. The main focus of [20, 4, 3] is on
exponential (in n) lower bounds for solutions of n-player games having a constant number m of

3

pure strategies per player. [20, 4] note that with randomization, one can obtain query-efficient
algorithms for approximate correlated equilibrium by simulating regret-based algorithms — thus
showing query complexity serves as a criterion to distinguish the difficulty of Nash equilibrium from
Correlated equilibrium. In this paper we study in more detail the query complexity of approximate
correlated equilibria as a function of n and ε, and we find that it serves as a criterion to separate
the difficulty of approximate CE from well-supported approximate CE. [20] show that determin-
istic algorithms for ε-approximate correlated equilibria require exponentially-many payoff queries,
hence the same holds for ε-NE. [20] also shows that exact CE needs exponentially-many queries.
[3] shows that ε-well-supported approximate NE needs exponentially-many queries, for m = 104

and ε = 10−8; it is currently an open question whether these constants can be improved.
Fearnley et al. [9] study of payoff query complexity of Nash and approximate Nash equilibrium

of classes of games where more structure is known about the payoffs; the main focus is on congestion
games on networks. For the classes of games studied there, the properties of the payoff function
can be exploited to obtain algorithms whose query complexity is polynomial. For the classes of
games studied in this paper (n players, binary actions, no restriction on the structure of the payoff
function), it has already been observed [4, 20] that Nash equilibrium requires exponentially-many
queries. Indeed, as noted in [20], even approximate Nash equilibrium requires exponentially-many
queries for deterministic algorithms (for randomized algorithms, the query complexity is noted
as an open problem). Amin et al. [1] can be regarded as a study of the one-player version of the
problem. A “player” has exponentially-many pure strategies, and wants to choose the one that gives
the highest payoff. The payoff function is assumed to come from a known class of functions, and
the haystack dimension is shown to characterize the number of queries needed. (This issue relates
slightly to uncoupledness, in which players know their own utility functions but not other players’.
Here players are in a sense are ignorant of their own payoff function, not just their opponents’.)

The communication complexity model was introduced to the game-theory context by Hart and
Mansour [18] (n-player binary choice games), and studied in [14] for bimatrix games. [20] notes that
payoff-query bounded algorithms can be efficiently converted into communication-bounded algo-
rithms. Lower bounds seem to be easier to obtain in the payoff-query setting. In the communication-
bounded setting, [18] show efficient upper bounds for ε-CE, and exponential lower bounds just for
exact (pure or mixed) Nash equilibria. The communication complexity of finding an exact correlated
equilibrium is polynomial in the number of players, in contrast with the exponential requirement
of NE. It uses Papadimitriou’s approach [23] (using the Ellipsoid algorithm) to compute a mix-
ture of product distributions that constitutes a CE. The algorithm interacts with the game using
mixed-strategy payoff queries and receiving exact answers. Note that mixed-strategy payoff queries
can be approximately simulated by randomly-sampled pure-strategy payoff queries; this suggests
that pure payoff queries can be used by a randomized algorithm to find approximate correlated
equilibria.

The connection between no-regret algorithms and equilibrium notions, including correlated
equilibria, were first noted by [13, 19]. For an excellent survey of this connection, see Blum and
Mansour [6]. Appendix B.3 of [18] makes the observation that regret-minimization techniques yield
simple polynomial upper bounds for the communication complexity of approximate CE. We note
that this straightforward approach also gives a polynomial upper bound on the number of payoff
queries needed to compute approximate correlated equilibrium (but not well-supported correlated
equilibrium). We improve this straightforward polynomial dependence on n to an O(log n) depen-
dence, and give a matching lower bound. To our knowledge, we are the first to study bounds on
computing well supported correlated equilibria, which do not follow from no-regret guarantees.

4

1.3 Our results and techniques

Section 2 gives bounds on the query complexity of ε-CE in terms of n and ε, while Section 3 gives
bounds on the query complexity of ε-WSCE in terms of n and ε. As functions of the number of
players n, the bounds for ε-CE are logarithmic. For ε-WSCE we have a linear lower bound, thus
showing a separation between the two solution concepts. The following observation is a useful
starting-point:

Observation 2 For ε ≥ 1
2 , the computation of an ε-approximate CE for binary-choice games is

trivial, since the uniform distribution is a 1
2 -approximate Nash equilibrium.

In Section 2 we show that for any ε < 1
2 , the query complexity is Θ(log n), showing that the

constant 1
2 in Observation 2 represents a crisp threshold at which the query complexity becomes

non-trivial.
For (non-well-supported) correlated equilibria, our algorithms for query-efficient upper bounds

use the Multiplicative Weights algorithm, applying it in two alternative ways. To obtain an upper
bound that works well for the case of many strategies per player (Section 2.1), a polynomial
(in the number of players) query upper bound follows straightforwardly from an application of
multiplicative weights: we include the standard proof in the appendix for completeness. We note
that this also yields an O(m logm) upper bound for the problem of computing an approximate
Nash equilibrium in an m-action two player zero sum game, which is substantially smaller than the
representation size of the game matrix.

The case of many players having just 2 strategies (Section 2.2) is more subtle: a straightforward
application of multiplicative weights would again yield a polynomial (in the number of players)
upper bound on value queries, but we are instead able to achieve a logarithmic upper bound. As
before, we use the Multiplicative Weights algorithm, but this time, at each iteration we draw a
sample S of pure-strategy profiles from the current mixed-strategy profile, and we estimate the
costs of individual pure-strategies of a player by restricting S to each individual strategy, and using
that as an estimate of the “true” cost of using that strategy in response to S. We use a “noise-
tolerance” result of Kearns et al. [22] that if reported losses are within b of true losses, this adds at
most b to the approximation error of the resulting CE. We obtain quite an efficient upper bound
on the query complexity of computing an ε-CE, using O(log n/ε2) queries. The lower bound of
Section 2.3 shows that Ω(log n) queries are indeed required for any ε < 1

2 . Theorem 2 contrasts
with the exponential lower bound for deterministic algorithms [4, 20].

The lower bounds of Theorems 3 and 4 work by identifying distributions over the payoff functions
of the target game, so that Yao’s minimax principle can be applied to algorithms having lower query
complexity. Finally, we apply Theorem 4 to show that small-support approximate CE are harder
(in the query complexity sense) to find than are larger-support approximate CE.

Finally, we give query efficient reductions from the problem of verifying an ε-approximate well
supported Nash equilibrium to the problem of computing an ε-approximate well supported Nash
equilibrium (and hence correlated equilibrium), where the query overhead is proportional to the
description length of the game. Since verifying equilibria can be done query efficiently, this gives
query efficient algorithms for computing approximate well supported equilibria in concisely repre-
sented games. In special classes of games (including some congestion games) in which the payoff
function can be represented as a linear function over polynomially many dimensions, this reduction
can be made computationally efficient as well. The main technique is to use no-regret algorithms
as mistake bounded learning algorithms for the underlying game, which is similar to how no-regret
algorithms have been recently used in data privacy [25, 16, 15]. We use the algorithms to learn a
hypothesis game representation: at each stage, we compute an equilibrium of the hypothesis game,

5

Approx Coarse CE
Parameters: learning rate η = ε

3; number of iterations T = 9 lnm
ε2 .

wij(t) is the weight of the j-th strategy of player i at iteration t;

initially wij(1) = 1 for all i, j. Do the following for iterations

t = 1, . . . , T:

1. For each player i, let pi(t) = (pi1(t), . . . , pim(t)) be the probability

distribution over i’s strategies corresponding to the weights;

pij(t) = wij(t)/
∑
j w

i
j(t).

