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Abstract. In this paper1 , we study linear and quadratic Boolean func-
tions in the context of property testing. We do this by observing that
the query complexity of testing properties of linear and quadratic func-
tions can be characterized in terms of the complexity in another model
of computation called parity decision trees.
The observation allows us to characterize the testable properties of linear
functions in terms of the approximate l1 norm of the Fourier spectrum
of an associated function. It also allows us to reprove the Ω(k) lower
bound for testing k-linearity due to Blais et al [7]. More interestingly,
it rekindles the hope of closing the gap of Ω(k) vs O(k log k) for testing
k-linearity by analyzing the randomized parity decision tree complexity
of a fairly simple function called Ek that evaluates to 1 if and only if the
number of 1s in the input is exactly k. The approach of Blais et al. using
communication complexity fails to give anything better than Ω(k) as a
lower bound.
In the case of quadratic functions, we prove2 an adaptive, two-sided
Ω(n2) lower bound for testing affine isomorphism to the inner product
function. We remark that this bound is tight and furnishes an example of
a function for which the trivial algorithm for testing affine isomorphism
is the best possible. As a corollary, we obtain an Ω(n2) lower bound for
testing the class of Bent functions.
We believe that our techniques might be of independent interest and may
be useful in proving other testing bounds.

1 Introduction

The field of property testing broadly deals with determining whether a given
object satisfies a property P or is very different from all the objects that satisfy

1 This paper combines the unpublished manuscripts [5,14].
2 We remark that this result was proved by us in [5], and Grigorescu et al.[20] concur-
rently and independently obtained the same lower bound for testing affine isomor-
phism to the inner product function, and a stronger lower bound for testing Bent
functions.
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P. In this paper, the objects of interest are Boolean functions on n variables,
i.e. functions of the form

f : {0, 1}n → {0, 1}.

A Boolean function property P is a collection of Boolean functions. Given a
function g and a parameter ǫ, the goal of a tester is to distinguish between the
following two cases:

– g ∈ P
– g differs from every function in P in at least ǫ fraction of points in {0, 1}n.

The query complexity for testing P is the number of queries (of the form “what
is the value of g at x ∈ {0, 1}n?”) made by the best tester that distinguishes
between the above two cases. If the queries made by the tester depend on the
answers to the previous queries, the tester is called adaptive. Also, if the tester
accepts whenever g ∈ P, it is called one-sided.

Testing of Boolean function properties has been extensively studied over the
last couple of decades (See [16,29]). Examples of problems that have been studied
are linearity testing [10], k-junta testing [17,6], monotonicity testing [18,12], k-
linearity testing [19,11,7] etc. An important problem in the area is to characterize
Boolean function properties whose query complexity is constant (i.e., indepen-
dent of n, though it can depend on ǫ). For example, such a characterization is
known in the case of graph properties [1]. Though a general characterization for
function properties is not yet known, there has been progress for some special
classes of properties. In this paper, we attempt characterizing one such class:
properties which only consist of linear functions. More specifically, we try to
characterize all properties P of linear Boolean functions which can be tested
using constant number of queries.

An example of a property of linear functions is one that contains all parities
on k variables3. The problem of testing this property is known as k-linearity
testing. While this problem had been studied earlier [19], recently Blais et al. [7]
used communication complexity to obtain a lower bound of Ω(k) on the query
complexity of adaptive testers for k-linearity. The best known upper bound in
the case of adaptive testers is O(k log k). Whereas a tight bound of Θ(k log k) is
known for the non-adaptive case [11], a gap still exists for adaptive testing: Ω(k)
vs O(k log k). In this paper we give another approach to obtain the Ω(k) lower
bound for the adaptive query complexity. While the lower bound technique of
Blais et al.[7] cannot be improved beyond Ω(k), our technique has the potential
of proving a better lower bound. We remark that other proof techniques for the
lower bound have also been studied [8].

A rich class of properties for which characterizing constant query testability
has been studied are properties that are invariant under natural transformations
of the domain. For example, [23,4,3] study invariance under affine/linear trans-
formations in this context. Properties that consist of functions isomorphic to a

3 A function f : {0, 1}n → {0, 1} is a parity on k variables if it is of the form
∑

i∈S
xi,

where S ⊆ [n] and |S| = k



given function also form an important subclass. The testing of such properties
is commonly referred to as isomorphism testing, and has seen two directions of
study: testing if a function is equivalent to a given function up to permutation
of coordinates [13,9], and testing affine/linear isomorphism.

Our second result concerns testing affine/linear isomorphism. A function f is
affine/linear isomorphic to g if there is an invertible affine/linear transformation
T such that f ◦ T = g. Recently, Wimmer and Yoshida [31] characterized the
query complexity of testing affine/linear isomorphism to a function in terms of
the Fourier norm. We complement their work by providing the first example
of a function for which the query complexity of testing affine isomorphism is
the largest possible. As a corollary, we also prove an adaptive, two-sided Ω(n2)
lower bound for testing the class of Bent functions which are an important and
well-studied class of Boolean functions in cryptography (See [26,27]).

Grigorescu et al. concurrently and independently obtained these results in
[20] using a different proof technique. In fact, they prove an 2Ω(n) lower bound for
testing Bent functions. We believe that our proof is arguably simpler and more
modular, and is also amenable to generalizations (for example, to the quantum
setting), even though the bound we obtain for Bent functions is weaker.

