
Robust Pseudorandom Generators∗

Yuval Ishai† Eyal Kushilevitz‡ Xin Li§ Rafail Ostrovsky¶

Manoj Prabhakaran‖ Amit Sahai∗∗ David Zuckerman††

Abstract

Let G : {0, 1}n → {0, 1}m be a pseudorandom generator. We say that a circuit implementa-
tion of G is (k, q)-robust if for every set S of at most k wires anywhere in the circuit, there is a set
T of at most q|S| outputs, such that conditioned on the values of S and T the remaining outputs
are pseudorandom. We initiate the study of robust PRGs, presenting explicit and non-explicit
constructions in which k is close to n, q is constant, and m >> n. These include unconditional
constructions of robust r-wise independent PRGs and small-bias PRGs, as well as conditional
constructions of robust cryptographic PRGs.

In addition to their general usefulness as a more resilient form of PRGs, our study of robust
PRGs is motivated by cryptographic applications in which an adversary has a local view of a large
source of secret randomness. We apply robust r-wise independent PRGs towards reducing the
randomness complexity of private circuits and protocols for secure multiparty computation, as
well as improving the “black-box complexity” of constant-round secure two-party computation.

∗This is a revised full version of [32]. The views expressed are those of the authors and do not reflect the official
policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.
†Computer Science Department, Technion (yuvali@cs.technion.il). Supported by the European Research

Council as part of the ERC project CaC (grant 259426).
‡Computer Science Department, Technion (eyalk@cs.technion.il). Supported by ISF grant 1361/10 and BSF

grant 2008411.
§Computer Science Department, University of Washington (lixints@cs.washington.edu). Supported by a Si-

mons postdoctoral fellowship.
¶Computer Science Department and Mathematics Department, University of California, Los Angeles

(rafail@cs.ucla.edu). Research supported in part by NSF grants CNS-0830803; CCF-0916574; IIS-1065276; CCF-
1016540; CNS-1118126; CNS-1136174, 1619384; US-Israel BSF grant 2008411, OKAWA Foundation Research Award,
IBM Faculty Research Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Re-
search Award, and Lockheed-Martin Corporation Research Award. This material is also based upon work supported
by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392.
‖Computer Science Department, University of Illinois at Urbana-Champaign (mmp@uiuc.edu). Research supported

in part by NSF grants 1228856 and 0747027 and a Ramanujan Fellowship.
∗∗Computer Science Department, University of California, Los Angeles (sahai@cs.ucla.edu). Research supported

in part from a DARPA/ONR PROCEED award, NSF grants 1228984, 1136174, 1118096, 1065276, 0916574 and
0830803, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an
Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research
Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-1-0389.
††Computer Science Department, University of Texas at Austin (diz@cs.utexas.edu) Research supported by NSF

Grants CCF-0916160, CCF-1218723, and DMS-0835373.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 143 (2013)

1 Introduction

Pseudorandomness is a central tool in complexity theory and cryptography. A pseudorandom
generator (PRG) is a deterministic function G : {0, 1}n → {0, 1}m which stretches a short random
seed into a longer output which looks random to any computationally bounded distinguisher. The
question we ask in this work can be pictorially described as follows. Consider an implementation of
G by a boolean circuit, and suppose that an attacker can observe a set S of k wires anywhere in the
circuit. Since S may contain output wires, the output conditioned on S may no longer look random.
But how big is the “shadow” S can cast on the output? Can we design PRG implementations in
which the effect of observing any such S is localized to roughly k bits of the output?

We formalize the above question via the notion of robust pseudorandom generators. We say
that a circuit implementation of G is (k, q)-robust if for every set S of at most k wires anywhere
in the circuit there is a set T (“shadow”) of at most q|S| outputs such that conditioned on the
values of S, the outputs outside T are pseudorandom. We will be mainly interested in a stronger
notion of robustness in which the conditioning is on both S and T ; if such a stronger requirement
is met we say that G is strongly (k, q)-robust. We consider the robustness of three distinct types
of PRG: r-wise independent PRGs, where the distinguisher can observe any r bits of the output,
small-bias PRGs [43], where the distinguisher can compute the parity of any subset of the outputs,
and cryptographic PRGs [15, 49], where the distinguisher can perform arbitrary polynomial-time
computations.

To motivate the notion of robust PRGs, consider a simple application of cryptographic PRGs
for one-time symmetric encryption. To encrypt a long message M ∈ {0, 1}m with a short secret key
K ∈ {0, 1}n, it suffices to compute C = M ⊕G(K). Since G(K) is indistinguishable from random,
so is C. Now, suppose that k << n intermediate values in the computation of C are leaked. What
do these values together with C reveal about M? The dense model theorem [48, 46, 23] assures us
that if G is sufficiently strong, then M is indistinguishable from some source whose min-entropy is
roughly m−k. However, even a single lost bit of entropy can correspond to global information about
m. For instance, if an intermediate value reveals the parity of G(K), this information together with
C reveals the parity of M . Our goal is to provide the guarantee that if arbitrary k physical bits
are leaked during the process of computing C, this is no worse than leaking (roughly) k physical
bits of M .

We turn to the question of constructing robust PRGs, starting with some simple observations.
First, if k = n, the set S can include the entire PRG seed, conditioned on which the entire output
is fixed. We thus restrict the attention to the case where k < n. Second, allowing n to be much
bigger than k, we can use the following näıve construction: if G′ : {0, 1}n′ → {0, 1}m is a PRG then
G : {0, 1}n′(k+1) → {0, 1}m defined by G(x1, . . . , xk+1) = G′(x1)⊕G′(x2)⊕· · ·⊕G′(xk+1) (computed
in the natural way) is a strong (k, 1) robust PRG. The main weakness of this construction is that
its seed length is far from optimal. A secondary weakness, which turns out to be crucial for one
of our motivating applications, is that the circuit size of G is much bigger than its output length.
Our main goal in this work is to construct robust PRGs in which n is very close to k, while keeping
q constant and maximizing the stretch function m(n). As a secondary goal, we would like to
minimize the circuit size of robust PRGs. These goals are nontrivial to meet also when considering
non-explicit constructions.

2

1.1 Our Results

We present several constructions of robust PRGs with near-optimal parameters. These include:

• Robust r-wise independent PRGs: Using explicit constructions of unbalanced lossless
expanders [19, 28], we get constructions of strong (k, q)-robust r-wise PRGs with q = O(1) and
either r, k = Ω(n) and linear stretch, or r, k = n1−η and arbitrary polynomial (or even exp(nδ))
stretch, for an arbitrary constant η > 0. For randomized (non-explicit) constructions, we can
get an arbitrary polynomial stretch with r, k = Ω(n).

• Robust ε-biased PRGs: We get an explicit construction of a strong (k, q)-robust ε-biased
PRG with q = O(1), k = Ω(n), linear stretch, and exponentially small bias. We also get a
randomized construction with a small polynomial stretch which satisfies the weaker notion of
robustness.

• Robust cryptographic PRGs: PRG constructions with constant output and input local-
ity [9, 10, 8, 7] yield (n, q)-robust PRGs with linear stretch and q = O(1). Concretely, any
PRG is (n, q)-robust where q is the product of the input and output locality. We show that
a cryptographic PRG from [9], which has linear stretch, is (Ω(n), q)-robust with q which is
smaller than the input locality (under a similar intractability assumption).

The output locality of the above PRGs (i.e., the number of inputs on which each output depends)
is at most polylogarithmic in the seed length, and their circuit size is at most quasilinear in the
output length.

As discussed above, robust PRGs can be directly motivated by their usefulness as a more resilient
alternative to traditional PRGs. We present several other applications of (strong) robust r-wise
independent PRGs in cryptography. The high level idea behind these applications is as follows.
Suppose that a cryptographic computation, which has secret inputs w and secret randomness ρ, is
attacked by an adversary who can observe intermediate values in the computation. Whenever it
is guaranteed that the adversary’s view depends only on a small number of bits from ρ (but can
arbitrarily depend on w), we can replace the true randomness ρ by pseudorandomness generated
using a robust r-wise independent PRG without degrading the security of the implementation.
Note that robustness is necessary here because the PRG computation becomes a part of the new
implementation and hence it is also subject to attacks. We apply this idea in the following domains.

Private circuits. A t-private circuit [35] is a randomized circuit which transforms a randomly
encoded input into an encoded output while providing the guarantee that the joint values of any t
wires reveal nothing about the input. We show that any t-private circuit in which each wire depends
on at most ` bits of randomness can be converted into a t private circuit that uses roughly t` bits
of randomness via the use of robust r-wise PRGs. Applying this to a variant of the construction
from [35], we get a general construction of t-private circuits which can use O(t3) bits of randomness
to protect an arbitrary poly(t)-time computation.

Secure multiparty computation. We show a similar application of robust r-wise PRGs in
the related context of unconditionally secure multiparty computation. Here we improve on the
randomness complexity of a previous randomness-efficient protocol from [18], which implicitly relies
on the näıve robust PRG construction described above.

Secure two-party computation. We obtain a constant-round two-party computation protocol
secure against malicious parties in which evaluating a circuit of size s with security 2−κ requires

3

only a polylogarithmic (in κ, s) number of calls to a cryptographic PRG for each gate of the circuit,
where κ is a security parameter, and a small number of oblivious transfers. In fact, our protocol
is non-interactive in a model that allows parallel oblivious transfers. This improves over previous
constant-round protocols which combine Yao’s garbled circuit construction with a “cut-and-choose”
technique (e.g., [39]), where the number of PRG calls per gate is O(κ). This also improves over
a previous protocol from [33] in which the number of PRG calls is similar to our protocol but
the number of oblivious transfers is very large (comparable to the number of PRG calls). The
improvement over [33] results from implementing randomized circuits of a near-optimal size which
use a small amount of randomness to make any disjunction of circuit wires or their negation
essentially independent of the input. For this application, the crucial feature of our robust PRG
constructions is their near-optimal circuit size rather than seed length. We note that our secure
two-party protocol is essentially subsumed by a recent protocol from [30] that does not require
robust PRGs. See Section 1.2 below.

1.2 Related Work

It is instructive to view the question we study in the broader context of leakage-resilient cryptog-
raphy. The general goal in this area is to get an implementation of a cryptographic function (say, a
PRG or an encryption scheme) which remains “as secure as possible” in the presence of information
leakage. One way of classifying works in this area is according to the following criteria:

• What is the class of leakage functions? One may consider either (A) local leakage, where the
adversary can probe k physical bits in the implementation, or (B) global leakage, where the
adversary can learn arbitrary k bits of information.

• Which parts of the system leak? Here one can consider either (1) confined leakage, which
applies only to part of the implementation (e.g., a secret key, a seed, or an online phase), or
(2) unconfined leakage, where the leakage applies to the entire implementation.

In case (1) one can hope to offer full protection against leakage, whereas in case (2) one needs
to settle for allowing a similar type of leakage in the “ideal model.” That is, if arbitrary k
bits of information can be leaked, the best we can hope for is that the adversary will learn k
bits of information of the same type about the secrets.

Most work on leakage resilient cryptography falls either into category (B1) (e.g., [12, 23, 2, 44,
27]), (A1) (e.g., [47, 17, 35]), or (B2) (e.g., [29, 25, 13]). Our work may be the first to study
nontrivial questions of type (A2).

