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Abstract. We study the complexity of detecting monomials with special properties in the sum-product
expansion of a polynomial represented by an arithmetic circuit of size polynomial in the number of input
variables and using only multiplication and addition. We focus on monomial properties expressed in
terms of the number of distinct variables occurring in a monomial. Our main result is a randomized FPT
algorithm for detection of a monomial having at least k distinct variables, parametrized by the degree
of the polynomial. Furthermore, we derive several hardness results on detection of monomials with such
properties within exact, parametrized and approximation complexity. In particular, we observe that the
detection of a monomial having at most k distinct variables is W [2]-hard for the parameter k.
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1 Introduction

Koutis initiated a group algebra approach to derivation of fully parametrized algorithms for combi-
natorial problems in [6]. He considered the k-path problem, which is to determine if a graph contains
a simple path of length at least k, and packing problems in [6]. Williams continued this approach in
[11] and improved Koutis’ parametrized upper time bound for the k-path problem to O∗(2k) (the O∗

notation suppresses polynomial in n and k factors). The aforementioned bounds have been obtained
by a fixed-parameter reduction to the detection of the so called multilinear monomial in the sum-
product expansion of a polynomial represented by arithmetic circuit of polynomial size using only
addition and multiplication. A monomial is multilinear if no variable occurs in it more than once.
Williams showed that a multilinear monomial in the sum-product expansion of the aforementioned
polynomial can be detected in O∗(2l) time, where l is the degree of the polynomial (Theorem 3.1
in [11]). In the subsequent paper [8], Koutis and Williams derived new fixed-parameter upper time
bounds for several other combinatorial problems by fixed-parameter reductions to the problem of
multilinear monomial detections. Chen et al. generalized the FPT method of Koutis and Williams
to detecting a monomial in which no variable occurs p or more times, where p is a prime num-
ber, parametrized by the degree of the polynomial [2]. An extension of the generalization to include
non-necessarily prime p was given in [3].

In this paper, we continue the topic of detecting monomials having some special property in
the sum-product expansion of a polynomial in n variables, represented by an arithmetic circuit of
size polynomial in n, using only addition and multiplication. We focus on special properties of a
monomial expressed in terms of the number of distinct variables occurring in it.

We begin with a technical lemma on decomposition of a polynomial and a monotone circuit rep-
resenting it into uniform polynomials (i.e., polynomials whose all monomials have the same degree)
and representing them monotone circuits.
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Our main result is a randomized FPT algorithm for detection of a monomial having at least k
distinct variables, parametrized by the degree of the polynomial. It relies on a slight generalization of
the group algebra method from [6, 11] given in [8]. Our algorithm runs inO∗(2k) time, where theO∗

notation suppresses polynomial in the number of input variables and the degree of the polynomial
factors. It yields also an FPT algorithm for the decision version of the max q-cover problem [5] with
subsets of size not exceeding s, with respect to the parameters q and s.

We can also provide a deterministic FPT algorithm for detection of a monomial having at most
k distinct variables, parametrized by the degree of the polynomial, provided that in the circuit repre-
senting the polynomial no multiplication gate is a descendant of a multiplication gate.

Next, we observe that detecting a monomial with at most k distinct variables is W [2]-hard with
respect to the parameter k while detecting a monomial with at least n distinct variables is W [2]-hard
with respect to the degree of the polynomial divided by n.

We also consider the problem of finding the smallest k such that the polynomial has a monomial
with at most k distinct variables as well as the problem of finding the largest k such that the poly-
nomial has a monomial with at least k distinct variables. We show that the minimization problem
cannot be approximated within O(2log1−ε n) for any ε > 0, unless NP ⊂ DTIME(npoly log(n))
while the maximization problem cannot be approximated within 1 − 1

e + ε for any ε > 0, unless
NP = P .

As a by-product, we also obtain hardness results on detection of implicants of Boolean functions
represented by monotone Boolean circuits, with at most (or, at least, respectively) k distinct variables.
We infer in particular that deciding whether or not two monotone Boolean circuits compute different
functions is NP-complete.
Organization. In the next section, we define a monotone arithmetic circuit, a monotone Boolean
circuit, and state a lemma from [8] generalizing the main results from [6, 11]. In Section 3, we present
and analyze our FPT algorithm while in Section 4, we show our hardness results.

