
Bi-Lipschitz Bijection between the Boolean Cube
and the Hamming Ball

Itai Benjamini∗ Gil Cohen† Igor Shinkar‡

October 29, 2013

Abstract

We construct a bi-Lipschitz bijection from the Boolean cube to the Hamming ball
of equal volume. More precisely, we show that for all even n ∈ N there exists an explicit
bijection ψ : {0, 1}n →

{
x ∈ {0, 1}n+1 : |x| > n/2

}
such that for every x 6= y ∈ {0, 1}n

it holds that
1

5
≤ distance(ψ(x), ψ(y))

distance(x, y)
≤ 4,

where distance(·, ·) denotes the Hamming distance. In particular, this implies that the
Hamming ball is bi-Lipschitz transitive.

This result gives a strong negative answer to an open problem of Lovett and Vi-
ola [CC 2012], who raised the question in the context of sampling distributions in
low-level complexity classes. The conceptual implication is that the problem of prov-
ing lower bounds in the context of sampling distributions requires ideas beyond the
sensitivity-based structural results of Boppana [IPL 97].

We study the mapping ψ further and show that it (and its inverse) are computable
in DLOGTIME-uniform TC0, but not in AC0. Moreover, we prove that ψ is “ap-
proximately local” in the sense that all but the last output bit of ψ are essentially
determined by a single input bit.

∗Department of Mathematics, Weizmann Institute of Science, Rehovot, Israel. Email:
itai.benjamini@weizmann.ac.il.
†Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,

Israel. Email: gil.cohen@weizmann.ac.il. Research supported by Israel Science Foundation (ISF) grant.
‡Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot,

Israel. Email: igor.shinkar@weizmann.ac.il. Research supported by ERC grant number 239985.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 138 (2013)

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 The Complexity of Distributions . 4
1.3 Proof Overview . 5

2 Proof of the Main Theorem 6
2.1 The De Bruijn-Tengbergen-Kruyswijk Partition . 6
2.2 The Bijection ψ . 7
2.3 Proof of Theorem 1 . 9
2.4 Proof of Missing Claims . 10

3 The Mapping ψ is Computable in DLOGTIME-uniform TC0 13

4 All But the Last Output Bit Depend Essentially on a Single Input Bit 14

5 Concluding Remarks and Open Problems 17

1 Introduction

The Boolean cube {0, 1}n and the Hamming ball Bn = {x ∈ {0, 1}n+1 : |x| > n/2}, equipped
with the Hamming distance, are two fundamental combinatorial structures that exhibit, in
some aspects, different geometric properties. As a simple illustrative example, for an even
integer n ∈ N, consider the vertex and edge boundaries1 of {0, 1}n and Bn, when viewed
as subsets of {0, 1}n+1 of equal density 1/2. The Boolean cube is easily seen to maximize
vertex boundary among all subsets of equal density (since all its vertices lie on the boundary),
whereas Harper’s vertex-isoperimetric inequality [Har66] implies that the Hamming ball is
in fact the unique minimizer. The same phenomena occurs for edge boundary, though
interestingly, the roles are reversed: among all monotone sets2 of density 1/2, the Poincaré
inequality implies that the Boolean cube is the unique minimizer of edge boundary, whereas
a classical result of Hart shows that the Hamming ball is the unique maximizer [Har76].
From the Boolean functions perspective, the indicator of {0, 1}n embedded in {0, 1}n+1 is
commonly referred to as the dictator function, and the indicator of Bn ⊂ {0, 1}n+1 is the
majority function, and it is a recurring theme in the analysis of Boolean functions that they
are, in some senses, opposites of one another.

Lovett and Viola [LV12] suggested to utilize the opposite structure of the Boolean cube
and the Hamming ball for proving lower bounds on sampling by low-level complexity classes
such as AC0 and TC0. In particular, Lovett and Viola were interested in proving that for
any even n, any bijection f : {0, 1}n → Bn has a large average stretch, where

avgStretch(f) = E
x∼{0,1}n

i∼[n]

[distance(f(x), f(x+ ei))] ,

and distance(·, ·) denotes the Hamming distance. To be more precise, Lovett and Viola raised
the following open problem.

Problem 1.1 ([LV12], Open Problem 4.1). Let n ∈ N be an even integer. Prove that for
any bijection f : {0, 1}n → Bn, it holds that

avgStretch(f) = (log n)ω(1). (1)

A positive answer to Problem 1.1 would demonstrate yet another scenario in which the
Boolean cube and the Hamming ball have a different geometric structure – any bijection
from the former to the latter does not respect distances. Furthermore, a positive answer to
Problem 1.1 would have applications to lower bounds for sampling in AC0; even a weaker
claim, where the right hand side in Equation (1) is replaced with ω(1), would have implica-
tions for sampling in the lower class NC0. We discuss this further in Section 1.2.

Arguably, the simplest and most natural bijection ϕ : {0, 1}n → Bn to consider is the
following.

ϕ(x) =

{
flip(x) ◦ 1 if |x| ≤ n/2
x ◦ 0 otherwise,

1The edge boundary of a subset A ⊂ {0, 1}n+1 is set of edges with one endpoint in A and one outside A.
The vertex boundary of A is the set of vertices outside A that are endpoints of boundary edges.

2Recall that a subset A ⊂ {0, 1}n+1 is monotone if x ∈ A implies y ∈ A for all y � x.

1

where flip(x) denotes the bit-wise complement of x. It is straightforward to verify that
avgStretch(ϕ) = Θ(

√
n). To see this, note that any edge (x, y) in {0, 1}n, where |x| = n/2

and |y| = n/2 + 1, contributes n to the average stretch, whereas all other edges contribute
1. The assertion then follows since Θ(1/

√
n) fraction of the edges are of the first type. In

fact, the maximum stretch of ϕ is n, where

maxStretch(ϕ) = max
x∈{0,1}n

i∈[n]

distance(ϕ(x), ϕ(x+ ei)).

As far as we know, prior to our work this simple bijection achieved the best-known upper
bound on the average stretch between {0, 1}n and Bn, and no non-trivial upper bounds
(i.e. sublinear) on maximum stretch were known. For a survey on metric embeddings of
finite spaces see [Lin02]. In particular, a lot of research has been done on the question of
embedding into the Boolean cube. For example, see [AB07, HLN87] for some work on em-
beddings between random subsets of the Boolean cube, and [Gra88] for isometric embeddings
of arbitrary graphs into the Boolean cube.

1.1 Our Results

The main result of this paper is a strong negative answer to Problem 1.1.

Theorem 1 (Main theorem). For all even integers n, there exists a bijection ψ : {0, 1}n → Bn
with

maxStretch(ψ) ≤ 4

and
maxStretch(ψ−1) ≤ 5.

Theorem 1 highlights a surprising geometric resemblance between the Boolean cube and
the Hamming ball. In the language of metric geometry, Theorem 1 says that there is a
bi-Lipschitz bijection between the two spaces.

Corollary 1.2 (A bi-Lipschitz bijection between {0, 1}n and Bn). For all even integers n,
there exists a bijection ψ : {0, 1}n → Bn, such that for every x 6= y ∈ {0, 1}n it holds that

1

5
≤ distance(ψ(x), ψ(y))

distance(x, y)
≤ 4.

