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Abstract

In this paper, two structural results concerning low degree polynomials over the field F2

are given. The first states that for any degree d polynomial f in n variables, there exists a
subspace of Fn

2 with dimension Ω(n1/(d−1)) on which f is constant. This result is shown to be
tight. Stated differently, a degree d polynomial cannot compute an affine disperser for dimension
smaller than Ω(n1/(d−1)). Using a recursive argument, we obtain our second structural result,
showing that any degree d polynomial f induces a partition of Fn

2 to affine subspaces of dimension
Ω(n1/(d−1)!), such that f is constant on each part. We extend both structural results to more
than one polynomial, and consider the algorithmic aspect of these results.

Our structural results have various applications:

• Dvir [CC 2012] introduced the notion of extractors for varieties, and gave explicit con-
structions of such extractors over large fields. We show that over F2, any affine extractor
is also an extractor for varieties, with related parameters. Our reduction also holds for
dispersers, and we conclude that Shaltiel’s affine disperser [FOCS 2011] is a disperser for
varieties over F2.

• Ben-Sasson and Kopparty [SIAM J. C 2012] proved that any degree 3 affine disperser is
also an affine extractor with related parameters. Using our structural results, and based
on the work of Kaufman and Lovett [FOCS 2008] and Haramaty and Shpilka [STOC 2010],
we generalize this result to any constant degree.

• Implicit in Razborov’s work [CAAML 1988], the existence of a depth 3 AC0[⊕] circuit
that computes an optimal affine extractor was shown. We complement this result by
showing that depth 2 AC0[⊕] circuits cannot compute affine dispersers for sub-polynomial
dimension. This can be interpreted as a generalization of our structural results to sparse
polynomials (regardless of their degree). We also give an alternative proof for the depth 3
case.

We deduce several other corollaries from the structural results, one of which states that any
excellent affine extractor has small correlation with low degree polynomials. Another is a lower
bound on the granularity of the Fourier spectrum of low degree polynomials.
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1 Introduction

In this paper we consider the following question concerning polynomials on n variables over the
field F2. What is the largest number k = k(n, d) such that any degree d 1 polynomial is constant
on some affine subspace of Fn2 with dimension k?

This question concerning the structure of low degree polynomials can be rephrased, in the
language of pseudorandomness, as whether a low degree polynomial can be a good affine disperser.
Recall that, over F2, an affine disperser for dimension k is a function f : Fn2 → F2 with the following
property. For every affine subspace u0+U ⊆ Fn2 of dimension k, f restricted to u0+U is not constant.
A function f : Fn2 → F2 is called an affine extractor for dimension k with bias ε, if for every affine
subspace u0 + U ⊆ Fn2 of dimension k, it holds that

bias(f |u0+U ) ,
∣∣∣Eu∼u0+U

[
(−1)f(u)

]∣∣∣ ≤ ε.
It is worth mentioning that several explicit constructions of affine dispersers (and affine extractors)
are in fact low degree polynomials [Bou07, BSG12, BSK12]. Examples for this fact can be found
in the literature for other types of dispersers and extractors as well [CG88, BIW06, Dvi12].

Clearly, k(n, 1) = n−1. The case d = 2 is also well understood. By considering the inner product
function q(x1, . . . , xn) = x1x2 + x3x4 + · · · + xn−1xn, one obtains the upper bound k(n, 2) ≤ n/2,
which is tight as implied by Dickson’s theorem [Dic01]. The extreme case d = n boils down to the
question of understanding the parameters of an optimal affine disperser, and it is not hard to show
that log n−O(1) ≤ k(n, n) ≤ log n+ log log n+O(1).2

To the best of our knowledge, the value of k(n, d) for d > 2 has not received a formal treatment in
the literature, although a variant of this natural question was previously raised by Trevisan [Tre06].
For biased polynomials, or for polynomials with large Gowers norm, one can obtain non-trivial lower
bounds on k(n, d) for d = 3, 4 as a corollary of the structural results of Haramaty and Shpilka [HS10].
Assuming low degree and bounded spectral norm, lower bounds on k(n, d) follow by the structural
result of [TWXZ13].

1.1 Our Results

In this paper we give an asymptotically tight upper and lower bounds on k(n, d) for all d, and present
several applications of this result to complexity theory and in particular to pseudorandomness.

Theorem 1.1 (Structural Result I). For all d ≥ 1, k(n, d) is bounded below by the least integer k
such that

n ≤ k +

d−1∑
j=0

(d− j) ·
(
k

j

)
.

In particular, there exists a universal constant α ∈ (0, 1) such that k(n, d) ≥ α · n1/(d−1) for all d.
Moreover, if d ≤ log (n)/3, then k(n, d) ≥ αd · n1/(d−1).

Theorem 1.1 is tight – by applying a probabilistic argument, one can show that k(n, d) is bounded
above by the least integer k such that (

k

≤d

)
> n(k + 1).

1Throughout this paper, by degree we mean total degree.
2In fact, we show in Appendix A that k(n, (1 + o(1)) logn) is at most logn + log logn + O(1).
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Thus, we have an asymptotically matching upper bound on k(n, d). 3 Based on the work of Ben-
Eliezer et al. [BEHL09], one can say something even stronger regarding the tightness of Theorem 1.1.
Namely, for every d ≥ 1, there exists a degree d polynomial f : Fn2 → F2 with bias 2−Ω(k/d) on any
affine subspace of dimension k ≥ Ω(d · n1/(d−1)). (see Section 3.3).

In the language of pseudorandomness, Theorem 1.1 states that a degree d ≤ log (n)/3 polyno-
mial is not an affine disperser for dimension smaller than αd·n1/(d−1), and in particular, polynomials
with constant degree are not affine dispersers for sub-polynomial dimension. The tightness result
mentioned above, implies that there exists a degree d polynomial which is an affine extractor for
dimension k = O(d · n1/(d−1)) with bias 2−Ω(k/d). In fact, most degree d polynomials share this
property.

As a corollary from Theorem 1.1, we obtain a second structural result for low degree polynomials.

Theorem 1.2 (Structural Result II). Let f : Fn2 → F2 be a degree d polynomial. Then, there exists
a partition of Fn2 to affine subspaces (not necessarily shifts of the same subspace), each of dimension
Ω(n1/(d−1)!), such that f is constant on each part.

We do not know if the lower bound on the dimension in Theorem 1.2 is tight or not, and leave this
as an open problem.

Generalization of the structural results to many polynomials. Being a natural general-
ization and also useful for some of our applications, we generalize the two structural results to
the case of any number of polynomials (see Section 3.4). Let f1, . . . , ft : Fn2 → F2 be polynomials
of degree at most d. The generalization of the first structural result states that there exists an
affine subspace of dimension Ω((n/t)1/(d−1)) on which each of the t polynomials is constant (see
Theorem 3.7). In the second structural result, the promised dimension in Theorem 1.2 is replaced
by Ω(n1/(d−1)!/te), where e is the base of the natural logarithm (see Theorem 3.8).