The main technique used in proving all our results is a connection between
testing properties of linear and quadratic functions, and parity decision trees.
Connections between linear functions and parity decision trees have been both
implicitly [8] and explicitly [11] observed in earlier papers. Another connection
that we exploit for proving some of our results is the one between parity deci-
sion tree depth and communication complexity. Similar connections were known
earlier, see for example [32]. We remark that, to the best of our knowledge, our
result is the first that combines the two connections, giving yet another way of
relating property testing lower bounds to communication complexity (Blais et
al. [7] observe such a connection in much more generality). Thus, we believe that
our techniques might be of independent interest.

1.1 Our results and techniques

Property testing and parity decision trees We give a connection between
testing properties of linear functions and parity decision trees. The following is
an informal statement of the connection:

Connection 1 For every property P of linear functions on n variables, one can
associate a Boolean function EP on n variables such that there is an adaptive q-
query tester for distinguishing if a given f is in P or 1/2-far from P if and only
if there is a randomized parity decision tree that makes q queries for deciding
EP .

A similar connection holds in the case of quadratic functions.

Connection 2 For every property P of quadratic functions on n variables, one
can associate a Boolean function EP on n2 variables such that there is an adap-
tive q query tester for distinguishing if a given f is in P or 1/4-far from P only



if there is a randomized parity decision tree that makes q queries for deciding
EP .

Note that, unlike Connection 1, Connection 2 does not give a conversion in both
directions i.e. a randomized parity decision tree of depth q for EP does not
necessarily imply a q-query tester for P.

All the results that follow use the above lemmas crucially. Another important
ingredient for some of the results is a connection between parity decision trees
and the communication complexity of XOR functions. We discuss this in detail
in Section 3.

Characterization of testable properties of linear functions A by-product
of Connection 1 is that it allows us to characterize the constant query testability
of a property P of linear functions in terms of the approximate L1 norm of EP .

Theorem 3. A property P of linear Boolean functions is constant query testable

if and only if ||ÊP ||
1/4
1 is constant.

This is the first such characterization of linear function properties, and we hope
our result is a small step towards our understanding of function properties
testable in constant number of queries.

Testing k-linearity We also obtain an alternate proof of the lower bound for
testing k-linearity due to Blais et al. [7].

Theorem 4. Any adaptive two-sided tester for testing k-linearity requires Ω(k)
queries.

The idea behind the proof is as follows. Applying Connection 1 in the case of
k-linearity, EP turns out to be equal to the function Ek that outputs 1 if and
only if there are exactly k 1s in the input string. Thus, to prove Theorem 4 it is
sufficient to lower bound the randomized parity decision tree complexity of Ek

by Ω(k).
As mentioned before, the communication complexity approach of Blais et al.

cannot give anything better than Ω(k) since it crucially relies on the lower bound
on the communication complexity of the k-disjointness function, which has an
O(k) upper bound [21]. Our technique leaves open the possibility of proving a
tight Ω(k log k) lower bound by analyzing the parity decision tree complexity of
the relatively simple function Ek.

Even if there is an O(k) upper bound on the randomized parity decision tree
complexity of Ek, since Connection1 holds in both directions, we will obtain a
tight upper bound of O(k) for testing4 k-linearity.

4 To be more precise, we will obtain a tester that can distinguish a k-linear function
from k + 1-linear function using O(k) queries. Even for this restricted problem, the
best known tester makes O(k log k) queries.



Lower bound for testing affine isomorphism Let IPn(x) denote the in-

ner product function
∑n/2

i=1 xixn/2+i. We consider the problem of testing affine
isomorphism to IPn(x) and prove a tight lower bound.

Theorem 5. Testing affine isomorphism to IPn(x) requires Ω(n2) queries.

We note that the bound holds even for adaptive 2-sided testers.
The proof of Theorem 5 is similar to that of Theorem 4, though in this case,

EP turns out to be En, a function that maps graphs on n vertices to {0, 1}, and
outputs 1 if and only if the input graph’s adjacency matrix is nonsingular over
F2.

As mentioned before, this is the first example of a function for which testing
affine isomorphism requires Ω(n2) queries (O(n2) is a trivial upper bound for
any function and follows from a folklore result).

It can be show that testing the set of quadratic Bent functions reduces to
testing affine isomorphism to IPn(x). Thus, Theorem 5 gives a lower bound for
testing the set of quadratic Bent functions. Furthermore, using a result from
[15], the following corollary can be obtained.

Corollary 1. Any adaptive two-sided tester for testing the set of Bent functions
requires Ω(n2) queries.

1.2 Organization

Section 2 contains a few preliminaries. In Section 3, we prove Lemma 1 and 2,
followed by proofs of Theorem 3 and 4 in Sections 4 and 5 respectively. Section
6 gives proofs of Theorem 5 and Corollary 1.

2 Preliminaries

2.1 Boolean functions

Recall that functions mapping {0, 1}n to {0, 1} are called Boolean functions5. A
Boolean function is linear if it is expressible as

∑
i∈S xi for S ⊆ [n]. The set of

linear functions will be denoted by L.
A Boolean function is quadratic if it can be expressed as a polynomial of

degree at most two over F2. We shall denote the set of quadratic functions by Q,
and the set of homogenous quadratic functions by Q0. By a property of linear
or quadratic functions, we shall always mean a subset of L or Q.

For Boolean functions f and g, dist(f, g) = Prx[f(x) 6= g(x)]. The notion can
be extended to sets of Boolean functions S and T in a natural way: dist(S, T ) =
minf∈S,g∈T dist(f, g). We state a simple but useful observation:

Observation 6 If f and g are linear (quadratic) functions then either f = g or
dist(f, g) ≥ 1/2 (dist(f, g) ≥ 1/4).