We conclude by comparing our notion of robust PRGs with other notions of robustness for
PRGs considered in the literature. An exposure resilient function (ERF) [17] is a PRG whose
output remains pseudorandom even if k physical bits of the seed (and the seed alone) are leaked.
Thus, ERFs can be classified into category (A1). An ERF can be obtained by applying a standard
PRG on top of an extractor for bit-fixing sources [20]. A natural approach for constructing a
robust PRG from an ERF is to apply a private circuit compiler (such as [35]) to the ERF. This
approach fails because of the high randomness complexity of private circuits. Even if one uses
the randomness-efficient private circuits mentioned above, the parameters of the resulting robust
PRG will end up being worse than those obtained by taking the exclusive-or of k + 1 standard
PRGs. Finally, the dense model theorem (already mentioned above) implies that any sufficiently
strong cryptographic PRG offers leakage resilience of type (B2). That is, leaking arbitrary k bits

4

of information about the seed is not much worse than leaking roughly k bits of information about
the output.

Subsequent work. A recent secure two-party protocol from [30] only requires a constant number
of rounds and a constant number of PRG calls per gate. (This assumes an explicit construction of
unbalanced expander graph; without this assumption, one needs to settle for an arbitrarily small
super-constant overhead.) The protocol from [30] relies on a different randomization technique that
eliminates the need for robust PRGs, at the cost of a slightly larger number of oblivious transfers.
The construction of randomness efficient leakage-resilient circuits of near-optimal size, on which
our two-party protocol is based, may be of independent interest.

Organization. In Section 2 we give an informal overview of our techniques. In Section 3 we give
formal definitions for different variants of robust PRGs. Section 4 describes our constructions of
robust PRGs and Section 5 describes applications of robust r-wise PRGs in cryptography.

2 Overview of the Techniques

In this section we sketch the techniques used in our constructions. At a very high level, we achieve
robustness in all of our PRGs by constructing local PRGs. A local PRG is a PRG such that each
output bit depends on only a small number of input bits (say d bits). Therefore, we can implement
our PRGs using circuits with small locality (such as NC0 circuits). In such an implementation, if
the value of a wire is leaked to an adversary, it is no worse to assume that instead of the wire, the
adversary learns the values of some d input bits. Thus, if k wires are leaked, then it is no worse
to assume instead that kd input bits are leaked. We then show that our constructions are robust
against the leakage of input bits. We now give more details below.

2.1 Robust r-wise independent PRG

Limited independence has found many applications in computer science, which motivated several
efficient constructions of PRGs whose outputs have limited independence. A construction from [42],
based on expander graphs, has the small locality property that we need. Specifically, assume that
we have a bipartite expander graph with left degree d, such that any subset of v ≤ ` vertices on
the left has at least 3

4vd neighbors on the right. Such an expander with vertex expansion > d/2
is called a unique neighbor expander. Now associate the left vertices with the output bits and the
right vertices with the input bits. It is well known that the PRG obtained by computing each
output bit as the xor of its neighbors is an r1-wise independent PRG for r1 = `.

We show that the above construction is also a robust r-wise independent PRG for some r =
Ω(r1). Specifically, we show that whenever we fix a subset of vertices S on the right with |S| not
too big, there exists a subset of vertices T on the left with |T | not too big, such that the induced
graph on vertices outside of S ∪ T is still a unique neighbor expander. Therefore, even conditioned
on any fixing of the input bits in S, the output bits outside of T are still r-wise independent for
some r.

To show this, the rough idea is as follows. We let T be the set of vertices which have a large
fraction of neighbors in S. Then |T | is small because otherwise T will not have sufficient expansion.
Now for any subset of vertices V on the left with V ∩ T = ∅ and |V | ≤ `− |T |, V must have many
neighbors in S̄ (the vertices on the right not in S), since by expansion V ∪ T has many neighbors,

5

while on the other hand the neighbors of T are fairly concentrated in S. This gives our robust
r-wise independent PRG.

Next, we show that the above construction is in fact a strong r-wise independent PRG. The
rough idea is as follows. Ideally, we want to show that the output bits outside of T are still r-wise
independent even conditioned on any fixing of the input bits in S, and any fixing of the output
bits in T . However, this may not be true. If this is not true, then by the XOR lemma there must
exist a subset W of output bits with W ∩ T = ∅ and |W | ≤ r, such that the xor of the bits in W
is not uniform. Since all output bits are linear functions of the input bits, this implies that there
exists a subset U ⊂ T such that the xor of the bits in U is always equal to the xor of the bits in W
(or always equal to the complement of the xor). This can only happen if the unique neighbors of
W form a subset of the union of S and the neighbors of T . Now we can do the following process.
Initialize T to be the empty set and if there is a non-empty subset T ′ of vertices with T ∩ T ′ = ∅
and |T ′| ≤ r that has a large fraction of unique neighbors in S ∪ Γ(T), we let T = T ∪ T ′. We
repeat the above process until there is no such T ′ left. Since the graph is finite the process always
terminates in finite steps. We then use techniques similar to those in [4] to show that the size of
T is not too big. Then, any subset W outside of T with |W | ≤ r will have many unique neighbors
outside of S ∪ Γ(T), and therefore even conditioned on the fixing of the input bits in S and the
output bits in T , the xor of the output bits in W is still uniform.

2.2 Robust ε-biased PRG

Our robust ε-biased PRGs are obtained by xoring the output of our robust r-wise independent PRG
with the output of another PRG (which uses an independent seed). We give two constructions. The
first is an explicit strong robust PRG with linear stretch, or larger stretch with smaller robustness,
and the second is a randomized robust PRG with polynomial stretch. Note that an ε-biased PRG
must fool a linear test with any size. Our first observation is that the robust r-wise independent
PRG described above already fools linear test with size at most r. Thus, the other PRG only needs
to fool linear tests with large size.

For the strong robust ε-biased PRG, we construct the other PRG as follows. We take a seed
with n bits and divide it evenly into n/c blocks, where each block contains c bits, for some constant
c > 1. Now we use each block as a seed and apply a known construction of ε-biased PRG, such
as those in [43, 5]. The PRG can stretch c bits into 2Ω(c) bits with bias 2−Ω(c). Now we take the
concatenation of the outputs for all blocks as the output. This construction indeed also has small
locality as fixing k wires is no worse than fixing k blocks of input bits. Moreover, even conditioned
on the fixed input bits and the corresponding output bits, the xor of any > r of the remaining
output bits has bias of at most 2−Ω(r). In other words, this PRG is itself a strong robust ε-biased
PRG for linear tests with large size. Thus when xored with our strong robust r-wise independent
PRG, we obtain a strong robust ε-biased PRG.

For our randomized robust PRG with polynomial stretch, we take the other PRG as the ran-
domized construction in [8]. Specifically, there the authors showed that one can take a randomized
bipartite graph with n1+δ left vertices, n right vertices and left degree d for some constant d > 0,
and associate the left and right vertices with output bits and input bits respectively. Now, if each
output bit is computed by applying a non-degenerate predicate P to its neighbors, then the graph
gives an ε-biased PRG with ε = exp(−nΩ(1)). We show that their construction can be adapted to
our case. More specifically, if we again take the randomized graph, and now let each output bit
be computed by applying an appropriate polynomial P to its neighbors, then the graph gives a

6

robust ε-biased PRG with ε = exp(−nΩ(1)) for linear tests with large size. Thus when xored with
our robust r-wise independent PRG, we obtain a robust ε-biased PRG.

2.3 Robust cryptographic PRG

Here we give a high level sketch of our robust cryptographic PRG, under a computational assump-
tion.

The assumption is one made in [3, 9], and the construction is essentially the same construction
as the linear stretch cryptographic PRG in [9]. Specifically, take a bipartite expander graph with n
right vertices such that any subset of left vertices with size at most `, for ` = ω(log n), has vertex
expansion c for some constant c > 1. Associate the left and right vertices with output bits and
input bits respectively. Compute each output bit as the xor of its neighbors. The assumption is
that if we xor the output string with a noise vector such that each bit in the vector is the product of
a constant number of independent random bits, then the output is indistinguishable from uniform.
Note that the noise vector has small locality and moreover, it is (strongly) robust. Thus, if we take
the expander graph to be robust as in our construction of robust r-wise independent PRG, then
the resulting construction is a robust cryptographic PRG.

However, this PRG does not give us any stretch, since the number of uniform random bits used
to produce the noise vector is larger than the output size. To fix this, the authors in [9] use another
fresh random seed to apply an extractor to the random bits used to generate the noise vector,
and concatenate the output of the extractor to the output of the above PRG. Their extractor is
obtained by xoring an ε-biased distribution with the the random bits used to generate the noise
vector, and the output of the extractor can be shown to be statistically close to being uniform and
independent of the output of the PRG. Note that the random bits that are used to generate the
noise vector are themselves (strongly) robust. Furthermore, we can show that conditioned on the
leakage of a small number of wires and the fixing of the noise vector, these bits still have a lot of
entropy. Thus if we take the ε-biased distribution to be the output of our robust ε-biased PRG, we
get a robust cryptographic PRG.

We leave open the question of constructing strong robust cryptographic PRGs with good pa-
rameters. In particular, such constructions need to resist the type of reconstruction algorithms
considered in [16].

On the distinction between robustness and strong robustness. One might think that a
robust PRG is always also a strong robust PRG with some modest loss in parameters. This is not
the case. The following simple example provides a separation between the two notion in the cases
of small bias and cryptographic PRGs. Take a (weakly) robust PRG G and add a dummy gadget
computing the xor of all output bits.

The resulting PRG is still weakly robust with k = 1: if we let S include any single wire of the
dummy gadget and T be one of the output bits on which CS depends, then YT̄ is indistinguishable
from uniform conditioned on CS . However, letting S contain the output of the dummy gadget,
there is no output bit T such that YT̄ conditioned on S and T is pseudorandom.

3 Definitions

In this section we define the different notions of robust PRGs we will be interested in. First, Un
denotes the uniform distribution on n bits; if n is understood we sometimes use U . We will need

7

the following notion of “fooling” with respect to functions of varying input lengths.

Definition 1. Let F =
⋃
nFn be a class of functions, where the functions in Fn are from {0, 1}n

to {0, 1}. A probability distribution D on {0, 1}n is said to ε-fool F if for any f ∈ Fn,

|Pr[f(D) = 1]− Pr[f(U) = 1]| ≤ ε.

Definition 2. A circuit implementation C of a function G : {0, 1}n → {0, 1}m is a (k, q)-robust
pesudorandom generator (PRG) for a class F of functions with error ε if the following holds. Let
X be the uniform distribution over {0, 1}n and Y = G(X). For any set S of at most k wires in
G, there is a set T of at most q|S| output bits such that conditioned on any fixing of the values CS
of the wires in S, the values YT̄ of the output bits not in T ε-fools F . We say that G is a strong
(k, q)-robust PRG for F if conditioned on any fixing of the values CS and YT , we have that YT̄
ε-fools F .

If the implementation is understood or unimportant, we may simply say that a function is
a robust PRG. This may happen if each output bit depends on only few input bits, and any
implementation that does not involve using extraneous bits is robust.

When each Fn consists of all tests on r bits, we call a robust PRG for F with 0 error a robust
r-wise independent PRG. When each Fn consists of all parities on subsets of the n bits, we call a
robust PRG for F a robust ε-biased PRG. A robust cryptographic PRG is one which is robust for
each F that can be computed by circuits of poly(n) size with negligible error ε(n).

We handle leakage of arbitrary wire values by constructing a local PRG which can handle leakage
of inputs. In particular, we have the following definitions and simple lemma.

Definition 3. A function f : {0, 1}n → {0, 1}m is d-local if each output bit depends on at most d
input bits.

Definition 4. A function G : {0, 1}n → {0, 1}m is a (k, q)-input robust PRG for a class F of
functions with error ε if the following holds. Let X be the uniform distribution over {0, 1}n and
Y = G(X). For any set S of at most k input bits, there is a set T of at most q|S| output bits such
that conditioned on any fixing of the values XS of the inputs S, the values YT̄ of the output bits
not in T ε-fools F . We say that G is a strong (k, q)-input robust PRG for F if conditioned on any
fixing of the values XS and YT , we have that YT̄ ε-fools F .