2 Preliminaries

A monotone arithmetic circuit is a directed acyclic graph where each leaf is labeled either with a
variable or a real constant (input gates), each non-leaf vertex has fan-out two and it is labeled with
either + (addition gate) or × (multiplication gate), and a single vertex is distinguished as an output
gate. A monotone Boolean circuit is defined analogously, with ∨ labels instead of + labels, ∧ labels
instead of × labels and Boolean 0, 1 constants instead of real constants.

For a positive integer k, the set of positive integers not greater than k will be denoted by [k].
In Lemma 1 in [8], Koutis and Williams provided a slight generalization of their main results

from [6, 11]. We can rephrase the generalization in terms of our notation as follows.

Fact 1 ([8]). Let P (x1, ..., xn, z) be a polynomial represented by a monotone arithmetic circuit of
size s(n). There is a randomized algorithm that for every P runs in O∗(2kt2s(n)) time and outputs
“YES” with high probability if there is a monomial of the form ztQ(x1, ..., xn), where Q(x1, ..., xn)
is a multilinear monomial of degree at most k, in the sum-product expansion of P, and always outputs
“NO” if there is no such monomial ztQ(x1, ..., xn) in the expansion.

3 FPT algorithms

3.1 Detecting a monomial with at least k variables
In this section, we present an FPT algorithm with respect to the polynomial degree for the “at least k
distinct variables” monomial property.



Our FPT algorithm relies on Fact 1 and the following lemma on decomposition of a polynomial
and a monotone circuit into uniform polynomials ( i.e., polynomials whose all monomials have the
same degree) and representing them circuits. The lemma should be of interest in its own rights.

Lemma 1. Let C be a monotone arithmetic circuit of size s(n) representing a polynomial of max-
imum degree l. One can construct a monotone arithmetic circuit C∗ of size O(l2s(n)) such that
for each gate g in C there is a sequence of gates g0, ..., gl in C∗, where for j = 0, ..., l, the sum-
product expansion of the polynomial represented by gj consists of all monomials of degree j in the
sum-product expansion of the polynomial represented by g. The construction takes O(l2s(n)) time.

Proof. We construct the sequences of gates g0, ..., gl inC∗ corresponding to gates g inC by induction
on the height of g in C, i.e., the maximum distance of g to an input gate in C. If g is a leaf gate the
construction is trivial. Suppose that g is an addition or multiplication gate getting input from gates
f and h in C. Then, if g is an addition gate, for j = 0, ..., l, we set gj to an addition gate getting
inputs from fj and hj . Otherwise, if g is a multiplication gate then for j = 0, ..., l, we insert for
s = 0, ..., j, intermediate multiplication gates gj,s computing the products of fs with hj−s, and also
O(j) intermediate addition gates so at gj the sum of outputs of these intermediate multiplication
gates is computed. Thus, for the construction of each sequence of gates g0, ..., gl in C∗, we use O(l2)
gates. ut

Theorem 1. Let l be a natural number and let k be a natural number not larger than l. Next, let
P (x1, ..., xn) be a polynomial of maximum degree l represented by a monotone arithmetic circuit of
size s(n). There is a randomized algorithm that for every P runs in O∗(2ks(n)) time and outputs
“YES” with very high probability if there is a monomial with at least k distinct variables in the sum-
product expansion of P, and always outputs “NO” if there is no such monomial in the expansion.

Proof. To begin with, we modify the circuit C to the circuit D by creating a new input gate labeled
with z, and n addition gates representing xi + z, i = 1, ..., n, respectively, and for i = 1, ..., n,
connecting each direct ancestor of the input gate labeled with xi with the addition gate representing
xi + z, respectively. Thus, the circuit D represents the polynomial P (x1 + z, ..., xn + z).

Note that each monomial in the sum-product expansion of P (x1 + z, ..., xn + z) can be obtained
from some monomial in the sum-product expansion of P (x1, ..., xn) by substitution of z for some
occurrences of some variables xi. Hence, there is a monomial with at least k distinct variables in the
sum-product expansion of P (x1, ..., xn) if and only if there is a monomial of the form ztQ(x1, .., xn),
where Q(x1, .., xn) is a multilinear monomial with precisely k distinct variables in {x1, ..., xk}, in
the sum-product expansion of P (x1 + z, ..., xn + z).