As a corollary from Theorem 1, we obtain that the subgraph of {0, 1}n+1 induced by the
vertices of Bn is bi-Lipschitz transitive. Informally speaking, this says that any two points in
Bn have roughly the same “view” – even the unique point with Hamming weight n+ 1 and
the boundary points which have weight n/2 + 1. More formally,

Corollary 1.3 (The Hamming balls are uniformly bi-Lipschitz transitive). For all even
integers n, and for every two vertices x, y ∈ Bn there is a bijection f : Bn → Bn such that
f(x) = y, f(y) = x, and for every z 6= w ∈ Bn, it holds that

1

20
≤ distance(f(z), f(w))

distance(z, w)
≤ 20.

2

To see this, first note that Bn is a convex subset of {0, 1}n+1, and thus, the distances between
vertices in Bn are the same as their distances as a subset of the cube. Now, for a given pair
x, y ∈ Bn, let x′ = ψ−1(x) and y′ = ψ−1(y), where ψ is the function from Theorem 1. Define
f : Bn → Bn as f(z) = ψ(ψ−1(z) ⊕ x′ ⊕ y′). It is easy to see that f indeed satisfies the
requirements of Corollary 1.3.

Approximating ψi We highlight another consequence of our main theorem that is perhaps
somewhat surprising – the bijection ψ of Theorem 1 is “approximately local” in the sense
that almost all of its output bits are essentially determined by only a constant number of
inputs bits. To see this, we view the bijection ψ : {0, 1}n → Bn as a vector of Boolean
functions 〈ψ1, . . . , ψn+1〉, where ψi(x) is the ith output bit of ψ on input x ∈ {0, 1}n. Recall
that the total influence of a Boolean function ψi : {0, 1}n → {0, 1} is the quantity

Inf [ψi] = E
x∼{0,1}n

[#{j ∈ [n] : ψi(x) 6= ψi(x+ ej)}] .

By linearity of expectation, Theorem 1 implies that a typical ψi has bounded total influence.

E
i∼[n+1]

[Inf [ψi]] = avgStretch(ψ) ≤ maxStretch(ψ) ≤ 4. (2)

Next we recall Friedgut’s Junta Theorem, which states that a Boolean function with bounded
total influence is well-approximated by another Boolean function that only depends on a
constant number of input bits. More precisely,

Friedgut’s Junta Theorem ([Fri98]). Let f : {0, 1}n → {0, 1} be a Boolean function. For
every ε > 0 there exists a Boolean function g : {0, 1}n → {0, 1} such that g is a 2O(Inf [f]/ε)-
junta3 and Pr[f(x) 6= g(x)] ≤ ε.

Combining Equation (2) with Friedgut’s Junta Theorem, we see that for any constants
δ, ε > 0, all but a δ-fraction of the ψi’s are ε-approximated by O(1)-juntas. A similar
argument has appeared recently in the paper of Austin [Aus13], where he studies Bi-Lipschitz
functions F : [0, 1]N → [0, 1]M .

In fact, we give a direct proof that the function ψ in Theorem 1 satisfies the following
stronger property.

Proposition 1.4. For all i ∈ [n] it holds that

Pr
x

[ψi(x) = xi] > 1−O(1/
√
n).

That is, all but the last output bit of ψ are essentially determined by a single input bit.

3Recall that a k-junta is a Boolean function that only depends on at most k of its input bits.

3

The complexity of ψ. Since the original motivation for constructing ψ comes from effi-
cient sampling of distributions, Theorem 1 is of larger interest if the bijection ψ (and ψ−1)
can be computed by low-level circuits.

Proposition 1.5. The bijections ψ and ψ−1 are computable in DLOGTIME-uniform TC0.

Remark 1.6. In fact, we show that for all i ∈ [n + 1] there is an NC0-reduction from
majority to ψi. That is, TC0 is the “correct” complexity of ψ, and in particular, ψ is not in
AC0. See Proposition 3.1 and Remark 3.2 for details.

1.2 The Complexity of Distributions

Lower bounds in circuit complexity are usually concerned with showing that a family of
functions {fn : {0, 1}n → {0, 1}}n∈N cannot be computed by a family of circuits {Cn}n∈N
belonging to some natural class of circuits such as AC0 or TC0. Taking a broader interpre-
tation of computation, it is often interesting to show that a class of circuits cannot perform
a certain natural task beyond just computing a function.

One such natural task, introduced by Viola [Vio12], is that of sampling distributions. In
this problem, for a given distribution D supported on {0, 1}n, we are looking for a function
f : {0, 1}m → {0, 1}n that samples (or approximates) D, that is, for a uniformly random
x ∼ {0, 1}m, the distribution f(x) is equal (or close to) D, and furthermore, each output
bit fi of the function f belongs to some low-level complexity class, such as AC0 or TC0.

As a concrete example, let U⊕ be the uniform distribution over the set {(x, parity(x)) : x ∈
{0, 1}n−1} ⊆ {0, 1}n. Note that although the parity function is not computable in AC0

(see [Has86] and references therein) there is a function f : {0, 1}n−1 → {0, 1}n that samples
U⊕, such that each output bit depends on only two input bits:

f(x1, . . . , xn−1) = (x1, x1 + x2, x2 + x3, . . . , xn−2 + xn−1, xn−1).

Motivated by the foregoing somewhat surprising example, Viola [Vio12] suggested to replace
parity above with majority – the other notoriously hard function for AC0. The following two
problems have been stated in [LV12].

Problem 1.7. Let n ∈ N be even. Does there exist a bijection g : {0, 1}n → Bn such that
each output bit of g is computable in AC0?

Problem 1.8. Let n ∈ N be odd. Does there exist a bijection h : {0, 1}n → {(x,majority(x)) : x ∈
{0, 1}n} such that each output bit of h is computable in AC0?

Note that a positive answer to Problem 1.7 implies a positive answer to Problem 1.8. Indeed,
if g : {0, 1}n → Bn is an embedding from Problem 1.7, then the function h : {0, 1}n+1 →
{0, 1}n+2 defined as

h(x1, . . . , xn, xn+1) =

{
g(x1, . . . , xn) ◦ 1 xn+1 = 1

flip(g(x1, . . . , xn)) ◦ 0 xn+1 = 0

4

gives an embedding for Problem 1.8. Therefore, a negative answer to Problem 1.8 im-
plies a negative answer to Problem 1.7. In the other direction, if a function h : {0, 1}n →
{(x,majority(x)) : x ∈ {0, 1}n} gives a positive answer to Problem 1.8, then the function
g : {0, 1}n → {0, 1}n defined as4

g(x1, . . . , xn) =

{
(h(x1, . . . , xn))[1,...,n] (h(x1, . . . , xn))n+1 = 1

flip(h(x1, . . . , xn))[1,...,n] otherwise

samples Bn−1 using input of length n, which almost5 answers Problem 1.8.
On the positive side Viola [Vio12] showed an explicit AC0 circuit C : {0, 1}poly(n) →

{0, 1}n of size poly(n) whose output distribution has statistical distance 2−n from the uniform
distribution on {(x,majority(x)) : x ∈ {0, 1}n}.

