
The two queries assumption and Arthur-Merlin classes

Vyas Ram Selvam
C-VEST, IIIT-H

vyasram.s@research.iiit.ac.in

Abstract

We explore the implications of the two queries assumption, PNP [1] = P
NP [2]
|| , with

respect to the polynomial hierarchy and the classes AM and MA. We prove the following
results:

1. PNP [1] = P
NP [2]
|| =⇒ AM = MA

2. PNP [1] = P
NP [2]
|| =⇒ PH ⊂MA/1

3. ∃ B PNP [1]B = PNP [2]B and NPB 6⊆ coMAB .

4. PNP [1] = P
NP [2]
|| =⇒ PH = P

NP [1],MA[1]
|| = P

NP [2],prcoNP (MA∩coMA)[1]
|| (here

prcoNP (MA ∩ coMA) refers to the promise class pr(MA ∩ coMA) where the promise
is restricted to a coNP set)

Under the two queries assumption, the best containment of PH known so far in a non-
uniform class is NP/poly as shown by Kadin. Our result showing the containment of PH in
MA/1 betters this.

We also show that the question of whether PH collapses to AM = MA under the two

queries assumption is non-relativizable by constructing an oracle B such that PNP [1]B =

PNP [2]B and NPB 6⊆ coMAB . This improves upon the result by Buhrman and Fortnow
where they showed that the question of whether PH collapses to NP under the two queries
assumption is not relativizable.

Two incomparable results are known regarding the collapse of PH under the two queries

assumption: the collapse to ZPP
NP [1]
1/2−1/exp shown by Chang and Purini and the collapse to

Y Op
2 ∩ NOp

2 shown by Chakaravarthy and Roy. Our results showing the collapse of PH

to P
NP [1],MA[1]
|| and P

NP [2],prcoNP (MA∩coMA)[1]
|| are incomparable to these. These results

also imply that a collapse of PH to PNP [1] is possible if and only if MA ⊆ PNP [1] or
prcoNP (MA ∩ coMA) ⊆ prcoNPP

NP [1] under the two queries assumption.

1 Introduction

1.1 Background

The assumption that one query to a SAT oracle is as powerful as two queries to a SAT oracle
leads to some interesting implications, with the most profound one being the collapse of the
polynomial hierarchy. The question has a long history in the field of structural complexity
theory with several results bringing down the collapse to smaller and smaller classes. Krentel

showed that FPNP [1] = FP
NP [2]
|| =⇒ P = NP [14]. While the assumption in the case of

functions resulted in a straightforward collapse of the polynomial hierarchy to P; the implica-

tions of the corresponding assumption in the case of language classes, PNP [1] = P
NP [2]
|| , are

not so direct as we do not know of any direct collapse to P or even NP . Throughout this pa-

per, we shall use the term ’two queries assumption’ to refer to the assumption: PNP [1] = P
NP [2]
|| .

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 144 (2013)

Using the hard/easy argument, Kadin showed the the two queries assumption implies that
coNP is contained in NP/poly [12]. This also means the containment of PH in the non-uniform
class NP/poly. This result along with Yap’s theorem [17] implies the collapse of PH to Σp

3. Wag-

ner improved the collapse to PΣp
2 [16]. Further results brought down the collapse to PΣp

2[1],NP [1]

[2] [7]. While a downward collapse to NP seemed elusive for the assumption PNP [1] = P
NP [2]
|| ,

Hemaspaandra et. al. showed a downward collapse for a general case of the assumption by

showing that PΣp
k[1] = P

Σp
k[2]

|| =⇒ PH ⊆ Σp
k (for k > 2) [11].

Buhrman and Fortnow extended the hard/easy argument of Kadin and arrived at three new
results under the two queries assumption [4]:

1. PNP [1] = PNP

2. locally (at every input length n), either NP = coNP or NP has polynomial sized circuits

3. there exists a relativized world where PNP [1] = P
NP [2]
|| ,but coNP 6= NP .

Making use of the result that locally, either NP = coNP or NP ⊂ P/poly; Fortnow, Pavan
and Sengupta showed that PH collapses to Sp

2 under the two queries assumption [10]. Chakar-
avarthy and Roy improved this collapse to their newly defined class Y Op

2 ∩ NOp
2 [6, Theorem

16]. Later, Chang and Purini showed a collapse of the polynomial hierarchy to ZPP
NP [1]
1/2−1/exp

[9, Theorem 18]. The last two results are incomparable since we do not know about the relation
between the two classes independent of the two queries assumption.

Since a relativizable collapse to NP is not possible, let alone P, a collapse to PNP = PNP [1] is

much sought after and the collapse to ZPP
NP [1]
1/2−1/exp comes very close to achieving that. How-

ever, the question of achieving a flat collapse to PNP [1] still remains open.

Some research work had been done related to the original problem. Tripathi studied the im-

plication of a weaker assumption (P
NP [2]
|| ⊆ ZPP

NP [1]
1/2+1/poly) and showed that PH collapses to

Sp
2 under this weaker assumption as well [15]. Chang and Purini studied the implication of the

two queries assumption and the additional assumption that the NP machine hypothesis holds.
They showed a collapse of PH to NP under the combination of these two assumptions [8].

1.2 Our results

In this paper, we venture on a slightly different track and arrive at some new results establishing
some relationships between PH and Arthur-Merlin classes under the two queries assumption.
Then we explore the difficulty of bringing down the collapse to PNP [1] and arrive at some nec-
essary and sufficient conditions to achieve such a collapse.. We briefly discuss our results based
on the two queries assumption and their significance below.

Firstly, we show the equivalence of AM and MA. We notice that the implications of the
two queries assumption and the implications of the Karp-Lipton assumption (NP ⊂ P/poly)
are quite similar in the sense that they both result in the collapse of the polynomial hierarchy
below Sp

2 [6, Theorem 10]. With our result, we pronounce the similarity between these two
assumptions even more as NP ⊂ P/poly =⇒ AM = MA [1].

Our second result is the containment of the polynomial hierarchy in the non uniform class

2

MA/1. Our result betters the best known containment of PH in a non-uniform class under the
two queries assumption - in NP/poly, shown by Kadin long back [12].