The algorithmic aspect. We further study the algorithmic aspect of the structural results (see
Section 4). We devise a poly(n)-time algorithm (see Theorem 4.1), that given a degree d polynomial
f on n variables as a black-box, performs poly(n) queries, and outputs a subspace of dimension
Ω(k(n, d)), restricted to which, f has degree at most d− 1. By applying this algorithm recursively
d times, one can efficiently obtain a subspace of dimension Ω(n1/(d−1)!) on which f is constant.
We also give a 2o(n)-time algorithm that, for d = o(log n), outputs a subspace with an optimal
dimension Ω(k(n, d)) on which f is constant (see Theorem 4.5).

1.2 Applications

We now present several applications of our structural results.

Extractors and Dispersers for Varieties over F2

Let F be some field. An affine subspace of Fn can be thought of as the set of common zeros of one
or more degree 1 polynomials with coefficients in F. An affine extractor over the field F is a function
f : Fn → F that has small bias (defined appropriately) on every large enough affine subspace. In

3In fact, one can verify that the ratio between the upper and lower bounds we have on k(n, d) is 1+od(1) for all d.
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[Dvi12], the study of the following natural generalization was initiated: construct a function that
has small bias on the set of common zeros of one or more degree d > 1 polynomials. In general,
the set of common zeros of one or more polynomials is called a variety. For a set of polynomials
g1, . . . , gt in n variables over F, we denote their variety by

V(g1, . . . , gt) = {x ∈ Fn : g1(x) = · · · = gt(x) = 0} .

A function f : Fn → F as above is called an extractor for varieties.
In [Dvi12], two explicit constructions of extractors for varieties were given. For simplicity, we

suppress here both the bias of the extractor and the number of output bits. Dvir’s first construction
works under no assumption on the variety size (more precisely, some assumption is made, but that
assumption is necessary). The downside of this construction is that the underlining field is assumed
to be quite large, more precisely, |F| > dΩ(n2). The second construction works for fields with size as
small as poly(d), however the construction is promised to work only for varieties with size at least
|F|n/2. Dvir applies tools from algebraic geometry for his constructions.

In this paper we consider the extreme case of constructing extractors for varieties over the
smallest field F2, which seems to be immune against algebraic geometry based techniques. We
apply the generalization of Theorem 1.2 to many polynomials, and deduce a reduction from the
problem of constructing extractors for varieties over F2 to the special case of constructing affine
extractors.

Theorem 1.3. Let f : Fn2 → F2 be an affine extractor for dimension Ω(n1/(d−1)!/te) with bias ε.
Then, f is an extractor with bias ε for varieties that are the common zeros of any t polynomials of
degree at most d.

We also obtain a reduction that does not depend on the number of polynomials defining the variety,
but rather on the variety size (see Theorem 5.1). The proof idea in this case is to “approximate”
the given variety by a variety induced by a small number of low degree polynomials, and then apply
Theorem 1.3.

The state of the art explicit constructions of affine extractors work only for dimension Ω(n/
√

log log n)
[Bou07, Yeh11, Li11], and thus the reduction in Theorem 1.3 only gives an explicit construction
of an extractor for varieties defined by quadratic polynomials (and in fact, up to (log log n)1/(2e)

quadratic polynomials). However, a similar reduction to that in Theorem 1.3 also holds for dis-
persers (see Theorem 5.2), and an explicit construction of an affine disperser for dimension as small

as 2log0.9 n is known [Sha11]. Thus, we obtain the first disperser for varieties over F2.

Theorem 1.4. For any n, d, t such that d < (1−on(1))· log (n/t)

log0.9 n
, there exists an explicit construction

of an affine disperser for varieties which are the common zeros of any t polynomials of degree at
most d. In particular, when t ≤ nα for some constant α < 1, the requirement on the degree is
d < (1− α− on(1)) · log0.1 n.

From Affine Dispersers to Affine Extractors

Constructing an affine disperser is, by definition, an easier task than constructing an affine extractor.
Nevertheless, Ben-Sasson and Kopparty [BSK12] proved (among other results) that any degree 3
affine disperser is also an affine extractor with comparable parameters. 4 Using the extension

4A reduction from extractors to dispersers in the context of two sources was also obtained, by Ben-Sasson and
Zewi [BSZ11], conditioned on the well-known Freiman-Ruzsa conjecture from additive combinatorics.

3



of Theorem 1.1 to many polynomials, we are able to generalize the reduction of Ben-Sasson and
Kopparty, over the field F2, to any degree d ≥ 3.

Theorem 1.5. For all d ≥ 3 and δ > 0, there exists c = c(d, δ) such that the following holds. Let
f : Fn2 → F2 be an affine disperser for dimension k, which has degree d as a polynomial over F2.
Then, f is also an affine extractor for dimension k′ , c · kd−2 with bias δ.

Note that Theorem 1.5 is only interesting in the case where kd−2 < n. However, this case is
achievable since a random polynomial of degree d is an affine disperser for dimension O(d ·n1/(d−1)).
On top of Theorem 1.1, the key ingredient we use in the proof of Theorem 1.5 is the work of Kaufman
and Lovett [KL08] (see Section 6). For d = 4 we get a better dependency between k and k′ based
on the work of [HS10] (see Theorem 6.2).

AC0[⊕] Circuits and Affine Extractors / Dispersers

Constructing affine dispersers, and especially affine extractors, is a challenging task. As men-
tioned, the state of the art explicit constructions for affine extractors work only for dimension
Ω(n/

√
log log n). By a probabilistic argument however, one can show the existence of affine extrac-

tors for dimension (1 + o(1)) log n (see Claim A.1). Thus, there is an exponential gap between the
non-explicit construction and the explicit ones.

It is therefore tempting to try and utilize this situation and prove circuit lower bounds for
affine extractors. This idea works smoothly for AC0 circuits. Indeed, by applying the work of
H̊astad [H̊as86], one can easily show that an AC0 circuit on n inputs cannot compute an affine
disperser for dimension o(n/polylog(n)) (see Corollary 7.2). However, strong lower bounds for AC0

circuits are known, even for much simpler and more explicit functions such as Parity and Majority.
Thus, it is far more interesting to prove lower bounds against circuit families for which the known
lower bounds are modest. One example would be to show that a De Morgan formula of size O(n3)
cannot compute a good affine extractor, improving upon the best known lower bound [H̊as98]. 5

Somewhat surprisingly, we show that even depth 3 AC0[⊕] circuit can compute an optimal affine
extractor. In fact, the same construction can be also realized by a polynomial-size De Morgan
formula and has degree (1 + o(1)) log n as a polynomial over F2 (see Theorem A.6).