5 In certain contexts it will be useful to identify {0, 1} with F2



We now introduce the basics of Fourier analysis for Boolean functions 6

For a subset S ⊆ [n], χS(x) := (−1)
∑

i∈S xi . These are called the character

functions. Consider the space of all functions from {0, 1}n to R, equipped with the
inner product 〈f, g〉 = Exf(x)g(x). The character functions form an orthonormal
basis with respect to the this inner product, and for any function f : {0, 1}n → R,

f(x) =
∑

S⊆[n]

f̂(S)χS(x)

(f̂(S))S⊆[n] is called the Fourier transform of f , where the Fourier coefficient f̂(S)
can be computed as follows:

f̂(S) = 〈f, χS〉

The norm of a function f is defined to be ||f || =
√

〈f, f〉. Orthonormality of

{χS} implies the Parseval’s identity: ||f || =
∑

S⊆n f̂
2(S). For Boolean functions

||f || = 1, and hence Parseval’s identity shows that
∑

S⊆n f̂
2(S) = 1

The Fourier norm of a function f is defined as the l1 norm of its Fourier
transform i.e

∑
S⊆n |f̂(S)|. We shall denote it by ‖f̂‖1. The ǫ-approximate l1

norm of the Fourier spectrum of f , denoted by ||f̂ ||ǫ1, is the minimum possible
||ĝ||1 over all g such that, for all x |g(x)− f(x)| ≤ ǫ.

In the paper we also encounter Bent Boolean functions. A function f is said
to be Bent if ∀S ⊆ [n], f̂2(S) = 1

2n .

2.2 Property testing

Let P be a property of Boolean functions on n variables. We say a randomized
algorithmA ǫ-tests P, if given oracle access to the truth table of an input function
f , A determines with probability at least 2/3 whether f ∈ P, or dist(f,P) ≥ ǫ.
The number of queries made by the best tester for ǫ-testing P is known as the
query complexity of P. It is denoted by Qǫ(P) and may be a function of n.
Remark When testing properties of linear functions, it is common to assume
that the input function is promised to be a linear function. For a property P
of linear functions, we denote the query complexity of testing P under such a
promise by Q1(P).

For technical reasons, it will be useful to consider such a notion for quadratic
function. For a property P ⊆ Q of quadratic functions, we shall denote by Q2(P)
the query complexity of testing P under the promise that the input is always a
function in Q0. Observation 6 implies the following statement.

Observation 7 Let P be a property of linear functions. Then, Q1/2(P) ≥ Q1(P).
Similarly, in the case of quadratic functions, Q1/4(P) ≥ Q2(P)

It can also be shown that:

6 Sometimes it will be convenient to consider a Boolean function f as a function
mapping {0, 1}n to {−1,+1} by looking at (−1)f(x).



Observation 8 If Q1(P) = Q then ∀ǫ ∈ (0, 1/4), Qǫ(P) ≤ Oǫ(Q logQ)

We include a proof in Appendix A.
Let G be a group that acts on {0, 1}n. A function f is G-isomorphic to

another function g if there is a φ ∈ G such that f ◦ φ = g. For a fixed function
g, the problem of testing G-isomorphism to g is to test if an input function f
is G-isomorphic to g, or ǫ-far from all functions that are G-isomorphic to g. A
folklore result gives a trivial upper bound for the problem:

Lemma 1. Testing G-isomorphism to a function g can be done in O(log |G|)
queries.

Here |G| denotes the size of the group.
When G is the group of invertible affine transformations, the problem is

known as affine isomorphism testing. The above lemma gives us the following
corollary:

Corollary 2. O(n2) queries suffice to test affine isomorphism.

2.3 Parity decision trees

Parity decision trees extends the model of ordinary decision trees such that one
may query the parity of a subset of input bits, i.e. the queries are of form “is∑

i∈S xi ≡ 1 (mod 2)? ” for an arbitrary subset S ⊆ [n]. We call such queries
parity queries.

For a parity decision tree Pf for f, let C(Pf , x) denote the number of parity
queries made by Pf on input x. The parity decision tree complexity of f isD⊕(f) =
minPf

maxx C(Pf , x).
Note that D⊕(f) ≤ D(f) as the queries made by a usual decision tree, “is

xi = 1?, ” are also valid parity queries. Here D(f) denotes the deterministic
decision tree complexity of f

A bounded error randomized parity decision tree Rf
⊕ is a probability distribu-

tion over all deterministic decision trees such that for every input, the expected
error of the algorithm is bounded by 1/3. The cost C(Rf

⊕, x) is the highest pos-

sible number of queries made by Rf
⊕ on x, and the bounded error randomized

decision tree complexity of f is R⊕(f) = minRf
⊕

maxx C(Rf
⊕, x)

For a Boolean function f , it turns out that R⊕(f) can be lower bounded
by the randomized communication complexity of the so-called XOR function
f(x ⊕ y) (See [24] for the defintion of randomized communication complexity
and XOR functions). So we have the following lemma.

Lemma 2.

R⊕(f) ≥
1

2
RCC(f(x⊕ y)).

Proof. Given a Boolean function f : {0, 1}n → {0, 1} on n consider the commu-
nication game where x is with Alice and y is with Bob and they want to compute



f(x⊕ y) with error bounded by 1/3. Let RCC(f(x⊕ y)) denote the randomized
communication complexity of this communication game.
Given a randomized parity decision tree Rf

⊕, Alice and Bob can convert it into

a protocol by simulating the parity queries made by Rf
⊕ by two bits of commu-

nication, and thus the inequality follows.