In our third result, we construct an oracle relative to which the two queries assumption holds but
PH does not collapse to AM = MA. In other words, we construct an oracle B relative to which
PNP [1]B = PNP [2]B but NPB 6⊆ coMAB. Combining this with our first result(AM = MA,
which is relativizable as well), we show that collapsing PH to AM is not relativizable. This
is an improvement on a similar result shown by Buhrman and Fortnow where they gave an
oracle relative to which the two queries assumption holds, but PH does not collapse to NP [4,
Theorem 4.1].

Our fourth result is a collapse of the polynomial hierarchy to the class P
NP [1],MA[1]
|| . We also

achieve a collapse to the class P
NP [2],prcoNP (MA∩coMA)[1]
|| . Both of these collapses are incom-

parable with the other best known results: collapses to ZPP
NP [1]
1/2−1/exp and Y Op

2 ∩ NOp
2. Our

characterization turns out to be really useful since our base class is just P and all the randomness
required is passed over to the oracle; which, in turn, helps us analyze the possibility of achieving a
flat collapse to PNP [1]. With this result, it is trivial to show that PH collapses to PNP [1] = PNP

if and only if we could decide problems in MA with a PNP machine under the two queries as-
sumption. We also show that such a collapse is possible iff prcoNP (MA∩coMA) ⊆ prcoNPP

NP .

Organization: In section 2, we brief on the necessary definitions and notations used. In section
3, we present our result showing that AM = MA and our result showing the containment
of PH in MA/1 under the two queries assumption. In section 4, we construct an oracle B

relative to which PNP [1] = PNP [2] but PH 6= AM . In section 5, we present our result that

PNP [1] = P
NP [2]
|| =⇒ PH = P

NP [1],MA[1]
|| = P

NP [2],prcoNP (MA∩coMA)[1]
|| under the two queries

assumption and discuss the possibility of a flat collapse to PNP [1]. In section 6, we conclude by
mentioning some related open questions.

2 Preliminaries

We assume that the reader is familiar with the standard notations and complexity classes.
Throughout this paper, (∃f(n),g(n)y, z) denotes (∃y, z : |y| = f(n) & |z| = g(n) where n is the
input length). Similar definitions apply for the universal operator ∀f(n)y and the probabilistic
operator Prf(n)y.

Definition 1 (h): The assumption PNP [1] = P
NP [2]
|| implies the existence of a polynomial-time

function h that reduces the language {(a, b) | a ∈ SAT & b ∈ SAT & |a| = |b|} to the language
{(c,+)|c ∈ SAT} ∪ {(c,−)|c ∈ SAT} where c is of length t1(|a|+ |b|) for some polynomial t1.

Definition 2 (SAT, Easy, Hard Classification):

1. SAT = {x|x is a satisfiable boolean formula}

2. Easy = {x|∃|x|y h(x, y) = (c,+) & c ∈ SAT}

3. Hard = {x|x /∈ SAT & x /∈ Easy}

The hard/easy argument in its various forms is very useful when dealing with the two queries
assumption. We describe the classification first used by Kadin [12]. The function h can be used

3

to classify strings into three different types: SAT , Easy and Hard. Easy strings are unsatis-
fiable boolean formulae with a short proof of non-satisfiability. Hard strings are unsatisfiable
strings not in Easy. Trivially, SAT = Hard ∪ Easy. We make use of this classification while
proving Theorem 15.

Theorem 3: PNP [1] = P
NP [2]
|| =⇒ coNP ⊂ NP/poly [12].

If there is a Hard string at length n, then we can use that string as advice to have an NP/poly

algorithm to solve SAT . Otherwise, we have NP = coNP at that length. Combining the
two cases, we have coNP ⊂ NP/poly. The first bit of the advice mentions whether there is a
hard string and the remaining bits provide a hard string if there is one. This also implies the
containment of PH in NP/poly.

Lemma 4: x ∈ Hard =⇒ (∀y s.t. |x| = |y| (y ∈ SAT ⇐⇒ h(x, y) = (z,−) & z ∈ SAT)) [4,
Lemma 5.6].

Definition 5 (SAT, Easy4, Hard4 Classification):

1. SAT = {x|x is a satisfiable boolean formula}

2. Easy4 = {x|∃t2(|x|)y V erifyEasy4(x, y)} (where t2 is some polynomial and V erifyEasy4
is the polynomial-time verifier for Easy4)

3. Hard = {x|x /∈ SAT & x /∈ Easy4}

Buhrman and Fortnow extended the arguments of Kadin to classify strings in a way that there
are fewer hard strings under the two queries assumption [4, Definition 5.4]. They called Kadin’s
classification as Hard1/Easy1 and defined newer classifications Hard2/Easy2 , Hard3/Easy3
and Hard4/Easy4 ; successively decreasing the number of hard strings. The basic idea is
the same; easy strings have short proof of non-satisfiability. We are interested only in the
Hard4/Easy4 definition. However, these definitions are quite elaborate; so we just encapsulate
the essence of the argument used (i.e. Easy4 strings have short proofs) and assume that
V erifyEasy4 is the polynomial time verifier for Easy4 strings. Trivially, SAT = Hard4 ∪
Easy4. We make use of this classification while proving theorem 13.

Theorem 6: PNP [1] = P
NP [2]
|| =⇒ locally, either NP = coNP or NP ⊂ P/poly [4, Theorem

5.3(1)].

If there are no Hard4 strings at length n, then NP = coNP locally. Otherwise, NP ⊂ P/poly

at that length.

Definition 7 (ZPP
NP [1]
f(n)): ZPP

NP [1]
f(n) defines a ZPP machine which can query an NP oracle

once and outputs the correct answer with f(n) probability (where n is the input length). The
term poly is used to denote polynomial functions when used anywhere in f(n) and exp is used to

denote exponential functions on the input length. For example ZPP
NP [1]
1/2+1/poly is used to denote

a ZPP machine that can query an NP oracle once and succeed with probability 1/2 + 1/p(n) for

some polynomial p. Chang and Purini have shown that ZPP
NP [1]
1/poly = ZPP

NP [1]
1/4−1/exp and that

ZPP
NP [1]
1/2+1/poly = ZPP

NP [1]
1−1/exp [9, Theorems 6,8].

Definition 8 (Y ES(P)): Y ES(P) denotes the Y ES set of a promise problem P . Inputs to a
problem in a promise class has 3 sets: Y ES (inputs which must be accepted), NO(inputs which
must be rejected) and OUTSIDEPROMISE(inputs which can have arbitrary outputs).