Theorem A.6 is implicit in the works of [Raz88, Sav95] who studied a similar problem in the
context of Ramsey graphs (that is, two-source dispersers). We give a different proof in Appendix A,
which can be extended to work also in the context of Ramsey graphs.

Given that depth 3 AC0[⊕] circuits exhibit the surprising computational power mentioned above,
it is natural to ask whether depth 2 AC0[⊕] circuit can compute a good affine extractor. We stress
that even depth 2 AC0[⊕] circuits should not be disregarded easily! For example, such circuits
can compute, in a somewhat different setting, optimal Ramsey graphs (see [Juk12], Section 11.7).
Moreover, any degree d polynomial f : Fn2 → F2 can be computed by a depth 2 AC0[⊕] circuit
with size nd. Nevertheless, we complement the above result by showing that a depth 2 AC0[⊕]
circuit cannot compute an affine disperser for sub-polynomial dimension. The proof is based on
the following reduction.

Lemma 1.6. Let C be a depth 2 AC0[⊕] circuit on n inputs, with size nd. Let k < n/10−d log(n).
If C computes an affine disperser for dimension k, then there exists a degree 2d polynomial over
F2 on

√
n/5 variables which is an affine disperser for dimension k.

5The property of being an affine extractor meets the largeness condition of the natural proof barrier [RR94].
However, it does not necessarily get in the way of improving existing polynomial lower bounds.
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Hence, by Theorem 1.2, the following theorem readily follows.

Theorem 1.7. Let C be a depth 2 AC0[⊕] circuit on n inputs, with size nd which is an affine
disperser for dimension k, then k > k(

√
n/5, 2d) = Ω(n1/4d).

We note that an AC0[⊕] circuit with size s on n inputs, can simulate a polynomial with s monomials
(having no bound on the degree). Thus, Theorem 1.7 can be thought of as a generalization of
Theorem 1.1 to sparse polynomials.

Good Affine Extractors are Hard to Approximate by Low Degree Polynomials

Using Theorem 1.2, we obtain an average-case hardness result, or in other words, correlation bounds
for low degree polynomials. Namely, we show that any affine extractor with very good parameters
cannot be approximated by low degree polynomials over F2.

Corollary 1.8. Let f : Fn2 → F2 be an affine extractor for dimension k with bias ε. Then, for any
polynomial g : Fn2 → F2 of degree d such that k = Ω(n1/(d−1)!), it holds that

Cor(f, g) , E
x∼Fn2

[
(−1)f(x) · (−1)g(x)

]
≤ ε.

Proof. Let g be a degree d polynomial over F2 on n variables. By Theorem 1.2, there exists a
partition of Fn2 to affine subspaces P1, P2, . . . , P`, each of dimension k = Ω(n1/(d−1)!), such that for
all i ∈ [`], g|Pi is some constant g(Pi). Thus,

Cor(f, g) =

∣∣∣∣ E
x∼Fn2

[(−1)f(x)+g(x)]

∣∣∣∣ =

∣∣∣∣ E
i∼[`]

E
x∼Pi

[(−1)f(x)+g(Pi)]

∣∣∣∣ ≤ E
i∼[`]

∣∣∣∣(−1)g(Pi) · E
x∼Pi

[(−1)f(x)]

∣∣∣∣ ,
which is at most ε since f is an affine extractor for dimension k with bias ε.

As mentioned, explicit constructions of affine extractors for dimension Ω(n/
√

log logn) are known.
Corollary 1.8 implies that these extractors cannot be approximated by quadratic polynomials.
Corollary 1.8 also implies that for any constant β ∈ (0, 1), affine extractors for dimension k ≤
2(logn)β with bias ε have correlation ε with degree d ≤ Oβ (log log n/ log log log n) polynomials. 6 Un-
fortunately, an explicit construction for extractors with such parameters has not yet been achieved.

We also note that stronger correlation bounds are known in the literature for explicit (and
simple) functions (see [Vio09] and references therein). Nevertheless, we find the fact that any
affine extractor has small correlation with low degree polynomials interesting.

The Granularity of the Fourier Spectrum of Low-Degree Polynomials over F2

The bias of an arbitrary function f : Fn2 → F2 is clearly some integer multiplication of 2−n. The-
orem 1.2 readily implies that the bias of a degree d polynomial on n variables has a somewhat
larger granularity – the bias is a multiplication of 2Ω(n1/(d−1)!)/2n by some integer. 7 In fact, The-
orem 1.2 implies that all Fourier coefficients of a low degree polynomial has this granularity. To

6This is the best d we can guarantee for any k, and we gain nothing more by taking k = O(logn).
7Throughout the paper, for readability, we supress flooring and ceiling. In the last expression, however, it should

be noted that we mean 2k−n, where k is some integer such that k = Ω(n1/(d−1)!).
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see this, apply Theorem 1.2 to obtain a partition P1, . . . , P` of Fn2 to affine subspaces of dimension
k = Ω(n1/(d−1)!), such that for each i ∈ [`], f |Pi is some constant f(Pi). Let β ∈ Fn2 . Then,

2n · f̂(β) =
∑
x∈Fn2

(−1)〈β,x〉 · (−1)f(x) =
∑̀
i=1

∑
x∈Pi

(−1)〈β,x〉 · (−1)f(x) =
∑̀
i=1

(−1)f(Pi) ·
∑
x∈Pi

(−1)〈β,x〉.

The proof then follows as for all i ∈ [`], the inner sum
∑

x∈Pi (−1)〈β,x〉 is either 0 or ±2k.

1.3 Proof Overview

In this section we give proof sketches for our results. We start with Theorem 1.1. Our proof
is rather elementary, in spite of what one should expect considering previous works in this area,
which apply machinery from additive combinatorics and Fourier analysis. Assume without loss of
generality that f(x) = 0 for some x ∈ Fn2 . We iteratively construct affine subspaces, restricted to
which, f is zero. We start with affine subspaces of dimension 0, which are just the singletons {x},
where x ∈ Fn2 is such that f(x) = 0. After selecting basis vectors ∆1, . . . ,∆k for a subspace U , we
consider all cosets x+U , restricted to which, f is constantly 0. We call such cosets good. If at least
two good cosets exist, x + U and y + U , then we can pick a new direction ∆k+1 to be y − x, and
get that f is zero on x+ span{∆1, . . . ,∆k+1}.