3 Property testing and parity trees

In this section we describe a relation between the testing complexity of a prop-
erty of linear/quadratic functions, and the parity decision tree complexity of an
associated function. We remark that such connections have been observed before
in the case of linear functions, though, to the best of our knowledge, such an
observation had not been made for quadratic functions before our work.

3.1 Parity trees and linear functions

Let L be the set of all linear functions from {0, 1}n to {0, 1}. Let ei ∈ {0, 1}n

denote the Boolean string whose ith bit is 1 and all other bits are 0. For any
linear function f let us define a string B(f) ∈ {0, 1}n such that the ith bit of
B(f) is 1 iff f(ei) = 1. The following lemma is easy to prove:

Lemma 3. The map B : L → {0, 1}n gives a bijection between the set L and
strings of length n.

Now let P ⊆ L be a set of linear functions. Given a linear function f we want
a tester T that makes queries to the truth table of f and distinguishes whether
f is in P or is ǫ-far from P. Let us define a set SP ⊆ {0, 1}n as follows:

SP = {B(f) | f ∈ P}

Lemma 4. For any P ⊆ L and any f ∈ L we have:

– f ∈ P if and only if B(f) ∈ SP and
– f is 1/2-far from P if and only if B(f) 6∈ SP

We omit the proof of Lemma 4 as it follows directly from Lemma 3 and Obser-
vation 6.

Thus by Lemma 4, testing where f is in P or is 1/2-far from P is exactly
same as deciding if B(f) ∈ SP .

Furthermore, we can translate the queries made by the tester T to the truth
table of f into parity queries to the string B(f), and vice-versa. Since f is linear,
we have f(x) =

⊕
i xi · f(ei) Let Sx := {i | xi = 1}. Thus, whenever T queries

f at x, it can be equivalently viewed as the query
⊕

i∈Sx
(B(f))i made to B(f).

Consider the Boolean function EP : {0, 1}n → {0, 1}, where EP(x) = 1
iff B−1(x) ∈ P. Observe that deciding “is x ∈ SP?” is same as deciding “is
EP(x) = 1?” Thus we have:



Theorem 9. There is a tester that makes q queries for distinguishing if a linear
function f satisfies the property P or is 1/2-far from satisfying P if and only
if there is a randomized parity decision that makes q queries for deciding EP .
Equivalently, Q1(P) = R⊕(EP).

3.2 Parity trees and quadratic functions

To prove a result like Theorem 9 for quadratic functions, we follow almost the
same strategy as before.
Let Gn ⊆ {0, 1}n

2

denote the set of graphs on n vertices7. For any homogenous
quadratic function f ∈ Q0 let us define a graph G(f) with vertex set [n] such
that the edge {i, j} is present in G(f) iff xixj occurs as a monomial when f is
expressed as a polynomial over F2.

The following observation follows from the way we defined G(f).

Observation 10 The map G : Q0 → Gn is a bijection.

Let P ⊆ Q be a property of quadratic functions. We define SP ⊆ G as follows:

SP = {G(f) | f ∈ P ∩Q0} .

Also, the following lemma can be proved by using Observation 10 and 6.

Lemma 5. For any P ⊆ Q and any f ∈ Q0 we have:

– f ∈ P if and only if G(f) ∈ SP and
– f is 1/4-far from P if and only if G(f) 6∈ SP

Thus, the above lemma says that testing whether a given f ∈ Q0 is in P or
1/4-far from P is exactly the same as deciding if G(f) is in SP .

Let A be an algorithm that tests if a f ∈ Q0 is in P or 1/4-far from it.
We now describe how to translate queries made by A to the truth table of f to
parity queries to the adjacency matrix of the graph G(f).

Given y ∈ {0, 1}n and a graph G on the vertex set [n], we denote by G[y] the
induced graph on the vertex set {i| yi = 1}. It is not hard to see that the value
f(y) is exactly the parity of the number of edges in G(f)[y]. Thus, any query to
the truth table of f can be translated to a parity query to the adjacency matrix
of G(f).

The only difference is that unlike in the case of linear functions, the transla-
tion works in only one direction. To be more precise, an arbitrary parity query
to the adjacency matrix of G(f) cannot be translated into a query to the truth
table of f .

Consider the Boolean function EP : Gn → {0, 1}, where EP(H) = 1 iff
G−1(H) ∈ P. Observe that deciding “is H ∈ SP?” is same as deciding “is
EP(H) = 1?” Combining the observations made above, we have:

7 Note that the set of n× n matrices over F2 can be naturally identified with the set

{0, 1}n
2



Lemma 6. There is an adaptive tester that makes q queries for distinguishing
if a given f ∈ Q0 satisfies the property P or is 1/4-far from satisfying P only
if there is a randomized parity decision that makes q queries for deciding EP .
Equivalently, Q2(P) ≥ R⊕(EP).

Combining Lemma 6 and Observation 7, we get a more general result:

Theorem 11. There is an adaptive tester that makes q queries for distinguish-
ing if a given f satisfies the property P or is 1/4-far from satisfying P only if
there is a randomized parity decision tree that makes q queries for deciding EP .
Equivalently, Q1/4(P) ≥ R⊕(EP).

4 Characterizing testable properties of linear functions

In this section we give a characterization of properties of linear functions that
are testable using only constant number of queries.

Recall that for a Boolean8 function f , ||f̂ ||ǫ1 denotes the minimum possible
||ĝ||1 over all g such that |f(x)− g(x)| ≤ ǫ for all x.