4

Definition 9 (prCD): prCD denotes the promise analogue of the language class D where the
promise itself is restricted to be in the class C. For example prcoNP (MA∩coMA) is the promise
version of the class (MA ∩ coMA) where the promise is a set in coNP .

Theorem 10: PNP [1] = P
NP [2]
|| =⇒ PNP = PNP [1] [4, Theorem 5.3(2)].

We observe that this result extends over promise variations as well. For example, PNP [1] =

P
NP [2]
|| =⇒ prcoNPP

NP = prcoNPP
NP [1].

Theorem 11: PNP [1] = P
NP [2]
|| =⇒ PH = Sp

2 = Σp
2 = Πp

2 [10].

Theorem 12: PNP [1] = P
NP [2]
|| =⇒ PH = ZPP

NP [1]
1/2−1/exp [9, Theorem 18].

A note on self-reducibility of SAT and encoding: The language SAT is self-reducible.
If y, the input given, is on n variables (x1, x2....xn); we can self-reduce it using the variable
x1 to the new formulae y&(x1 == 1) and y&(x1 == 0). Now, y ∈ SAT ⇐⇒ ((y&(x1 ==
1)) ∈ SAT) OR ((y&(x1 == 0)) ∈ SAT). We can self-reduce y with any set of free variables
remaining. One very useful benefit we obtain from the self-reducible property of SAT is that
we can verify membership of SAT in polynomial time by finding a witness when given access
to a circuit that solves SAT in polynomial time. So, no circuit can falsely claim a formula to
be satisfiable and get away with it.

Throughout this paper, we assume that the encoding used for the inputs to decide membership
in SAT is such that all self-reduced formulae of an given formula y have length |y|. Moreover,
we assume that the encoding used enables padding so that an input of a smaller length can be
blown-up to a larger desired length as needed. Such an encoding is trivial and can have at most
a polynomial blow-up in length corresponding to an encoding without such restrictions(features).

A note on promise oracles: A promise oracle is an oracle based on a promise problem
rather than a decision problem. The promise oracle is supposed to provide the correct answer
whenever the query asked by the base machine fulfills the promise condition(reply Y ES when
the query belongs to the Y ES set, reply NO when the query belongs to the NO set, reply
anything when the input is in OUTSIDEPROMISE) . For example, a P prAM machine M
on input x can ask any query to the prAM oracle. The oracle is supposed to give the correct
answer to the query as long as the query input fits the promise. The machine M in this example,
however, solves a decision problem and must succeed regardless of the answers provided by the
oracle to the queries asked outside the promise. We observe that a promise oracle PO can be
replaced with the decision oracle Y ES(PO) without any loss in computation power.

3 MA with one bit of advice

In this section, we show that PH is contained in MA/1 under the two queries assumption. We
do this in two parts stated as two theorems.

In the first part, we show the equivalence of MA and AM under the two queries assump-
tion. We note that our result also implies that coMA = coAM and is true for promise classes
as well (for example, prcoNPMA = prcoNPAM). We also note that our proof is relativizable

(i.e. for any oracle A, PNP [1]A = PNP [2]A =⇒ MAA = AMA). The intuition behind the

proof is quite simple: if PNP [1] = P
NP [2]
|| ; locally, either NP ⊂ P/poly (Case1) or NP = coNP

5

(Case2). If Case1 occurs locally, Merlin just sends the local circuit for SAT for the correspond-
ing length. Arthur converts the AM problem to a problem where the non-deterministic part is
a SAT formula and then uses self-reducibility to verify membership. If a majority of the coin
tosses result in a formula satisfiable by the circuit, he accepts. If Case2 occurs locally, Merlin
successively reduces the problem in AM to a problem in Πp

2 (trivial) and then to a problem in

Σp
2 (since PNP [1] = P

NP [2]
|| =⇒ Σp

2 = Πp
2 [10]) and then to a problem in NP (since locally

NP = coNP) and then provides the corresponding certificate for it to Arthur. We now provide
the formal proof.

Theorem 13: PNP [1] = P
NP [2]
|| =⇒ AM = MA

Proof. Assume that PNP [1] = P
NP [2]
|| and consider any language L in AM . Let the input be x

of length n. Let p1,p2,p3,p4 and p5 denote polynomials. If PNP [1] = P
NP [2]
|| , then for a fixed

input length, either SAT has a circuit c of polynomial size at that length (in Case1) or SAT
has a polynomial time verifier V erifyEasy4 (in Case2).

Without loss of generality, we can characterize the language as follows:
x ∈ L ⇐⇒ Prr [Q(x, r) ∈ SAT] > 2/3 and x /∈ L ⇐⇒ Prr [Q(x, r) ∈ SAT] < 1/3
where Q is a polynomial-time function, |r| = p1(n).

If Case1 holds at length |Q(x, r)|,
x ∈ L =⇒ ∃ c (Prr[V (Q(x, r), c)] > 2/3)
where |c| = p2(n) and V is the verifier that uses the self-reducibility property of SAT to check
whether a formula claimed to be satisfiable by a circuit is indeed satisfiable (the same verifier
used in Karp-Lipton theorems [13]).

Since, AM ⊆ Πp
2 and PNP [1] = P

NP [2]
|| =⇒ Πp

2 = Σp
2, we have AM ⊆ Σp

2. So, L can be
characterized as follows:
x ∈ L ⇐⇒ ∃ y S(x, y) ∈ SAT ; where |y| = p3(n) and S is a polynomial-time function.

If Case2 holds at length |S(x, y)|,
x ∈ L =⇒ ∃ y, z V erifyEasy4(S(x, y), z). ; where |z| = p4(n).

We can force the output lengths of Q and S to be equal through padding and let this length be
p5(n). Since one of the two cases Case1 or Case2 must hold at length p5(n), we have

x ∈ L =⇒ (∃ y, z V erifyEasy4(S(x, y), z) OR ∃ c (Prr[V (Q(x, r), c)] > 2/3))

Also, regardless of which of the two cases holds,
x /∈ L =⇒ ∀ c Prr [V (Q(x, r), c)] < 1/3) and
x /∈ L =⇒ ∀ y, z ¬V erifyEasy4(S(x, y), z).

So, x ∈ L =⇒ ∃ y, z, c (Prr [V (Q(x, r), c) OR V erifyEasy4(S(x, y), z)] > 2/3)
and x /∈ L =⇒ ∀ y, z, c (Prr [V (Q(x, r), c) OR V erifyEasy4(S(x, y), z)] < 1/3)

By definition, this is an MA characterization for L. So, AM = MA.