Problem 1.1 was raised by Lovett and Viola [LV12] in an attempt to prove a lower
bound for Problem 1.7. A positive answer to Problem 1.1 would imply a lower bound for
Problem 1.7, since by the result of [Bop97], any function f : {0, 1}n → {0, 1}n+1 computable
by a polynomial size Boolean circuit of constant depth has average stretch at most logO(1)(n).

As we resolved Problem 1.1 negatively in a strong sense, it seems that new ideas be-
yond the sensitivity-based structural results of [Bop97] will be required in order to resolve
Problems 1.7 and 1.8.

For a lower bound Viola [Vio11] gave an explicit construction of a function b : {0, 1}n →
{0, 1} such that (x, b(x)) cannot be sampled by AC0 circuits. That is, it gives a negative
answer to Problem 1.8 if we replace majority by the function b. Nonetheless, we feel that
it would still be interesting to give a negative answer to Problem 1.8 for majority function,
since this is a more natural function.

1.3 Proof Overview

In this section we describe in high-level the proof of Theorem 1. A full proof is given in
Section 2. Let n ∈ N be an even integer. Our goal is to map {0, 1}n to Bn in a way that
the two endpoints of every edge in {0, 1}n are mapped to close vertices in Bn. The key
building block we use is a classical partition of the vertices of {0, 1}n to symmetric chains,
due to De Bruijn, Tengbergen, and Kruyswijk [BvETK51], where a symmetric chain is a
path {ck, ck+1, . . . , cn−k} in {0, 1}n, such that each ci has Hamming weight i (see Figure 1).

As a first step, we study the chains in the partition of De Bruijn et al. Roughly speaking,
we show6 that adjacent chains move closely to each other. More precisely, if two adjacent
vertices x and y belong to different chains, then x and y have the same distance from the
top of their respective chains, up to some additive constant. Moreover, the lengths of the
two chains differ by at most some additive constant, and the ith vertex in one chain, when
counting from the top, is O(1)-close to the ith vertex in the other chain (if such exists).

4We use the following notation: for a string s ∈ {0, 1}n and integers i ≤ j in [n], the string s[i,...,j] denotes
the substring sisi+1 · · · sj .

5Problem 1.8 asks for a function that takes n− 1 bits as input.
6This is somewhat implicit in our proofs, and is mentioned here mainly in order to build an intuition.

5

We now describe how to map {0, 1}n to Bn based on the partition of De Bruijn et al. Con-
sider a chain ck, ck+1, . . . , cn−k. Our mapping will “squeeze” the vertices to the top half of
the cube while exploiting the extra dimension. In particular, every vertex will climb up its
chain half the distance it has from the top, and then, the collision between two vertices is
resolved by setting the extra last bit to 1 for the first vertex and to 0 for the second vertex.
More precisely, the vertex cn−k, which is at the top of its chain, is mapped to cn−k ◦ 1, while
cn−k−1 is mapped to cn−k ◦ 0. The third vertex from the top cn−k−2 is mapped to cn−k−1 ◦ 1
while cn−k−3 is mapped to cn−k−1 ◦ 0 and so on. The vertex ck at the bottom of the chain is
mapped to cn/2 ◦ 1, which is indeed in Bn.

Consider now two adjacent vertices x, y in {0, 1}n. By the above, these vertices reside in
“close” chains with roughly the same length and have roughly the same distance from the
top of their respective chains. Thus, in the climbing process, both x and y will be mapped
to vertices that have roughly the same distance from the top of their respective chains, and
hence, from the discussion above, their images will be O(1)-close.

2 Proof of the Main Theorem

In this section we prove the main theorem. In Section 2.1 we describe the De Bruijn-
Tengbergen-Kruyswijk partition. In Section 2.2 we define the mapping ψ and prove basic
facts about it. In Section 2.3 we give the proof for Theorem 1, omitting some technical
details that can be found in Section 2.4.

2.1 The De Bruijn-Tengbergen-Kruyswijk Partition

Definition 2.1. Let n be an even integer. A symmetric chain in {0, 1}n is a sequence
of vertices C = {ck, ck+1, . . . , cn−k} such that |ci| = i for i = k, k + 1, . . . , n − k, and
distance(ci, ci+1) = 1 for i = k, k + 1, . . . , n − k − 1. We say that a symmetric chain is
monotone if it satisfies the following property: if ci−1 and ci differ in the jth coordinate, and
ci and ci+1 differ in the (j′)th coordinate, then j < j′.

We shall represent a monotone symmetric chain as follows. Let y ∈ {0, 1,t}n be such that
m = |{i : yi = t}| satisfies m ≡ n (mod 2), and let k = (n−m)/2. The monotone symmetric
chain Cy = {ck, ck+1, . . . , cn−k} is specified by y as follows. For i = k, k + 1, . . . , n − k, the
string ci is obtained by replacing the m − (i − k) leftmost symbols t of y by 0 and the
remaining i− k symbols t by 1. Note that Cy is indeed a monotone symmetric chain.

De Bruijn, Tengbergen, and Kruyswijk [BvETK51] suggested a recursive algorithm that
partitions {0, 1}n to monotone symmetric chains. We will follow the presentation of the
algorithm described in [vLW01] (see Problem 6E in Chapter 6). The algorithm gets as input
a string x ∈ {0, 1}n, and computes a string y ∈ {0, 1,t}n which encodes the monotone
symmetric chain Cy that contains x.

The algorithm is iterative. During the running of the algorithm, every coordinate of x is
either marked or unmarked, where we denote a marked 0 by 0̂ and a marked 1 by 1̂. In each
step, the algorithm chooses a consecutive pair 10, marks it by 1̂0̂, temporarily deletes it, and

6

1̂0̂00

1̂0̂01

1̂0̂11

01̂0̂0

01̂0̂1

11̂0̂1

001̂0̂

011̂0̂

111̂0̂

0000

0001

0011

0111

1111

1̂0̂1̂0̂1̂1̂0̂0̂

Figure 1: The De Bruijn-Tengbergen-Kruyswijk Partition for n = 4.

repeats the process. The algorithm halts once there is no such pair, that is the remaining
string is of the form 00 . . . 01 . . . 11. We call this stage of the algorithm the marking stage,
and denote the marked string by mark(x) ∈ {0, 1, 0̂, 1̂}n. The string y is then defined as
follows: if the ith bit of x was marked then yi = xi. Otherwise, yi = t.

For example, consider the string x = 01100110. At the first iteration, the algorithm may
mark the third and fourth bits to obtain 011̂0̂0110. Then, the second and fifth bits are marked
01̂1̂0̂0̂110. Lastly, the rightmost two bits are marked, and we obtain the marked string
mark(x) = 01̂1̂0̂0̂11̂0̂. Hence y = t1100 t 10 and Cy = {01100010, 01100110, 111100110}.

Readily, the algorithm induces a partition of {0, 1}n to monotone symmetric chains. We
stress that although the algorithm has some degree of freedom when choosing a 10 pair out
of, possibly, many pairs in a given iteration, the output of the algorithm, y, is independent
of the specific choices that were made. That is, y is a function of x, and does not depend
on the specific order in which the algorithm performs the marking. This assertion can be
proven easily by induction on n. As a consequence, we may choose the ordering of the 10
pairs as we wish. We will use this fact in the proof of Theorem 1.