Lemma 1. A d-local (strong) (dk, q)-input robust PRG is a (strong) (k, dq)-robust PRG with the
same error.

4 Constructions

In this section, we describe our constructions of robust r-wise PRGs.
Our construction of a robust r-wise independent PRG is simple. A bipartite graph H =

([m], [n], E) induces a function GH : {0, 1}n → {0, 1}m where the ith output bit is the parity
of the input bits corresponding to the neighbors of i. That is, GH(x1, . . . , xn) = (y1, . . . , ym) where
yi = ⊕j∈Γ(i)xj .

We will take H to be a bipartite expander with expansion bigger than half the degree. This is
defined as follows.

8

Definition 5. A bipartite graph ([m], [n], E) with left vertices [m] and right vertices [n] is an
(`, b)-expander if for any subset V ⊆ [m] on the left with |V | ≤ `, we have that |Γ(V)| ≥ b|V |.

We can now state our theorem.

Theorem 2. Suppose H is a d-left-regular (`, (1/2 + γ)d)-expander. Then for any constant 0 <
α < 1, we have that GH is a strong (αγ`, 1/γ)-robust r-wise independent PRG, with r = (1− α)`.

One surprising feature of this theorem is that the degree d of the expander does not appear
anywhere explicitly. Besides expansion bigger than d/2, the important parameter of the expander
is `, the maximum size of subsets which expand. The parameter ` determines the robustness of the
PRG. We have ` ≤ 2n/d, so the degree appears implicitly there.

First we state a result that a random d-left-regular graph H is a good expander with high
probability.1

Theorem 3. For any constant 0 < γ < 1/2 there exists a constant 0 < α < 1 such that for any
m ≤ nd/αd−1, with probability 1 − n−Ω(d), a random d-left-regular graph H with m left vertices
and n right vertices is an (Ω(n/d), (1/2 + γ)d)-expander. Alternatively, for any η > 0 the following
holds. For any m ≤ αn1−η(αnη)(1/2−γ)d/d, with probability 1 − n−Ω(d), a random d-left-regular
graph H with m left vertices and n right vertices is an (n1−η/d, (1/2 + γ)d)-expander.

Proof. This is a direct application of the probabilistic method. Choose some k = Ω(n/d), we just
need to bound the following probability.

k∑
j=2

(
m

j

)(
n

(1
2 + γ)jd

)(
(1

2 + γ)jd

n

)jd
.

Note that for every fixed j, the summand is at most

(
em

j

)j (en

(1
2 + γ)jd

)(1
2

+γ)jd(
(1

2 + γ)jd

n

)jd

≤

em
j

(
ec(1

2 + γ)jd

n

)(1
2
−γ)d

j

,

where c =
1
2

+γ
1
2
−γ . We can now choose k = Ω(n/d) with a small enough constant in Ω(), so that

em
j

(
ec(1

2
+γ)jd

n

)(1
2
−γ)d

< 1/4. This will guarantee that the whole probability is less than 1. Thus

we get

m <
j

4e

(
n

ec(1
2 + γ)jd

)(1
2
−γ)d

.

1In an earlier version we mistakenly state that a random d-left-regular graph withm = nd is an (Ω(n/d), (1/2+γ)d)-
expander, which is not true. To achieve such expansion m can only be as large as nd/αd−1, or to achieve output
length m = nΩ(d) one can only guarantee the expansion of subsets up to size n1−η/d for an arbitrary η > 0.

9

With k = Ω(n/d) and d ≤
√
n the minimum of the above quantity happens at j = k and thus

we only need to ensure that m ≤ αnd/αd = nd/αd−1 for some constant 0 < α < 1. The largest
term in the sum on the other hand happens at j = 2 which contributes n−Ω(d) to the error.

Alternatively, if we just need the expansion property for all subsets up to k = n1−η/d for some
constant η > 0, then again the minimum of the above quantity happens at j = k and thus we only
need to ensure that m ≤ αn1−η(αnη)(1/2−γ)d/d. The largest term in the sum on the other hand
happens at j = 2 which contributes n−Ω(d) to the error.

The above theorem gives the following non-explicit robust r-wise independent PRG.

Theorem 4. There exist constants 0 < α, β < 1 such that for any d ≤
√
n, for a random d-left-

regular H with m ≤ nd/αd−1, with probability 1 − n−Ω(d), the function GH : {0, 1}n → {0, 1}m is
a d-local strong (βn/d, 21)-robust r-wise independent PRG for r = βn/d. Alternatively, for η > 0
the following holds. For any m ≤ αn1−η(αnη)βd/d, with probability 1 − n−Ω(d), the function GH :
{0, 1}n → {0, 1}m is a d-local strong (n1−η/d, 21)-robust r-wise independent PRG for r = n1−η/d.

We now instantiate Theorem 2 with known expander constructions. Capalbo et al. [19] achieved
expansion bigger than d/2 for constant degree graphs, with ` = Ω(n/d). This yields:

Theorem 5. For any constant C > 0 there is a constant β > 0 such that there is an explicit
O(1)-local strong (βn, 21)-robust r-wise independent PRG G : {0, 1}n → {0, 1}Cn for r = βn.

For larger stretch but lower robustness we use the expanders of Guruswami, Umans, and Vadhan
[28]. They achieve ` = n1−η for any η > 0, which gives:

Theorem 6. For any η > 0 there exists δ, C > 0 such that for any m ≤ exp(nδ), there is an explicit
d-local strong (n1−η, 21)-robust r-wise independent PRG G : {0, 1}n → {0, 1}m for r = n1−η and
d ≤ logC m.

To prove the theorem we first prove a lemma about expanders.

Lemma 7. Suppose H = ([m], [n], E) is a d-left-regular (`, d/2+c)-expander. Then for any S ⊆ [n]
on the right of size |S| ≤ c`/2, there exists T ⊆ [m] on the left with |T | ≤ 2|S|/c such that the
induced graph on left vertices [m] \ T and right vertices [n] \ S is an (`− |T |, d/2 + c/2)-expander.

Proof. Let T be the subset on the left that has the maximum size among all subsets {T ′} on the
left with size at most ` such that |Γ(T ′) \ S| ≤ (d/2 + c/2)|T ′| (note that T is well defined since
T ′ = φ is such a subset). Then we must have |T | ≤ 2|S|/c because otherwise we have

|Γ(T)| ≤ |Γ(T) \ S|+ |S| ≤ (d/2 + c/2)|T |+ |S| < (d/2 + c)|T |,

which contradicts the expansion property of H.
Next, for any non-empty subset V on the left with V ∩ T = φ and |V | ≤ `− |T |, we have

|Γ(V) \ S|+ |Γ(T) \ S| ≥ |Γ(V ∪ T) \ S| ≥ (d/2 + c/2)|V ∪ T | = (d/2 + c/2)(|V |+ |T |),

since V and T are disjoint and |V |+ |T | ≤ `.
Thus we must have

|Γ(V) \ S| ≥ (d/2 + c/2)|V |

since |Γ(T) \ S| ≤ (d/2 + c/2)|T |.

10

Note that this theorem already shows that our construction is a (weak) robust r-wise indepen-
dent PRG for some r. This is because we can view S in the lemma as the set of input bits that are
potentially leaked to the adversary, and the lemma says that there exists a subset T of the output
bits such that the induced graph of H outside of S and T is still a unique-neighbor expander.
Therefore, the output bits outside of T are still r-wise independent for some r. In the following we
prove that the same construction is actually strongly robust, proving Theorem 2.

We show that GH is strongly (dαγ`, 1/(γd))-input-robust. Let S be the set of input bits that
are fixed with |S| = s ≤ kd ≤ αγd` = αc`.

We now consider the input bits in S̄, which are the bits not in S. Let x ∈ {0, 1}n be the input
string, and y = G(x) ∈ {0, 1}m be the output string. For any output bit yi we associate with it
a vector Vi ∈ {0, 1}n. The vector Vi has exactly d 1s at the d positions of yi’s neighbors (more
precisely, yi’s corresponding vertex’s neighbors), and has 0s everywhere else, i.e., Vi is the indicator
vector of whether an xj influences yi. We then let V̄i ∈ {0, 1}n−s be the vector that is obtained
by projecting Vi into the bits that are in S̄. Let X be the uniform distribution over {0, 1}n, and
Y = G(X) be the output bits of the PRG. The following fact is immediate.

Fact 8. For any subset W of the output bits, we have⊕
Yi∈W

Yi is a constant ⇐⇒
∑
Yi∈W

V̄i = 0.

Lemma 9. For any subset W of the output bits, let W̄ be the output bits not in W . Assume
that conditioned on some fixing of the input bits {Xi ∈ S} and the output bits {Yh ∈ W}, there
exist some bits Yj1, · · · , Yjl ∈ W̄ such that Y ′ =

⊕l
i=1 Yji is not uniform. Then Y ′ is a constant.

Moreover, V̄ ′ =
∑l

i=1 V̄ji is in Span({V̄h : Yh ∈W}), and vice versa.

Proof. First, note that if V̄ ′ =
∑l

i=1 V̄ji is in Span({V̄h : Yh ∈ W}) then Y ′ =
⊕l

i=1 Yji is the sum
of some Yh’s in W and some Xi’s in S. Thus Y ′ is a constant.

We now prove the other direction. For each Xi we associate with it a vector Ui ∈ {0, 1}n
that has exactly one 1 at the i’th position, and has 0’s everywhere else. Let b be the dimension
of Span({V̄h : Yh ∈ W}). Since X is originally the uniform distribution, and every fixing of Xi

or Yh is a linear constraint, we have that conditioned on all these fixings, X is now an affine
source of dimension n − s − b. In other words, there exist n − s − b linearly independent vectors
A1, · · · , An−s−b ∈ {0, 1}n and another vector A0 ∈ {0, 1}n such that

X =
n−s−b∑
i=1

ZiAi +A0,

where {Zi} are uniform independent random bits. Moreover, each Ai is orthogonal to each (Uj :

Xj ∈ S) and each (Vh : Yh ∈W). Let V ′ =
∑l

i=1 Vji. Then

Y ′ =

l⊕
i=1

Yji = 〈V ′, X〉 =

n−s−b∑
i=1

Zi〈V ′, Ai〉+ 〈V ′, A0〉.

Thus, if Y ′ is not uniform, then for all i, we have 〈V ′, Ai〉 = 0 and Y ′ = 〈V ′, A0〉 is a constant.
Thus V ′ ∈ Span({Ui : Xi ∈ S}, {Vh : Yh ∈ W}). Note that the Xi’s only have 0 outside of the
bit positions in S, thus when projected into the bit positions in S̄, we have that V̄ ′ =

∑l
i=1 V̄ji ∈

Span({V̄h : Yh ∈W}).

11

We now slightly abuse notation and use S to also denote the set of right vertices in H that
correspond to the fixed bits. Below we borrow some techniques from [4]. We have the following
definition.

Definition 6. Suppose H = ([m], [n], E) is a d-left-regular (`, d/2 + c)-expander where c = γd. For
any subset T ⊂ [m] we let ∆(T) ⊂ [n] be the set of unique neighbors of T , i.e. the set of right
vertices that are adjacent to only one vertex in T . For any subset S ⊂ [n] with |S| < c`, we define
an inference relation `S on subsets of the left vertices as follows.

T1 `S T2 ⇐⇒ |T2| ≤ `− |S|/c ∧ |∆(T2) \ [Γ(T1) ∪ S]| < c|T2|.

We now set T = ∅ and repeat the following step as long as it is possible: if there exists a
non-empty subset T1 ⊂ [m] \ T such that T `S T1 then let T = T ∪ T1. Since the graph is finite
the above procedure terminates in finite steps. We denote the final T by Cl(S). We now have the
following lemma.