We use the following lemma:

Lemma 7.

O(log ||f̂ ||
1/4
1 ) ≤ R⊕(f) ≤ O((||f̂ ||

1/4
1 )2)

Proof. For the first inequality, we obtain from Lemma 2 that RCC(f(x⊕ y)) ≤

2R⊕(f). Now, it is well known that RCC(f(x ⊕ y)) ≥ O(log ||f̂ ||
1/4
1 ) (see for

instance [24]) and thus we have

R⊕(f) ≥ 1/2 ·RCC(f(x⊕ y)) ≥ O(log ||f̂ ||
1/4
1 )

To see the second inequality, we will construct a randomized parity decision

tree9 T with query complexity O((||f̂ ||
1/4
1 )2) that computes f . Let g : {0, 1}n →

R be a function that pointwise 1/4-approximates f (i.e. for all x, |f(x)−g(x)| ≤
1/4) such that ||ĝ||1 is the minimum among all functions that 1/4-approximate
f . Let Dg denote a distribution on subsets of [n] such that a set S has probability
|ĝ(S)|/||ĝ||1.

We define the randomized parity decision tree T as follows. T makes d (the
parameter will be fixed later) random parity queries S1, S2 . . . Sd, such that each
Si is distributed according to Dg. Let X1, X2, . . . Xd be random variables such
that

Xi =
sign(ĝ(Si))(−1)

∑
j∈Si

xj

||ĝ||1

Here the sign function sign(x) outputs −1 is x < 0, and 1 otherwise. Finally, the

tree outputs sign(
∑d

i=1 Xi).

8 For the purpose of this section, it will be convenient to assume that the range of a
Boolean function is {−1,+1}.

9 We shall assume that T ’s range is {−1,+1}



The first thing to note is that

E[Xi] =
∑

S⊆[n]

sign(ĝ(Si))(−1)
∑

j∈Si
xj

||ĝ||1

|ĝ(S)|

||ĝ||1
=

g(x)

(||ĝ||1)2

Let X =
∑d

i=1 Xi. Then, E[X] = d · g(x)/(||ĝ||1)
2. Setting d = 100 · (||ĝ||1)

2, we
get E[X] = 100 · g(x).

Now each Xi is bounded and lies in [−1/||ĝ||1,+1/||ĝ||1]. Thus by Hoeffding’s
inequality we have

Pr[|X − E[X]| ≥ 50] ≤ exp

(
−2 · (50)2

400

)
= exp

(
−25

2

)
. (1)

Since g pointwise 1/4-approximates f , sign(g(x)) = sign(f(x)) = f(x). Also, it
is easy to see that, if |X−E[X]| ≤ 50, sign(X) = sign(E[X]) = sign(g(x)). Thus,
by Equation 1, sign(X) = f(x) with very high probability.

The above argument shows that T is a randomized decision tree that com-

putes f with high probability and makes O((||ĝ||1)
2) = O((||f̂ ||

1/4
1 )2) queries.

This proves that

R⊕(f) ≤ O((||f̂ ||
1/4
1 )2)

Let P be a property of linear functions, and Q1(P) denote the query com-
plexity of testing P when the input function is promised to be linear. Then, from
the above lemma and Theorem 9, we have that

O(log ||ÊP ||
1/4
1 ) ≤ Q1(P) ≤ O((||ÊP ||

1/4
1 )2)

Using Observation 7 and 8, we then get, for ǫ ∈ (0, 1/4):

O(log ||ÊP ||
1/4
1 ) ≤ Q1/4(P) ≤ Qǫ(P) ≤ Oǫ

(
(||ÊP ||

1/4
1 )2 log

(
||ÊP ||

1/4
1

))

Thus, we can conclude the following.

Theorem 12. A property P of linear functions is testable using constant num-

ber of queries if and only if ||ÊP ||
1/4
1 is constant.

5 Testing k-linearity

In this section we apply the result from Section 3 to prove a lower bound for
testing k-linearity. Recall that a function is k-linear if it can be expressed as∑

i∈S xi (mod 2) for some S such that |S| = k. Let P denote the set of k-
linear functions on n variables.

Let Ek : {0, 1}n → {0, 1} denote the Boolean function that outputs 1 if and
only if the number of 1s is exactly k.

Recall a notation from Section 3: for any linear function f we can define a
string B(f) ∈ {0, 1}n such that B(f)i = 1 iff f(ei) = 1. We observe the following:



Observation 13 A Boolean function f is k-linear if and only if B(f) has ex-
actly k 1s.

Thus, EP is exactly the function Ek. Using Theorem 9 we have the following
lemma.

Lemma 8. Q1(P) = R⊕(Ek)

Thus, if we can obtain a lower bound of Ω(k log k) on the randomized parity
decision tree complexity of Ek then we would obtain a tight bound for adaptive
k-linearity testing (This would follow from Observation 7: Q1/2(P) ≥ Q1(P)).
Unfortunately we are unable to obtain such a lower bound yet. Instead we can
obtain a lower bound of Ω(k) that matches the previous known lower bound for
k-linearity testing [7].

Using Lemma 2, we have that R⊕(Ek) ≥
1
2RCC(Ek(x ⊕ y)). Furthermore,

Huang et al. [22] show that10:

Lemma 9. RCC(Ek(x⊕ y)) = Ω(k)

Using Lemma 8 and 9, we have Q1(P) = Ω(k). Finally, Observation 7 gives us
Q1/2(P) = Ω(k):

Theorem 14. Any adaptive two-sided tester for 1/2-testing k-linearity must
make Ω(k) queries.