2. For each player i, sample a pure strategy si(t) from pi(t). Let

s(t) = ×isi(t) be the resulting strategy profile.

3. ∀i, query the payoffs of all responses to s(t). Let mi
j(t) be the

cost (negated payoff) of strategy j.

4. update weights: for each i, j, set wij(t+ 1) = wij(t)(1− ηmi
j(t)).

Output: uniform distribution over {s(t) : 1 ≤ t ≤ T}.

Figure 1: Using Multiplicative Weights to compute an approximate coarse CE

and then make polynomially many queries to check if our computed equilibrium is an equilibrium
of the real game. If it is, we are done: otherwise, we have forced the learning algorithm to make a
mistake, which we charge to its mistake bound.

2 Bounds for the query complexity of ε-CE

We use the Multiplicative Weights algorithm to get upper bounds on the query complexity of coarse
correlated equilibrium. The first one is applied to zero-sum bimatrix games, and the second one is
applied to n-player binary-action games.

2.1 Upper bound for ε-approximate coarse correlated equilibrium; few players,
many strategies

As a warmup, we consider a straightforward upper bound on the query complexity of computing
approximate coarse-correlated equilibria that follows from using no-regret algorithms. In the special
case of two player zero-sum games, Freund and Schapire [13] showed that this algorithm converges
to an approximate Nash equilibrium. We here observe that this approach yields an upper bound
for the query complexity of these equilibrium concepts. The proof is standard, and we include it
in Appendix A for completeness.

Theorem 1 identifies useful bounds in the case of m � n; in particular it has an interesting
application to the case of 2-player zero-sum games in Corollary 1.

Theorem 1 Let G be a game with n players, each with m pure strategies where m ≥ n; payoffs
lie in [0, 1]. With probability 1 − nm−

1
8 , Algorithm Approx Coarse CE (Figure 1) finds an

ε-approximate coarse correlated equilibrium of G, using O(nm logm
ε2

) payoff queries.

Corollary 1 Let G be a m × m zero-sum bimatrix game. It is possible to efficiently compute
(using a randomized algorithm having small failure probability) an ε-Nash equilibrium of G, using
O(m logm

ε2
) payoff queries.

6

This follows from the observation that for zero-sum bimatrix games, an ε-approximate coarse
correlated equilibrium ψ can be converted to a 2ε-NE by taking the product of the marginal
distributions of ψ for each player.

2.2 Upper bound for n players, binary actions

In binary action games, coarse correlated equilibria coincide with correlated equilibria, and so the
result in the previous section immediately yields a polynomial upper bound (in terms of the number
of players n) on the query complexity of approximate correlated equilibria. In this section, we take
a more sophisticated approach to show a logarithmic upper bound. We will give a matching lower
bound to show that this is optimal.

We use the following standard bound on the probability that a sum X of N independent random
variables taking values in [0, 1] is less than its expectation µ by some factor:

Pr[X ≤ (1− ε)µ] ≤ exp

(
−ε

2

2
µ

)
(3)

putting ε = 1
2 we get

Pr[X ≤ µ/2] ≤ exp

(
−1

8
µ

)
(4)

We will also use Hoeffding’s inequality, in the context of estimating an expected value from
samples, where values are known to lie in [0, 1]. Let µ be the expected payoff and let µ̂ be the
empirical payoff based on N samples.

Pr[|µ− µ̂| ≥ β] ≤ 2 exp(−2β2N) (5)

Proposition 1 Let s be a mixed-strategy profile of an n-player 2-action game, having the property
that for any player i and strategy j, i plays j with probability at least γ. Let si(a) be the expected
payoff to i when i plays a and the other players play s−i.

With probability 1 − δ we can find, with additive error β ≤ γ/2, all the si(a) values, using N
payoff queries randomly sampled from s, whenever

N ≥ max

{
1

γβ2
log

(
8n

δ

)
,

8

γ
log

(
4n

δ

)}
.

Proof. N payoff queries are obtained by sampling repeatedly from s. N is chosen to be large
enough to ensure that for each player i ∈ [n], each a ∈ {0, 1}, with probability 1 − δ/4n we make
at least N ′ queries in which i plays a. In turn, N ′ is large enough to ensure that with probability
1− δ/4n, the average payoff that player i gets for action a is within β of the true expected payoff
si(a). Using (5), it is sufficient for N ′ to satisfy 2 exp(−2β2N ′) ≤ δ/4n, equivalently:

N ′ ≥ 1

2β2
log

(
8n

δ

)
.

Let X =
∑N

j=1Xj where Xi = 1 if player i plays si and 0 if i plays 1 − si. We want X ≥ N ′

with probability 1− δ
4n .

We know that E[Xj] ≥ γ, so E[X] ≥ Nγ. Choose N large enough such that E[X] ≥ 2N ′, so we
can use (4) to get a lower bound on the probability that we get N ′ observations of i playing si; it
suffices to use

N ≥ 2N ′/γ.

7

We also want from (4) that exp(−1
8Nγ) ≤ δ

4n , equivalently,

N ≥ 8

γ
log

(
4n

δ

)
.

Taken in conjunction with N ≥ 2N ′/γ we have

N ≥ max

{
2N ′

γ
,

8

γ
log

(
4n

δ

)}
Plugging in the expression we obtained for N ′, we get the expression for N in the statement.

Proposition 2 Suppose each player of G ∈ Gn runs T iterations of Multiplicative Weights with
learning rate parameter η ≤ 1

2 . Assume that initially all weights are equal. At the end, all weights
correspond to probabilities in the range [γ, 1− γ], provided that T ≤ log1−η(2γ).

Proof. The initial weights correspond to probabilities of 1
2 . Each iteration reduces a weight by a

factor at most 1−η. To reduce a weight to γ requires log1−η(2γ) iterations, i.e. T = log1−η(2γ).

Theorem 2 Let G be a game with n players, each with 2 actions; payoffs lie in [0, 1]. With
probability 1 − 2

n , Algorithm Approx Coarse CE (2) (Figure 2) finds an ε-approximate coarse

correlated equilibrium of G, using Õ(log n/ε5) payoff queries.

Proof. At each iteration t = 1, . . . , T , let wij(t) be the weight of player i’s strategy j at step t;

initially wij(1) = 1 for all i, j. pi(t) denotes the probability distribution over i’s actions in which
the probability of a strategy is proportional to its weight. At iteration t, each player i observes
costs m̂i

0(t) and m̂i
1(t), the costs of actions 0 and 1 respectively. Weights are updated according to

the rule wij(t+ 1) = wij(t)(1− ηm̂i
j(t)), where η ≤ 1

2 is the learning rate parameter.
Now, these observed costs differ from the costs that derive from profiles sampled uniformly

from S(t) (the distribution used by Approx Coarse CE (2) at iteration t), but we can bound
the difference and use Lemma 2 of [22], which says that when a regret-minimizing algorithm is run
with losses altered by additive noise b, the regret with respect to the noise-free loss matrix is higher
by at most 2b than the regret with respect to the noisy matrix. Proposition 1 gave conditions for
the observed losses to be within β of true losses.