Lemma 10. If |S| < c` then |Cl(S)| ≤ |S|/c.

Proof. Assume for the sake of contradiction that |Cl(S)| > |S|/c. Consider the sequence of subsets
of left vertices T1, T2, · · · , Tv that we add to the set T . Note that all these Ti’s are disjoint. Let
Cv = ∪vi=1Ti be the set of left vertices derived in v steps. Thus |Cv| =

∑v
i=1 |Ti|.

Let v0 be the first v such that |Cv| > |S|/c. Thus |Cv0−1| ≤ |S|/c and |Cv0 | ≤ |Cv0−1|+|Tv0 | ≤ `.
By the expansion property, Cv0 has at least (d/2 + c)|Cv0 | neighbors and thus ∆(Cv0) ≥ 2(d/2 +
c)|Cv0 | − d|Cv0 | = 2c|Cv0 |. Therefore

|∆(Cv0) \ S| ≥ 2c|Cv0 | − |S| > c|Cv0 |.

On the other hand, since each time when we add Ti to T , the number of unique neighbors in
∆(T) \ S increases by at most |∆(Ti) \ [Γ(T) ∪ S] |, we have

|∆(Cv0) \ S| <
v0∑
i=1

c|Ti| = c|Cv0 |,

which is a contradiction.

Lemma 11. Let T = Cl(S). Then conditioned on any fixing of the input bits in S and any
fixing of the output bits in T , the output bits that are not in T are r-wise independent, where
r = `− |S|/c ≥ (1− α)`.

Proof. Let T̄ be the set of output bits that are not in T . Assume that the lemma is not true.
Then, for some fixing of the input bits in S and some fixing of the output bits in T , there exist
1 ≤ l ≤ r = `− |S|/c output bits {Yj1, · · · , Yjl ∈ T̄} such that

⊕l
i=1 Yji is not uniform.

By Lemma 9, V̄ ′ =
∑l

i=1 V̄ji is in Span({V̄h : Yh ∈ T}). Let T1 be the set of left vertices
corresponding to {Yj1, · · · , Yjl}. Then we have that ∆(T1)\S ⊂ Γ(T). Thus |∆(T1)\ (Γ(T)∪S)| =
0 < c|T1|. This means that we can add T1 to T in the procedure where we obtain Cl(S), which
contradicts the fact that Cl(S) is obtained when the procedure stops.

Note that |T | ≤ |S|/c ≤ kd/c = k/γ, thus the theorem is proved.

12

4.1 Robust ε-biased generators

We give two constructions of robust ε-biased PRGs. The first construction is strong and explicit.
It gives linear stretch for linear robustness and bigger stretch for smaller robustness. The second
PRG outputs close to n3/2 bits even for linear robustness. However, it is not explicit (because we
don’t have an explicit construction of the underlying expander) or strong.

Both constructions start from the observation that a strong robust r-wise independent PRG
can handle parities of size at most r. We will xor this PRG with another PRG that handles all
larger parities. For robust PRGs, we combine them with the following simple lemma.

Lemma 12. Suppose G1 : {0, 1}n1 → {0, 1}m is a (k, q1)-robust PRG for parities of size at most r
with error ε and G2 : {0, 1}n2 → {0, 1}m is a (k, q2)-robust PRG for parities of size more than r with
error ε. Then G : {0, 1}n1+n2 → {0, 1}m given by G(X) = G(X1) ⊕G(X2) is a (k, q1 + q2)-robust
ε-biased PRG.

For strong robust PRGs, we need the following definition.

Definition 7. A circuit implementation C of a function G : {0, 1}n → {0, 1}m is a doubly strong
(k, q, t)-robust pesudorandom generator (PRG) for a class F of functions with error ε if the following
holds. Let X be the uniform distribution over {0, 1}n and Y = G(X). For any set S of at most k
wires in G, there is a set T of at most q|S| output bits such that conditioned on any fixing of the
values CS of the wires and the values of YT , and the further fixing of t arbitrary output bits in T̄ ,
we have that the rest of the bits in Y ε-fools F .

For example, we have the following lemma.

Lemma 13. A strong (k, q)-robust r-wise independent PRG is also a doubly strong (k, q, t)-robust
(r − t)-wise independent PRG for any t < r.

Now, if we take the xor of two doubly strong robust PRGs, then we get a strong robust PRG.
Specifically, we have

Lemma 14. Suppose G1 : {0, 1}n1 → {0, 1}m is a doubly strong (k, q1, kq2)-robust PRG for parities
of size at most r with error ε and G2 : {0, 1}n2 → {0, 1}m is a doubly strong (k, q2, kq1)-robust
PRG for parities of size more than r with error ε. Then G : {0, 1}n1+n2 → {0, 1}m given by
G(X) = G(X1)⊕G(X2) is a strong (k, q1 + q2)-robust ε-biased PRG.

We will set n1 = n2 = n/2 in both constructions.

4.1.1 First Construction

To handle larger parities, our first construction uses the following well-known constructions of ε-
biased spaces. Recall that a probability space is ε-biased if, for any X the parity of a non-empty
subset of variables, |Pr[X = 1]− Pr[X = 0]| ≤ ε, i.e., the deviation from 1/2 is at most ε/2.

Theorem 15. [43, 5] For any ε > 0 there is an explicit construction of PRG G0 : {0, 1}n → {0, 1}m
such that the output is ε-biased and n ≤ 3(logm+ log(1/ε)).

Define Gu,d : {0, 1}ud → {0, 1}m by Gu,d(x1, . . . , xu) = G0(x1) ◦ . . . ◦ G0(xu), where each
xi ∈ {0, 1}d and ◦ denotes concatenation. Here G0 : {0, 1}d → {0, 1}m0 has error ε0 ≤ 2−d/6 and
output length m0 = 2d/6, so m = um0 = 2d/6u.

Now we have the following lemma.

13

Lemma 16. For any k, t ∈ N with k + t ≤ u and any r > tm0, the function Gu,d defined above is

a d-local doubly strong (k,m0, t)-robust PRG for parities of size at least r with error ε ≤ εr/m0−t
0 .

Proof. For any fixing of s ≤ k wires S, let T be the set of at most sm0 output bits generated by
the s or fewer input blocks xi which lead to wires in S. Let T1 be the set of the other fixed t
output bits. Let T2 be the set of at most tm0 output bits generated by the t or fewer input blocks
xi which lead to the bits in T1. Consider any fixing of T ∪ T1. Now we analyze any parity on a set
R of size at least r not involving the bits of T ∪ T1. Some of the bits in R may be in T2. However,
the number of bits in R that are not in T2 is at least r − |T2| = r − tm0. These bits depend on at
least v = (r − tm0)/m0 = r/m0 − t input blocks xi, which are independent of the bits in T ∪ T2.
Partition these bits into R1 ∪ . . . ∪ Rv accordingly. Then each parity Ri has bias (deviation from
1/2) at most ε0/2, so the bias of v independent such parities has bias at most εv0/2. Since the Ri’s
are independent of the bits in T2, the parity on R also has bias at most εv0/2.

Theorem 17. For a small enough constant β > 0, for any constant C > 1 there is an explicit
strong (βn,O(1))-robust ε-biased PRG G : {0, 1}n → {0, 1}Cn, where ε = 2−Ω(n/C).

Proof. We let G2 : {0, 1}n/2 → {0, 1}Cn be Gu,d with 2d/6/d = 2C and u = n/(2d). Thus m0 = 2d/6

is a constant. We let G1 : {0, 1}n/2 → {0, 1}Cn be the PRG from Theorem 2 and choose α, γ such
that G1 is a strong (βn, 21)-robust r-wise independent PRG for r = τn with τ > 25m0β (since we
only need linear stretch we can achieve ` = Ω(n) in that theorem). Thus by Lemma 13 G1 is also a
doubly strong (βn, 21,m0βn)-robust r′-wise independent PRG for r′ = τn−m0βn. By Lemma 20
G2 is a doubly strong (βn,m0, 21βn)-robust PRG for parities of size at least r′ with error

ε ≤ εr
′/m0−21βn

0 = ε
τn/m0−22βn
0 ≤ (2−d/6)(3τn)/(25m0) = (2−d/6)(3τn)/(25·2d/6) = 2−Ω(n/C).

Thus by Lemma 14, G is a strong (βn,m0 +21 = O(1))-robust ε-biased PRG with ε = 2−Ω(n/C).

We can also achieve larger stretch with smaller robustness.

Theorem 18. For any η > 0 and any s = s(n) < n1−η, there is an explicit strong (n1−η/s, s)-robust
ε-biased PRG G : {0, 1}n → {0, 1}sn, where ε = exp(−n1−η/s).

Proof. We repeat the above proof and let G1 : {0, 1}n/2 → {0, 1}sn be the PRG from Theorem 2
with the expander graph in [28] that achieves ` = n1−η, and G2 : {0, 1}n/2 → {0, 1}sn be Gu,d with
2d/6/d = 2s and u = n/(2d).

4.1.2 Second Construction

Next, we construct a robust ε-biased PRG G : {0, 1}n → {0, 1}m with m = n1+δ for some constant
0 < δ < 1. Some of the techniques are borrowed from Applebaum et al [8]. Here we will apply
Lemma 12. We now describe G1 and G2.

Let H be a d-left-regular (`, 11d/12)-expander with m = n1+δ left vertices, n/2 right vertices
with d > 8, ` > 2, and every vertex on the right has degree at most 4dnδ. Associate the right
vertices with the n/2 input bits, and the left vertices with the m output bits. For G1, each output
bit is computed as the xor of its neighbors, i.e., G1 = GH . For G2, each output bit is a function P
of its neighbors, where P is defined as

14

P (x1, · · · , xd) =
∑

S⊂[d],|S|=d/6+1

Πi∈Sxi.

Here all operations are in F2. Since the graph has left degree d, we can implement the PRG
naturally as a circuit G with locality d. We now view each left vertex in the bipartite graph as a
hyperedge that contains d vertices (i.e., its neighbors). First we have the following definition.

Definition 8. [8] ((r, l, b)-independence). Let W be a collection of distinct hyperedges. A subset
V ⊆ W of l distinct hyperedges is an (l, b)-independent set of W if the following two properties hold.

1. Every pair of hyperedges (Vi, Vj) ∈ V has distance at least 2, namely, for every pair Vi 6= Vj ∈
V and W ∈ W,

Vi ∩W = φ or Vj ∩W = φ.

2. For every Vi ∈ V and W 6= Vi in W we have

|Vi ∩W | ≤ b.

A graph is (r, l, b)-independent if every set of hyperedges with size at least r has an (l, b)-independent
set.

We have the following lemma.

Lemma 19. The bipartite graph described above is (r, r/(16d4n2δ), d/6) independent.

Proof. By the expansion property, every two vertices on the left have at least 11d/6 neighbors on
the right. Thus the number of common neighbors is at most d/6. In other words, the intersection
of any two different hyperedges has size at most d/6. Thus the second property holds. Now fix any
set of r hyperedges. We greedily pick hyperedges into the independent set. Specifically, we insert a
hyperedge V into the independent set and remove all the hyperedges W that share some common
node with V , and all the hyperedges that share some common node with W . We then iterate the
above process. Since each time we remove at most (4d2nδ)2 hyperedges, we are left with at least
r/(16d4n2δ) hyperedges in the independent set.

We now have the following lemma.

Lemma 20. Consider the PRG G2. For any subset S of the input bits with size s ≤ 5d`/24, there
exists a subset T of the output bits with size t ≤ 24s/(5d) such that the following holds. Conditioned

on any fixing of the bits in S, the xor of any r output bits in T̄ has bias of at most 2−Ω(r/(2d/6d4n2δ)).