Now, in the second part of this section, we prove that PNP [1] = P
NP [2]
|| =⇒ PH ⊂ AM/1. It

6

is sufficient to show that PNP [1] = P
NP [2]
|| =⇒ coNP ⊂ AM/1. We now describe the intuition

behind the proof. Our proof considers the language SAT which is complete for coNP . Let the
input be x. Under the two queries assumption, we can introduce a language called HARDBITS
similar to the one used by Buhrman et. al. [3, Theorem 2].

Definition 14 (HARDBITS): HARDBITS = {0m|there is a Hard strings of length m} ∪
{(0m−i1i)| the i’th bit of the lexicographically smallest Hard strings for length m is 1}. (where
the bits are numbered from 1 to n)

Trivially, the language HARDBITS ∈ PH which means that HARDBITS ∈ ZPP
SAT [1]
1/2−1/exp

under the two queries assumption. So it can be decided by a ZPP machine M with one query
to a SAT oracle with 1/2− 1/exp probability. On input y; M takes a random path , generates
the query through a polynomial time function and then uses the answer to that query to output
1(accept), 0(reject) or ′?′(don’t know). For a given input y, there may exist a random path s.t.
the query asked by M is either in SAT or Easy and the final output on that path is either 0 or
1. Such inputs to M have easily verifiable proofs (the random path chosen and the short proof
showing that the query generated is SAT or Easy).

Now, we provide an Arthur-Merlin protocol(with one bit of advice) for deciding SAT . Consider
the case where either there are no Hard strings at length n or the case where ∀0<=i<=ni there
exists an easily verifiable proof showing that M accepts or rejects 0n−i1i. Here, the advice bit
makes Arthur aware of this case and thus Arthur expects Merlin to provide either a short proof
of non-satisfiability for the input x or provide the lexicographically smallest Hard string hlex
at length n along with the necessary witnesses proving that and then a short proof showing
that x in unsatisfiable assuming hlex to be the advice (as in Theorem 3).

If the advice bits tells that neither of these two cases hold, then Arthur has a very simple
way of sampling Hard strings. In this case, ∃0<=i<=ni s.t. 0n−i1i does not have an easily ver-
ifiable witness to prove membership in HARDBITS. And yet, M succeeds on such an input
with 1/2−1/exp probability; so, on that particular input, the query generated by M is in Hard
with 1/2− 1/exp probability. For each i(0 <= i <= n), Arthur uses (n + 1)2 random paths on
input 0n−i1i and collects the queries asked by each of those random paths; thus generating a set
of (n + 1)3 queries. The probability that there is a Hard string in this set is very high. Arthur
then asks Merlin to classify this set of strings into three sets: Hard, Easy and SAT (as defined
in def.2). Arthur also expects the corresponding witnesses for the strings in Easy and SAT
sets. For all pairs of strings (a, b) in Hard, Arthur asks Merlin to show that h(a, b) = (c,+) OR
h(a, b) = (c,−) & c ∈ SAT (the function h is as defined in Def.1). Since there is a hard string
in this set with very high probability, Merlin cannot falsely claim a satisfiable string to be a
Hard string (by Lemma.4). So, with very high probability, Arthur knows which of those queries
are satisfiable and which are not. Using this information, with very high probability, Arthur
can compute every bit of the lexicographically smallest Hard string hlex at length n. Arthur
proceeds to use this as the advice and asks Merlin for the proof to show that x is unsatisfiable
(as in Theorem 3).

We now formalize our proof

Theorem 15: PNP [1] = P
NP [2]
|| =⇒ coNP ⊂ AM/1

Proof. Assume that PNP [1] = P
NP [2]
|| and consider SAT which is a complete language for coNP .

We provide an AM/1 algorithm to decide SAT . Let the input be x of length n.

7

Let M be the ZPP
SAT [1]
1/3 machine to decide HARDBITS (this is possible since PNP [1] =

P
NP [2]
|| =⇒ PH = ZPP

NP [1]
1/2−1/exp). Without loss of generality, we can assume that the queries

asked by the base ZPP machine of M are of the same length for a given input length. Let
this be denoted by the polynomial p1(n). Also, the random strings used by the machine can
be considered to be of the same length for a given input length. Let this be denoted by the
polynomial p2(n). We now describe how M functions when y is given as input. M chooses a
random path r and generates the query Q(y, r). If Q(y, r) is satisfiable, M outputs P (y, r, 1).
If not, it outputs P (y, r, 0). Here Q is a polynomial-time function and P is a polynomial-time
function that can output 1,0 or ′?′.

y ∈ HARDBITS
⇐⇒ Prr [(Q(y, r) ∈ SAT AND P (y, r, 1) = 1) OR (Q(y, r) ∈ Easy AND P (y, r, 0) = 1) OR
(Q(y, r) ∈ Hard AND P (y, r, 0) = 1)] > 1/3
⇐⇒ ∃ r(Q(y, r) ∈ SAT AND P (y, r, 1) = 1) OR (Q(y, r) ∈ Easy AND P (y, r, 0) = 1) OR
(Q(y, r) ∈ Hard AND P (y, r, 0) = 1)

We now describe the AM/1 algorithm:

The advice bit b is 1 if and only if one of the following(at least) is true

1. ∀nz z /∈ Hard

2. ∀0<=i<=ni ∃ r ((Q(0n−i1i, r) ∈ SAT AND P (0n−i1i, r, 1) 6=′?′) OR (Q(0n−i1i, r) ∈ Easy
AND P (0n−i1i, r, 0) 6=′?′))

When the advice bit is 1, the following protocol is used

1. Arthur asks Merlin to prove that x ∈ Easy and accepts if Merlin provides the required
certificate.

2. If not, Arthur asks the following: For each i(where 0 <= i <= n), ri s.t. (Q(0n−i1i, ri) ∈
SAT AND P (0n−i1i, ri, 1) 6=′?′) OR (Q(0n−i1i, ri) ∈ Easy AND P (0n−i1i, ri, 0) 6=′?′).
Arthur also asks for the corresponding certificates showing that the formulae Q(0n−i1i, ri)
(where 0 <= i <= n) are indeed Easy or SAT . Arthur rejects if Merlin doesn’t comply.