Thus we obtain a lower bound of Ω(k) using the lower bound for the ran-
domized communication complexity of the XOR function Ek(x ⊕ y). Note that
using this method we cannot expect to obtain a better lower bound as there
is a upper bound of O(k) on the communication complexity. But there is hope
that one may be able to obtain a better lower bound for the parity decision tree
complexity of Ek directly.

On the other hand, if one is able to construct a randomized parity decision
tree of depth O(k) for deciding Ek, Lemma 8 immediately implies a tester11 for
k-linearity that makes O(k) queries.

6 Testing affine isomorphism to the inner product

function

The main result of this section is that 1/4-testing affine isomorphism to the inner
product function IPn(x)

12 requires Ω(n2) queries. As a corollary, we show that
testing the set of Bent functions requires Ω(n2) queries.

Let B denote the set of Bent functions. The following is an easy consequence
of Dickson’s lemma (We give a proof in Appendix C.2):

10 Actually, Huang et al. show that RCC(E>k(x⊕ y)) = Ω(k), but their proof can be
used to obtain the same lower bound for RCC(Ek(x⊕ y)).

11 See the remark in Section 2.2
12 For the rest of the section we shall assume that the number of variables n is even



Lemma 10. Let Q(n) denote the the query complexity of 1/4-testing affine iso-
morpism to the inner product function. Then Q1/4(B ∩ Q) = O(Q(n)).

Thus, it is sufficient to lower bound Q1/4(B ∩ Q). In fact, by Observation 7,
Q1/4(B ∩ Q) ≥ Q2(B ∩ Q), and thus we can restrict out attention to lower
bounding Q2(B ∩ Q)

Recall from Section 3 that we can associate a graph G(f) with every function
f ∈ Q0. We now state a well-known criterion that follows from a result due to
Rothaus [28] for a quadratic function to be Bent.

Lemma 11. A function f ∈ Q0 is Bent iff the adjacency matrix of G(f) is
nonsingular.

We give a proof of Lemma 11 in Appendix B.
Recall from Section 3 that Gn ⊆ {0, 1}n

2

is the set of graphs on the vertex
set [n]. Let P := B ∩ Q, and let En : Gn → {0, 1} be a Boolean function such
that En(G) = 1 iff the adjacency matrix of G is nonsingular. Due to Lemma 11,
EP turns out to be exactly equal to En. Combining with Theorem 5, we have

Lemma 12. Q2(P) ≥ R⊕(En)

As in the case of Ek, analyzing the decision tree complexity of En directly is hard,
and we turn to communication complexity. Lemma 2 tells us that R⊕(En) ≥
1
2RCC(En(x⊕ y)).

Let Mn(F2) denote the set of n× n matrices over F2, and Detn : Mn(F2) →
{0, 1} be the function such that Detn(A) = 1 iff A ∈ Mn(F2) is nonsingular.
The following result from [30] analyzes the communication complexity of Detn.

Lemma 13. RCC(Detn(x⊕ y)) = Ω(n2)

It turns out that the communication complexity of Detn relates to that of En.

Lemma 14. = RCC(Detn(x⊕ y)) ≤ RCC(E2n(x⊕ y))

Proof. Let A ∈ Mn(F2). Consider the 2n × 2n matrix A′ given by

(
0 At

A 0

)
.

A′ ∈ G2n by construction and it can be easily verified that A′ is nonsingular iff
A is nonsingular.
Now, let the inputs to Alice and Bob be A and B respectively. Since (A⊕B)′ =
A′ ⊕B′, Detn(A⊕B) = 1 iff E2n((A⊕B)′) = 1 iff E2n(A

′ ⊕B′) = 1. Thus, to
determine if Detn(A⊕ B) is 1, Alice and Bob can construct A′ and B′ from A
and B respectively, and run the protocol for E2n on A′ and B′. This completes
the proof.

Thus, using Lemma 13, we have RCC(En(x⊕y)) = Ω(n2). Using Lemma 2 and
Lemma 12, we have that Q2(P) = Ω(n2).
Thus, based on eariler observations, we can conclude:

Theorem 15. Any adaptive two-sided tester for 1/4-testing affine isomorphism
to the inner product function IPn(x) requires Ω(n2) queries.



Corollary 2 tells us that our result is tight. Thus, IPn(x) is an example of a
function for which the trivial bound for testing affine isomorphism is the best
possible.

We have shown that Q1/4(B ∩ Q) = Ω(n2). We now state a result due to
Chen et al.(Lemma 2 in [15]) in a form that is suitable for application in our
setting:

Lemma 15. Let P1 and P2 be two properties of Boolean functions that have
testers (possibly two-sided) T1 and T2 respectively. Let the query complexity of
tester Ti be qi(ǫ, n). Suppose dist(P1\P2,P2\P1) ≥ ǫ0 for some absolute constant
ǫ0. Then, P1 ∩ P2 is ǫ-testable with query complexity

O(max{q1(ǫ, n), q1(
ǫ0
2
, n)}+max{q2(ǫ, n), q2(

ǫ0
2
, n)})

In its original form, the lemma has been proven for the case when T1, T2 are
one-sided, and q1, q2 are independant of n, but the proof can be easily adapted
to this more general setting. We discuss this in Appendix D.

Another easy consequence of Dickson’s lemma is the following (We give a
proof in Appendix C.3):

Lemma 16. Let f, g be Boolean functions. If f ∈ B \ Q and g ∈ Q \ B, then
dist(f, g) ≥ 1/4.