Proof. Let T be the set of output bits which correspond to vertices that have at least 17d/24
neighbors in S. By Lemma 7 (note that c = 5d/12) we have |T | ≤ 2s/c = 24s/(5d). Now any
vertex in T̄ has at least d− 17d/24 = 7d/24 neighbors in S̄.

Consider the xor of any r output bits in T̄ . These bits correspond to r hyperedges (W1, · · · ,Wr).
By Lemma 19 there exists an (l, b) independent set (V1, · · · , Vl) with l = r/(16d4n2δ) and b = d/6.
Now fix an arbitrary assignment for the input bits in S̄ that are not in any of the Vi’s and choose the
other input bits in S̄ uniformly randomly. Let σ be the assignment of all fixed input bits (including
those in S). Now the xor of the r bits is

15

Y =
∑
i∈[r]

P (XWi) =
∑
i∈[l]

Zi(XVi),

where the sum is over F2 and

Zi(XVi) = P (XVi) +
∑

W :W 6=Vi,W∩Vi 6=φ
P (XW∩Vi , σW\Vi).

Note that the Zi’s are independent, since by the property of the independent set (Vi, {W :
W 6= Vi,W ∩ Vi 6= φ})i∈[l] is a partition of (W1, · · · ,Wr). Next, note that for W 6= Vi, we have
|Vi ∩W | ≤ b. Thus P (XW∩Vi , σW\Vi) is a polynomial of the bits of Vi with degree at most b = d/6.
On the other hand, since Vi has at least 7d/24 > d/6 + 1 bits in S̄, we have that P (XVi) is a
polynomial of the bits of Vi with degree d/6+1. Thus, Zi is a non-constant polynomial with degree
d/6 + 1. Therefore, Zi takes each value of {0, 1} with probability at least 2−(d/6+1). Since Y is the

sum of l independent Zi’s, we have that Y has bias of at most 2−Ω(l/2d/6) = 2−Ω(r/(2d/6d4n2δ)).

We now have the following theorem.

Theorem 21. For any constant 0 < α < 1/2, the circuit G described above is a robust ε-biased

(5α`/12, 48/5) PRG, where ε = 2−Ω(`/(2d/6d4n2δ)).

Proof. Note that in the expander graph H we have γ = c/d = 5/12. By Theorem 2, G1 is
a (5α`/12, 24/5) robust r-wise independent PRG with r = (1 − 2α)`. By Lemma 20, G2 is a

(5α`/12, 24/5)-robust PRG for parities of size more than r with error 2−Ω(r/(2d/6d4n2δ)). Thus by

Lemma 12, G is a a robust ε-biased (5α`/12, 48/5) PRG, where ε = 2−Ω(`/(2d/6d4n2δ)).

When d is a constant, a random bipartite graph with the above size satisfies the properties with
high probability. Thus we have the following theorem.

Theorem 22. There exists a constant integer d and a constant β > 0 such that for any 0 < δ < 1/2,
given a random d-left-regular H with m = n1+δ, with probability 1 − n−Ω(1), the construction
described above using H as the expander is a (βn, 48/5)-robust ε-baised PRG with ε = 2−n

Ω(1)
.

4.2 Robust cryptographic generators

In this section we show that a variant of an expander-based construction of cryptographic PRGs
from [9], which has constant locality and linear stretch, is also robust under a similar intractability
assumption. We now describe the construction.

Let m = m(n) > n be a parameter. Let d0, d1, d2 be three integer constants. Take an (`0, 3d0/4)
expander with left vertices [m], right vertices [n], left degree d0 with m = c1n for some constant
c1 > 1 and let M = Mn be the adjacency matrix of the graph. Let X be the uniform distribution
over n bits. Let µ = 2−l for some constant l ∈ N. We sample a noise vector of length m such that
each bit of the vector is 1 with probability µ. Namely, let Y be the uniform distribution over l ·m
bits. We compute

E(Y) =
(

Πl
j=1Yl(i−1)+j

)m
i=1

.

16

Now take a constant c2 > 1 and let g : {0, 1}lm/c2 → {0, 1}lm be the ε-biased generator in
Theorem 17, where the expander graph in that construction is a (`1, 3d1/4) expander with left
degree d1 and the block size of the second PRG in that construction is d2. Since we only need a
linear stretch, we can achieve constant degrees d0, d1 and `0 = Ω(n), `1 = Ω(lm/c2) = Ω(n). Let R
be the uniform distribution over lm/c2 bits. Our generator is now defined as

G(X,Y,R) = (MnX + E(Y), g(R) + Y),

where all operations are in F2. Thus G : {0, 1}n+lm+lm/c2 → {0, 1}m+lm.
We will use the following variant of an assumption from [3, 9].

Assumption 23. [3, 9] The assumption has a parameter c ≥ 1. For any constant 0 < µ < 1/2
and m = O(n), let Dµ(Mn) denote the distribution of MnX+e, where Mn is the (m×n) adjacency
matrix defined above, X is a uniform random vector in {0, 1}n and e is a noise vector in {0, 1}m
such that each bit is an independent Bernoulli distribution that takes 1 with probability µ. If the
bipartite graph is a (ω(log n), c) expander, then

Dµ(Mn) ≈ Dµ+m−1(Mn),

where ≈ means that any circuit with size poly(n) cannot distinguish the two distributions with
non-negligible probability.

We rely on the following lemmas.

Lemma 24. [3, 9] For any polynomial m = m(n) and constant 0 < µ < 1/2, and any family {Mn}
of m× n matrices over F2, if Dµ(Mn) ≈ Dµ+m−1(Mn) then Dµ(Mn) ≈ Um.

Lemma 25. [9] Let Y ← Ulm and E(Y) be defined as above. Then

Pr
z←E(Y)

[H∞(Y |E(Y) = z) ≥ (1− δ(l)) · lm] ≥ 1− e−(2−lm)/3,

where δ(l) = 2−Ω(l).

Lemma 26. [6, 26, 22] Let g : {0, 1}n → {0, 1}s be an ε-biased generator, and let Xs be a random
variable on {0, 1}s with min-entropy at least (1− δ)s for some δ > 0. Then,

|(g(Un) +Xs)− Us| ≤ ε2δ·s/2−1/2,

where the vector addition is in F2.

We now have the following theorem.

Theorem 27. Suppose Assumption 23 holds for some constant c ≥ 1. Then there exist three
constants 0 < β < 1 and d > c0 > 1 such that the circuit G described above with d0 > 8c/5 is a
(βn, c0)-robust cryptographic PRG with linear stretch and input locality d.

Proof. Assume that we fix k1 wires in MnX+E(Y) and k2 wires in g(R)+Y , such that k1 +k2 = k.
This will influence at most k1 + k2 = k output bits in E(Y). Let T1 ⊆ [m] be the positions of these
output bits in E(Y) and S1 ⊆ [lm] be the positions of the bits in Y that generate these bits. Thus
|T1| ≤ k and |S1| ≤ lk.

17

We first consider the bits in MnX +E(Y). Fixing k wires is no worse than fixing kd bits in X.
Let S ⊆ [n] be the positions of these bits in X. Thus |S| ≤ kd. By Lemma 7, there exists a set
T ⊆ [m] with |T | ≤ 8k such that the induced graph on left vertices [m]\T and right vertices [n]\S
is an (`0 − |T |, 5d0/8)-expander. Thus the induced graph on left vertices [m] \ (T ∪ T1) and right
vertices [n] \ S is also an (`0 − |T |, 5d0/8)-expander. Note that `0 − |T | ≥ `0 − 8k = Ω(n) and
5d0/8 > c by assumption. Also, note that the bits in X outside of S are uniform, and the bits in
E(Y) outside of T1 are i.i.d bits which are equal to 1 with probability 2−l. Thus by Assumption 23
and Lemma 24 we have that the bits in MnX +E(Y) outside of T ∪ T1 are indistinguishable from
uniform. Note that |T ∪ T1| ≤ 9k.

Next, consider the bits in g(R) + Y . We first fix all the bits in MnX + E(Y). Fixing X
has no effect on Y or R. Now let Y ′ be the bits of Y outside of S1. Thus Y ′ has at least
l(m− k) bits. Note that fixing the bits in T1 has no effect on Y ′. By Lemma 25, with probability

1 − e−(2−l(m−k))/3 = 1 − 2−Ω(n) over the fixing of the other bits in E(Y), Y ′ has min-entropy at
least (1− δ(l)) · l(m− k).

Next, by Theorem 17, when we fix k wires in g(R), there is a set T2 ⊆ [lm] with |T2| = O(k)
such that the bits in g(R) outside of T2 are ε-biased, with ε = 2−Ω(lm/c22). Let Ȳ be the bits of Y
outside of S1 ∪ T2. When Y ′ has min-entropy at least (1 − δ(l)) · l(m − k), Ȳ has min-entropy at
least (1− δ(l)) · l(m− k)− |T2| = (1− δ(l)) · l(m− k)−O(k) ≥ (1− 2δ(l)) · l(m− k) for sufficiently
small k = Ω(n). Thus by Lemma 26, the bits in g(R) +Y outside of S1∪T2 are ε′-close to uniform,
where

ε′ = ε22δ(l)·l(m−k)/2−1/2 = 2δ(l)·l(m−k)−Ω(lm/c22)−1/2.

Let Ω(lm/c2
2) = blm/c2

2 for some constant b > 0. Now let

c2 = 2l/(1− 1/c1)

such that

∆ = l

(
b

c2
2

− δ(l)
)
> 0.

Such constants c2 and l do exist since δ(l) = 2−Ω(l) while b/c2
2 = Θ(1/l2). Thus we have that

ε′ = 2δ(l)·l(m−k)−blm/c22−1/2 ≤ 2−∆m = 2−Ω(n).

Therefore, the output bits outside of T ∪ T1 ∪ S1 ∪ T2 are indistinguishable from uniform.
Note that |T ∪ T1 ∪ S1 ∪ T2| = O(k) = c0k. At the same time, the input length of the G is
n+ lm+ lm/c2 = (lc1 + c1/2+1/2)n while the output length is (l+1)m = (lc1 + c1)n. Since c1 > 1
the generator has a linear stretch. Note that c0 does not depend on the input locality d so we can
make c0 < d.

Finally, note that d = O(1), since d is the maximum of d0 + l and 1 plus the input locality
of g.

Remark 28. We note that any cryptographic PRG where every output bit depends on only d input
bits and every input bit influences only c output bits can be easily shown to be (k, cd)-robust. The
cryptographic PRG in [9] can be made to have constant c and d, thus it also has a constant q.
However, our construction has two advantages. First, by using a strong robust ε-biased PRG as

18

in Theorem 17, the g(R) + Y part of our construction can already be shown to be strongly robust.
Since the MnX + E(Y) part also has some strongly robust property (e.g., MnX actually gives a
strong robust r-wise independent PRG), our construction serves as a good candidate for a strong
robust cryptographic PRG. Second, if we only wish to achieve a (weak) robust cryptographic PRG,
then in the g(R) + Y part we can use the (weak) robust ε-biased PRG as in Theorem 21 with a
linear stretch. In this way we obtain a (k, q)-robust cryptographic PRG with q = c0 < d, while the
trivial argument gives q = cd = O(d2).

5 Applications

As noted in the introduction, robust cryptographic PRGs can be directly motivated by standard
cryptographic applications of PRGs such as symmetric encryption. In this section we present several
applications of robust r-wise PRGs in cryptography. First, we show how to apply robust PRGs
towards reducing the randomness complexity of private circuits and protocols for information-
theoretic secure multiparty computation. We then rely on the low circuit size of robust PRGs
towards improving the “black-box complexity” of constant-round secure two-party computation.