Applying Proposition 1 with γ = ε/2, β = ε/4, we have that with probability at least 1−δ/T the
following value of N is sufficient for observed losses to be within β of true losses, at any iteration:

N ≥ max

{
32

ε3
log

(
8nT

δ

)
,
16

ε
log

(
4nT

δ

)}
. (6)

The following is a modified version of equation (10), taking into account the extra additive β
due to the sampling error and putting m = 2. mi(t) is costs w.r.t. S(t); m̂i

j(t) is the cost of strategy
j w.r.t. elements of S(t) where i plays j.

1

T

T∑
t=1

mi(t).pi(t) ≤ 1

T

T∑
t=1

m̂i
j(t) + η +

ln 2

Tη
+ 2β. (7)

The expected cost incurred by the player (the LHS) is upper bounded by the cost that would
be incurred by using any fixed strategy j (the first term of the RHS) plus the remaining terms of
the RHS.

8

Approx Coarse CE (2)
Parameters: learning rate η = ε

4; number of iterations T = 4 ln 2
εη ;

sample size N (defined in Equation 6).

wij(t) is the weight of strategy j ∈ {0, 1} of player i at iteration t;

initially wij(1) = 1 for all i, j. Do the following for iterations t =
1, . . . , T:

1. Let pi(t) = (pi0(t), pi1(t)) be the probability distribution over i’s
strategies corresponding to the weights; pij(t) = wij(t)/

∑
j w

i
j(t).

Let p(t) be the corresponding mixed-strategy profile.

2. Sample N pure-strategy profiles S(t) = {s1(t), . . . , sN (t)} from p(t).

3. query the payoffs for all the profiles in S(t). Let m̂i
j(t) be

the empirical cost of strategy j when used by player i. (If i
never plays j in the profiles S(t), the algorithm fails.)

4. update weights: for each i, j, set wij(t+ 1) = wij(t)(1− ηm̂i
j(t)).

Output: uniform distribution over the multiset ∪tS(t).

Figure 2: Using Multiplicative Weights to compute an approximate coarse CE

Based on (7), a player’s regret can be upper bounded by

η +
ln 2

Tη
+ 2β. (8)

So, to make this expression at most ε, put η = ε
4 and T = 4 ln 2

εη .

The total number of queries is NT = Õ(log n/ε5).

When players have just 2 pure strategies, an ε-approximate coarse correlated equilibrium is a
2ε-approximate correlated equilibrium, so we have the following result:

Corollary 2 For binary-choice games (where each player has 2 pure strategies), with probability
1 − 1

n , Algorithm Approx Coarse CE (2) finds an ε-approximate correlated equilibrium, using

Õ(log n/ε5) payoff queries.

2.3 Lower bound for n players, binary actions

For positive integer k > 2 we lower-bound the number of queries needed to find a (12 −
1
k)-

approximate CE, by fixing the number of queries to be Q = blogk(k−1) nc and applying Yao’s
minimax principle. The cost of the output of algorithm A is the smallest value of ε for which
A’s output is an ε-approximate CE. We identify a distribution over payoff functions of n-player
binary-action games such that the expected cost of the solution output by any algorithm A that
uses Q queries (or fewer) is approximately 1

2 .

A distribution over payoff functions. Define the following probability distribution over payoffs
of n-player binary-choice games. Each player i ∈ [n] shall be a “type-0” player or a “type-1” player,
a player’s type being obtained by flipping a fair coin. Let ti be the type of player i. After types
have been obtained, for each player i, construct i’s payoff function as follows. For each strategy
profile s−i of players other than i, with probability k−1

k player i gets paid 1 to play ti and 0 to play

9

1 − ti. With probability 1
k , i gets paid 0 to play ti and 1 to play 1 − ti. Hence, for a (expected)

fraction k−1
k of profiles s−i, player i has ti as best response, with 1− ti as the best response for the

remaining profiles s−i.

Notation. Let A be an algorithm that makes Q pure profile queries, for Q = logk(k−1) n. Let

s1, . . . , sQ be the queried profiles, where sj is the j-th query in the sequence made by A.
An important observation is that, conditional on a choice of player types, all payoff vectors are

generated independently of each other. Consider the process of generating the payoff function as
above, and then querying it. That process is equivalent to one where the type vector is initially
generated, then the algorithm selects various pure-strategy profiles to query, and then each time a
pure-strategy profile is queried, we flip the biased coins that produce its payoff vector. This shows
a useful limitation on how the answers to a sequence of queries can indicate what the answer will
be to any subsequent query.

Proposition 3 For 0 ≤ j ≤ Q, let pj be the probability distribution over type vectors, conditioned
on the answers to the first j queries (i.e. the players’ payoffs for {s1, . . . , sj}). Then pj is a product
distribution, pj = ×ipji , where pji is the probability that player i has type 1.

Proof. The claim follows by induction on j. Initially, p0 is the uniform distribution. Subsequently,
the payoffs for each queried profile sj are obtained by making a (biased) coin-flip independently for
each player. (After the type vector has been selected, we can assume that the payoffs for a queried
pure profile, are generated by making biased coin-flips, independently of the results of previous
queries.)

In particular, when A queries strategy profile sj , A observes a payoff for each player i consisting
of the result of a coin-flip which is

• equal to 1 with probability k−1
k and 0 with probability 1

k if ti = sji , and

• equal to 1 with probability 1
k and 0 with probability k−1

k if ti = 1− sji .

Observation 3 We say that the payoffs for sj indicate that player i is type t ∈ {0, 1} if i plays
1 and gets paid t, or i plays 0 and gets paid 1 − t. Let Qit be the number of queries that indicate
that player i is type t. It is not hard to check that Pr[ti = 1]/Pr[ti = 0] = (k − 1)(2Q

i
1−Q), where

Pr[ti = t] is the probability that i has type t, conditioned on the data.

Definition 1 A outputs a distribution ψ over pure-strategy profiles. Let ψu be ψ restricted to the
un-queried profiles. We will say that A has bias b for player i, if on profiles sampled from ψu, i
plays 1 with probability b, i.e.

E
x∼ψu

[xi] = b

where xi is the action played by i in profile x.

Theorem 3 Let k > 2 be an integer. Let A be a payoff-query algorithm that uses at most logk(k−1) n
queries, where n is the number of players, and outputs distribution ψ.

With probability more than 1
2 there will exist a player i who would improve his payoff by 1

2 −
1
k

by playing some fixed strategy in {0, 1}, relative to the payoff he gets in ψ.

10

Proof. Assume that the payoffs for game G are generated by the distribution defined above.
We identify a lower bound on the probability that any individual player i is paid 0 in every

profile in {s1, . . . , sQ}, and has a type ti that is in a sense “bad” for ψ.
We start by lower-bounding the probability that a given player gets paid zero on every query.