The main observation that allows us to derive Theorem 1.1 is the following. Given ∆1, . . . ,∆k,
there exists a degree D ∼

(
k
d−1

)
polynomial t : Fn2 → F2, such that x+U is a good coset if and only

if t(x) = 0. The Schwartz-Zippel lemma then assures us that if a single zero exists to a degree D
polynomial then the polynomial has in fact many zeros – at least 2n−D. So in each iteration, by our
choice of ∆k+1, we ensure that one coset in the next iteration is good, and then use Schwartz-Zippel
to claim that many other cosets are good as well. We can continue expanding our subspace U until
n ≤ D, which completes the proof.

The proof of the second structural result (Theorem 1.2) can be described informally as follows.
Consider a degree d polynomial f . Theorem 1.1 implies the existence of an affine subspace u0 +U
with dimension Ω(n1/(d−1)) on which f is constant. One can then show (see Claim 3.4) that
restricting f to any affine shift of U yields a degree (at most) d − 1 polynomial. Thus, one can
partition each such affine subspace recursively to obtain a partition of Fn2 to affine subspaces (not
necessarily shifts of one another), such that f is constant on each one of them.

In fact, to prove Theorem 1.2, one is not required to find an affine subspace on which f is
constant, and it suffices to find an affine subspace on which the degree of f decreases. In order to
obtain the first algorithmic result (Theorem 4.1), we devise an algorithm that finds such an affine
subspace and proceed similarly to the proof of Theorem 1.2. To obtain the second algorithmic
result (Theorem 4.5), we observe that the polynomial t described above has many linear factors.
This structure of t allows us to save on the running time.

The generalization of Theorem 1.1 and Theorem 1.2 to more than one polynomial is quite
straightforward.

2 Preliminaries

The set {1, . . . , n} is denoted by [n]. We denote by log(·) the logarithm to the base 2. Throughout
the paper, for readability sake, we suppress flooring and ceiling. For x, y ∈ Fn2 we denote by 〈x, y〉
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their scalar product over F2, i.e., 〈x, y〉 =
∑n

i=1 xi · yi mod 2. The vector ei is the unit vector
defined as having 1 in the ith entry and 0 elsewhere. For a set T ⊆ [n], we denote by 1T the
indicating vector of T with 1 in the ith entry if i ∈ T and 0 otherwise. The degree of a Boolean
function f : Fn2 → F2, denoted by deg(f), is the degree of the unique multivariate multi-linear
polynomial over F2 which agrees with f on Fn2 . We will abuse notation and interchange between a
Boolean function and the unique multi-linear polynomial over F2 that agrees with f on Fn2 .

The following folklore fact about polynomials over F2 is easy to verify.

Fact 2.1 (Möbius inversion formula). Let f(x1, . . . , xn) =
∑

S⊆[n] aS ·
∏
i∈S xi be a polynomial over

F2. Then, its coefficients are given by the formula: aS =
∑

T⊆S f(1T ).

Restriction to an affine subspace. Let f : Fn2 → F2 be a Boolean function, U ⊆ Fn2 a subspace
of dimension k and u0 ∈ Fn2 some vector. We denote by f |u0+U : (u0+U)→ F2 the restriction of f to
u0 +U . The degree of f |u0+U is defined as the minimal degree of a polynomial (from Fn2 to F2) that
agrees with f on u0 +U . For recursive arguments, it will be very useful to fix some basis u1, . . . , uk

for U and to consider the function g : Fk2 → F2 defined by g(x1, . . . , xk) = f
(
u0 +

∑k
i=1 xi · ui

)
.

Note that the deg(g) = deg(f |u0+U ) (regardless of the choice for the basis).

Definition 2.2 (Discrete Partial Derivative). For a function f : Fn2 → F2 and a direction ∆ ∈ Fn2 ,
we define ∂f

∂∆(x) , f(x+ ∆)− f(x) to be the discrete partial derivative of f in direction ∆ at the
point x.

Since addition and substraction are the same over F2, we may also write ∂f
∂∆(x) = f(x+ ∆) + f(x).

If f is a polynomial of degree d over F2, then the degree of its partial derivative in direction ∆ is
at most d− 1. Taking multiple derivatives in the directions ∆1, . . . ,∆k ∈ Fn2 yields

∂kf

∂∆1 . . . ∂∆k
(x) =

∑
S⊆[k]

f

(
x+

∑
i∈S

∆i

)
,

which is symmetric with respect to the ∆i’s. It follows that ∂kf
∂∆1...∂∆k

(x) is of degree at most

deg(f)− k 8 as a polynomial over F2. Throughout the paper, if ∆1, . . . ,∆k ∈ Fn2 are clear from the
context, then for S ⊆ [k], we denote

fS(x) ,
∑
T⊆S

f

(
x+

∑
i∈T

∆i

)
.

Circuits. A Boolean circuit is an unbounded fan-in circuit composed of OR and AND gates, and
literals xi, ¬xi. The size of such a circuit is the number of gates in it. A Boolean formula is a
Boolean circuit such that every OR and AND gate has fan-out 1. De Morgan formula is a Boolean
formula where each gate has fan-in at most 2. We recall that an AC0 circuit is a Boolean circuit
of polynomial size and constant depth. An AC0[⊕] circuit is an AC0 circuit with unbounded fan-in
XOR gates as well.

8We consider the degree of the zero polynomial as −∞.
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3 Structural Results

We start this section by proving Theorem 1.1. In fact, we prove the following slightly stronger
result.

3.1 Proof of Structural Result I

Theorem 3.1 (Structural Result I). Let k be the smallest integer such that

n ≤ k +
d−1∑
j=0

(d− j) ·
(
k

j

)
.

Let f : Fn2 → F2 be a degree d polynomial, and let u0 ∈ Fn2 . Then, there exists a subspace U ⊂ Fn2 of
dimension k such that f |u0+U is constant. In particular, k(n, d) ≥ α · n1/(d−1), for some universal
constant α ∈ (0, 1). Moreover, for d ≤ log (n)/3 it holds that k(n, d) ≥ αd · n1/(d−1).

The proof of Theorem 3.1 uses a folklore variant of the Schwartz-Zippel lemma for small fields.

Claim 3.2. Let f : Fn2 → F2 be a non-zero degree d polynomial. Then,

Pr
x∼Fn2

[f(x) 6= 0] ≥ 2−d.

Proof of Theorem 3.1. Fix u0 ∈ Fn2 . We assume without loss of generality that f(u0) = 0, as
otherwise we can look at the polynomial g(x) = f(x) − f(u0) which is of the same degree. The
proof is by induction. Let k be such that

n > k +

d−1∑
j=0

(d− j) ·
(
k

j

)
. (3.1)

We assume by induction that there exists an affine subspace u0 + span{∆1, . . . ,∆k} ⊆ Fn2 , where
the ∆i’s are linearly independent vectors on which f evaluates to 0. Assuming Equation 3.1 holds,
we show there exists a vector ∆k+1, linearly independent of ∆1, . . . ,∆k, such that f ≡ 0 on
u0 + span{∆1, . . . ,∆k+1}. To this aim, consider the set

A =

{
x ∈ Fn2

∣∣∣∣ ∀S ⊆ [k], f

(
x+

∑
i∈S

∆i

)
= 0

}
.