2.2 The Bijection ψ

We define the mapping ψ as follows. Let n ∈ N be an even integer. For an input x ∈ {0, 1}n,
let C = {ck, ck+1, . . . , cn−k} be the symmetric chain from the partition of De Bruijn et al.,
that contains x. Let j be the index such that x = cj. Define

ψ(x)
def
=

{
c (n−k)+j

2

◦ 1 j ≡ (n− k) (mod 2);

c (n−k)+j+1
2

◦ 0 j 6≡ (n− k) (mod 2).
(3)

7

Claim 2.2. The mapping ψ is a bijection from {0, 1}n to Bn.

Proof. We first show that the range of ψ is Bn. Consider x ∈ {0, 1}n and let C =
{ck, ck+1, . . . , cn−k} be the symmetric chain that contains x. Suppose that x = cj for some
k ≤ j ≤ n− k. If j ≡ (n− k) (mod 2), then using the fact that j ≥ k,

|ψ(x)| =
∣∣∣cn−k+j

2
◦ 1
∣∣∣ =

n− k + j

2
+ 1 >

n

2
.

Otherwise, j 6≡ (n − k) (mod 2). Since n is even, it follows that j 6≡ k (mod 2), and thus
j ≥ k + 1. Hence,

|ψ(x)| =
∣∣∣cn−k+j+1

2
◦ 0
∣∣∣ > n

2
.

In both cases ψ(x) ∈ Bn.
We conclude the proof by describing the inverse mapping ψ−1 : Bn → {0, 1}n. For z ∈

Bn, write z = x ◦ zn+1, where x ∈ {0, 1}n and zn+1 is the (n + 1)st bit of z. Let C =
{ck, ck+1, . . . , cn−k} be the symmetric chain that contains x, and let j be the index such that
x = cj (note that j ≥ n/2). Then,

ψ−1(z) =

{
c2j−(n−k) if zn+1 = 1;

c2j−(n−k)−1 if zn+1 = 0.
(4)

It is straightforward to verify that this is indeed the inverse mapping of ψ.

In order to understand the mapping ψ better, consider x ∈ {0, 1}n and let y ∈ {0, 1,t}n
be the encoding of the chain that contains x. Note that if 1 ≤ i1 < i2 < · · · < it ≤ n
are the coordinates in which y contains t, then there exists some 0 ≤ ` ≤ t such that
xi1 = · · · = xi` = 0 and xi`+1

= · · · = xit = 1. That is, x is located at the (` + 1)st position
of the chain Cy, when counting from the top. The function ψ outputs the vertex located at
the (b`/2c+ 1)st position in the chain, concatenated with 1 or 0, depending on the parity of
`. In other words, we obtain ψ(x) by keeping intact all the bits of x in the coordinates other
than ib`/2c+1, . . . , i`, and by setting ψ(x)ib`/2c+1

= · · · = ψ(x)i` = 1. Then, we append 1 to
the obtained string if ` is even, and append 0 otherwise.

For example, let us consider the Boolean cube {0, 1}4, whose partition is presented in
Figure 1, and write explicitly where each vertex in the chain of length 5 is mapped under ψ.

ψ(1111) = 1111 ◦ 1,

ψ(0111) = 1111 ◦ 0,

ψ(0011) = 0111 ◦ 1,

ψ(0001) = 0111 ◦ 0,

ψ(0000) = 0011 ◦ 1,

where we write the concatenation mark ◦ only for the sake readability.

The following claim is immediate from the definition of ψ.

8

Claim 2.3. Fix a string x ∈ {0, 1}n. Let M ⊆ [n] be the set of marked coordinates in
mark(x). Then,

• For every i ∈M it holds that ψ(x)i = xi.

• For every j ∈ [n] \M , the jth coordinate of ψ(x) does not depend on any of the bits
{xi}i∈M .

We are now ready to prove Theorem 1.

2.3 Proof of Theorem 1

Proof of Theorem 1. We first show that maxStretch(ψ) ≤ 4. Fix an edge in {0, 1}n, that is,
take x ∈ {0, 1}n and i ∈ [n] such that xi = 0. Our goal is to show that distance(ψ(x), ψ(x+
ei)) ≤ 4. Let y, y′ ∈ {0, 1,t}n be the encodings of the chains Cy, Cy′ that contain x, x +
ei respectively. As mentioned in Section 2.1, the output of the algorithm on input x is
independent of the order in which the algorithm marks the 10 pairs. Therefore, given an
input x, we may perform the marking stage in three steps:

1. Perform the marking stage on the prefix of x of length i− 1.

2. Perform the marking stage on the suffix of x of length n− i.

3. Perform the marking stage on the resulting, partially marked, string.

Since x and x + ei agree on all but the ith coordinate, the running of the marking stage in
steps 1 and 2 yield the same marking. That is, prior to the third step, the strings x and
x+ ei have the same bits marked. Denote by s ∈ {0, 1, 0̂, 1̂}i−1 and t ∈ {0, 1, 0̂, 1̂}n−i the two
partially marked strings such that the resulted strings after the second step on inputs x and
x+ ei are s ◦ 0 ◦ t and s ◦ 1 ◦ t respectively. Let us suppose for concreteness that the string s
contains a unmarked zeros and b unmarked ones, and the string t contains c unmarked zeros
and d unmarked ones. Recall that at the end of the marking stage, all unmarked zeros are
to the left of all unmarked ones in both s and t.

By Claim 2.3, the only coordinates that may contribute to distance(ψ(x), ψ(x + ei)) are
the unmarked coordinates prior to the third step, and so

distance(ψ(x), ψ(x+ ei)) = distance(ψ(0a1b ◦ 0 ◦ 0c1d), ψ(0a1b ◦ 1 ◦ 0c1d)).7

Therefore, it is enough to bound from above the right hand side by 4. At this point, it is
fairly easy to be convinced that the right hand side is bounded by some constant. Proving
that the constant is 4 is done by a somewhat tedious case analysis, according to the relations
between a, b, c and d. We defer the proof of the following claim to Section 2.4.

7Note that ψ on the right hand side is applied to inputs of length not necessarily n. However, for the
sake of readability, we do not indicate the input length when applying ψ. In other words, ψ is a shorthand
for a family of functions {ψn}n∈N.

9

Claim 2.4. For every a, b, c, d ∈ N, we have

distance(ψ(0a1b ◦ 0 ◦ 0c1d), ψ(0a1b ◦ 1 ◦ 0c1d)) ≤ 4.

This completes the proof for maxStretch(ψ) ≤ 4.

We now prove that maxStretch(ψ−1) ≤ 5, where we use the description of ψ−1 given in
Equation (4). In order to bound maxStretch(ψ−1), let us fix an edge in Bn, that is, take
z ∈ Bn and i ∈ [n+ 1] such that zi = 0 and show that distance(ψ−1(z), ψ−1(z + ei)) ≤ 5. By
the proof of Claim 2.2, if i = n + 1 then ψ−1(z) and ψ−1(z + ei) are consecutive vertices in
some monotone symmetric chain, and thus distance(ψ−1(z), ψ−1(z + ei)) = 1.