To this end, suppose that A tries to maximize the probability that each player gets paid at least
1. This is done by selecting sj that allocates to each player i, the action that is more likely to pay
1 to i, conditioned on the answers to s1, . . . , sj−1. However, since i’s payoff is obtained by a coin
flip that pays i zero with probability either 1

k or k−1
k , at each query there is probability at least 1

k

that i will get paid 0. Hence with probability at least 1
k

Q
, i is paid zero on all queries.

Conditioned on the answers to all Q queries, we have (noting Observation 3) for any player
i that Pr[ti = 1]/Pr[ti = 0] ≤ (k − 1)Q and similarly Pr[ti = 0]/Pr[ti = 1] ≤ (k − 1)Q, where
Pr[ti = t] is the conditional probability that ti is equal to t. Hence, any prediction of a player’s
type has probability at least (k − 1)−Q of being incorrect, regardless of how much that player was
paid during the queries.

Consider some player i who gets paid zero on all Q queried profiles. Let b be the bias (Defini-
tion 1) for player i and let λ be the probability that x ∼ ψ happens to be a queried profile. Thus
ψ = λψq + (1− λ)ψu where ψq is a distribution over queried profiles and ψu is a distribution over
unqueried profiles.

Let p0 (resp. p1) be the probability that x ∼ ψ is a queried profile where i plays 0 (resp. 1).
Let p′0 (resp. p′1) be the probability that x ∼ ψ is an unqueried profile where i plays 0 (resp. 1).
Thus p0 + p1 + p′0 + p′1 = 1; p0 + p1 = λ; p′0 = (1− λ)(1− b); p′1 = (1− λ)b.

Suppose player i is paid 0 in all queried profiles.

• If ti = 0, then i’s expected payoff under ψ is p′0
k−1
k + p′1

1
k .

• If ti = 1, then i’s expected payoff under ψ is p′1
k−1
k + p′0

1
k .

Furthermore:

• If ti = 0 and i plays 0 against all profiles generated by ψ, i’s expected payoff is

p1 + (1− λ)
k − 1

k
= p1 +

k − 1

k
(p′0 + p′1).

• If ti = 1 and i plays 1 against all profiles generated by ψ, i’s expected payoff is

p0 + (1− λ)
k − 1

k
= p0 +

k − 1

k
(p′0 + p′1).

Suppose ti = 0. i can improve his expected payoff by p1+ k−1
k (p′0+p′1)−(p′0

k−1
k +p′1

1
k) by playing

0 always. Suppose ti = 1. i can improve his expected payoff by p0 + k−1
k (p′0 + p′1)− (p′1

k−1
k + p′0

1
k)

by playing 1 always. So, there exists a value for ti such that i’s regret is at least

max
{
p1 +

k − 1

k
(p′0 + p′1)−

(
p′0
k − 1

k
+ p′1

1

k

)
, p0 +

k − 1

k
(p′0 + p′1)−

(
p′1
k − 1

k
+ p′0

1

k

)}
which simplifies to

max
{
p1 +

k − 2

k
p′1, p0 +

k − 2

k
p′0

}
.

The sum of these two terms is p0 + p1 + k−2
k (p′0 + p′1), and since p0 + p1 + p′0 + p′1 = 1, the sum of

the terms is at least k−2
k , so at least one of the terms is at least k−2

2k , hence the maximum of them

is at least k−2
2k .

11

For a player i to have regret at least k−2
2k it is sufficient for the following 2 events to occur:

player i is paid 0 on all queried profiles, and player i turns out to have type ti that leads to larger
regret than the alternative type 1 − ti. The first of these events occurs with probability at least
1
k

Q
, and (given the first) the second occurs with probability at least (1

k−1)Q. So for any player

i, with probability at least (1
k(k−1))

Q, i has regret at least k−2
2k . Thus for n ≥ (k(k − 1))Q, i.e.

Q ≤ logk(k−1) n, a bad player exists with probability more than 1
2 .

3 Bounds for the query complexity of ε-WSCE

The approach of [7] for converting a PTAS for ε-NE into a PTAS for ε-WSNE works for Nash
equilibria but fails for correlated equilibria, and so we need new upper bound techniques. We
first present a lower bound that separates the query complexity of ε-WSCE from ε-CE. We then
present an upper bound in Section 3.2 that applies to the subclass of concisely-representable games.
Finally, we show that this upper bound takes the form of a generic reduction between the problem
of testing ε-WSCE to the problem of finding ε-WSCE, and can be implemented computationally
efficiently in certain games.

3.1 Lower bound

To obtain a lower bound that applies to randomized algorithms, in a similar way to Theorem 3 we
define an adversarial distribution over games in Gn and argue that given a deterministic algorithm
A that uses o(n) queries, that A is likely to fail to find a ε-WSNE.

A distribution over payoff functions. Let Dn be the following distribution over Gn. For each
player i, and each bit vector b of length i− 1, let bi,b ∈ {0, 1} be obtained by flipping a fair coin.
If players 1, . . . , i− 1 play b then i is paid bi,b ∈ {0, 1} to play 0 and 1− bi,b ∈ {0, 1} to play 1.

Note that every game generated by D has a unique (pure) NE.

Theorem 4 For ε < 1, the payoff query complexity of computing ε-WSCE of Gn (i.e. n-player
2-action games with payoffs in [0, 1]) is Ω(n).

Proof. For any game G in the support of Dn, observe that G has a unique (pure) Nash equilibrium
x. x is found by considering each player i in ascending order, and noting that each player is
incentivized to select one of his actions based on the behavior of 1, . . . , i− 1, and i’s payoffs are not
a function of the behavior of i+ 1, . . . , n. Moreover, x can be seen to be the unique ε-WSCE of G.

For G ∼ Dn, let s1, . . . , sj be a sequence of query profiles for G and consider the conditional
distribution D′ on Gn that results from the answers to those queries. We claim that D′ has the
following form. Let m be the length of the longest prefix of players that all get paid 1 in some
query,

m = arg max
m
{∃q ∈ 1 . . . j : sq pays 1 to 1, . . . ,m}.

Then D′ is uniform over all x in the support of Dn that agree with sq on players 1 . . . ,m and
disagree with sq on player m+ 1.

The claim can be proved by induction on j. Let Dj be the conditional distribution that results
from the first j queries, and consider query sj+1. Define m as above. Dj is uniform over elements
of Gn in its support. Dj+1 is obtained by taking the uniform distribution over any such game that
is consistent with sj+1.

12

Define the progress of query sj+1 to be the increase in the length of the prefix of players whose
behavior is determined by elements of Dj . Then the expected progress of each query is less than
1 +

∑
r≥0 r/2

r+1 = 2. And, the total progress of all queries required to find an ε-WSCE is n.

Using the above result we can obtain a separation between the query complexity of comput-
ing small support ε-CE and arbitrary support ε-CE for any ε ≥ (log(n)/n)1/3. Without loss of
generality, we can view approximate correlated equilibria as uniform distributions over (multi)sets
of action profiles S: note that multiplicative weights explicitly finds correlated equilibria of this
form, and any correlated equilibrium can be put in this form with arbitrarily small loss in the
approximation factor by sampling. We note that multiplicative weights finds a correlated equilib-
rium with a support size |S| that depends on n: |S| ≥ log(n)/ε2. We show that no algorithm with
polylogarithmic query complexity can find an approximate correlated equilibrium with support size
O(1/ε) (independent of n). Of course such a separation is vacuous in games in which there are no
ε-CE with support O(1/ε), but in any game that has a pure strategy (ε)-Nash equilibrium, there is
always a small support CE – in particular, one with support just 1. On this topic, Babichenko et
al. [5] show that multiplayer games have approximate CEs with polylogarithmic support size, and
approximate CCEs with logarithmic support size. They note as an open problem the existence of
CEs whose support size depends only on ε and not n.