3. Arthur calculates whether there is a Hard string at length n by simulating M on input
0n using the random path provided by Merlin along with the corresponding answer (and
witness)to the query provided by Merlin. If there is no hard string, Arthur rejects. Oth-
erwise, Arthur again simulates M n times (for each i) in a similar way, using the random
paths and answers(with witnesses) provided by Merlin to calculate each of the bits of the
lexicographically smallest Hard string hlex at length n.

4. Arthur asks Merlin to provide a proof of non-satisfiability for x assuming hlex as advice
(as in Theorem 3) and accepts if Merlin provides. Arthur rejects otherwise.

When the advice bit is 0, the following protocol is used

1. Arthur generates uniformly at random n+1 sets R′i(0 <= i <= n) each containing (n+1)2

strings of length p2(n). Arthur also generates n+1 sets Ri s.t. Ri = {Q(0n−i1i, r)|r ∈ R′i}.
Arthur combines these sets to create the set RCombined = (∪0<=i<=n

i Ri).

8

2. Arthur asks Merlin to classify the strings in RCombined into three sets SAT , Easy and
Hard. Arthur expects Merlin to provide the corresponding certificates for strings Merlin
claims to be in Easy or SAT . For every pair of strings (a, b) classified as Hard by Merlin,
Arthur expects Merlin to show that h(a, b) = (c,+) OR (h(a, b) = (c,−) AND c ∈ SAT).
If Merlin doesn’t comply, Arthur rejects.

3. From the answers provided by Merlin to these (n + 1)3 queries, Arthur simulates the
actions of M (on the random paths in R′i for each i (where 0 <= i <= n) to calculate
all the bits of the lexicographically smallest Hard string hlex at length n. If Arthur
still couldn’t decide on some bits of hlex from the information provided by Merlin or if
different random paths give conflicting answers for a particular bit, Arthur accepts.

4. Otherwise, after calculating hlex, Arthur asks Merlin to provide a proof of non-satisfiability
for x assuming hlex as advice (as in Theorem 3) and accepts if Merlin provides. Arthur
rejects otherwise.

If the advice bit is 1 and x ∈ L, Merlin should be able to provide the necessary certificates to
prove this; either by directly proving that x ∈ Easy or by proving that there is a Hard string
at length n and then proving the value of each bit of the lexicographically smallest Hard string
hlex at length n and then providing the short proof for x ∈ Hard using hlex as advice(as in
Theorem 3). If x /∈ L, Merlin has no way of fooling Arthur. So, we actually have an NP
algorithm when the advice bit is 1.

If the advice bit is 0, Arthur understands that
∃0<=i<=ni s.t. Prr[Q(0n−i1i, r) ∈ Hard] > 1/3.
By sampling (n+1)2 random paths for each i, Arthur has a high probability (> 1− (2/3)(n+1)2)
of having a Hard string in RCombined. Merlin cannot falsely claim that a string is in SAT or
Easy as he cannot provide the corresponding witness. If there is at least one Hard string in
RCombined, Merlin cannot falsely claim a string in SAT to be in Hard (by Lemma 4). So, Mer-
lin will be truthful in this classification with high probability. Since Arthur uses (n+1)2 random
paths for each i, the probability that there is at least one successful path (not outputting ′?′

based on the answers given by Merlin to the queries) for every M(0n−i1i) (where 0 <= i <= n)
is very high (> (1 − (2/3)(n+1)2)(n+1)). If Arthur’s coin tosses were favorable (which would
be with > (1− (2/3)(n+1)2)(n+1)− (2/3)(n+1)2 probability), he would have the lexicographically
smallest Hard string hlex at length n and hence can ask Merlin to provide the proof for x ∈ L
assuming hlex as advice (as in Theorem 3). So, when x ∈ L, Merlin would be able to convince
Arthur with probability 1 (either by helping him calculate hlex and then providing the proof
for x ∈ L or if Arthur is unable to calculate hlex or if Arthur wrongly calculates hlex). If x /∈ L,
Merlin has a small chance of fooling Arthur (< 1 − ((1 − (2/3)(n+1)2)(n+1) − (2/3)(n+1)2), this
tends to 0). Thus, we have an AM algorithm when the advice bit is 0.

Combining the two protocols, we get an AM/1 algorithm for deciding SAT .

Now, we combine the two theorems to get our desired result

Theorem 16: PNP [1] = P
NP [2]
|| =⇒ PH ⊂MA/1 ∩ coMA/1

Proof. It is trivial to show that coNP ⊂ AM/1 =⇒ PH ⊂ AM/1. Since any AM protocol
can be converted into an MA protocol under the two queries assumption (Theorem 7), we have
PH ⊂ MA/1. Once again, it is trivial to show that PH ⊂ MA/1 =⇒ PH ⊂ coMA/1. So,

PNP [1] = P
NP [2]
|| =⇒ PH ⊂MA/1 ∩ coMA/1.

9

4 PH vs AM does not relativize

In section 3, we showed that PH is contained in MA/1 under the two queries assumption. A
natural question one may ask is whether we could do away with that one bit of advice and
thereby achieve a collapse to MA. Also, Chakaravarthy and Roy have shown a collapse to
Y Op

2 ∩ NOp
2 [6, Theorem 16]. This is somewhat close to achieving a collapse to MA ∩ coMA

(as NOp
2 is just above MA in the polynomial hierarchy and is closely related to it, Y Op

2 has a
similar relationship with coMA).

Here, we show that it is not possible to bring down the collapse to MA = AM through rel-
ativizable methods by providing an oracle relative to which the two queries assumption holds
but PH 6= AM . This improves upon the result by Buhrman and Fortnow that it is not pos-
sible through relativizable techniques to bring the collapse down to NP [4, Theorem 4.1]. In
the following theorem, we build an oracle relative to which NP is not a subset of coMA but
PSPACE is equal to PNP [1].

Theorem 17: ∃ B NPB 6⊆ coMAB AND PNP [1]B = PSPACEB

Proof. The oracle B is defined as B = A⊕TQBF . So, the base machine can ask queries to the
oracle A as well as the PSPACE − Complete oracle TQBF . We will define A later. First, let
us define the language LA

Definition 18 (LA): LA = {1n|∃x s.t. |x| = n AND x ∈ A}

Trivially, LA ∈ NPA. Now, we construct A in such a way that LA /∈ coMAA.