Therefore, we shall assume henceforth that i 6= n + 1. Let z = x ◦ zn+1 and z +
ei = (x + ei) ◦ zn+1 for some x ∈ {0, 1}n and zn+1 ∈ {0, 1}. Let y, y′ ∈ {0, 1,t}n be
the encodings of the chains Cy, Cy′ that contain x, x+ ei respectively. Similarly to the proof
for maxStretch(ψ) ≤ 4, we perform the marking stage by first performing the marking stage
on the prefix of x of length i − 1, then perform the marking stage on the suffix of x of
length n− i, and finally, perform the marking stage on the resulting, partially marked string.
Denote by s ∈ {0, 1, 0̂, 1̂}i−1 and t ∈ {0, 1, 0̂, 1̂}n−i the two partially marked strings such that
the resulted strings after the second step on inputs x and x + ei are s ◦ 0 ◦ t and s ◦ 1 ◦ t
respectively. Suppose again for concreteness that the string s contains a unmarked zeros and
b unmarked ones, and the string t contains c unmarked zeros and d unmarked ones.

By Claim 2.3, the only coordinates that may contribute to distance(ψ−1(z), ψ−1(z + ei))
are the unmarked coordinates in s and t, and so

distance(ψ−1(z), ψ−1(z+ ei)) = distance(ψ−1(0a1b ◦0◦0c1d ◦ zn+1), ψ
−1(0a1b ◦1◦0c1d ◦ zn+1)).

Therefore, it is enough to upper bound the right hand side by 5. We first note that a+c+1 ≤
b+ d. To see this recall that |z| > n/2 and 0a1b ◦ 0 ◦ 0c1d was obtain from x = z1 . . . zn (that
is, z without its last bit zn+1) by deleting the same number of zeros and ones.

Claim 2.5. For every a, b, c, d ∈ N such that a+ c+ 1 ≤ b+ d, and for every zn+1 ∈ {0, 1}
it holds that

distance(ψ−1(0a1b ◦ 0 ◦ 0c1d ◦ zn+1), ψ
−1(0a1b ◦ 1 ◦ 0c1d ◦ zn+1)) ≤ 5.

Therefore, by Claim 2.5 we have maxStretch(ψ−1) ≤ 5. This completes the proof of Theo-
rem 1.

2.4 Proof of Missing Claims

We now return to the proofs of Claim 2.4 and Claim 2.5.

Proof of Claim 2.4. Let w = 0a1b ◦0◦0c1d and w′ = 0a1b ◦1◦0c1d. We prove the claim using
the following case analysis. It will be convenient to introduce the function even : N→ {0, 1}
defined as even(n) = 1 if n is even, and even(n) = 0 otherwise.

10

Case 1 (b = c). In this case we have w = 0a ◦ 1b0b ◦ 01d and w′ = 0a1◦ 1b0b ◦ 1d. After the
marking stage we get mark(w) = 0a ◦ 1̂b0̂b ◦ 01d and mark(w′) = 0a1 ◦ 1̂b0̂b ◦ 1d. Therefore,

ψ(w) = 0b
a+1
2
c1a−ba+1

2
c ◦ 1b0b ◦ 1d+1 ◦ even(a+ 1)

and
ψ(w′) = 0b

a
2
c1d

a
2
e+1 ◦ 1b0b ◦ 1d ◦ even(a).

By inspection, one can now easily verify that distance(ψ(w), ψ(w′)) ≤ 4 in this case.

Case 2 (b > c). In this case we have w = 0a ◦ 1b−c−1 ◦ 1c+10c+1 ◦ 1d and w′ = 0a ◦
1b−c+1 ◦ 1c0c ◦ 1d. After the marking stage we get mark(w) = 0a1b−c−1 ◦ 1̂c+10̂c+1 ◦ 1d and
mark(w′) = 0a1b−c+1 ◦ 1̂c0̂c ◦ 1d. Therefore,

ψ(w) = 0b
a
2
c1d

a
2
e+b−c−1 ◦ 1c+10c+1 ◦ 1d ◦ even(a)

and
ψ(w′) = 0b

a
2
c1d

a
2
e+b−c+1 ◦ 1c0c ◦ 1d ◦ even(a).

Therefore, in this case, distance(ψ(w), ψ(w′)) ≤ 1.

Case 3 (b < c and a ≥ c− b). In this case we have w = 0a ◦ 1b0b ◦ 0c−b+1 ◦ 1d and
w′ = 0a◦1b+11b+1◦0c−b−1◦1d. After the marking stage we get mark(w) = 0a◦1̂b0̂b◦0c−b+11d and
mark(w′) = 0a ◦ 1̂b+10̂b+1 ◦0c−b−11d. By the assumption that a ≥ c−b we have a ≥ ba+c−b+1

2
c,

and so
ψ(w) = 0b

a+c−b+1
2

c1a−ba+c−b+1
2

c ◦ 1b0b ◦ 1d+c−b+1 ◦ even(a+ c− b+ 1)

and
ψ(w′) = 0b

a+c−b−1
2

c1a−ba+c−b−1
2

c ◦ 1b+10b+1 ◦ 1d+c−b−1 ◦ even(a+ c− b− 1).

Therefore, by inspection we have distance(ψ(w), ψ(w′)) ≤ 4 for this case.

Case 4 (b < c and a < c− b). Just like in the previous case, we have mark(w) =
0a ◦ 1̂b0̂b ◦0c−b+11d and mark(w′) = 0a ◦ 1̂b+10̂b+1 ◦0c−b−11d. By the assumption that a < c− b,
we have a ≤ ba+c−b−1

2
c, and so

ψ(w) = 0a ◦ 1b0b ◦ 0b
a+c−b+1

2
c−a1c−b+1+d−ba+c−b+1

2
c+a ◦ even(a+ c− b+ 1)

and

ψ(w′) = 0a ◦ 1b+10b+1 ◦ 0b
a+c−b−1

2
c−a1c−b−1+d−ba+c−b−1

2
c+a ◦ even(a+ c− b− 1).

Therefore, in this case, distance(ψ(w), ψ(w′)) ≤ 2.
This completes the proof of Claim 2.4.

We now turn to the proof of Claim 2.5.

Proof of Claim 2.5. Let w = 0a1b ◦ 0 ◦ 0c1d and w′ = 0a1b ◦ 1 ◦ 0c1d. Our goal is to show
that distance(ψ−1(w ◦zn+1), ψ

−1(w′ ◦zn+1)) ≤ 5. Let us suppose for simplicity that zn+1 = 1.
The case zn+1 = 0 is handled similarly, and the same bound is achieved. We prove the claim
using the following case analysis.

11

Case 1 (b = c). In this case we have w = 0a ◦ 1b0b ◦ 01d and w′ = 0a1 ◦ 1b0b ◦ 1d. After
the marking stage we get mark(w) = 0a ◦ 1̂b0̂b ◦ 01d and mark(w′) = 0a1 ◦ 1̂b0̂b ◦ 1d. The
assumption a+ c+ 1 ≤ b+ d implies that in this case we have d− a− 1 ≥ 0. Therefore,

ψ−1(w ◦ 1) = 0a ◦ 1b0b ◦ 0a+21d−a−1

and
ψ−1(w′ ◦ 1) = 0a+1 ◦ 1b0b ◦ 0a−11d−a+1.

Therefore, distance(ψ−1(w ◦ 1), ψ−1(w′ ◦ 1)) ≤ 4.