Corollary 3 The query complexity of computing ε-CE with support size |S| ≤ 1/ε is Ω(n): strictly
greater than the query complexity of computing ε-CE with support size |S| > log(n)/ε2 for any
constant ε.

Proof. If ψ is an ε-CE that is supported over |S| strategy profiles a, then ψ is also a |S|.ε-WSCE.
This is because the probability p of any action a with ai = j with positive probability in ψ must
be at least 1/|S|.

Since Theorem 4 gives an Ω(n) lower bound for computing Ω(1)-WSCE, this in particular also
implies an Ω(n) lower bound for computing a CE with support O(1/ε). This is in contrast to
the O(log(n)/ε5) upper bound of Theorem 2 for computing CE with larger support (in particular,
support log(n)/ε2).

3.2 Upper bound

We give an upper bound on the query complexity of ε-WSNE (and hence ε-WSCE) that is poly-
nomial in the number of players and actions in the game, together with the description length of
the target game. We leave the query complexity of ε-WSCE for unrestricted n-player games (i.e.
those that have no polynomial length description) open. The query complexity of approximate
well-supported Nash equilibrium (ε-WSNE) for unrestricted n-player games is exponential in n [3]
for ε = 10−8 and m = 104 (where m is the number of pure strategies of each player). The class
of games used by [3] are based on random walks on the n-dimensional hypercube; notice that to
write down a description of a generic member of this class would require a string of length expo-
nential in n. An assumption that the unknown target game can be written down using poly(n) bits
appears to be benign in practice. Thus, any polynomial query algorithm for ε-WSCE for general
games would have to (unlike our algorithm) not also compute ε-WSNE. Note that in contrast,
Algorithms Approx Coarse CE and Approx Coarse CE (2) do not require games to come
from a concisely-represented class.

Our upper bound applies just to the query complexity, and it remains an open problem whether
a computationally-efficient approach exists in general. It also yields a positive result for a special
case of the question of query complexity of ε-NE using randomized algorithms [20].

13

Approx WSNE
Let V be the version space, initially V = Gn, where |Gn| ≤ 2p(n).
Repeat the following until an output is obtained.

1. Construct game G′ as follows. For each profile x, each player

i is paid the median payoff that i obtains in x for elements of

V ;

2. Compute an ε
2-WSNE N of G′;

3. For every player i, strategy j let N i
j be a distribution over

strategy profiles obtained by sampling from N and setting i’s
strategy to j; let Sij be a set of pure profiles sampled u.a.r.

from N i
j, where |Sij | = (4

ε) log(2p(n)); query all x ∈ Sij;

4. If any x queried above is inconsistent with G′ (in terms of the

payoffs resulting from the query) then update V , else halt and

output N.

Figure 3: Query-efficient algorithm for ε-WSNE

Algorithm Approx WSNE of Figure 3 can be viewed as a query efficient reduction between the
problem of testing an ε-CE to the problem of finding one, using the following “halving algorithm”
approach. The “concisely representable” constraint means that the number of n-player games is
upper-bounded by an exponential function of n. We maintain a “version space”, the set of all
games that are consistent with queries that have been made so far. If we can find a query that is
inconsistent with some constant fraction of the games in the version space, then we reduce the size
of the version space by a constant fraction, and hence only polynomially many such queries are
sufficient to identify the target game. In each iteration of the algorithm, we construct a proposed
solution N (a probability distribution over strategy profiles) and we sample from it. We query the
payoffs associated with each sample. With high probability, if N is not a valid ε-WSNE, it will
generate a sample that is inconsistent with at least half the elements of the version space.

Theorem 5 Let Gn be a class of n-player, m-strategy games whose elements can be represented
using bit strings of length at most p(n). With probability at least 1

2 , Algorithm Approx WSNE
(Figure 3) identifies an ε-WSNE using O(nmp(n)(log p(n))/ε) payoff queries.

Proof. We prove that at each iteration, with high probability, either a profile is queried that is
inconsistent with at least half of the elements of V , or the algorithm halts and outputs an ε-WSNE
of the target game. Hence the number of iterations is at most p(n).

We consider two cases. Let G(x) denote the payoff vector for game G on profile x. Let G∗ be
the target game.

Case 1: For all i, j, Prx∼N i
j
[G∗(x) 6= G′(x)] < ε

4 .

It follows from the condition of case 1 that for any i, j, the payoff that i gets for j in response
to N in game G∗, is within ε

4 of the payoff that i gets for j in response to N in game G′.
Since N is an ε

2 -WSNE of G′, if i plays j with positive probability in N , then the payoff i gets
for j in game G′ in response to N is at most ε

2 less than the payoff i gets for any j′ in game G′ in
response to N .

It follows that if i plays j with positive probability in N , then the payoff that i gets for j in N
in game G∗ is at most ε less than the payoff that i get for any j′ in N in game G∗. Hence N is an

14

ε-WSNE of G∗, so N constitutes an acceptable output. There is also a small probability that some
x is found for which G∗(x) 6= G′(x). By construction of G′, the payoffs resulting from the query of
x are inconsistent with at least half of the elements of V .

Case 2: For some i, j, Prx∼N i
j
[G∗(x) 6= G′(x)] ≥ ε

4 .

In this case it is not hard to check that |Sij | is large enough that with probability more than

1− 1
2p(n) , S

i
j contains a pure profile x whose payoffs under G∗ differ from the payoffs under G′. By

construction of G′, the query of x is inconsistent with at least half of the elements of V .

Since there are at most p(n) iterations, the overall failure probability (an iteration where Case
2 arises and the sample does not contain x for which G∗(x) 6= G′(x)) is at most 1

2 . The number of
queries at each iteration is nm(4ε) log(2p(n)).

3.3 A class of efficient algorithms

In this section, we generalize our query-efficient algorithm for finding ε-WSNE, and instantiate an
efficient version of it for classes of games that have payoff functions with concise linear representa-
tions. Consider how our algorithm worked:

1. We had a mechanism to generate some hypothesis game G′ given a collection of play profiles
x queried so far.

2. We compute a WSNE N of G′ and query G to check if N is an ε-WSNE of G. If yes, we
output N . If no, we update our hypothesis G′ with the new queries we have made, and
repeat.

The algorithm works because every time we compute a distribution N which is a WSNE of G′ but
not of G, we find a profile x which has payoff differing between G and G′ by at least ε/2: in other
words, a query that witnesses that our algorithm for predicting a hypothesis G′ made a significant
mistake. Moreover, we have a polynomial upper bound on how many mistakes our prediction algo-
rithm can make. The running time of the algorithm is dominated by two computations: Generating
the hypothesis G′, and computing the WSNE of G′. In our general reduction from the last section,
both are computationally expensive.