By the induction hypothesis, u0 ∈ A. It can be verified that for any x ∈ Fn2

∀S ⊆ [k] : f

(
x+

∑
i∈S

∆i

)
= 0 ⇔ ∀S ⊆ [k] : fS(x) = 0 ,

where we recall (see Preliminaries) that fS is defined by

fS(x) ,
∑
T⊆S

f

(
x+

∑
i∈T

∆i

)
.
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In particular, deg(fS) ≤ d− |S|. Thus fS ≡ 0 for |S| > d, and we may write A as

A = {x ∈ Fn2 | ∀S ⊆ [k] : |S| ≤ d, fS(x) = 0} .

Hence, A is the set of solutions to a system of
(
k
≤d
)

polynomial equations, where there are
(
k
j

)
equations which correspond to sets S of size j and thus to degree (at most) d − j polynomials. 9

One can also write A as the set of solutions to the single polynomial equation∏
S⊆[k]:|S|≤d

(1− fS(x)) = 1,

which is of degree

D ≤
d−1∑
j=0

(d− j) ·
(
k

j

)
.

Since A is non-empty, by Claim 3.2 we have that

|A| ≥ 2n−D ≥ 2
n−

∑d−1
j=0 (d−j)·(kj). (3.2)

This, together with Equation (3.1) implies that |A| > 2k. Hence, there exists a point y ∈ A such
that y− u0 /∈ span{∆1,∆2, . . . ,∆k}. Pick such a point y arbitrarily and denote by ∆k+1 , y− u0.
Since both u0 and y are in A we have that f ≡ 0 on

u0 + span{∆1, . . . ,∆k+1} .

The inductive proof shows that there exists a subspace U of dimension k such that f is constant
on u0 + U and

n ≤ k +

d−1∑
j=0

(d− j) ·
(
k

j

)
, (3.3)

since otherwise we could have continue this process and pick a bigger subspace U ′. We now complete
the proof by showing that k = Ω(d · n1/(d−1)) for d ≤ log(n)/3 and k = Ω(n1/(d−1)) for any d. The
right hand side of Equation (3.3) is bounded above by d · 2k, hence k ≥ log(n/d). Under the
assumption d ≤ log(n)/3 we get k ≥ 2 log(n)/3 ≥ 2d. We return to Equation (3.3) and deduce that

n ≤ k + d ·
d−1∑
j=0

(
k

j

)
≤

2d≤k
(d2 + 1) ·

(
k

d− 1

)
≤ (d2 + 1) ·

(
ke

d− 1

)d−1

and so

k ≥
(

n

d2 + 1

) 1
d−1

· d− 1

e
>

1

28
· d · n1/(d−1) .

For d ≥ log(n)/3 the proof follows since n1/(d−1) ≤ 64.

9In particular, equations that correspond to sets S of size d are of the form cS = 0 for some constant cS ∈ F2.
Since A is non-empty, the constants cS must be 0, making those equations tautologies 0 = 0 that does not depend
on x. Moreover, most of the remaining equations correspond to sets S of size d − 1, and are therefore either linear
equations or tautologies.
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3.2 Proof of Structural Result II

In this section we prove the following theorem, which is a slightly more formal restatement of
Theorem 1.2.

Theorem 3.3 (Structural Result II). There exists a constant α′ ∈ (0, 1) such that the following
holds. Let f : Fn2 → F2 be a degree d polynomial, then, there exists a partition of Fn2 to affine
subspaces, each of dimension α′ · n1/(d−1)!, such that f is constant on each part.

We use the following claim for the proof of Theorem 3.3.

Claim 3.4. Let f : Fn2 → F2 be a degree d polynomial. Assume there exists an affine subspace
u0 + U of dimension k, restricted to which f has degree at most d − 1. Then, the degree of f
restricted to any affine shift of U is at most d− 1.

Proof. Fix u1 ∈ Fn2 . Now, for any u ∈ U

f(u1 + u) = f(u1 + u) + f(u0 + u) + f(u0 + u) =
∂f

∂(u0 + u1)
(u0 + u) + f(u0 + u).

Since the degree of the partial derivative of f is at most d− 1 and the degree of f |u0+U is also at
most d− 1, we get that f |u1+U has degree at most d− 1.

Proof of Theorem 3.3. Let α be the constant from Theorem 3.1. Define the sequence {βd}∞d=1 as
follows.

βd =

{
1/2, d = 1;

βd−1 · α
1

(d−2)! , d > 1.

We will prove by induction on d, the degree of a given polynomial f , that there exists a partition of
Fn2 to affine subspaces of dimension ≥ βd · n1/(d−1)!, such that f restricted to each part is constant.
The proof then follows by noting that for all d ≥ 1,

βd =
1

2
· α

1
(d−2)!

+···+ 1
1!

+ 1
0! ≥ αe

2
,

and thus one can take α′ = αe/2 to be the constant in the theorem statement.
The base case of the induction, namely d = 1, trivially follows as f is an affine function, and

we can partition Fn2 to two affine subspaces of dimension n − 1 ≥ n/2 = β1n, such that on each
of which f is constant. Assume now that f is a degree d > 1 polynomial. By Theorem 3.1 and
Claim 3.4, there exists a partition of Fn2 to affine subspaces of dimension k ≥ α·n1/(d−1), such that f
restricted to any affine subspace in the partition has degree at most d−1. Fix some affine subspace
u0 +U in this partition, and apply the induction hypothesis to the polynomial f ′ = f |u0+U , which
has degree d′ ≤ d− 1. 10 By the induction hypothesis, we obtain a partition of u0 +U such that f
is constant on each part. Moreover, the dimension of each such part is at least

βd′ · k
1

(d′−1)! ≥ βd−1 · k
1

(d−2)! ≥ βd−1 ·
(
α · n

1
d−1

) 1
(d−2)!

= βd−1 · α
1

(d−2)! · n
1

(d−1)! = βd · n
1

(d−1)! ,

where the first inequality follows since {βd}∞d=1 is monotonically decreasing and d′ ≤ d− 1, and the
last equality follows by the definitions of the βd’s.