In the next step, we construct the monotone arithmetic circuit D∗ on the basis of the input circuit
D by using Lemma 1. D∗ has O(l2s(n)) gates and its construction takes time linear in its size. For
each r = 1, ..., l, D∗ has a gate or such that the polynomial Or(x1, ..., xn, z) generated at or can be
represented as the sum of all monomials of degree r in the sum-product expansion of the polynomial
P (x1 + z, ..., xn + z).

Finally, we iterate the following step for r = k, ..., l.We run the FPT algorithm due to Koutis and
Williams [8] given in Fact 1 on the sub-circuit ofD∗ representing the polynomialOr(x1, ..., xn, z) in
order to determine if the sum-product expansion ofOr(x1, ..., xn, z) contains a monomial of the form
zr−kQ(x1, .., xn), where Q(x1, .., xn) is multilinear monomial with precisely k distinct variables in
{x1, ..., xk}. Whenever, we obtain a positive answer, we report “YES” and stop.

By Fact 1, such a run of the FPT algorithm due to Koutis and Williams [8] takesO∗(2kl2size(D∗))
time, which is O∗(2kl4s(n)) by Lemma 1. In order to amplify the probability of the “YES” answer



if there is a monomial with at least k distinct variables in the sum-product expansion of P, we can
replace each run of the algorithm of Williams and Koutis from [8], with O(log n) runs. ut

Applications. The max q-cover problem [5] is as follows: for given subsets S1, S2, ..., Sm of a
ground set X, find a subfamily of {S1, ..., Sm} containing at most q subsets maximizing the number
of elements in X covered by the subsets included. In the decision version of this problem, there is
also given a positive integer k and the objective is to decide if there is a subfamily of {S1, ..., Sm}
containing at most q subsets whose union covers at least k elements.

Theorem 2. The decision version of the max q-cover problem with all given subsets of size bounded
by s admits an FPT algorithm with respect to the parameters q and s.

Proof. For i = 1, ..., |X|, associate the variable xi with the i-th element in X. We shall denote
elements in X by their numbers. Next, for j = 1, ...,m, let Mj denote the monomial

∏
i∈Sj

xi. It is

clear that a monomial of the polynomial
(∑m

j=1Mj

)q
with at least k distinct variables corresponds

to a union of at most q subsets Sj covering at least k elements in X and vice versa. Since the degree
of the polynomial does not exceed qs, the theorem follows from Theorem 1.

ut

Note that the known FPT algorithms for the hitting set with bounded set size [4, 9] translate
to FPT algorithms for set cover with a bound on maximum number of sets that can cover a single
element.

3.2 Detecting a monomial with at most k variables

In this subsection, we present an FPT algorithm with respect to the polynomial degree for the “at
most k distinct variables” monomial property for polynomials represented by restricted monotone
arithmetic circuits. The restriction does not allow any multiplication gate to be a descendant of an
addition gate. We shall call a monotone arithmetic circuit obeying this requirement an addition-
multiplication circuit.

Theorem 3. Let l be a natural number and let k be a natural number not larger than l. Next, let
P (x1, ..., xn) be a polynomial of maximum degree l represented by an addition-multiplication circuit
of size s(n). There is an algorithm that for every P runs in O∗(22d) time and outputs “YES” if there
is a monomial with at most k distinct variables in the sum-product expansion of P, and otherwise
outputs “NO”.

Proof. Note that P (x1, ..., xn) has a decomposition of the form
∏l

i=1

∑li
j=1 xa(i)j . Importantly, for

each of the sums, we can determine a distinct addition gate in the circuit representing it, and conse-
quently the variables in the sum.

We shall reduce the problem of detecting a monomial of P having at most k distinct variables to
the problem of minimum set cover over a universe U = {u1, ..., ul}, with l elements as follows. We
associate the i-th element ui of the universe with the i-th sum. On the other hand, with the variable
xm, we associate the subset Sm of U, which contains ui iff the variable xm occurs in the i-th sum.

It is easy to see that for an arbitrary monomial of P, the subsets Sm associated with the variables
xm occurring in the monomial form a set cover ofU , and conversely, for any set cover ofU composed
of the subsets Sm, there is a monomial of P composed exactly of the corresponding variables (some
of them can occur many times in the monomial).