Consider the set S of all one round Merlin-Arthur protocols with oracle access to B(where
Arthur is restricted to probabilistic polynomial time computation power and Merlin is restricted
to polynomial space computation power). The number of such protocols is enumerable and re-
stricting Merlin to use only polynomial space does not affect the definition of MA. Let Si

(i ∈ N) denote the i’th protocol in this enumeration where Arthur receives a proof string of size
p1i(n) bits from Merlin, uses p2i(n) bits of randomness and runs in p3i(n) time (p1i, p2i and
p3i are all polynomials and n is the input length). Both Arthur and Merlin have oracle access
to B. For a given coMA protocol Si,

Si is said to accept an input x ⇐⇒ for every proof y of size p1i(n), Arthur rejects it with
probability < 1/3 over the coin tosses r.

Si is said to reject an input x ⇐⇒ there exists a proof y of size p1i(n) such that Arthur
rejects with probability > 2/3 over the coin tosses r

Si is valid ⇐⇒ for all inputs, the protocol either accepts or rejects.

Initially, the oracle A is empty. We build the oracle A in stages. The oracle A is gappy
and is restricted to contain at most one string at lengths which are towers of 2 and no strings
at other lengths. We define a function nextLength as follows:
nextLength(i) = n , where n is the smallest tower of 2 such that 2n > 6 ∗ p3i(n) and
n > nextLength(i− 1) (we set nextLength(0) = 0)

In the i’th stage, we diagonalize against the i’th protocol(Si) in S by the following rules.

1. If Si is not a valid coMA protocol: do nothing.

10

2. If Si accepts 1n (n = nextLength(i)): do nothing.

3. If Si rejects 1n (n = nextLength(i)): pick a proof y of length p1i(n) such that Arthur
rejects with probability > 2/3 over random strings of size p2i(n) when y is provided as
proof and add a string a of length n to A such that the string is queried (whether a ∈ A)
by at most p3i(n) ∗ 2p2i(n)/2n of these random paths.

If Si is not a valid coMA protocol, it cannot be an valid protocol for LA. If Si accepts 1n, we
don’t add anything to A and A remains empty at that length. So, Si accepts 1n and 1n /∈ LA.
So, in both these cases, Si fails by default and we don’t need to add anything to A.

If i rejects 1nextLength(i), we have to add a string a to A such that Si still rejects or becomes
an invalid protocol. Since Arthur runs in time p3i(n), Arthur can ask at most p3i(n) queries to
oracle B (which means at most p3i(n) queries to the A part of B) in any random path.

There are 2p2i(n) possible random paths. So, a total of p3i(n) ∗ 2p2i(n) queries could be asked in
total across all possible random paths. A total of 2n different strings of length n could be queried.

So, by a simple averaging argument, we can see that there exists a string a of length n which
is queried(whether a ∈ A) at most p3i(n) ∗ 2p2i(n)/2n times. We add this string a to A. Since
2n > 6 ∗ p3i(n), p3i(n)/2n < 1/6.

So, at most 1/6th of the random paths ask this particular query a ∈ A. So, there can be
at most a 1/6th decrease in the ratio of rejecting paths. So, the ratio of rejecting paths does
not go below 1/2. So, either the protocol becomes invalid (if the new ratio of rejecting paths is
between 1/2 and 2/3) or the input still remains rejected by the protocol even though 1n ∈ LA

(since a of length n is in A).

We can diagonalize against the enumeration of all Merlin-Arthur protocols by following the
above rules. So, LA ∈ NPA and LA /∈ coMAA. So, NPB 6⊆ coMAB.

We now show that PSPACEB ⊆ PNP [1]B . The proof is the same as the one used by Fortnow
and Buhrman to show that PNP [1] = PSPACE relative to UP −Generics G [4, Theorem 4.1].

The oracle B is a join of two oracles A and TQBF . Here, TQBF is PSPACE−Complete and
A is gappy (at most one string at lengths which are towers of 2 and no strings at other lengths).

Consider a PNP [1]B machine, there can be at most one ’interesting’ length to query about in
A by making use of the one available NP query. The other possible lengths are either too
small that strings could be queried by directly querying A(which we assume that the algorithm
does implicitly) or too large to query even with the help of non-determinism. The ’interesting’
length is the length where making use of the NP query seems to provide additional computation
power. We call this length the ’cookie-length’ and if a string of this length is present in A, we
call that string the ’cookie’.

Let MB be an alternating Turing machine with oracle access to B. We now devise a PNP [1]B

algorithm which can decide L(M) on input x:

First, ask the TQBF oracle whether MG accepts x if there is no cookie.

11

1. If yes, accept if and only if the following NP query (with oracle access to B) is false:
∃ y s.t. (|y|=cookie-length) AND (y ∈ A) AND (MB(x) rejects when cookie y is assumed
to be present)

2. If no, accept if and only if the following NP query (with oracle access to B) is true:
∃ y s.t. (|y|=cookie-length) AND (y ∈ A) AND (MB(x) accepts when cookie y is assumed
to be present)

Since there could only be one possible cookie, the NP query will find it and use the TQBF
oracle to proceed with the rest of the computation(whether MB(x) accepts/rejects when the
cookie is assumed to be present). So, we ask only one NP query and accept if and only if MB

accepts. This completes our proof.

Relative to the oracle B constructed above, the assumption PNP [1] = PNP [2] holds; but PH 6=
MA (since relative to B, NP 6⊆ coMA). We’ve already shown in section 3 that AM = MA(with
a relativizable proof) under the two queries assumption. So, relative to the oracle B, the
assumption PNP [1] = PNP [2] holds, but PH 6= AM . So, the question of whether PH collapses
to AM under the two queries assumption is not relativizable.

5 Towards a flat collapse to PNP [1]

While a relativizable collapse to MA is not possible, we do not know of any such result for the
longstanding question of whether PH collapses to PNP [1] under the two queries assumption.
In this section, we look at the possibility of achieving a flat collapse of the polynomial hierar-
chy to PNP [1] under the two queries assumption. A collapse to PNP [1] is highly sought after,

and the collapse to ZPP
NP [1]
1/2−1/exp comes close to achieving that. However, there are two gaps

preventing this flat collapse: the gap between PNP [1] and ZPP
NP [1]
1/2+1/poly and the gap between

ZPP
NP [1]
1/2+1/poly and ZPP

NP [1]
1/2−1/exp.