10We may apply the induction because there exists a linear bijection from U to FdimU
2 . More precisely, if A is an n×k

matrix over F2 that maps U to Fk2 bijectively, then one can apply the induction to the polynomial f ′′(x) = f ′(u0+Ax),
defined on k variables, and then induce a partition of u0 +U from the partition of Fk2 obtained by the induction. The
induction can be carried on f ′′ since deg f ′′ ≤ deg f ′ ≤ d − 1, where the first inequality holds because the variables
of f ′′ are linear combinations of the variables of f ′.
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3.3 On the Tightness of Structural Result I

Theorem 3.5. There exists a constant c such that the following holds. Let n, d be such that
d < n/2. There exists a degree d polynomial f : Fn2 → F2, such that for every affine subspace
u0 + U ⊆ Fn2 of dimension k ≥ cd · n1/(d−1), bias(f |u0+U ) ≤ 2−Ω(k/d).

To prove Theorem 3.5 we apply the following lemma due to Ben-Eliezer, Hod and Lovett [BEHL09].

Lemma 3.6 ([BEHL09], Lemma 2). Fix ε > 0 and let f be a random degree d polynomial 11 for
d ≤ (1− ε)n. Then,

Pr
f

[
bias(f) > 2−c1n/d

]
≤ 2

−c2( n≤d),

where 0 < c1, c2 < 1 are constants depending only on ε.

Proof of Theorem 3.5. Let f : Fn2 → F2 be a random polynomial of degree at most d. Fix an affine
subspace u0 + U ⊆ Fn2 of dimension k. One can easily show that f |u0+U is equidistributed as a
random polynomial on k variables, of degree at most d. Therefore, by Lemma 3.6,

Pr
f

[
bias(f |u0+U ) > 2−c1k/d

]
≤ 2

−c2( k
≤d),

where c1, c2 are the constants from Lemma 3.6 suitable for the (somewhat arbitrary) choice ε = 1/2.
By taking the union bound over all ≤ 2n ·

(
2n

k

)
affine subspaces of Fn2 of dimension k, it is enough

to require that

2
−c2( k

≤d) · 2n ·
(

2n

k

)
< 1

so to conclude the proof of the theorem. It is easy to verify that one can choose c, as a function of
c2, such that the above equation does hold for k as defined in the theorem statement.

3.4 Generalization of the Structural Results to Many Polynomials

Theorem 3.7 (Structural Result I for many polynomials). Let f1, . . . , ft : Fn2 → F2 be polynomials
of degree d1, . . . , dt respectively. Let k be the least integer satisfying the inequality

n ≤ k +
t∑
i=1

di−1∑
j=0

(di − j) ·
(
k

j

)
.

Then, for every u0 ∈ Fn2 there exists a subspace U ⊂ Fn2 of dimension k, such that for all i ∈ [t], fi
restricted to u0 +U is a constant function. In particular, if d1, . . . , dt ≤ d then k = Ω((n/t)1/(d−1)).
Moreover, for d ≤ log(n)/3, k = Ω(d · (n/t)1/(d−1)).

Proof. The proof is very similar to that of Theorem 3.1, so we only highlight the differences. As in
the proof of Theorem 3.1, we may assume that f1, . . . , ft evaluate to 0 at u0. We build by induction
an affine subspace u0 + U on which all the t polynomials evaluate to 0. Given we already picked
basis vectors ∆1, . . . ,∆k, we consider the set A to be the following:

A =

x ∈ Fn2

∣∣∣∣ ∀i ∈ t ∀S ⊆ [k], fi

x+
∑
j∈S

∆j

 = 0

 .

11That is, every monomial of degree at most d appears in f with probability 1/2, independently of all other
monomials.
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As in the proof of Theorem 3.1, A can be written as the set of solutions to a single polynomial
equation of degree

D ≤
t∑
i=1

di−1∑
j=0

(di − j) ·
(
k

j

)
,

and is non-empty as it contains u0. By Claim 3.2, |A| ≥ 2n−D, and we can choose a new linearly
independent ∆k+1 as long as n−D > k, which completes the proof.

Similarly to the way we deduced Theorem 3.3 from Theorem 3.1, one can deduce the following
theorem from Theorem 3.7. We omit the proof.

Theorem 3.8 (Structural Result II for many polynomials). Let f1, . . . , ft : Fn2 → F2 be polynomials
of degree at most d. Then, there exists a partition of Fn2 to affine subspaces, each of dimension
Ω(n1/(d−1)!/te), such that f1, . . . , ft are all constant on each part.

4 The Algorithmic Aspect

4.1 Efficient Algorithm for Finding a Somewhat Large Subspace

Theorem 4.1. Let f : Fn2 → F2 be a polynomial of degree d ≤ log(n)/3 given as a black-box. Then,
there exists an algorithm that makes poly(n) queries to f , runs in time poly(n), and finds an affine
subspace U of dimension Ω(d · n1/(d−1)) such that deg(f |U ) ≤ d− 1.

We obtain the following corollaries.

Corollary 4.2. There exists an algorithm that given a degree d polynomial f : Fn2 → F2 as a black
box, runs in poly(n)-time and finds an affine subspace of dimension Ω(n1/(d−1)!) on which f is
constant.

Corollary 4.3. Let f : Fn2 → F2 be a degree d polynomial given as a black-box, then there is a
2n−k · poly(n)-time poly(n)-space algorithm, which partitions Fn2 to affine subspace of dimension k
on each of which f is constant, where k = Ω(n1/(d−1)!).

In particular, one can compute the number of satisfying assignments for f using Corollary 4.3. The
proof of Theorem 4.1 uses the following lemma.

Lemma 4.4. Let f : Fn2 → F2 be a degree d polynomial, and let U be a linear subspace with basis
∆1, . . . ,∆k. Then, deg(f |U ) ≤ d− 1 if and only if fS(0) = 0 for all S ⊆ [k] of size d.

Proof of Lemma 4.4. As noted in the Preliminaries section, the degree of f |U is equal to the degree
of g : Fk2 → F2 defined as g(y1, . . . , yk) = f(

∑k
i=1 yi∆i). Since deg(g) ≤ d, we may write g(y) =∑

S⊆[k],|S|≤d aS ·
∏
i∈S yi, where aS ∈ F2 are constants. By Möbius inversion formula (Fact 2.1),

aS =
∑

T⊆S g(1T ). By the definition of g, we establish the relation aS =
∑

T⊆S f(
∑

i∈T ∆i) =
fS(0). Hence,

deg(f |U ) ≤ d− 1 ⇔ deg(g) ≤ d− 1

⇔ ∀S ⊆ [k] s.t. |S| = d, aS = 0

⇔ ∀S ⊆ [k] s.t. |S| = d, fS(0) = 0,

which completes the proof.
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Proof of Theorem 4.1. Similarly to the proof of Theorem 3.1, we find by induction basis vectors
∆1, . . . ,∆k for the subspace U . We assume by induction that deg(f |U ) ≤ d − 1, and we wish to
find a new vector ∆k+1, linearly independent of ∆1, . . . ,∆k, for which deg(f |U ′) ≤ d − 1, where
U ′ = span{∆1, . . . ,∆k+1}. We continue doing so as long as

(
k
d−1

)
+ k < n.12

By Lemma 4.4, for any set S ⊆ [k] of size d, fS(0) = 0. We wish to find a new vector ∆k+1

such that for all S ⊆ [k+ 1] of size d, fS(0) = 0. It suffices to consider sets S of size d that contains
k + 1, since the correctness for all other sets is implied by the induction hypothesis.