Case 2 (b < c). In this case we have w = 0a◦1b0b◦0c−b+11d and w′ = 0a◦1b+10b+1◦0c−b−11d.
After the marking stage we get mark(w) = 0a ◦ 1̂b0̂b ◦ 0c−b+11d and mark(w′) = 0a ◦ 1̂b+10̂b+1 ◦
0c−b−11d. Therefore,

ψ−1(w ◦ 1) = 0a ◦ 1b0b ◦ 0a+2(c−b+1)1d−(a+c−b+1)

and
ψ−1(w′ ◦ 1) = 0a ◦ 1b+10b+1 ◦ 0a+2(c−b−1)1d−(a+c−b−1).

Therefore, distance(ψ−1(w ◦ 1), ψ−1(w′ ◦ 1)) ≤ 3.

Case 3 (b > c). In this case, w = 0a1b−c−1◦1c+10c+1◦1d and w′ = 0a1b−c+1◦1c0c◦1d. After
the marking stage we get mark(w) = 0a1b−c−1◦1̂c+10̂c+1◦1d and mark(w′) = 0a1b−c+1◦1̂c0̂c◦1d.

Subcase 3.1 (a < b− c)

ψ−1(w ◦ 1) = 02a1b−c−a−1 ◦ 1c+10c+1 ◦ 1d

and
ψ−1(w′ ◦ 1) = 02a1b−c−a+1 ◦ 1c0c ◦ 1d.

Thus, distance(ψ−1(w ◦ 1), ψ−1(w′ ◦ 1)) ≤ 1.

Subcase 3.2 (a = b− c)

ψ−1(w ◦ 1) = 02a−1 ◦ 1c+10c+1 ◦ 01d−1

and
ψ−1(w′ ◦ 1) = 02a1 ◦ 1c0c ◦ 1d.

Therefore, in this case, distance(ψ−1(w ◦ 1), ψ−1(w′ ◦ 1)) ≤ 3.

12

Subcase 3.3 (a > b− c)

ψ−1(w ◦ 1) = 0a+b−c−1 ◦ 1c+10c+1 ◦ 0a−b+c+11d−(a−b+c+1)

and
ψ−1(w′ ◦ 1) = 0a+b−c+1 ◦ 1c0c ◦ 0a−b+c−11d−(a−b+c−1).

Thus, distance(ψ−1(w ◦ 1), ψ−1(w′ ◦ 1)) ≤ 5.
This completes the proof of Claim 2.5.

3 The Mapping ψ is Computable in DLOGTIME-uniform

TC0

In this section we analyze the complexity of the bijection ψ described in the proof of Theo-
rem 1. We first claim that each output bit of ψ (and of ψ−1) can be computed in DLOGTIME-
uniform TC0. In Proposition 3.1 and in the remark following it, we show that indeed TC0

is the “correct” class for ψ.

Proposition 1.5 (restated). The bijections ψ and ψ−1 are computable in DLOGTIME-
uniform TC0.

We prove the proposition only for ψ. The proof for ψ−1 is very similar, and we omit it.

Proof. We divide the proof into two steps. First we show that the marking stage can be
implemented in TC0. Then, given the marking of an input, we show how to compute ψ in
TC0. Both steps can be easily seen to be DLOGTIME-uniform.

Throughout the proof, the output of the marking stage is represented by two bits for each
coordinate, encoding a symbol in {0, 1, 0̂, 1̂}, where one bit represents the Boolean symbol,
and the other indicates whether the coordinate is marked or not.

Implementing the marking stage. Let x ∈ {0, 1}n. In order to implement the marking
stage in TC0, we observe that the ith coordinate in x is marked if and only if there are
coordinates si ≤ i ≤ ei such that

1. The number of ones in x[si,...,ei] is equal to the number of zeros in x[si,,...,ei].

2. For every k ∈ {si, , . . . , ei}, the number of ones in the prefix x[si,...,k] is greater or equal
to the number of zeros in x[si,...,k].

Fix i ∈ [n] and fix si, ei ∈ [n] such that si ≤ i ≤ ei. Thinking of the bit 1 as ’(’ and 0
as ’)’, the above two conditions are equivalent to checking whether the string x[si,...,ei] of
parentheses is balanced, or in other words, deciding whether x[si,...,ei] is in Dyck language. It
is well-known that Dyck language can be recognized in TC0 [Lyn77]. In fact, it is not hard
to show that deciding whether a string of length m is in Dyck language can be carried out
by a DLOGTIME-uniform TC0 circuit with size O(m).

13

Now, for each i ∈ [n], we go over all choices for si, ei in parallel, and take the OR of the
O(n2) results. Thus, for each i ∈ [n], there is a DLOGTIME-uniform TC0 circuit with size
O(n3) that decides whether the ith coordinate is marked or not.

Computing ψ(x) from mark(x): In order to compute ψ(x), let mark(x) ∈ {0, 1, 0̂, 1̂}n be
the marking of x. Since every marked coordinate will remain unchanged, we need to consider
only of the unmarked coordinates. Recall also that the unmarked bits form a sequence of
zeros followed by a sequence of ones. That is, if we ignore the marked coordinates, then
we get a string of the form 0a1b for some a = a(x), b = b(x), and the output should be
0b

a
2
c1d

a
2
e+b ◦ even(a) (recall that even(a) = 1 if a is even, and even(a) = 0 otherwise). This

can be implemented as follows.

1. Let a be the number of unmarked zeros in mark(x).

2. For each i ∈ [n], let ui = ui(x) be the number of unmarked coordinates among
{1, . . . , i}.

3. For all unmarked coordinates i ∈ [n], if 2ui < a, then set the ith bit of the output to
0. Otherwise, set the ith bit to 1.

4. Set the (n+ 1)st bit of the output to even(a).

It is easy to verify that given mark(x), checking whether the inequality 2ui < a holds can be
done in TC0, and so the entire second step can be carried out by a TC0 circuit.

We remark that the bijection ψ cannot be computed in AC0. For example, we prove that
the first output bit of ψ cannot be computed in AC0.

Proposition 3.1. The function majority is NC0-reducible to ψ1, i.e., majority ≤NC0 ψ1. In
particular ψ1 /∈ AC0.

Proof. We first note that ψ1(x) = 0 if and only if x1 = 0 and mark(x) contains at least two
unmarked zeros. For odd n, we construct a reduction r : {0, 1}n → {0, 1}3n+1 that for input
x ∈ {0, 1}n outputs a string r(x) ∈ {0, 1}3n+1 as follows. Let x′ ∈ {0, 1}2n be the string
obtained from x by replacing each 0 of x with 10, and by replacing each 1 of x with 00.
Define r(x) = 0 ◦ 1n ◦ x′. For example, if x = 01101, then x′ = 10 ◦ 00 ◦ 00 ◦ 10 ◦ 00, and
r(x) = 0 ◦ 15 ◦ 10 ◦ 00 ◦ 00 ◦ 10 ◦ 00. By the definition of r, it is clear that each bit of r(x)
depends on at most one bit of x. It is straightforward to check that majority(x) = ψ1(r(x)),
and the assertion, then, follows.

Remark 3.2. Note that the reduction above also gives majority ≤NC0 ψn+1. A similar proof
also shows that majority ≤NC0 ψi for all i ∈ [n+ 1].

4 All But the Last Output Bit Depend Essentially on

a Single Input Bit

In this section we prove Proposition 1.4. We recall it here for convenience.