A direct approach to solving this is trying to find a reduction from ZPP
NP [1]
1/2−1/exp to PNP

under the two queries assumption and thereby closing these two gaps. We show that such a

reduction is possible if and only if MA ⊆ PNP by showing that PH = P
NP [1],MA[1]
|| . We also

show that PH collapses to P
NP [2],prcoNP (MA∩coMA)
|| and thereby show that a collapse to PNP [1]

is possible if and only if prcoNP (MA ∩ coMA) ⊆ prcoNPP
NP [1].

We now prove two unconditional results for the class ZPP
NP [1]
1/poly . The proofs for the following two

theorems are similar to the proof used by Cai and Chakaravarthy to show that ZPP
NP [1]
1/2+1/poly ⊆

Sp
2 [5, Theorem 3.2] (They also implicitly showed that ZPP

NP [1]
1/2+1/poly ⊆ P

NP [2],prcoNPBPP [1]
||)

Theorem 19: ZPP
NP [1]
1/poly ⊆ PNP [1],AM [1]

Proof. Since ZPP
NP [1]
1/poly = ZPP

NP [1]
1/4−1/exp [9, Theorem 6] , we just have to prove our theorem for

ZPP
NP [1]
1/5 .

Consider any language L in ZPP
NP [1]
1/5 . Let x be the input of length n and M be the ZPP

NP [1]
1/5

machine for the language L. M uses p2(n) bits of randomness r and asks the query Q(x, r) to
the oracle and outputs P (x, r, b) where b is the answer to the query. Here p2 is a polynomial, Q

12

is a polynomial time function and P is a polynomial time function that can output 1,0 or ′?′.
By definition,

x ∈ L ⇐⇒ Prr [(Q(x, r) ∈ SAT AND P (x, r, 1) = 1) OR (Q(x, r) ∈ SAT AND P (x, r, 0) =
1)] > 1/5
⇐⇒ ∃ r (Q(x, r) ∈ SAT AND P (x, r, 1) = 1) OR (Q(x, r) ∈ SAT AND P (x, r, 0) = 1).

x /∈ L ⇐⇒ Prr [(Q(x, r) ∈ SAT AND P (x, r, 1) = 0) OR (Q(x, r) ∈ SAT AND P (x, r, 0) =
0)] > 1/5
⇐⇒ ∃ r (Q(x, r) ∈ SAT AND P (x, r, 1) = 0) OR (Q(x, r) ∈ SAT AND P (x, r, 0) = 0).

We show that L can be characterized as L1 ∩ L2 where L1 ∈ NP and L2 ∈ AM . Here,
L1 = {x|∃ r Q(x, r) ∈ SAT AND P (x, r, 1) = 0} and L2 = L ∪ L1.
By definition L1 ∈ NP and L1 ∩ L2 = L. So, we just have to show that L2 ∈ AM , which we
do by providing the following AM protocol for the language.

1. Arthur generates a set R′ of 100 strings each of length p2(n) uniformly at random and
computes the set R = {r ∈ R′|P (x, r, 0) = 0}.

2. Arthur asks Merlin to prove that x ∈ L1 by providing a witness or to show that ∀r∈RQ(x, r) ∈
SAT by providing the corresponding witnesses.

3. Arthur accepts if Merlin provides the required witnesses or else rejects.

Assume that x ∈ L2. If x ∈ L1, Merlin would just prove it by providing a verifiable wit-
ness. Suppose x /∈ L1, then x ∈ L (since L2 = L ∪ L1). If x ∈ L, there cannot be an r s.t.
P (x, r, 0) = 0 AND Q(x, r) ∈ SAT . So, Merlin could just the provide witnesses to show that
∀r∈RQ(x, r) ∈ SAT . This satisfies the completeness requirement.

Assume that x /∈ L2. Then, x ∈ L − L1. So, Prr [Q(x, r) ∈ SAT AND P (x, r, 0) = 0] > 1/5.
So, with high probability(> 1 − (4/5)100) probability, Arthur would’ve picked one such r in R
and Merlin wouldn’t be to prove that Q(x, r) ∈ SAT for that r. This satisfies the soundness
requirement. So, L2 ∈ AM .

Theorem 20: ZPP
NP [1]
1/poly ⊆ P

NP [2],prcoNP (AM∩coAM)[1]
||

Proof. Let the definitions and assumptions used in the previous theorem hold here as well. We

now describe the P
NP [2],prcoNP (AM∩coAM)[1]
|| algorithm for L.

Ask if x ∈ LA and accept if true where LA = {x|∃ r Q(x, r) ∈ SAT AND P (x, r, 1) = 1}

Ask if x ∈ LR and reject if true where LR = {x|∃ r Q(x, r) ∈ SAT AND P (x, r, 1) = 0}

If one of these two NP queries is true, we can output the answer directly. Under the promise
that both these queries to the NP oracle are false, membership in L can be decided by the
following AM protocol

1. Arthur generates a set R′ of 100 strings uniformly at random and computes the set R =
{r ∈ R′|P (x, r, 0) = 0}.

2. Arthur asks Merlin to show that ∀r∈R Q(x, r) ∈ SAT by providing witnesses.

13

3. Arthur accepts if Merlin provides the required witnesses or else rejects.

If x ∈ L, there cannot be an r s.t. Q(x, r) ∈ SAT AND P (x, r, 0) = 0. So, Merlin should
succeed every time. If x /∈ L and the promise is true, then Prr [Q(x, r) ∈ SAT AND
P (x, r, 0) = 0] > 1/5. So, with high probability (> 1− (4/5)100), ∃r1 ∈ R′ s.t. Q(x, r1) ∈ SAT
AND P (x, r1, 0) = 0. So, Merlin would not be able to prove that Q(x, r1) ∈ SAT and Arthur
will ultimately reject with high probability.

Under the same promise, we can have an AM protocol to decide membership in L. So, we have
reduced the problem to a promise problem in pr(AM ∩ coAM). Since the promise LA ∪ LR ∈
coNP , we have actually reduced the original problem to a problem in prcoNP (AM ∩ coAM).

So, we can solve L using two NP queries and one prcoNP (AM ∩ coAM) query and all these can
be asked in parallel. This completes our proof.

Making use of our unconditional results on ZPP
NP [1]
1/poly , our result that MA = AM under the two

queries assumption and the collapse of PH to ZPP
NP [1]
1/2−1/exp under the two queries assumption,

we can state the following.

Theorem 21: PNP [1] = P
NP [2]
|| =⇒ PH = P

NP [1],MA[1]
|| = P

NP [2],prcoNP (MA∩coMA)[1]
||

Proof. We prove in in two parts.