Note also that there are at most 2l different subsets Sm. Therefore, we can solve the minimum set
cover problem for the aforementioned instance in O∗(22l) time by brute force. The set of variables
xm corresponding to the subsets Sm in the minimum set cover yields a minimum cardinality set of
variables that occur in a monomial of P. ut

4 Hardness results

Since the decision version of the set cover problem can be easily encoded as a problem of detecting
a monomial with at most k variables, we obtain the following theorem.

Theorem 4. Let P be a polynomial in n variables represented by a monotone arithmetic circuit
with O(n2) gates. The problem of deciding if P has a monomial with at most k distinct variables is
NP-complete as well as W [2]-hard for the parameter k.

Proof. Consider an instance of the set cover problem with ground setX, a family of subsets S1, ..., Sn

of X whose union covers X, and a positive integer k. We may assume w.l.o.g. that |X| ≤ n since
the W [2]-hardness of set cover follows from that of dominating set [4]. For j = 1, ..., n, associate
with Sj the variable yj . Let PS stand for the polynomial

∏
x∈X(

∑
j s.t. x∈Sj

yj). Note that the poly-
nomial PS has n variables and it can be represented by a monotone arithmetic circuit of size O(n2).
It is clear that X can be covered with ≤ k of the subsets S1, ..., Sn iff PS has a monomial with
≤ k distinct variables. This many-one reduction is clearly fixed-parameter with respect to k. Since
the set cover problem is NP-complete and W [2]-complete with respect to k, we conclude that the
decision version of the minimum-variable monomial problem is NP-complete and W [2]-hard for the
parameter k.

ut

Chechik et al. [1] have recently studied among other things the following secluded path problem:
for a graph and its two vertices, find a path connecting the two vertices that minimize the number
of neighbors of vertices on the path. Note that in particular all vertices on such a path are accounted
to the set of the path neighbors. They proved among other things that the secluded path problem is
NP-hard and, unless NP ⊂ DTIME(npoly log(n)), inapproximable within a factor of O(2log1−ε n)
for any ε > 0.

For a vertex v in a graph G = (V,E), let N(v) denote the (closed) neighborhood of v, i.e., the
set of all vertices adjacent to v in G, augmented by v. A neighborhood walk in G is a sequence of
vertex neighborhoods N(v1), N(v2), ..., N(vl) in G such that for j = 1, ..., l − 1, {vj , vj+1} ∈ E.
The length of the walk is l − 1.

We define recursively the polynomial Ql(i, j) whose monomials are in one-to-one correspon-
dence with neighborhood walks of length l − 1 in G starting from N(vi) and ending with N(vj) as
follows:

Q1(i, i) =
∏

vk∈N(vi)

xk

Ql(i, j) =
∑

vq∈N(vj)

Ql−1(i, q)
∏

vk∈N(vj)

xk

Two following lemmata are straightforward.



Lemma 2. There is a neighborhood walk of length l−1 starting from N(vi) and ending with N(vj)
in G such that the union of its vertex neighborhoods has cardinality at most k iff Ql(i, j) has a
monomial having at most k different variables.

Lemma 3. For a graph on n vertices, i, j, l ∈ [n], the polynomial
∑n−1

l=1 Ql(i, j) can be represented
by a monotone arithmetic circuit of size O(n2). Furthermore, there is a path in G with at most k
neighbors starting from vi and ending with vj iff the polynomial

∑n−1
l=1 Ql(i, j) has a monomial

having at most k different variables.

Lemma 3 yields the following theorem.

Theorem 5. Let P be a polynomial in n variables represented by a monotone arithmetic circuit with
O(nc) gates. For c ≥ 2, the problem of determining the smallest k such that P has a monomial
with at most k distinct variables cannot be approximated within O(2log1−ε n) for any (fixed) ε > 0,
unlessNP ⊂ DTIME(npoly log(n)). On the other hand, for any positive constant c, it can be solved
exactly in O(nk0+c) time, where k0 is the minimum number of distinct variables in a monomial of P.

Proof. Lemma 3 yields a many-one fixed-parameter reduction from the secluded path problem to the
problem of determining the smallest k such that a polynomial in n variables represented by a circuit
of polynomial size has a monomial with precisely k distinct variables. Let m be a minimum number
of neighbors on a path connecting two vertices vi and vj of a graph G on n vertices. By Lemma
3, if the aforementioned minimum-variable monomial problem had an O(2log1−ε n) approximation
algorithm then we could answer that there is a path connecting this pair of vertices and having at most
O(m/2log1−ε n) neighbors (importantly, observe that that the number n of variables in the polynomial∑n−1

l=1 Ql(i, j) is equal to the number of vertices in G). This would contradict the lower bound on
the approximability of the secluded path problem established in [1].