For sets S of size d− 1, fS(x) is an affine function and can be written as fS(x) = 〈`S , x〉+ cS ,
where `S ∈ Fn2 and cS ∈ F2. Let W be the linear subspace of Fn2 spanned by {`S : S ⊆ [k], |S| =
d − 1}. Let ∆k+1 be any vector orthogonal to W , and linearly independent of ∆1,∆2, . . . ,∆k.
Since, dim(W⊥) = n−dim(W ) ≥ n−

(
k
d−1

)
, which by our assumption is strictly bigger than k, such

a vector ∆k+1 exists. Let S ⊆ [k+ 1] be a set of size d that contains k+ 1 and let S′ = S ∩ [k], then

fS(0) = fS′(0) + fS′(∆k+1) = 〈`S′ , 0〉+ cS′ + 〈`S′ ,∆k+1〉+ cS′ = 0 ,

where in the first equality we used the definitions of fS and fS′ , and in the last equality we used
the fact that ∆k+1 is orthogonal to `S′ . Using Lemma 4.4 we have shown that our choice of ∆k+1

gives a linear subspace U ′ = span{∆1, . . . ,∆k+1} for which f |U ′ is of degree ≤ d− 1.
We now explain how to find, for any set S of size d − 1, the affine function fS(x) (that is, `S

and cS) by performing 2d−1 · (n + 1) queries to f . As fS is affine, knowing the values of fS on
the inputs 0, e1, e2, . . . , en determines `S and cS : cS = fS(0) and (`S)i = cS + fS(ei) for i ∈ [n].
Each one of the values fS(0), fS(e1), . . . , fS(en) can be computed using 2d−1 queries to f , by the
definition of fS .

We now describe how can one efficiently find the vector ∆k+1 given ∆1, . . . ,∆k. Using Gaussian
elimination we find a basis for W⊥. We check for each basis vector if it is not in the span of
∆1, . . . ,∆k; after checking k + 1 vectors we are promised to find such a vector. Next, we analyze
the dimension of the subspace returned by the algorithm, the number of queries it makes to f , and
the total running time.

Dimension of subspace: We abuse notation and denote by k the number of rounds in our
algorithm, which is also the dimension of the subspace the algorithm returns. Since the algorithm
stopped, we know that

(
k
d−1

)
+ k ≥ n. By a simple calculation, under the assumption that d ≤

log(n)/3 we get that k = Θ(d · n1/(d−1)).

Number of queries: Overall through the k rounds of the algorithm we query f on all vectors
of the form v+

∑
i∈T ∆i for v ∈ {0, e1, . . . , en} and T ⊆ [k] of size ≤ d− 1. Hence, if we make sure

not to query f more than once on the same point, the number of queries is (n+ 1) ·
(

k
≤d−1

)
which

is at most O(n2) for d ≤ log(n)/3.

Running time: The total running time per round is O(n3) since we perform Gaussian elimination
to calculate the basis for W⊥, and another Gaussian elimination to check which of the first k + 1
vectors of this basis is not in span{∆1, . . . ,∆k+1}. In addition, in each round we calculate the
linear functions `S , but this only takes O(n2 ·2d) time, which is negligible compared to O(n3) under
the assumption that d ≤ log(n)/3. Therefore, the total running time is O(n3 · k).

12Note that this is slightly better than the expression we had in Theorem 3.1.
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4.2 Subexponential-Time Algorithm for Finding an Optimal Subspace

Theorem 4.5. There exist constants α ∈ (0, 1) and β > 0 such that the following holds. There
exists an algorithm that given f : Fn2 → F2, a degree d polynomial (as a list of monomials), where
3 ≤ d ≤ log(n)/3, and u0 ∈ Fn2 as inputs, finds an affine subspace u0 + U of dimension Ω(k(n, d)),

restricted to which f is constant. The running time of the algorithm is 2β·n
(d−2)/(d−1) ·poly(nd) time,

and it uses poly(nd) space.

Proof. We follow the proof of Theorem 3.1. Again, we may assume f(u0) = 0. Given the previously
chosen vectors ∆1, . . . ,∆k such that f is the constant 0 on u0 + span{∆1, . . . ,∆k}, we show how to
find a new vector ∆k+1 which is linearly independent of ∆1, . . . ,∆k, such that f is constantly zero
on u0 + span{∆1, . . . ,∆k+1}. The set A is the set of solutions to the following set of polynomial
equations:

{fS(x) = 0 : S ⊆ [k], |S| ≤ d− 1} ,

and by our assumptions, u0 is a solution to all of these equations. By treating the polynomial
f as a formal sum of monomials we can calculate each fS in poly(nd) time. Given y which is a
solution to this set of equations, if ∆k+1 := y − u0 is linearly independent of ∆1, . . . ,∆k then we
have achieved our goal. It is therefore enough to find more than 2k different solutions to this set
of equations, in order to guarantee that for one of them y − u0 will be linearly independent of the
previous ∆i’s. In order to do so, we partition the set of equations into the set of linear equations
and the set of non-linear equations:

L = {fS(x) = 0 : S ⊆ [k], |S| ≤ d− 1, deg(fS) = 1};
NL = {fS(x) = 0 : S ⊆ [k], |S| ≤ d− 1, deg(fS) > 1}.

Let m =
∑

fS∈NL deg(fS). Since we know u0 is a solution to all equations in L∪NL, we can impose
new linear equations which hold for u0, keeping the system consistent. More specifically, we define
a new set L′, which initially is equal to L, and iteratively add equations of the form {xi = (u0)i}
to L′ until dim(L′) = n−m− k − 1. 13

The set of solutions to both L′ and NL is non-empty as it contains u0. Furthermore, the sum
of the degrees of equations in L′ ∪NL is exactly (n−m− k − 1) +m = n− k − 1. Therefore, by
Claim 3.2, there are at least 2k+1 solutions to the equations in L′ ∪NL, which guarantees that one
of the solutions will yield a new vector ∆k+1, linearly independent of ∆1, . . . ,∆k.

Next, we show how to find all solutions to the equations in L′ ∪NL. We find a basis for the set
of solutions to L′ using Gaussian elimination, and iterate over all vectors in the affine subspace this
basis spans. For each vector x in this affine subspace we verify that all the equations in NL are
satisfied by x. The running time of this process is O(2n−dim(L′) · |NL| ·nd), which is O(2m+k ·n ·nd).