The following technical lemma captures a typical application scenario in which a strong robust
r-wise PRG is used to replace a true source of randomness in cryptographic implementations in
which the adversary has a local view of the randomness. The security of this approach will follow by
showing that the view of any wire-probing adversary who attacks the “real world” implementation,
in which a robust PRG is used to generate randomness, can be simulated given the view of a wire-
probing adversary who attacks an ideal implementation which uses a true source of randomness.
To simplify notation, we will use G to denote both the function computed by a robust PRG and
its circuit implementation.

Lemma 29. Let λ be a positive integer and G : {0, 1}n → {0, 1}m be a strong (k, q) robust r-wise
PRG with r ≥ max(λ, kq). Then, for any set S of at most k wires in G, there is a set T ⊆ [m],
|T | ≤ q|S|, and a randomized algorithm Sim (a simulator) such that the following holds. For every
Q : {0, 1}m → V which depends on at most λ bits of its input, the distributions Real and Sim(Ideal)
are identical, where Real = (Q(G(X)), GS(X)), Ideal = (Q(R), RT), X is uniformly distributed over
{0, 1}n, and R is uniformly distributed over {0, 1}m. Moreover, if G is linear over the binary field
then Sim can be implemented in probabilistic polynomial time.

Proof. We let T be the set corresponding to S in Definition 2. The simulator Sim, on input (v, ρT),
samples a uniformly random x′ such that GT (x′) = ρT (where GT denotes the T -outputs of G) and
outputs (v,GS(x′)). Note that Sim can be implemented efficiently when G is linear. We prove that,
when (v, ρT) are distributed according to (Q(R), RT), the output of Sim is distributed as Real.

Since r ≥ kq ≥ |T |, the above sampling is well defined and (X,GT (X)) ≡ (x′, RT). Hence also

(GS(X), GT (X)) ≡ (GS(x′), RT). (1)

Let L ⊆ [m] denote the subset of bits of R on which Q(R) depends. Since r ≥ λ ≥ |L|, it follows
from the strong robustness of G that GL\T (X) is uniform and independent of (GS(X), GT (X)).
Hence,

[Q(G(X)) |GS(X) = gS , GT (X) = gT] ≡ [Q(R) |RT = gT] ≡ [Q(R)|GS(x′) = gS , RT = gT] (2)

19

where [Z |E] denotes the distribution of Z conditioned on the event E. Combining (1) and (2), we
get

(GS(X), GT (X), Q(G(X))) ≡ (GS(x′), RT , Q(R))

and hence
Real ≡ (Q(G(X)), GS(X)) ≡ (Q(R), GS(x′)) ≡ Sim(Ideal)

as required.

Lemma 29 provides a general recipe for reducing the randomness complexity of cryptographic
implementations in which the adversary’s view depends on at most λ bits of randomness (but
potentially also on many bits of secret data). In the next sections, we give several examples for
such applications.

5.1 Private circuits

A t-private circuit is a randomized circuit which transforms a randomly encoded input into a
randomly encoded output while providing the guarantee that the joint values of any t wires reveal
nothing about the input. (For simplicity we address here the stateless variant of private circuits
with encoded inputs and outputs, see [35, Section 3] and [1, Section 2.1]; a similar result applies to
other variants as well.) We will show that robust r-wise PRGs can be used to reduce the randomness
complexity of private circuits in which each wire depends on few bits of the randomness. The latter
feature can be enforced by adding a simple “rerandomization gadget” to existing constructions.

Definition 9. (Private circuit) A private circuit for f : {0, 1}ni → {0, 1}no is defined by a triple
(I, C,O), where

• I : {0, 1}ni → {0, 1}n̂i is a randomized input encoder;

• C is a randomized boolean circuit with input ŵ ∈ {0, 1}n̂i, output ŷ ∈ {0, 1}n̂o, and randomness
ρ ∈ {0, 1}m;

• O : {0, 1}n̂o → {0, 1}no is an output decoder.

We say that C is a t-private implementation of f with encoder I and decoder O if the following
requirements hold:

• Correctness: For any input w ∈ {0, 1}ni we have Pr[O(C(I(w), ρ)) = f(w)] = 1], where the
probability is over the randomness of I and ρ.

• Privacy: For any w,w′ ∈ {0, 1}ni and any set P of t wires in C, the distributions CP (I(w), ρ)
and CP (I(w′), ρ) are identical.

We say that C makes an `-local use of its randomness if the value of each of its wires is determined
by its input ŵ and at most ` bits of the randomness ρ (where the identity of these bits may depend
on the wire). Unless noted otherwise, we assume I and O to be the following canonical encoder and
decoder: I encodes each input bit wi by a block of t+ 1 random bits with parity wi, and O takes the
parity of each block of t+ 1 bits.

20

Note that without any requirement on I and O the above definition is trivially satisfied by having
I compute a secret sharing of f(w) which is passed by C to the decoder. However, applications
of private circuits require the use of encoder and decoder which are independent of f (and are
typically smaller than the circuit size of f).

The following theorem applies robust r-wise PRGs towards reducing the randomness complexity
of private circuits.

Theorem 30. Suppose C is a qt-private implementation of f with encoder I and decoder O, where
C uses m random bits and makes an `-local use of its randomness. Let G : {0, 1}n → {0, 1}m be a
strong (t, q) robust r-wise PRG with r ≥ t ·max(`, q). Then, the circuit C ′ defined by C ′(ŵ, ρ′) =
C(ŵ, G(ρ′)) is a t-private implementation of f with encoder I and decoder O which uses n random
bits.

Proof. We show that the view of an adversary A′ who attacks C ′(ŵ, ρ′) by probing a set S of t′ ≤ t
wires in G and a set P of t − t′ additional wires in C is independent of the input w. Since C is
qt-private, it suffices to show that the view of A′ can be simulated given the view of an adversary
A who probes at most qt wires in C(ŵ, ρ).

Let T and Sim be as promised by Lemma 29 for λ = t`. For any ŵ, let Qŵ(ρ) = CP (ŵ, ρ).
Since C makes an `-local use of its randomness, Qŵ depends on at most λ bits of ρ. Thus, for
any fixed ŵ, we have Sim(Qŵ(R), RT) ≡ (Qŵ(G(X)), GS(X)), where R is uniform on {0, 1}m and
X is uniform on {0, 1}n. It follows that Sim(QI(w)(R), RT) ≡ (QI(w)(G(X)), GS(X)). Since the
distribution to which Sim is applied captures the view of an adversary A who corrupts a set P ∪ T
of at most qt′ + (t − t′) ≤ qt wires in C and the distribution on the right hand side captures the
view of A′, it follows that the view of A′ is independent of w as required.

Theorem 30 implies that robust PRGs can be used to reduce the question of improving the
randomness complexity of private circuits to that of improving their randomness locality. Luckily,
known constructions such as the one from [35], while technically not satisfying the randomness
locality condition, can be easily modified to have good randomness locality.

The t-private circuit construction from [35] emulates each gate g of a circuit implementation of
f by a gadget which uses O(t2) fresh random bits to compute, given random shares (a0, . . . , at) of
an input a ∈ {0, 1} and (b0, . . . , bt) of an input b ∈ {0, 1}, random shares (c0, . . . , ct) of c = g(a, b).
To prevent the randomness used for generating the shares ci from influencing gadgets which use
c as an input, one can use the following simple refreshing approach.2 Generate fresh random bits
(r1, . . . , rt) and let c′0 = c0⊕ r1⊕ c1⊕ r2 . . .⊕ rt⊕ ct (where the latter expression is computed from
left to right), let c′i = ri for i = 1, . . . , t, and output (c′0, . . . , c

′
t) as the new shares of c.

Note that the outputs c′i are completely determined by c and the fresh random bits ri, thus
ensuring that the randomness used to generate the ci does not influence other gadgets. Moreover,
the above gadget does not violate the t-privacy requirement. Indeed, the values of every t′ ≤ t
wires in the refreshing gadget can be simulated given the values of t′ ci wires in the original circuit
independently of all other values. Applying the above modification to the construction of [35] we
get:

Claim 31. Any function f with circuit size s admits a t-private implementation (I, C,O) with the
canonical encoder I and decoder O, where C uses O(t2s) random bits and makes an O(t2)-local use
of its randomness.

2This version of the refreshing gadget, suggested by Jean-Sebastien Coron, replaces the one described in [32] which
failed to respect t-privacy.

21

Combining Claim 31 with Theorem 6 we get the following corollary.

Corollary 32. For any polynomial s(·) and ε > 0, any function f of circuit size s(t) admits a t-
private implementation (I, C,O) with the canonic encoder I and decoder O, where C uses O(t3+ε)
random bits. Moreover, C can be efficiently constructed given a circuit for f .

Using a naive implementation of robust PRGs obtained by taking the exclusive-or of k + 1
independent (r + k)-wise PRGs would require O(t4) random bits. Improving the randomness
locality of private circuits would immediate yield a corresponding improvement to Corollary 32.

An alternative model. While we considered in this section a model of private circuits which
receive encoded inputs and produce encoded outputs, the results apply also to an alternative variant
in which the inputs and outputs are not protected by an encoder and decoder. In this case one
should settle for the following relaxed t-privacy requirement: the distribution of any set of at most t
wires in C can be simulated given t bits from the input and output. To apply robust PRGs and get
efficient simulation in this context, one needs to use the efficient simulation variant of Lemma 29.

5.2 Secure multiparty computation

Private circuits can be viewed as a restricted form of secure multiparty computation, with a large
number of parties, each of which is assigned to evaluate a single gate of the circuit. In this section,
we consider the more general case where, typically, the number of parties is significantly smaller
than the circuit size. The randomness complexity of general t-private computations was studied by
Canetti et al. [18] (other works, such as [38, 37, 36, 24, 14], concentrated on special values of t or
on special tasks).

For concreteness, consider the case where k parties, each holding an input bit xi, wish to
compute the value f(x1, ..., xk), for some function f . Let Cf be a circuit that computes f . The
question studied in [18] is the randomness complexity of such protocols. They prove the following:

Proposition 33. Let f : {0, 1}k → {0, 1} be as above, and t ≤
√
k. Then, f can be computed by a

t-private protocol Pf , using a trusted party which generates Õ(t4 · |Cf |/k) random bits and with no
additional randomness. More concretely, the trusted party picks a random string α from a space of
r-wise independent strings of length m = Õ(|Cf | · t2), with r = Õ(t4 · |Cf |/k), and then distributes
the entries of α between the k parties.

Next, [18] switch to the standard model of secure computation, where no trusted party is
available. This is done by letting t+ 1 parties each emulate the role of the trusted party by picking
a random string from the above space and distributing the bits of the string among the k parties.
Then, each of the k parties takes the exclusive-or of the t+ 1 strings it received and uses the result
as its randomness for the protocol Pf . This can be viewed as a naive implementation of a robust
PRG that results in a protocol with total randomness complexity Õ(t5 · |Cf |/k). Our goal is to
show that, using a better robust r-wise PRG, we can save a factor of t in the randomness, hence
achieving in the standard model the same asymptotic randomness complexity as in the case of a
trusted party.

The above result of [18] is meaningful only when t ≤
√
k (for larger values of t, the basic BGW

protocol is superior). Hence, for convenience, we will focus on the case where kc1 ≤ t ≤ kc2 , for
some constants c1 < c2 < 0.5 and where |Cf | ≤ kO(1).