This framework suggests a more general approach. We can instantiate it with any mistake
bounded learning algorithm for player payoff functions in G. Specifically, suppose we have a learning
algorithm A such that for any sequence of payoff-query/answer pairs (x1, a1), . . . , (xm, am) produces
a hypothesis f = A((x1, a1), . . . , (xm, am)) which maps play profiles x to payoff values f(x), one
for each player. (that is, f represents a hypothesis game G′). Say that the algorithm A makes a
mistake with respect to a game G if it errs on its prediction f(x) of the payoff of some queried profile
x by more than ε/2. Suppose furthermore that for any game G in a restricted class, it is guaranteed
that A can never make more than B mistakes. We then have an algorithm for computing ε-WSCE
using only B ·Q queries, where Q is the number of queries needed to check if a distribution N is an
ε-WSNE. Moreover, if algorithm A is efficient, and WSNE can be computed efficiently for every
hypothesis game G′ generated in this manner, then the reduction is computationally efficient.

In Lemma 1 below, we identify conditions under which Multiplicative Weights can be used to
obtain new query bounds for certain classes of games. The approach is motivated by Algorithm
Approx WSNE , in which at each step t, a game Gt is constructed, an equilibrium N t is obtained
for Gt, and if N t does not solve the target game, we find an informative strategy profile, obtained
by querying responses to N t.

We consider games where the payoff function can be expressed as a linear function of a limited
number of attributes (or features) of strategy profiles. For example consider congestion games with

15

n players and k facilities. The cost incurred by a player is the sum of the costs of the facilities he
uses, and those costs are determined by the number of users of each facility. Thus, given a strategy
profile, we extract the following nk features: for each facility j and i ∈ [n], an associated feature
is set to 1 if i players use j, otherwise it is set to 0. A payoff query gives us an observation of the
input/output behavior of this linear function, and we aim to learn the linear function. Notice that
if we assumed that facility costs were linear in the number of their users, then only k features would
be needed for the payoff function. With quadratic costs we could use 2k features (the coefficents
of the loads, and the squares of the loads).

The problem of finding an ε-NE of G∗ is reducible to learning the coefficients of payoff function
f with accuracy ε. (A solution to a game whose payoff function approximates target game G∗ will
be an approximate solution to G∗.) As described in the Appendix, Multiplicative Weights can be
used to learn approximations of linear functions via queries, with a mistake bound proportional to
the L1 norm of the target function and logarithmic in its dimensionality. If the target function has
a low L1 norm this leads to a good query bound on the equilibrium learning problem.

Let f∗ be the linear function associated with the target game G∗ and f corresponds to the game
G being tested. Let N be a pure Nash equilibrium of G. Check whether N is an ε-NE of G∗ by
querying all pure-strategy deviations of every player. If N is not an ε-NE of G∗, we should be able
to find an alternative pure strategy profile N ′ for which in G∗ some player i’s payoff is > ε higher
in N ′ than in N , but in G i’s payoff in N ′ is at most what it is in N . This means that either N
or N ′ corresponds to a point x in feature space where |f t(x)− f(x)| > ε.

Lemma 1 Suppose a target game G∗ belongs to a class G of potential games such that

1. members of G has a payoff function that can be expressed as a linear function f(x) = 〈x, y〉,
where x ∈ [0, 1]d is a d-dimensional attribute vector of strategy profiles,

2. given any strategy profile, Q queries are sufficient to search for an ε-better response.

Then for target game G∗ with payoff function f∗(x) = 〈x, y∗〉, letting ‖y∗‖ denote the L1 norm of
y∗, an ε-NE of G∗ can be found using O(Q‖y∗‖2 log(d)/ε2) queries. Furthermore, if pure ε-NE can
be computed efficiently we also have that the search is efficient.

Proof. Consider Algorithm Approx NE of potential games (Figure 4). Let f∗ denote the
linear function corresponding to G∗. To find an ε-NE it is sufficient to find a game whose payoff
function is given by f ′ that approximates f∗ in the sense that |f ′(x)− f∗(x)| ≤ ε for all x ∈ [0, 1]d.
This reduces the problem to approximately learning a linear function.

We learn an approximation to y∗ as follows. Let y1 be the d-dimensional vector (1/d, . . . , 1/d).
Consider the game G1 whose payoff function is given by f1(x) = 〈x, y1〉. Compute an ε-NE N 1 of
G1 and check (using Q queries) whether N1 is an ε-NE of G∗. If it is, we are done, if not we find
a value of x such that |f1(x)− f∗(x)| > ε.

Each weights-update operation (incrementing t) is based on having found a point xt in the
domain where |f∗(xt) − f t(xt)| > ε

4 . (This uses f t(N t) ≥ f t(x) − ε
2 and f∗(x) ≤ f∗(x) − ε, from

which it follows that a suitable xt is found at Step 4.
Plugging in ε

4 as the discrepancy between the value of f∗ and the current f t, into the mistake
bound in the appendix, we get a mistake bound of 64 log(d)‖y∗‖2/ε2, which upper bounds the
number of iterations of Algorithm Approx NE of potential games .

We give an example of a class of games to which the above lemma can be usefully applied.
These are network congestion games of the kind studied in Fearnley et al. [9], where the costs of
edges are unknown increasing functions of the number of players using them, so that these costs

16

Approx NE of potential games
Let game G1 have payoff function f1(x) = 〈x, y1〉 where y1 ∈ R≥0d be the

initial hypothesis of the multiplicative weights learning algorithm

for linear functions. (See Appendix B)

For t = 1, 2, . . . do the following until a solution is found.

1. Compute an ε
2-NE N

t of Gt;

2. Use Q queries to G∗ to check whether a player can improve his

payoff by > ε (in G∗);

3. If not, halt and output N t;

4. If yes, let x be the strategy profile resulting from the

deviation; if |f∗(x) − f t(x)| > ε
4 let xt = x, else if

|f∗(N t)− f t(N t)| > ε
4 let xt = −x;

5. Feed xt as the loss vector to the multiplicative weights

algorithm for learning linear functions, and receive the new

hypothesis vector yt+1. Let game Gt+1 have payoff function

f t+1(x) = 〈x, yt+1〉.

Figure 4: Query-efficient algorithm for ε-NE

need to be learned in order to compute an equilibrium. In the case of n players sharing a directed
acyclic graph with m edges, [9] shows how an exact equilibrium can be found using mn queries.

In the case of parallel-link networks, they obtain an algorithm using O(log(n). log2(m)
log log(n)) queries. In

the parallel-links case, the logarithmic dependence on n shows that the cost functions do not have
to be completely learned in order to find an equilibrium, and raises the question of whether for the
more general networks, one should be able to select queries so that only a relatively small number
of observations of each cost function is sufficient. We make progress on this question in the special
case of networks having a small number of edges, and for approximate (not exact) equilibria.

Theorem 6 Consider n-player congestion games over d facilities, where we think of d as being a
constant. Assume that each faciity j has an increasing cost function cj that takes values in [0, 1].
The number of queries needed to find ε-NE is at most 4.22d.d2/ε2.

Proof. Let αi,j = cj(i) − cj(i − 1) be the extra cost incurred by raising the load on j from i − 1
players to i players.