We are now ready to prove a lower bound for testing Bent functions.

Theorem 16. Any adaptive two-sided tester that 1/8-tests the set of Bent func-
tions requires Ω(n2) queries.

Proof. It is well known via [2] that Q is testable with constant number of queries
(say q1(ǫ)). Suppose there is a tester that tests B using q2(ǫ, n) queries. From
Lemma 16, we know that dist(B \ Q,Q \ B) ≥ 1

4 . Thus, by Lemma 15, we have
that there is a tester that makes O(max{q1(ǫ), q1(

1
8 )}+max{q2(ǫ, n), q2(

1
8 , n)})

queries to ǫ-test B ∩ Q.
Setting ǫ = 1

4 , we have a tester that makes O(q1(
1
8 ) + q2(

1
8 , n)) queries to

test if a given f is in B ∩Q, or 1/4-far from it. Since Q1/4(B ∩Q) = Ω(n2) and
q1(

1
8 ) is a constant, we get q2(

1
8 , n) = Ω(n2), which completes the proof.
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A Proof of Observation 8

Let A be a tester (possibly adaptive) that tests the property P under the promise
that the input is a linear Boolean function. Suppose A makes Q queries in the
worst case.

Let ǫ ∈ (0, 1/4). We now build a tester A′ to ǫ-test P even when there is no
promise on the input. On input f , A′ first runs a linearity test [10] and ensures
that the function f is ǫ-close to a linear function with high probability. After
that A′ simulates A except that when A queries f at a particular x, instead of
querying f at x directly, A′ obtains the value of Lf (x) by self correcting, where
Lf is the unique linear function closest to f (Lf is unique since ǫ ∈ (0, 1/4)).
By using standard self-correcting techniques one can ensure that if f is ǫ-close
to Lf , by making Oǫ(logQ) queries, one can obtain the value of Lf at x with
probability O(1−1/Oǫ(Q)). Since A anyway makes at most Q queries, by union
bound, one can see that with constant probability A′ behaves on f just as A
would behave on Lf .

If f is ǫ-far from P then either f is ǫ-far from every linear function or f
is ǫ-close to Lf but Lf is not in P. In the first case the function is rejected
during the linearity test and in the second case, since A would reject Lf , so
would A′ with high probability. And if f is in P then f is linear and in that
case A′ works exactly same as A. So for any ǫ ∈ (0, 1/4), A′ gives a test for the
property P, without any assumption on the input. The query complexity of A′

is Oǫ(Q logQ). Thus, for all ǫ ∈ (0, 1/4), Qǫ(P) ≤ Oǫ(Q logQ).

B Proof of Lemma 11

The following is a result due to Rothaus [28]:

Theorem 17. Let f be a Boolean function. Then f is Bent iff every non-zero
derivative ∆u(f) of f is balanced i.e. ∀u ∈ F

n
2\{0}, Ex∆u(f) = Ex(−1)f(x)+f(x+u) =

0.

http://www.worldcat.org/isbn/0444851933
http://www.sciencedirect.com/science/article/pii/0097316576900248


Let G be a simple graph on the vertex set [n], and c : [n] → {0, 1} be an
assignment of colors to the vertices. Then c is called a 2-⊕-coloring of G if:

– ∃i ∈ V (G), c(i) = 1
– For every vertex i, the number of 1-colored neighbours of vertex i is even.

The following is an equivalent way of looking at the Rothaus criterion for ho-
mogenous quadratic functions:

Lemma 17. f ∈ Q0 is bent iff G(f) is not 2-⊕-colorable.

Proof. (⇒) Suppose f is bent. For sake of contradiction, let us assume that
G(f) has a 2-⊕-coloring c ∈ {0, 1}n. Let us fix some variable xi that oc-
curs in the polynomial representation of f . Note that f can be written as
f(x1, . . . , xn) = xi(

∑
j∈N(i) xj) + f ′, where N(i) denotes the neighbours of i

in G(f), and f ′ is a quadratic function which does not depend on xi. Also,
∆c(f) = ∆c(xi(

∑
j∈N(i) xj)) +∆c(f

′).
We know that

∆c(xi(
∑

j∈N(i)

xj)) = xi(
∑

j∈N(i)

xj) + (xi + ci)(
∑

j∈N(i)

(xj + cj)).

= xi(
∑

j∈N(i)

cj) + ci(
∑

j∈N(i)

xj)

Notice that the coefficient of xi in the above expression i.e.
∑

j∈N(i) cj , is the
parity of the number of 1-colored neighbours of i, and since c is a 2-⊕-coloring,
it must be zero. Thus, the derivative ∆c(f) does not depend on xi.
Since our choice of i was arbitrary, the above argument would imply that ∆c(f)
does not depend on any of the n variables, making it a constant. By Theorem
17, this is a contradiction since c is a non-zero direction and f was assumed to
be bent.
(⇐) This direction can be proved using a similar argument: if the derivative of f
in some non-zero direction u is unbalanced, u can be interpreted as a 2-⊕-coloring
of G(f).

It turns out that the 2-⊕-colorability of a graph G can be related to the inverta-
bility of its adjacency matrix.

Lemma 18. A simple graph G is 2-⊕-colorable iff its adjacency matrix AG is
singular.

Proof. Assume that the vertex set of G is [n]. The color assignment is a vector
c ∈ {0, 1}n. For every vertex i, introduce the equation

∑
j∈N(i) ci = 0, where

N(i) denotes the neighbourhood of i. This equation essentially says that the
number of 1-colored neighbours of vertex i is even. The graph is 2-⊕-colorable
iff the above system of equations has a non-zero solution which happens iff AG

is singular.