For a robust r-wise PRG G : {0, 1}n → {0, 1}m, let CG be a circuit evaluating G. In our
construction, the size of the circuits is |CG| = O(md) = Õ(m), where d is the locality of G (we

22

have d =polylog(m) in our explicit construction; in the non-explicit case, we can have d = O(1)).
We set m, r to be as in Proposition 33 and n = r1/(1−η), as in Theorem 6, with η > 0 being a
small constant. We modify the protocol Pf of Proposition 33 into a protocol P ′f as follows: we
let the k parties pick ≈ n/k random bits each (if n < k then only n of the k parties pick one
uniformly random bit each). Then, the k parties evaluate the circuit CG, where each party is in
charge of ≈ |CG|/k of the wires. This means that the party gets the inputs of the corresponding
gate and evaluates the wire. Finally, after the m-bit output of G is computed (and each output
bit is delivered to the designated party), the k parties execute the protocol Pf , using the m-bit
output of G as its randomness. During the evaluation of G, each party gets to see the values of
O(|CG|/k) of the wires of CG. This means that an adversary who corrupts t of the k parties gets to
see a set S of O(t · |CG|/k) wires of CG (this includes the O(t ·n/k) input wires that these t parties
pick). Using the values of |CG| and m, this is Õ(mt/k) = Õ(t3 · |Cf |/k) wires. The randomness
complexity of P ′f is n = r1/(1−η) = Õ(t4 · |Cf |/k)1+ε, for some ε = ε(η). Since t and |Cf | are both

polynomial in k, this is just Õ(t4+ε′ · |Cf |/k), for some ε′. The above construction yields:

Proposition 34. Let kc1 ≤ t(k) ≤ kc2, for some constants c1 < c2 < 0.5. Suppose Pf is a t-
private protocol for computing f : {0, 1}k → {0, 1}, which uses m random bits and makes an `-local
use of its randomness, in the sense that the view of any coalition of t parties depends on at most
` bits of the randomness. Let G : {0, 1}n → {0, 1}m be a strong (s, q)-robust r-wise PRG with
s = Õ(t3 · |Cf |/k)) and r = max(q · s, `). Then, the protocol P ′f described above, is a t-private
protocol for f which uses n random bits.

The formal proof of security relies on Lemma 29, with X being the uniformly random bits
picked in the first stage of P ′f by n of the parties (assumed to be honest), S is the set of wires in
CG that the adversary gets to see, and Q is the view that the adversary sees while executing Pf
(this information depends on λ = Õ(t4 · |Cf |/k) bits).

As described above, we instantiate Proposition 34 with the protocol Pf of Proposition 33 and
with the PRG G of Theorem 6 to get the following theorem.

Theorem 35. For any constants 0 < τ < 0.5, c ≥ 1, and ε > 0 the following holds. If f :
{0, 1}k → {0, 1} admits a circuit Cf of size |Cf | = kc then, for t = kτ , f can be computed by a
t-private k-party protocol which uses a total of O(t4+ε · |Cf |/k) random bits.

5.3 Secure two-party computation

In the previous sections, we demonstrated the usefulness of robust r-wise PRGs for reducing the
randomness complexity of several cryptographic tasks. In this section we present a somewhat unex-
pected application of robust r-wise PRGs to the “black-box complexity” of constant-round secure
two-party computation. Unlike the previous applications, this application is not very sensitive to
the seed length (e.g., the seed length of the naive construction would suffice), but is rather sensitive
to the circuit size of the robust PRG, requiring it to be very close to the output length. Since the
end result is quite involved and relies on results from previous works, we start by describing the
core technical question to which we apply robust PRGs.

Suppose that a function f admits a t-private circuit (I, C,O) where C has size s, uses Ω(s)
random bits, and makes a tO(1)-local use of its randomness. We think of s as being a large poly-
nomial in t, much larger than the randomness locality parameter. Our goal here is to reduce the
randomness complexity of C without significantly increasing its size. Concretely, we would like to

23

obtain a t′-private circuit (I, C ′, O) for f where t′ = Ω(t), C ′ uses tO(1) bits of randomness and
has size at most s · polylog(t). For this we can combine Theorem 30 with constructions of strong
robust t-wise PRGs with polylogarithmic locality. (If we settle for a non-explicit3 construction, we
can make the size of C ′ a constant multiple of s by using a constant-locality robust PRG.) Note
that the naive construction of robust t-wise PRGs (taking the exclusive-or of t + 1 independent
t-wise PRGs) is unsuitable for this application not because of its randomness complexity but rather
because of its circuit size. Using the naive construction would inherently incur an Ω(t) overhead
to the circuit size, compared to the desired polylog(t) overhead.

Disjunction-resilient circuits. The application we consider here does not require C (or C ′) to
be t-private but rather to satisfy a different property: it should be the case that for any subset
Z of wires or their negations, the disjunction of the (possibly negated) wires in Z is essentially
independent of the input for I. More concretely, define ∆Disj(Z), the disjunctive distinguishing
advantage of Z, by

∆Disj(Z)
def
= max

w,w′

∣∣Pr[DisjZ(C(I(w), ρ)) = 1]− Pr[DisjZ(C(I(w′), ρ)) = 1]
∣∣

where DisjZ denotes the disjunction of (possibly negated) wires Z. We say that C is disjunction
resilient if for any set of (possibly negated) wires Z, we have ∆Disj(Z) = 2−Ω(t). For |Z| ≤ t, the
t-privacy of C ensures that ∆Disj(Z) = 0. Furthermore, one can ensure via a local randomization
gadget from [33] that for any Z we have Pr[DisjZ(C(I(w), ρ)) = 1] ≥ 1− 2−Ω(|Z|). We refer to the
latter property as local entropy. Note that the combination of t-privacy and local entropy implies
disjunction resilience.

The randomization gadget from [33] increases the size of C by a constant factor. Our goal is,
as before, to get a randomness efficient C ′ for f whose size is close to that of C. However, now
C ′ should be disjunction resilient rather than private. We show that if C is t-private and has the
local entropy property, then the construction of Theorem 30 yields a disjunction resilient C ′ of low
randomness complexity and roughly the same size as C.

Lemma 36. Let (I, C,O), G,C ′ be as in Theorem 30, where G consists only of XOR gates. Further-
more, suppose that for any set Z of size τ = dt/2e and w we have Pr[DisjZ(C(I(w), ρ)) = 1] ≥ 1−ε.
Then, for any set Z ′ in C ′, we have ∆Disj(Z

′) ≤ max(ε, 2−τ).

Proof. We use the following case analysis.

• If |Z ′| ≤ t, then the t-privacy of C ′ implies that ∆Disj(Z
′) = 0.

• If Z ′ involves at least τ wires in the C-part of C ′, then Pr[DisjZ′(C
′(I(w), ρ′)) = 1] ≥ 1 − ε

and hence ∆Disj(Z
′) ≤ ε. This follows from the fact that for any such Z ′ containing exactly τ

wires in the C part, the joint distribution of C ′Z′(I(w), ρ′) is identical to that of CZ′(I(w), ρ),
and adding more wires (from both the C and G parts) can only increase the probability of
the disjunction being equal to 1.

• If Z ′ involves at least τ wires in the G-part of C ′ and at most τ wires in the C part of C ′, we
distinguish between the following two subcases, depending on the dimension dim of the linear
space spanned by the parities corresponding to the G-part of Z ′.

3The application we consider here can actually be securely implemented with a non-explicit construction in which
one of the parties picks the randomness used to define the robust PRG; however, if we set the locality parameter to
d, the non-explicit construction will fail with n−Ω(d) probability.

24

– dim ≤ τ : In this subcase the G wires in Z ′ are determined by at most τ wires from G
and at most τ wires from C, implying that ∆Disj(Z

′) = 0 as in the first case.

– dim > τ : In this subcase we have Pr[DisjZ′(C
′(I(w), ρ′)) = 1] ≥ 1 − 2−τ (since the

probability is lower bounded by the probability that a random vector in a linear space
of dimension dim is nonzero). Thus we have ∆Disj(Z

′) ≤ 2−τ .

In each of the above cases we have ∆Disj(Z
′) ≤ ε or ∆Disj(Z

′) ≤ 2−τ as required.

We combine Lemma 36 with results from [21, 33] and with robust r-wise PRGs to compile any
circuit C into a 2−Ω(κ) disjunction resilient circuit C ′ with poly(κ) randomness complexity, where
the size of C ′ is within a polylog factor of the size of C whenever C is much larger than its depth,
input, and output size.

Lemma 37. There is a polynomial-time algorithm which given a boolean circuit C(w) and a security
parameter κ generates a triple (I, CDisj, O) such that:

• CDisj(ŵ, ρ) is a randomized boolean circuit and I,O are the canonical encoder and decoder
with privacy parameter κ.

• CDisj has size s′ = s ·polylog(s) + poly(κ, d, ni, no), where d, ni, no are the depth, input length,
and output length of C, respectively.

• CDisj has randomness complexity poly(κ, log s) and randomness locality `′ = poly(κ).

• For any set Z of wires in CDisj or their negations, ∆Disj(Z) ≤ 2−κ.

Proof. We construct CDisj from C and κ via the following steps. First, similarly to [33], we use the
efficient MPC protocol from [21] to efficiently generate, given C and κ, a κ-private implementation
(I, C ′, O) of size s′ = s · polylog(κ) + poly(κ, d, ni, no) and randomness locality poly(κ). (The
randomness locality feature can be obtained via a “refreshing” approach similarly to the one used
in Claim 31.) The next step is to inject randomness into C ′ by converting it into a circuit C ′′ of size
O(|C ′|) and randomness locality `′′ = O(`′) which satisfies the local entropy property. This is done
by applying the randomization gadget from [33] to each gate of C ′. More concretely, the circuit C ′′

inherits the κ-private of C ′ and has the additional property that for any set Z of (possibly negated)
wires and input w, Pr[DisjZ(C ′′(I(w), ρ′′) = 1] ≥ 1−Ω(|Z|). The final step is to apply Theorem 30
with the strong robust r-wise PRGs of Theorem 6 (with q = O(1) and k, r = O(κ)) for reducing
the randomness complexity of C ′′ while increasing its size by another polylogarithmic factor. By
Lemma 36, the resulting circuit CDisj has the disjunction property stated in the last item of the
lemma.

We note that by replacing the canonical I,O by more efficient ones, it is possible to remove
the dependence of s′ on ni, no. Moreover, the entire additive term can be eliminated for almost all
“natural” circuits, see [21] for discussion.

Non-interactive secure computation. To describe the final application, we recall the model of
non-interactive secure two-party computation (NISC) from [33]. In a NISC protocol for a function
f(a, b) there is a receiver holding an input a and a sender holding an input b. The goal is to allow
the receiver to learn f(a, b) without learning any additional information about the sender’s input
b and using as little interaction as possible. We capture the latter requirement by restricting the

25

parties to communicate via a single round of parallel calls to an ideal oblivious transfer (OT) oracle.
The sender’s input to each OT call is a pair of strings and the receiver’s input is a selection bit;
the receiver obtains the selected string from each OT call. The joint inputs each party feeds into
the OT oracle are obtained by applying a randomized function of its input (depending only on this
input and on local, secret randomness), as specified by the protocol.

The security requirements are as follows. First, we require that if both parties follow the
protocol, then the receiver learns the correct output f(a, b). Second, we require the protocol to
be secure against malicious parties. That is, the protocol should guarantee that for every receiver
strategy there is an effective distribution A over inputs a such that the view of the receiver can be
simulated (up to computational indistinguishability) given f(A, b) alone, i.e., without knowing the
sender’s input b. Moreover, for every sender strategy there is an effective distribution B such that
for any receiver input a the receiver’s output is statistically close to f(a,B). We refer to a protocol
as above as a NISC protocol for f in the OT-hybrid model.

It was shown in [33] that every f admits a NISC protocol in the OT-hybrid model in which
the parties make a black-box use of a cryptographic PRG. This strengthens the classical result of
Yao for “honest but curious” parties [50, 40] as well as similar results for constant-round protocols
which also make a black-box use of a PRG but require additional interaction [41, 39, 34, 45].