We can obtain an exact solution to the minimum -variable monomial problem by simply evaluat-
ing the polynomial

∑n−1
l=1 Ql(i, j) for q = 1, 2, ... on all assignments of zero-one values with q ones

until a non-zero value is produced. ut

By substituting ∨ gates for + gates and ∧ gates for × gates in an arithmetic circuit, we obtain
a corresponding monotone Boolean circuit (i.e., a directed acyclic graph whose non-leaf nodes are
labeled with either∨ or∧, leaves are labeled with distinct variables, and a single node is distinguished
as an output node). It computes a Boolean function which is a disjunction of Boolean monomials,
called implicants, corresponding to the monomials of the polynomial represented by the original
arithmetic circuit. Hence, we can derive the following corollary and theorem from Theorem 5.

Corollary 1. Given a monotone Boolean circuit with n input variables, and O(n2) gates, the prob-
lem of determining the smallest k such that the Boolean function computed by the circuit has an
implicant with precisely k distinct variables cannot be approximated within O(2log1−ε n) for any
ε > 0, unless NP ⊂ DTIME(npoly log(n)). The decision version of this problem is NP-complete.

Theorem 6. Given two monotone Boolean circuits with the same set of n input variables, O(n2)
gates, the problem of determining if the Boolean functions computed by them are different is NP-
complete.

Proof. LetB be the monotone Boolean function computed by a given monotone Boolean circuit with
n variables x1, ..., xn and a single output node. Next, for 1 ≤ l < n, let Dl be the Boolean function
that is a disjunction of all monotone implicants with precisely l distinct variables in {x1, ..., xn}.



Dl can be easily computed by a monotone Boolean circuit of polynomial size as follows. Let Dj
l

be the Boolean function that is a disjunction of all monotone implicants with precisely l distinct
variables in {x1, ..., xj}. For 1 < l and j < n, we have Dj

l = Dj−1
l−1 ∧ xj ∨Dj−1

l . Now, let k < n
and C = B ∨ Dk+1. Note that C 6= Dk+1 iff B has an implicant composed of at most k distinct
variables. The theorem follows from Corollary 1. ut

Theorem 6 is interesting since no negation is used by any of the two circuits, otherwise the
theorem would follow trivially from the NP-completeness of the satisfiability problem.

By a reduction from the max q-cover problem (see Applications in Section 3.1), we can obtain
also similar although weaker results on inapproximability of the symmetric problem when monomi-
als or implicants with maximum number of distinct variables are sought.

Theorem 7. Let P be a polynomial in n variables represented by a monotone arithmetic circuit
with polynomial in n number of gates. The problem of determining the largest k such that P has a
monomial with precisely k distinct variables cannot be approximated within 1− 1

e + ε for any ε > 0,
unless NP = P . The decision version of this problem is NP-hard.

Proof. sketch. Use the notation and the polynomial
(∑m

j=1Mj

)q
from the proof of Theorem 2. A

monomial of this polynomial with the maximum number of distinct variables corresponds to a union
of at most q subsets Sj covering the same maximum number of elements in X and vice versa. This
combined with the fact that max q-cover cannot be approximated within 1 − 1

e + ε for any ε > 0,
unless NP = P (see [5]) yields the theorem.

ut

Corollary 2. Given a monotone Boolean circuit with n input variables and polynomial in n size, the
problem of determining the largest k such that the Boolean function computed by the circuit has an
implicant with precisely k distinct variables cannot be approximated within 1− 1

e + ε for any ε > 0,
unless NP = P . The decision version of this problem is NP-hard.

If we set k to n in the proof of Theorem 7, then we obtain a fixed-parameter reduction of the
set cover problem to the problem of detecting if the constructed polynomial of degree O(nq) has
a monomial with precisely n distinct variables, with respect to the parameter q. Since the set cover
problem is W [2]-complete, we obtain the following theorem.

Theorem 8. Let P be a polynomial with n variables and maximum degree l represented by a mono-
tone arithmetic circuit with polynomial in n number of gates. The problem of determining if P has a
monomial with precisely n distinct variables is W [2]-hard for the parameter l/n.
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