Notice that the cost function is linear in the following attributes xij of a strategy profile: xij = 1

if at least i players use j, otherwise xij = 0. Any observed cost is of the form
∑

j∈S
∑Nj

i=1 αijxij ,
where S is the set of facilities used by a player, and Nj is the number of players using facility j.
Also, the L1 norm of any target game cannot exceed d since for any facility j we have

∑
i αij ≤ 1.

With regard to the value of Q, given a specific pure profile x (for which we seek a ε-better
response), there are (at most) 22d queries that need to be made, since the cost of an alternative
strategy for a player will depend on which of the 2d subsets of facilities he is using in x, and which
subset of the d facilities he may move to.

Finally, efficient computation of ε-NE of these games can be done using ε-best response dynam-
ics.

The above analysis has used a crude upper bound of Q that is exponential in the number of
facilities. In the case of network congestion games it may well be possible to show that ε-better

17

responses can be searched for using a number of queries that is polynomial in the number of edges.

4 Further work

The bound of Theorem 4 could plausibly be improved, and regarding the query complexity of ε-
WSCE, our result leaves open the question of question of efficient computability. It is also limited
to concisely-represented games, but arguably that is a benign restriction.

Hart and Nisan [20] note the open problem of query complexity of approximate NE for random-
ized algorithms; the exponential LB is for deterministic ones. Algorithm Approx WSNE makes
progress on this question. An extension of that question is to ask whether ε-WSCE are easier to
learn than ε-NE. Similarly, Section 8.3 of [18] asks whether ε-NE requires exponentially-many (as
a function of the number of players) rounds in the communication complexity setting.

In the context of centralized computation of solutions, ε-well-supported CE may be easier to
compute than ε-NE. For example Papadimitriou and Roughgarden and Jiang and Leyton-Brown [24,
21] show that exact (and hence, well-supported approximate) CE can be computed for concisely
represented multiplayer games, including graphical games, where it is PPAD-complete to compute
ε-NE even for constant ε. Indeed, the algorithm of [21] interacts with a game via mixed-strategy
payoff queries in which exact answers are returned.

References

[1] K. Amin, M. Kearns and U. Syed. Bandits, Query Learning, and the Haystack Dimension.
Journal of Machine Learning Research - Proceedings Track 19 pp. 87–106 (2011).

[2] S. Arora, E. Hazan, and S. Kale. The Multiplicative Weights Update Method: a Meta-
Algorithm and Applications Theory of Computing Volume 8 Article 6 pp. 121-164 (2012).

[3] Y. Babichenko. Query Complexity of Approximate Nash Equilibrium. ArXiv tech rept.
1306.6686 (2013).

[4] Y. Babichenko and S. Barman. Query complexity of correlated equilibrium. ArXiv tech rept.
1306.2437 (2013).

[5] Y. Babichenko, S. Barman and R. Peretz. Small-Support Approximate Correlated Equilibria.
ArXiv tech rept. 1308.6025 (2013).

[6] A. Blum and Y. Mansour. Learning, Regret Minimization and Equilibria. In Algorithmic Game
Theory, Cambridge University Press (2007).

[7] X. Chen, X. Deng and S-H. Teng. Settling the complexity of computing two-player Nash
equilibria. Journal of the ACM 56(3),14:1–14:57 (2009).

[8] C. Daskalakis, A. Mehta and C.H. Papadimitriou. A Note on Approximate Nash Equilibria.
Theoretical Computer Science 410(17), pp. 1581–1588 (2009).

[9] J. Fearnley, M. Gairing, P.W. Goldberg and R. Savani. Learning Equilibria of Games via Payoff
Queries. Arxiv rept. http://arxiv.org/abs/1302.3116 (to appear in ACM-EC) (2013).

[10] J. Fearnley, P.W Goldberg, R. Savani and T.B. Sørensen. Approximate Well-supported Nash
Equilibria Below Two-thirds. Procs of the 5th International Symposium on Algorithmic Game
Theory LNCS 7615 pp.108-119 (Oct 2012).

18

[11] T. Feder, H. Nazerzadeh and A. Saberi. Approximating Nash equilibria using small-support
strategies. In Proc. of 8th ACM EC. 352–354 (2007).

[12] Dean P. Foster and H. Peyton Young. Regret testing: learning to play Nash equilibrium without
knowing you have an opponent. Theoretical Economics 1, pp. 341–367 (2006).

[13] Y. Freund and R. Schapire. Adaptive game playing using multiplicative weights. Games and
Economic Behavior, 29:79-103, (1999).

[14] P.W. Goldberg and A. Pastink. On the Communication Complexity of Approximate Nash
Equilibria. Procs of the 5th SAGT, LNCS 7615, pp. 192–203 (Oct 2012). Arxiv rept.
http://arxiv.org/abs/1302.3793 (1012).

[15] A. Gupta, A. Roth, and J. Ullman. Iterative Constructions and Private Data Release. Procs
of the 9th TCC pp. 339–356 (2012).

[16] M. Hardt and G. Rothblum. A multiplicative weights mechanism for privacy-preserving data
analysis. Procs of the 51st FOCS pp. 61–70 (2010).

[17] S.C. Kontogiannis and P.G. Spirakis. Well Supported Approximate Equilibria in Bimatrix
Games. Algorithmica 57(4), pp. 653–667 (2010).

[18] S. Hart and Y. Mansour. How long to equilibrium? The communication complexity of uncou-
pled equilibrium procedures. Games and Economic Behavior 69(1) pp. 107–126 (2010).

[19] S. Hart and A. Mas-Colell. A Simple Adaptive Procedure Leading to Correlated Equilibrium.
Econometrica 68(5) pp. 1127–1150 (2000).

[20] S. Hart and N. Nisan. The Query Complexity of Correlated Equilibria. ArXiv tech rept.
1305.4874 (2013).

[21] A.X. Jiang and K. Leyton-Brown. Polynomial-time Computation of Exact Correlated Equi-
librium in Compact Games. Procs. of ACM-EC, 119–126 (2011).

[22] M. Kearns, M.M. Pai, A. Roth and J. Ullman. Mechanism Design in Large Games: Incentives
and Privacy. Arxiv rept. http://arxiv.org/abs/1207.4084 (2013).

[23] C.H. Papadimitriou. Computing correlated equilibria in multi-player games. Procs. of the 37th
STOC. ACM, pp. 4956 (2005).

[24] C.H. Papadimitriou and T. Roughgarden. Computing Correlated Equilibria in Multi-Player
Games. Journal of the ACM 55(3), article 14 (2009).

[25] A. Roth and T. Roughgarden Interactive Privacy via the Median Mechanism. Procs. of the
42nd STOC. ACM, pp. 765-774 (2010).

[26] H. Tsaknakis and P.G. Spirakis. An Optimization Approach for Approximate Nash Equilibria.
Internet Mathematics 5(4), pp. 365–382 (2008).

19

A Upper Bounds on the Query Complexity of CCE Using MW

Theorem 1: Let G be a game with n players, each with m pure strategies where m ≥ n; payoffs
lie in [0, 1]. With probability 1 − nm−

1
8 , Algorithm Approx Coarse CE (Figure 1) finds an

ε-approximate coarse correlated equilibrium of G, using O(nm logm
ε2

) payoff queries.