14

Proposition 1.4 (restated). For all i ∈ [n] it holds that

Pr
x

[ψi(x) = xi] > 1−O(1/
√
n).

Before proving the proposition, we need to further study the structure of the De Bruijn-
Tengbergen-Kruyswijk partition described in Section 2.1. We start with the following claim.

Claim 4.1. Let n be an integer, and let P be a partition of {0, 1}n into symmetric chains.
For every 1 ≤ t ≤ n+ 1, let Mt be the number of symmetric chains of length t in P. Then,

Mt =

{ (
n

n−t+1
2

)
−
(

n
n−t−1

2

)
t 6≡ n (mod 2);

0 otherwise.

Proof. Note first that if C = {ck, ck+1, . . . , cn−k} is a symmetric chain, then its length is
n− 2k + 1. In particular, this implies that there are no symmetric chains of length t where
t ≡ n (mod 2), and hence Mt = 0 for such t.

Next, we prove the claim for t 6≡ n (mod 2). This is done by backward induction on t.
For t = n+ 1 we clearly have a unique symmetric chain starting at 0n and ending at 1n, and
hence Mn+1 = 1, as claimed.

Before actually doing the induction step, let us consider the next case, namely, t = n−1.
Note that only one of the vertices of Hamming weight 1 is contained in the unique chain
of length n + 1, and so, since distinct vertices with equal weight are contained in distinct
symmetric chains, there are n−1 chains with bottom vertex of Hamming weight 1. Therefore
Mn−1 = n− 1, as claimed.

For the general induction step, suppose that the claim holds for all t′ larger than t. We
prove the assertion for t 6≡ n (mod 2). Every symmetric chain of length t must be of the
form C = {ck, ck+1, . . . , cn−k}, where k = n−t+1

2
. Since the chains of length greater than t

are disjoint, and each contains a vertex with Hamming weight k, it follows that the number
of vertices with Hamming weight k that are contained in chains of length greater than t is∑

t′>tMt′ =
(

n
k−1

)
. The remaining

(
n
k

)
−
(

n
k−1

)
vertices must be contained in chains of length

t, and so, since distinct vertices of Hamming weight k are contained in distinct symmetric
chains, it follows that there are

(
n
k

)
−
(

n
k−1

)
chains of length t.

The following corollary is immediate from the observation that any x ∈ {0, 1}n such that
mark(x) contains exactly a unmarked zeros and b unmarked ones is contained in a unique
chain of length a+ b+ 1 in the De Bruijn-Tengbergen-Kruyswijk partition.

Corollary 4.2. Let n, a, b ∈ N such that a+ b ≡ n (mod 2), and a+ b ≤ n. Then,

1. The number of x ∈ {0, 1}n such that mark(x) contains exactly a unmarked zeros and b
unmarked ones is

(
n

n−a−b
2

)
−
(

n
n−a−b−2

2

)
.

2. The number of x ∈ {0, 1}n such that mark(x) contains exactly a unmarked zeros (and
any number of unmarked ones) is

(
n

bn−a
2
c

)
.

15

We are now ready to prove Proposition 1.4.

Proof of Proposition 1.4. Let x ∈ {0, 1}n, and let mark(x) be its marking. Suppose that the
unmarked coordinates in mark(x) are i1 < i2 < · · · < it, and let 0 ≤ ` ≤ t be such that
xi1 = · · · = xi` = 0 and xi`+1

= · · · = xit = 1. Note that ψi(x) 6= xi if and only if the ith

coordinate is unmarked in mark(x) and i = ij for some j ∈ {b `
2
c+ 1, . . . , `}.

As in the proof of Theorem 1, it will be convenient to perform the following partial
marking of x. Let us first perform the marking stage on the prefix of x of length i − 1,
and denote the resulting string by s ∈ {0, 1, 0̂, 1̂}i−1. Then, perform the marking stage on
the suffix of x of length n − i and denote the result string by t ∈ {0, 1, 0̂, 1̂}n−i. Suppose
for concreteness that the string s contains a unmarked zeros and b unmarked ones, and the
string t contains c unmarked zeros and d unmarked ones. By the definition of ψ we have
ψi(x) 6= xi if and only if xi = 0, b = 0 and a ≥ c. Therefore, since each bit of x is chosen
independently, the resulting partially marked strings s, t and the bit xi are also independent,
and so

Pr[ψi(x) 6= xi] = Pr[xi = 0] ·Pr[b = 0, a ≥ c] =
1

2
·
n−i∑
k=0

i∑
j=k

Pr[a = j, b = 0] Pr[c = k].

By Corollary 4.2, for j 6≡ i (mod 2) we have

Pr[a = j, b = 0] =
1

2i−1 ·
((

i− 1
i−j−1

2

)
−
(
i− 1
i−j−3

2

))
,

and

Pr[c = k] =
1

2n−i ·
(

n− i
bn−i−k

2
c

)
.

Therefore, for every k ≤ i we have

i∑
j=k

Pr[a = j, b = 0] =
1

2i−1 ·
∑
k≤j≤i

j 6≡i (mod 2)

((
i− 1
i−j−1

2

)
−
(
i− 1
i−j−3

2

))
=

1

2i−1 ·
(

i− 1

b i−k−1
2
c

)
,

and so

Pr[ψi(x) 6= xi] ≤
1

2n+1
·
min(i,n−i)∑

k=0

(
n− i
bn−i−k

2
c

)(
i− 1

b i−k−1
2
c

)
.

Let us assume that i ≥ n/2 (the case of i < n/2 is handled similarly). Then, using the fact
that

(
i−1

b i−k−1
2
c

)
≤ O(2i/

√
i) for all k, we have

Pr[ψi(x) 6= xi] = O

(
1√
i

)
· 1

2n−i ·
n−i∑
k=0

(
n− i
bn−i−k

2
c

)
.

16

By the identity
n−i∑
k=0

(
n− i
bn−i−k

2
c

)
=

n−i∑
j=0

(
n− i
j

)
= 2n−i,

we get Pr[ψi(x) 6= xi] = O(1/
√
i), and so, since we assumed that i ≥ n/2 we get that

Pr[ψi(x) 6= xi] = O(1/
√
n), as required.

5 Concluding Remarks and Open Problems

Bi-Lipschitz bijection between balanced halfspaces.

Let a0, . . . , an ∈ R. The halfspace determined by the ai’s is the set of all points (x1, . . . , xn) ∈
{−1, 1}n such that a0 + a1x1 + · · · + anxn ≥ 0.8 A balanced halfspace is a halfspace with
a0 = 0. The Boolean cube {−1, 1}n embedded in the natural way in {−1, 1}n+1 and the
Hamming ball {x ∈ {−1, 1}n+1 : x1+· · ·+xn+1 ≥ 0} are two examples of balanced halfspaces.
We showed a bi-Lipschitz bijection between them. It is therefore natural to ask the following
question.

Problem 5.1. Is there a bi-Lipschitz bijection between any two balanced halfspaces? Or
even a bijection with constant average stretch from the Boolean cube {−1, 1}n to any balanced
halfspace in {−1, 1}n+1?

In functions terminology, the Boolean cube {−1, 1}n embedded in {−1, 1}n+1 is indicated
by the dictator function, while the Hamming ball is indicated by the majority function.
Problem 5.1 refers more generally to linear threshold functions. One attempt at solving
Problem 5.1 positively, would be to generalize the partition of De Bruijn et al. to general
halfspaces.