An interesting question left open by the above line of work is that of minimizing the complexity
of NISC protocols, measured by the number of PRG calls and the number of OT calls. In Yao’s
protocol, the parties only need to invoke the PRG O(1) times for each gate of a boolean circuit
computing f . In addition, they invoke the OT oracle na times, where na is the length of the
receiver’s input. To offer security against malicious parties while still making a black-box access to
a PRG, previous constant-round protocols employed a “cut-and-choose” approach which required
O(κ) PRG calls per gate to guarantee security against a malicious sender4 with statistical error of
2−κ.

The approach suggested by [33] to lower the number of PRG calls consists of the following steps:

1. Design a protocol Π for an arbitrary circuit C(a, b) which only makes O(1) PRG calls per gate
and uses roughly na OT calls, but offers limited security. Concretely, a malicious sender can
mount a disjunctive attack in which the receiver’s output takes some special value whenever
DisjZ(C(a, b)) is satisfied for some disjunctive predicate Z picked by the sender. (Recall that
a disjunctive predicate is the logical OR of wires and their negations.) If the predicate is not
satisfied, then the receiver gets the correct output defined by the sender’s effective strategy
B. This attack may correlate the receiver’s output with its input in a way that violates the
standard security definition.

2. To mitigate this attack, the given circuit C is converted into a randomized circuit (I, CDisj, O)
for which ∆Disj(Z) ≤ 2−κ, where κ is a security parameter. More precisely, the encoder I is
only applied to the first input a of CDisj, and ∆Disj(Z) is defined by maximizing the advantage
over all pairs or inputs (a, b) and (a′, b) (with a common sender input b).

3. The circuit CDisj is viewed as a deterministic circuit taking an encoded input a, an input b,
and randomness ρ. It is securely evaluated using Π, where the receiver locally computes its
encoded input I(a), picks ρ at random, and uses both as inputs for Π. The sender uses b

4The level of computational security against a malicious Receiver offered by the protocol is directly inherited from
the strength of the PRG and does not affect the number of PRG calls; we ignore this measure in the following.

26

as its input for Π. Finally, the receiver locally applies the decoder O to the output of Π to
compute the output of C.

This approach is instantiated in [33] by using (essentially) the circuit C ′′ from the proof of
Lemma 37 as CDisj. This circuit has size quasilinear in the size of C, but its randomness complexity
is comparable to its size. Thus, while the protocol from [33] makes a polylogarithmic number
of PRG calls for each gate of C, it makes a comparable number of calls to the OT oracle. The
latter cost may be viewed as prohibitive, as OT is typically much more expensive to implement
than a PRG.5 The randomness efficient version provided by Lemma 37 makes the number of OTs
comparable to the receiver’s input length (rather than the circuit size) while keeping the number
of PRG calls per gate polylogarithmic.

We formalize the above via the following proposition. To simplify notation, we treat f as a
concrete function, avoiding an explicit quantification over families of f . When using big-O notation,
the hidden constants should be understood to be independent of f .

Proposition 38. (Implicit in [33]) Suppose f(a, b) admits a randomized circuit implementation
(I, CDisj, O) such that I = I(a) produces na encoded receiver input bits and CDisj has s binary (AND,
OR, NOT, XOR) gates and uses nr random bits. Moreover, suppose that CDisj((I(a), b), ρ) satisfies
the following additional condition: for any a, a′, b and disjunction Z, we have

Pr[Z(CDisj((I(a), b), ρ)) = 1]− Pr[Z(CDisj((I(a′), b), ρ)) = 1] ≤ 2−κ.

Then, f admits a NISC protocol Πf in the OT-hybrid model with the following features:

• Πf makes na + nr +O(κ) calls to the OT oracle.

• Πf makes O(s) black-box calls to a (length doubling, cryptographic) PRG and no further use
of cryptography.

• Πf is statistically 2−Ω(κ) secure against a malicious sender.

• Πf is computationally secure against a malicious receiver.

Combining Proposition 38 with Lemma 37 yields the following.

Theorem 39. There is a polynomial-time algorithm which, given a boolean circuit C(a, b) and a
security parameter κ, generates a NISC protocol ΠC in the OT-hybrid model with the following
features:

• ΠC makes na + poly(κ, log s) calls to the OT oracle, where na = |a| and s = |C|.

• ΠC makes s ·polylog(s)+poly(κ, d, ni, no) black-box calls to a (length doubling, cryptographic)
PRG and no further use of cryptography, where d, ni, no are the depth, total input length, and
output length of C, respectively.

• ΠC is statistically 2−Ω(κ) secure against a malicious sender.

• ΠC is computationally secure against a malicious receiver.
5Known techniques for OT extension [11, 31] (namely, producing many OTs from few OTs) cannot use an under-

lying PRG as a black-box and do not work in the non-interactive setting unless one allows offline interaction before
the inputs are known.

27

Similarly to the discussion after Lemma 37, the additive term in the number of PRG calls can
be eliminated when the circuit is sufficiently “regular”.

Acknowledgements. We thank Benny Applebaum and and Jean-Sebastien Coron for helpful
discussions and comments, and an anonymous reviewer for pointing out the relevance of [4]. We
also thank Jean-Sebastien Coron and Sebastian Faust for pointing out the insecurity of the original
version of the refreshing gadget from Claim 31.

References

[1] Miklós Ajtai. Secure computation with information leaking to an adversary. In STOC, pages
715–724, 2011. Full version on ECCC 18: 82, 2011.

[2] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore bits and
cryptography against memory attacks. In TCC, pages 474–495, 2009.

[3] Michael Alekhnovich. More on average case vs approximation complexity. In FOCS, pages
298–307, 2003.

[4] Michael Alekhnovich, Edward A. Hirsch, and Dmitry Itsyksonz. Exponential lower bounds for
the running time of DPLL algorithms on satisfiable formulas. Journal of Automated Reasoning,
35:51–72, 2005.

[5] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple constructions of almost
k–wise independent random variables. Random Structures and Algorithms, 3(3):289–303, 1992.

[6] Noga Alon and Yuval Roichman. Random cayley graphs and expanders. Random Struct.
Algorithms, 5(2):271–285, 1994.

[7] Benny Applebaum. Pseudorandom generators with long stretch and low locality from random
local one-way functions. In STOC, pages 805–816, 2012.

[8] Benny Applebaum, Andrej Bogdanov, and Alon Rosen. A dichotomy for local small-bias
generators. In TCC, pages 600–617, 2012.

[9] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. On pseudorandom generators with
linear stretch in NC0. Journal of Computational Complexity, 17:38–69, 2008.

[10] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography with constant input
locality. J. Cryptology, 22(4):429–469, 2009.

[11] Donald Beaver. Correlated pseudorandomness and the complexity of private computations. In
STOC, pages 479–488, 1996.

[12] Charles H. Bennett, Gilles Brassard, and Jean-Marc Robert. Privacy amplification by public
discussion. SIAM J. Comput., 17(2):210–229, 1988.

[13] Nir Bitansky, Ran Canetti, and Shai Halevi. Leakage-tolerant interactive protocols. In TCC,
pages 266–284, 2012.

28

[14] Markus Bläser, Andreas Jakoby, Maciej Liskiewicz, and Bodo Manthey. Private computation:
k-connected versus 1-connected networks. J. Cryptology, 19(3):341–357, 2006.

[15] Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM J. Comput., 13:850–864, 1984.

[16] Andrej Bogdanov and Youming Qiao. On the security of goldreich’s one-way function. Com-
putational Complexity, 21(1):83–127, 2012.

[17] Ran Canetti, Yevgeniy Dodis, Shai Halevi, Eyal Kushilevitz, and Amit Sahai. Exposure-
resilient functions and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000.

[18] Ran Canetti, Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Randomness versus fault-
tolerance. J. Cryptology, 13(1):107–142, 2000.

[19] Michael Capalbo, Omer Reingold, Salil Vadhan, and Avi Wigderson. Randomness conductors
and constant-degree expansion beyond the degree/2 barrier. In STOC, pages 659–668, 2002.

[20] Benny Chor, Oded Goldreich, Johan H̊astad, Joel Friedman, Steven Rudich, and Roman
Smolensky. The bit extraction problem of t-resilient functions. In FOCS, pages 396–407, 1985.

[21] Ivan Damg̊ard, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation
and the computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[22] Yevgeniy Dodis and Adam Smith. Correcting errors without leaking partial information. In
STOC, pages 654–663, 2005.

[23] Stefan Dziembowski and Krzysztof Pietrzak. Leakage-resilient cryptography. In FOCS, pages
293–302, 2008.

[24] Anna Gál and Adi Rosén. Lower bounds on the amount of randomness in private computation.
In STOC, pages 659–666, 2003.

[25] Sanjam Garg, Abhishek Jain, and Amit Sahai. Leakage-resilient zero knowledge. In
CRYPTO’11, pages 297–315, 2011.

[26] Oded Goldreich and Avi Wigderson. Tiny families of functions with random properties: A
quality-size trade-off for hashing. Random Struct. Algorithms, 11(4):315–343, 1997.

[27] Shafi Goldwasser and Guy N. Rothblum. How to compute in the presence of leakage. In FOCS,
pages 31–40, 2012.

[28] Venkatesan Guruswami, Chris Umans, and Salil Vadhan. Unbalanced expanders and random-
ness extractors from Parvaresh-Vardy codes. Journal of the ACM, 56:1–34, 2009.

[29] Shai Halevi and Huijia Lin. After-the-fact leakage in public-key encryption. In TCC, pages
107–124, 2011.

[30] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively secure
garbled circuits with constant communication overhead in the plain model. In Proceedings of
TCC 2017 (II), pages 3–39, 2017.

29

[31] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers effi-
ciently. In CRYPTO, pages 145–161, 2003.

[32] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai, and
David Zuckerman. Robust pseudorandom generators. In ICALP, pages 396–407, 2013.

[33] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient
non-interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

[34] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer
- efficiently. In CRYPTO, pages 572–591, 2008.

[35] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against
probing attacks. In CRYPTO, pages 463–481, 2003.

[36] Eyal Kushilevitz and Yishay Mansour. Randomness in private computations. In PODC, pages
181–190, 1996.

[37] Eyal Kushilevitz, Rafail Ostrovsky, and Adi Rosén. Characterizing linear size circuits in terms
of privacy. In STOC, pages 541–550, 1996.

[38] Eyal Kushilevitz and Adi Rosén. A randomnesss-rounds tradeoff in private computation. In
CRYPTO, pages 397–410, 1994.

[39] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[40] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party compu-
tation. J. Cryptology, 22(2):161–188, 2009.

[41] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-party
computation. In Public Key Cryptography, pages 458–473, 2006.

[42] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On epsilon-biased generators in nc0.
Random Struct. Algorithms, 29(1):56–81, 2006.

[43] Joseph Naor and Moni Naor. Small–bias probability spaces: Efficient constructions and appli-
cations. SIAM Journal on Computing, 22(4):838–856, 1993.

[44] Moni Naor and Gil Segev. Public-key cryptosystems resilient to key leakage. In CRYPTO,
pages 18–35, 2009.

[45] Benny Pinkas, Thomas Schneider, Nigel P. Smart, and Stephen C. Williams. Secure two-party
computation is practical. In ASIACRYPT, pages 250–267, 2009.

[46] Omer Reingold, Luca Trevisan, Madhur Tulsiani, and Salil P. Vadhan. Dense subsets of
pseudorandom sets. In FOCS, pages 76–85, 2008.

[47] Ronald L. Rivest. All-or-nothing encryption and the package transform. In FSE, 1997.

[48] Terence Tao and Tamar Ziegler. The primes contain arbitrarily long polynomial progressions.
http://arxiv.org/abs/math.NT/0610050, 2006.

30

[49] A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd FOCS.

[50] Andrew Chi-Chih Yao. How to generate and exchange secrets. pages 162–167, 1986.

31

ECCC ISSN 1433-8092

https://eccc.weizmann.ac.il