Proof. Approx Coarse CE applies, for each player, the Multiplicative Weights algorithm as
presented in [2]. For iteration t = 1, . . . , T , wij(t) denotes the weight of player i’s action j at step

t; initially wij(1) = 1 for all i, j. pi(t) denotes the probability distribution over i’s pure strategies
in which the probability of a strategy is proportional to its weight. At iteration t, each player i
observes a cost vector mi(t) (each strategy j ∈ [m] has a cost (negated payoff) mi

j(t) ∈ [−1, 1])

and weights are updated according to the rule wij(t + 1) = wij(t)(1 − ηmi
j(t)), where η ≤ 1

2 is the
learning rate parameter.

The performance guarantee of Multiplicative Weights, as given in Theorem 2.1 of [2], is that
after T rounds, for any strategy j of player i we have

T∑
t=1

mi(t).pi(t) ≤
T∑
t=1

mi
j(t) + η

T∑
t=1

|mi
j(t)|+

lnm

η
. (9)

Dividing by T and noting that |mi
j(t)| ≤ 1 we have

1

T

T∑
t=1

mi(t).pi(t) ≤ 1

T

T∑
t=1

mi
j(t) + η +

lnm

Tη
. (10)

Thus, the expected cost incurred using the pi(t) distributions (the LHS) is upper bounded by
the cost that would be incurred by using any fixed strategy j (the first term of the RHS) plus the
remaining terms of the RHS.

Approx Coarse CE obtains the costs mi(t) by sampling, for each player i, a single pure
strategy from pi(t). This gives us a pure-strategy profile s(t). nm payoff queries are used at step 3
to obtain the payoffs (or costs) of all the responses to s(t). These values are used for each player
to update his weights. Finally, the output of the algorithm is the uniform distribution over the
elements of multiset {s(t) : 1 ≤ t ≤ T}. We show that with high probability, the payoffs under
this distribution approximate the payoffs of

∑T
t=1 mi(t).pi(t).

Let ci be the average cost per iteration for player i using Approx Coarse CE , thus ci =
1
T

∑T
t=1 mi(t).p̂i(t), where p̂i(t) is a unit vector with a 1 at the entry corresponding to si(t) (defined

in step 2), sampled from p(t). Note that

E[ci] =
1

T

T∑
t=1

mi(t).pi(t) (11)

where expectation is over random choice of si(t) ∼ pi(t) at step 2. Azuma’s inequality tells us that
if {Xt : t = 0, 1, 2, . . .} is a martingale and |Xt−Xt−1| < ct, then for all positive integers N and all
positive reals d,

Pr[XN −X0 ≥ d] ≤ exp

(
−d2

2
∑N

t=1 c
2
t

)
. (12)

Here we let Xt be the cost that player i pays at iteration t, minus its expected value; Xt =
mi(t).p̂i(t)−mi(t).pi(t). Thus E[Xt] = 0, and since Xt ∈ [−1, 1] we can use ct = 2 for all t.

20

We upper bound ci by using (12) to show that ci is (usually) not too much higher than its
expected value given in (11), which itself has the upper bound of (10). We can write

Pr[ci − E[ci] > β] = Pr[XN −X0 > Nβ] ≤ exp(−1

8
Nβ2).

With N = T we get the following bound for ci:

Pr

[
ci >

1

T

T∑
t=1

mi
j(t) + η +

lnm

Tη
+ β

]
< exp(−1

8
β2T)

Putting T = lnm
min{ηβ,β2} , we have

Pr

[
ci >

1

T

T∑
t=1

mi
j(t) + η + β + β

]
< exp(−1

8
lnm)

The right-hand side is upper-bounded by m−
1
8 ; by a union bound, with probability at least 1 −

nm−
1
8 , the costs of every player i obey

ci ≤ 1

T

T∑
t=1

m
(t)
j + η + β + β

So to get an ε-approximate coarse CE, we need η and β to satisfy η+β+β < ε. Using η = β = ε/3
we get T = O(lnm

ε2
) as required (noting that nm queries are used at each iteration).

B Using MW to learn linear functions

Here we show how the multiplicative weights learning algorithm can be used as a “mistake bounded”
learning algorithm to learn a linear function f over a d dimensional space. The analysis follows
from the standard regret bound of Multiplicative weights (see, e.g. [2]). For now, let us assume that
the coefficients of f are non-negative and have L1 norm 1. (Consequently they form a probability
distribution over the feature space, which is a convenient form for multiplicative weights. If this
is not the case, we can simply reduce to this case by (a) doubling the feature space to introduce
“negative” versions of each of the variables, and (b) rescaling the function to have L1 norm 1, and
then scaling back afterwards.) In other words, for every x ∈ [0, 1]d, f(x) = 〈y∗, x〉 for some target
y∗ such that ‖y∗‖1 = 1 and y∗ ≥ 0.

We will run Multiplicative weights to try to learn a vector yt and make predictions using the
function gt(x) = 〈yt, x〉. Multiplicative weights naturally maintains a distribution yt over d feature
vectors, which is what we will use as our hypothesis at step t. All that remains is to specify what
loss functions we feed to multiplicative weights to let it perform updates.

We initialize multiplicative weights such that y1 is the uniform distribution: y1 = (1/d, . . . , 1/d).
Let t = 1. For each example x, predict using g(x) = 〈yt, x〉. We say that multiplicative weights
makes a mistake at time t if on example x, |f(x)− g(x)| ≥ ε. There are two cases:

1. |〈yt, x〉 − 〈y∗, x〉| ≤ ε – i.e. we did not make a mistake. In this case we do nothing.

2. |〈yt, x〉 − 〈y∗, x〉| > ε, in which case we need to update multiplicative weights.

• If the prediction was too big, i.e. 〈yt, x〉 − 〈y∗, x〉 > ε, then feed Lt = x to multiplicative
weights as a loss vector.

21

• If the prediction was too small, i.e. 〈y∗, x〉 − 〈yt, x〉 > ε, then feed Lt = −x to multi-
plicative weights as a loss vector.

In either case, generate the updated multiplicative weights hypothesis yt+1 and increment t.

This algorithm can make at most T ≤ 4 log(d)/ε2 mistakes. We will use the fact that for any
point y∗ in the simplex, multiplicative weights guarantees regret:

T∑
t=1

〈yt, Lt〉 −
T∑
t=1

〈y∗, Lt〉 ≤ 2
√

log(d)T

Combining the summations on the LHS, we can rewrite this:

T∑
t=1

(〈yt, Lt〉 − 〈y∗, Lt〉) ≤ 2
√

log(d)T

But note that we have chosen our loss functions so that the LHS > εT . So we have εT ≤
2
√

log(d)T and solving, we must have:

T ≤ 4 log(d)/ε2.

We note that if initially our vector y∗ had L1 norm N , then we can scale it down to have L1

norm 1 and learn ŷ∗ = 1/Ny∗, so that we are in the unit vector case. In this case, if we want error
ε with respect to the true vector y∗, we must require error ε/N for the scaled down version ŷ∗.
Thus, the number of mistakes is now 4N2 log(d)/ε2 – i.e. we pay quadratically for the L1 norm of
the target.

The same reduction works for any no regret algorithm. It is possible to get a slightly different
bound with gradient descent, that pays for the L2 norm of the target instead of the L1 norm.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