Besides being a natural problem, a positive solution to Problem 5.1 may have implica-
tions to fully polynomial approximation scheme for counting solutions of the 0-1 knapsack
problem [MS04].

Another interesting problem, inspired by Corollary 1.3, is the following.

Problem 5.2. Is it true that any halfspace is bi-Lipschitz transitive?

Bi-Lipschitz bijection of the hypercube mapping the half cube to the Hamming
ball

The following problem has been suggested to us by Daniel Varga. It asks whether the
bijection given in Theorem 1 can be strengthened in the following way.

Problem 5.3. Let n be even. Is there a bi-Lipschitz bijection f : {0, 1}n+1 → {0, 1}n+1 that
maps the half cube to the Hamming ball? That is, for all x ∈ {0, 1}n+1 such that x1 = 1 the
bijection satisfies f(x) ∈ Bn.

8The {−1, 1}n representation of the Boolean cube is more natural in the context of halfspaces.

17

Tightness of the stretch from the Boolean cube to the Hamming ball.

One may ask whether the constants 4 and 5 in Theorem 1 are tight. By a slight variation
on the proof of Theorem 1, we can show that there exists a bijection φ : {0, 1}n → Bn with
maxStretch(φ) ≤ 3, improving on Theorem 1 in this respect. However, the maximum stretch
of φ−1 is unbounded.

Theorem 2. For all even integers n, define the bijection φ : {0, 1}n → Bn as follows. Let
x ∈ {0, 1}n, and let C = {ck, ck+1, . . . , cn−k} be the symmetric chain from the partition of
De Bruijn et al., that contains x. Let j be the index such that x = cj. Define,

φ(x)
def
=

{
cn−j ◦ 1 j ≤ n/2;

cj ◦ 0 otherwise.

Then, maxStretch(φ) = 3 and avgStretch(φ−1) = 2 + o(1).

The proof of Theorem 2 is similar to the proof of Theorem 1, and thus we omit it. One can
easily see that any bijection f : {0, 1}n → Bn has maximum stretch at least 2. Indeed, let
y = f(x) ∈ Bn be a point with Hamming weight n/2 + 1. Then y has only n/2 neighbors in
Bn, which cannot accommodate all n neighbors of x ∈ {0, 1}n. We do not know whether the
stretch 3 of φ in Theorem 2 is tight or not, and leave it as an open problem. What is the
smallest possible stretch of a bijection from Bn to {0, 1}n? Are the constants 4 and 5 optimal
if one considers only bi-Lipschitz bijections? Is the constant 20 in Corollary 1.3 optimal?

Lower bounds on average and maximum stretch

Problem 5.4. Exhibit an explicit subset A ⊂ {0, 1}n+1 of density 1/2 such that any bijection
f : {0, 1}n → A has avgStretch(f) = ω(1), or prove that no such subset exists.

As a concrete candidate, we suggest to consider sets A = {x : f(x) = 1}, where f is a
monotone noise-sensitive function (e.g., Tribes9 or Recursive-Majority-of-Three). A sufficiently
strong positive answer to this question would imply a lower bound for sampling the uniform
distribution on A by low-level complexity classes.

Bijections from the Gale-Shapley algorithm for the stable marriage problem

Let A,B be two subsets of {0, 1}n+1 with density 1/2. Consider the Gale-Shapley algorithm
for the stable marriage problem, where each vertex v ∈ A ranks all the vertices in B according
to their distance to v (breaking ties according some rule). What can be said about the
average stretch of the bijection obtained from this algorithm? Two interesting settings are (1)
A = {0, 1}n, B = Bn and (2) A,B are random subsets of {0, 1}n of density 1/2. For related
work in this direction see Holroyd [Hol11]. Another natural bijection to consider, suggested
to us by Avishay Tal, is the one induced by the Hungarian method for the assignment
problem [Kuh55].

9We note that Tribes has density close to 1/2.

18

Acknowledgement

We thank Li-Yang Tan for introducing us Problem 1.1, and for helpful discussions. We thank
Ehud Friedgut for suggesting to use the De Bruijn–Tengbergen–Kruyswijk partition, which
turned out to be the key step in the proof of Theorem 1. We also thank Emanuele Viola
for referring us to [Vio11]. Itai Benjamini would also like to thank Microsoft Research New
England, where this research was started.

References

[AB07] O. Angel and I. Benjamini. A phase transition for the metric distortion of
percolation on the hypercube. Combinatorica, 27(6):645–658, 2007.

[Aus13] T. Austin. On the failure of concentration for the `∞-ball. 2013.
http://arxiv.org/abs/1309.3315.

[Bop97] R. Boppana. The average sensitivity of bounded-depth circuits. Information
Processing Letters, 63(5):257–261, 1997.

[BvETK51] N. G. De Bruijn, C. van Ebbenhorst Tengbergen, and D. Kruyswijk. On the set
of divisors of a number. Nieuw Arch. Wiskunde (2), 23:191–193, 1951.

[Fri98] E. Friedgut. Boolean functions with low average sensitivity depend on few
coordinates. Combinatorica, 18(1):27–35, 1998.

[Gra88] R. L. Graham. Isometric embeddings of graphs. Selected Topics in Graph
Theory, 3:133–150, 1988.

[Har66] L. H. Harper. Optimal numbering and isoperimetric problems on graphs. Jour-
nal of Combinatorial Theory, (1):385–393, 1966.

[Har76] S. Hart. A note on the edges of the n-cube. Discrete Mathamatics, 14(2):157–
163, 1976.

[Has86] J. Hastad. Almost optimal lower bounds for small depth circuits. In Proceedings
of the eighteenth annual ACM Symposium on Theory of Computing, pages 6–20.
ACM, 1986.

[HLN87] J. Hastad, T. Leighton, and M. Newman. Reconfiguring a hypercube in the
presence of faults. In Proceedings of the nineteenth annual ACM Symposium on
Theory of Computing, pages 274–284, 1987.

[Hol11] A. E. Holroyd. Geometric properties of poisson matchings. Probability Theory
and Related Fields, 150(3–4):511–527, 2011.

19

[Kuh55] H. W. Kuhn. The Hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[Lin02] N. Linial. Finite metric spaces - combinatorics, geometry and algorithms. In
Proceedings of the International Congress of Mathematicians III, pages 573–586,
2002.

[LV12] S. Lovett and E. Viola. Bounded-depth circuits cannot sample good codes.
Computational Complexity, 21(2):245–266, 2012.

[Lyn77] N. Lynch. Log space recognition and translation of parenthesis languages. Jour-
nal of the ACM, 24(4):583–590, 1977.

[MS04] B. Morris and A. Sinclair. Random walks on truncated cubes and sampling 0-1
knapsack solutions. SIAM Journal on Computing, 34(1):195–226, 2004.

[Vio11] E. Viola. Extractors for circuit sources. In IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 220–229. IEEE, 2011.

[Vio12] E. Viola. The complexity of distributions. SIAM Journal on Computing,
41(1):191–218, 2012.

[vLW01] J. H. van Lint and R.M. Wilson. A Course in Combinatorics. Cambridge
University Press, Cambridge, 2001.

20

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