Combining Lemma 17 and 18, we get that f ∈ Q0 is bent iff the adjacency
matrix of G(f) is invertible.



C Consequences of Dickson’s lemma

C.1 Structure of quadratic functions

For the remainder of this section, we shall assume the number of variables n is
even. An important fact that we shall use is that the function IPn(x) is Bent
(This follows from the criteria stated in Appendix B).
A useful fact about the Fourier transform of Boolean functions is the following:

Observation 18 Let f be a Boolean function, and let g = f ◦T+c for an invert-
ible affine transformation T , and c ∈ F2. Then, (|f̂(S)|)S⊆[n] and (|ĝ(S)|)S⊆[n]

are the same upto permutation.

We now state the structure theorem13 for quadratic functions over F2 (Theorem
6.21, 6.30 in [25]).

Theorem 19. For every quadratic Boolean function f , there exists an invertible
affine transformation T and constants c, a1, a2, . . . an/2 ∈ F2 such that

f ◦ T =

n/2∑

i=1

aixixn/2+i + c

Since IPn(x) =
∑n/2

i=1 xixn/2+i is Bent, we have the following:

Lemma 19. Let f be a function of the form
∑n/2

i=1 aixixn/2+i + c. If exactly k
2

of the ai’s are zero, f has exactly 2n−k non-zero Fourier coefficients each having
absolute value 1

2
n−k

2

.

Putting together Theorem 19, Lemma 19 and Observation 18, we obtain a stan-
dard fact about quadratic Boolean functions.

Lemma 20. Let p be a quadratic Boolean function. There is an even integer
k ∈ [n] such that p has exactly 2n−k non-zero Fourier coefficients each having
absolute value 1

2
n−k

2

.

C.2 Proof of Lemma 10

As before, let B denote the set of Bent functions, and Q the set of quadratic
Boolean functions.
For a Boolean function g, let Og := {g ◦ T + c| T ∈ Affn, c ∈ F2}, where Affn

denotes the group of invertible affine transformation on F
n
2 .

Lemma 21. B ∩ Q = OIPn
.

13 This is theorem is also known as Dickson’s lemma.



Proof. Clearly, OIPn
⊆ Q. Since IPn is Bent, we have that OIPn

⊆ B (f is Bent
iff f ◦ T + c is Bent). Thus, OIPn

⊆ B ∩Q.
For the other direction, let f ∈ B∩Q. By Theorem 19, there exists an invertible
affine transformation T and constants c, a1, a2, . . . an/2 ∈ F2 such that f ◦ T =∑n/2

i=1 aixixn/2+i+c. Now, if k/2 of the ai’s are zero, Lemma 19 and Observation

18 will tell us that f has exactly 2n−k non-zero Fourier coefficients. But since
f ∈ B, every Fourier coefficient is non-zero, and hence k = 0. Thus, f ◦ T =∑n/2

i=1 xixn/2+i + c or equivalently, f = IPn ◦T−1 + c. This completes the proof.

Let T be a tester for ǫ-testing affine isomorphism to IPn with query complexity
q(n). We show that T can be used for ǫ-testing B ∩ Q with O(q(n)) queries.
Suppose the input function is f . The tester T ′ for B ∩ Q first runs T on f , and
then on f + 1. If either of the tests returns a positive answer, T ′ accepts f ,
otherwise it rejects f .
In the case f ∈ B ∩Q, by Lemma 21, either f ∈ OIPn

or f + 1 ∈ OIPn
, and T ′

accepts f .
Now suppose f is ǫ-far from B ∩Q. By Lemma 21, f is ǫ-far from OIPn

. This is
the same as both f and f + 1 being ǫ-far from OIPn

, and thus T ′ rejects f .

C.3 Proof of Lemma 16

Let f ∈ B \ Q and g ∈ Q \ B. We want to show that dist(f, g) ≥ 1
4 . We now

compute |〈f, g〉|:

|Exf(x)g(x)| = |
∑

S⊆[n]

f̂(S)ĝ(S)|

≤
∑

S⊆[n]

|f̂(S)||ĝ(S)|

=
1

2
n
2

∑

S⊆[n]

|ĝ(S)| (Since f is Bent)

By Lemma 20, we know that for some even k ∈ [n], exactly 2n−k Fourier coeffi-
cients of g are non-zero and have value 1

2
n−k

2

. Thus,

∑

S⊆[n]

|ĝ(S)| = 2
n−k

2

But k > 0, otherwise g ∈ B, which contradicts our assumption. Also, the quantity

2
n−k

2 is maximum at k = 2. Thus, |〈f, g〉| ≤ 1
2 .

Note that |1−2 ·dist(f, g)| = |〈f, g〉|. This immediately gives 1
4 ≤ dist(f, g) ≤ 3

4 ,
which completes the proof.

D About the proof of Lemma 15

We suggest how the proof for Proposition 2 in [15] given in Appendix B of [15]
can be made to work for Lemma 15.



Note that allowing the query complexity to depend on n does not affect the
proof. Thus, we only have to argue that the proof works even when T1 and T2

are two-sided.
Let the error probability of both T1 and T2 be bounded by δ. The soundness
analysis of the proof goes through as it is: when an input function is far from
P1 ∩ P2, the tester T rejects with error at most δ. For the completness, if the
given function is in P1 ∩ P2, T accepts with error at most 2 · δ. Choosing δ to
be 1/6, ensures that the overall error is bounded by 1/3.
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