By theorems 12,13, and 19 we have PH ⊆ P
NP [1],MA[1]
|| . Trivially, P

NP [1],MA[1]
|| ⊆ PH. So,

PNP [1] = P
NP [2]
|| =⇒ PH = P

NP [1],MA[1]
|| .

By theorems 12, 13 and 20, we have PH ⊆ P
NP [2],prcoNP (MA∩coMA)[1]
|| . We can always re-

place a promise oracle PO with a language oracle L which is the Y ES set of the promise
oracle (L = Y ES(PO)). Here, the promise oracle PO ∈ prcoNP (MA ∩ coMA) and the cor-
responding Y ES set is in coMA (a conjunction of the coNP promise and the coMA char-

acterization of the problem). Hence, P
NP [2],prcoNP (MA∩coMA)[1]
|| ⊆ P

NP [1],MA[1]
|| = PH. So,

PNP [1] = P
NP [2]
|| =⇒ PH = P

NP [2],prcoNP (MA∩coMA)[1]
|| .

We can state the following results concerning the possibility of a collapse to PNP [1] under the
two queries assumption.

Corollary 22: Under the two queries assumption,

1. PH ⊆ PNP [1] ⇐⇒ MA ⊆ PNP [1]

2. PH ⊆ PNP [1] ⇐⇒ prcoNP (MA ∩ coMA) ⊆ prcoNPP
NP [1]

Proof. The forward direction of the first result is trivial. The converse is a direct impli-
cation of theorems 21 and 10. The forward direction of the second result is true because
Y ES(prcoNP (MA ∩ coMA)) ⊆ PH. The converse is a direct result of theorems 21,10 and the

fact that PNP [1] = P
NP [2]
|| =⇒ Y ES(prcoNPP

NP [1]) ⊆ PNP [1].

14

6 Conclusion and open questions

Whether PNP [1] = P
NP [2]
|| =⇒ PH = PNP [1] is a long standing open question. Our results

enable two different approaches to this problem.

Buhrman, Chang and Fortnow showed that coNP ⊂ NP/k =⇒ PH = PNP (for constant

k) [3]. While we are not able to show that PNP [1] = P
NP [2]
|| =⇒ coNP ⊂ NP/k, theorem 15

shows a containment of coNP (and PH) in MA/1. An interesting question is the containment
of MA in NP/k under the two queries assumption. If the two queries assumption implies such

a containment, we would get the desired flat collapse to PNP [1].

We have also shown that a collapse to PNP [1] is possible if and only if we can show that
MA ⊆ PNP [1] or prcoNP (MA ∩ coMA) ⊆ prCoNPP

NP [1] under the two queries assumption.
Though our results make use of promise classes, even showing that MA ∩ coMA ⊆ PNP [1]

under the two queries assumption might help us collapse the polynomial hierarchy to PNP [1].
Even the question of whether BPP ⊆ PNP [1] under the two queries assumption is open. One
may also look into the possibility of a relativized world where the two queries assumption holds,
but BPP 6⊆ PNP [1].

A related open question, asked by Buhrman and Fortnow [4], is whether SAT can be described
as the union/intersection of an NP set and a BPP/1 set under the two queries assumption.
Our results make some progress on this front by showing that coNP ⊂ MA/1. Our approach
primarily relied on the simple Hard/Easy classification. One may look into the possibility
of extending this technique by making use of the Hard4/Easy4 classification to answer this
question.

Acknowledgements I want to thank Suresh Purini for providing valuable suggestions and
proof-reading the paper.

References

[1] V. Arvind, J. Köbler, U. Schöning, and R. Schuler. If NP has polynomial-size circuits, then
MA=AM. Theor. Comput. Sci., 137(2):279–282, 1995.

[2] R. Beigel, R. Chang, and M. Ogihara. A relationship between difference hierarchies and
relativized polynomial hierarchies. Mathematical systems theory, 26(3):293–310, 1993.

[3] H. Buhrman, R. Chang, and L. Fortnow. One Bit of Advice. In Proceedings of the 20th
Annual Symposium on Theoretical Aspects of Computer Science, STACS ’03, pages 547–
558, 2003.

[4] H. Buhrman and L. Fortnow. Two Queries. Journal of Computer and System Sciences,
59:182–194, 1998.

[5] J. Cai and V. Chakaravarthy. A note on zero error algorithms having oracle access to one
NP query. In Proceedings of the 11th annual international conference on Computing and
Combinatorics, pages 339–348, 2005.

[6] V. Chakaravarthy and S. Roy. Oblivious symmetric alternation. In Proceedings of the 23rd
Annual conference on Theoretical Aspects of Computer Science, pages 230–241, 2006.

15

[7] R. Chang and J. Kadin. The Boolean Hierarchy and the Polynomial Hierarchy: A Closer
Connection. SIAM J. Comput., 25(2):340–354, 1996.

[8] R. Chang and S. Purini. Bounded queries and the np machine hypothesis. In Proceedings
of the 2007 IEEE 22nd Annual Conference on Computational Complexity, pages 52–59,
2007.

[9] R. Chang and S. Purini. Amplifying ZPPSAT [1] and the Two Queries Problem. In Pro-
ceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity, pages
41–52, 2008.

[10] L. Fortnow, A. Pavan, and S. Sengupta. Proving SAT does not have small circuits with an
application to the two queries problem. J. Comput. Syst. Sci., 74(3):358–363, 2008.

[11] E. Hemaspaandra, L. Hemaspaandra, and H. Hempel. A Downward Collapse within the
Polynomial Hierarchy. SIAM J. Comput., 28(2):383–393, 1999.

[12] J. Kadin. The polynomial time hierarchy collapses if the Boolean hierarchy collapses. SIAM
J. Comput., 17(6):1263–1282, 1988.

[13] R. Karp and R. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the twelfth annual ACM symposium on Theory of computing,
pages 302–309, 1980.

[14] M. Krentel. The complexity of optimization problems. J. Comput. Syst. Sci., 36(3):490–
509, 1988.

[15] R. Tripathi. The 1-versus-2 queries problem revisited. Theor. Comp. Sys., 46(2):193–221,
2010.

[16] K. Wagner. Number-of-query Hierarchies. Institut für Informatik Würzburg: Report. 1989.

[17] C. Yap. Some consequences of non-uniform conditions on uniform classes. Theoretical
computer science, 26(3):287–300, 1983.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