As m ≤
∑d−2

i=0 (d− i) ·
(
k
i

)
, an elementary calculation shows that for k ≤ d

2e · n
1/(d−1) and

3 ≤ d ≤ log(n)/3 we have m + k ≤ β · n(d−2)/(d−1) for some universal constant β. Thus, the total

running time of the algorithm is 2β·n
(d−2)/(d−1) · poly(nd). The algorithm uses O(|NL| · nd) space to

store and manipulate the polynomials fS . In addition, O(n2) space is used to perform the Gaussian
elimination. Overall the space used by the algorithm is O(nd+1).

13We add these constraints as concentrating at finding a solution of this form (that is, a solution that satisfies all
equations in L′ ∪NL rather than only the equations in L ∪NL) is easier from the computational aspect.
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5 Extractors and Dispersers for Varieties over F2

We start this section by proving Theorem 1.3.

Proof of Theorem 1.3. Let g1, . . . , gt : Fn2 → F2 be degree d polynomials. By Theorem 3.8, there
exists a partition of Fn2 to affine subspaces P1, . . . , P`, each of dimension Ω(n1/(d−1)!/te), such that
gj |Pi is constant for all i ∈ [`] and j ∈ [t]. Since f is an affine extractor for such dimension, with
bias ε, then for all i ∈ [`] it holds that ∣∣∣∣ E

x∼Pi

[
(−1)f(x)

]∣∣∣∣ ≤ ε. (5.1)

Let I ⊆ [`] be the set of indices of affine subspaces in the partition such that i ∈ I if and only
if gj |Pi = 0 for all j ∈ [t]. In other words, we consider the partition of V(g1, . . . , gt) to affine
subspaces, induced by the partition of Fn2 to P1, . . . , P`. Then,∣∣∣∣ E

x∼V(g1,...,gt)

[
(−1)f(x)

]∣∣∣∣ =

∣∣∣∣ Ei∼I E
x∼Pi

[
(−1)f(x)

]∣∣∣∣ ≤ E
i∼I

∣∣∣∣ E
x∼Pi

[
(−1)f(x)

]∣∣∣∣ ≤ ε,
where the last inequality follows by Equation (5.1).

We now give a formal statement and proof for the reduction from extractors for varieties to affine
extractors, which does not depend on the number of polynomials defining the variety, but rather
on the variety size.

Theorem 5.1. For every d ∈ N and δ, ρ ∈ (0, 1) the following holds. Let f : Fn2 → F2 be an affine
extractor for dimension Ω(n1/(d−1)!/`e) with bias ε, where ` = log (2/(ρδ)). Then, f is an extractor
with bias ε + δ for varieties with density at least ρ (i.e., size at least ρ · 2n), that are the common
zeros of any degree (at most) d polynomials.

Proof. Let g1, . . . , gt : Fn2 → F2 be degree (at most) d polynomials. First, we prove the existence
of ` polynomials h1, . . . , h` : Fn2 → F2, each of degree at most d, with a variety that approximates
V(g1, . . . , gt). More precisely,

V(g1, . . . , gt) ⊆ V(h1, . . . , h`) and Pr
x∼Fn2

[x ∈ V(h1, . . . , h`) \V(g1, . . . , gt)] ≤ 2−`, (5.2)

The proof of this claim follows by a standard argument, like the one that appears in [Raz87, Smo87].
Let S1, . . . , S` be random sets of [t] defined as follows. For each i ∈ [`], independently, an element
of [t] is contained in Si with probability 1/2, independently of all other elements in [t]. For each
i ∈ [`], define the (random) polynomial

Hi(x) =
∑
j∈Si

gj(x),

where the summation is taken over F2. Clearly, if x ∈ V(g1, . . . , gt) then Hi(x) = 0 with probability
1 (where the probability is taken over S1, . . . , S`). Otherwise, for each i ∈ [`], Pr [Hi(x) = 0] = 1/2.
By an averaging argument, one can fix S1, . . . , S` and obtain fixed polynomials h1, . . . , h`, of degree
at most d, that satisfy the conditions in Equation (5.2).
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Since f is an affine extractor with bias ε for dimension Ω(n1/(d−1)!/`e), we can apply Theorem 1.3
and get that f is an extractor with bias ε for V (h1, . . . , h`). Therefore,

ε · |V(h1, . . . , h`)| ≥
∣∣∣∣ ∑
x∈V(h1,...,h`)

(−1)f(x)

∣∣∣∣
≥
∣∣∣∣ ∑
x∈V(g1,...,gt)

(−1)f(x)

∣∣∣∣− ∣∣∣∣ ∑
x∈V(h1,...,h`)\V(g1,...,gt)

(−1)f(x)

∣∣∣∣
≥
∣∣∣∣ ∑
x∈V(g1,...,gt)

(−1)f(x)

∣∣∣∣− 2n−`,

and so

E
x∼V(g1,...,gt)

[
(−1)f(x)

]
≤ ε · |V(h1, . . . , h`)|+ 2n−`

|V(g1, . . . , gt)|
≤ ε+ 2 · 2−`

ρ
.

By our choice of `, f has bias at most ε+ δ on V(g1, . . . , gt), as claimed.

The following theorem states an analog reduction from dispersers for varieties to affine dispersers.

Theorem 5.2. Let f : Fn2 → F2 be an affine disperser for dimension Ω((n/t)1/(d−1)). Then, f is a
disperser for varieties that are the common zeros of any t polynomials of degree at most d.

Proof. Let g1, . . . , gt : Fn2 → F2 be degree (at most) d polynomials. Let u0 ∈ V(g1, . . . , gt) (if
V(g1, . . . , gt) = ∅, there is nothing to prove). By Theorem 3.7, there exists a subspace U of
dimension Ω((n/t)1/(d−1)) such that u0 + U ⊆ V(g1, . . . , gt). The proof then follows as f is an
affine disperser for dimension Ω((n/t)1/(d−1)).

In [Sha11] (Theorem 1.2), an explicit construction of an affine disperser f : Fn2 → F2 for dimension

2log0.9 n is given. Theorem 1.4 readily follows by Theorem 5.2 as indeed, one only needs to make
sure that (n/t)1/(d−1) = Ω(2log0.9 n).

6 From Affine Dispersers to Affine Extractors

To prove Theorem 1.5, we use the following theorem of Kaufman and Lovett [KL08].

Theorem 6.1 ([KL08]). Let f : Fn → F be a degree (at most) d polynomial with bias(f) ≥ δ. Then,
there exist c = c(d, δ) polynomials f1, . . . , fc of degree at most d − 1 such that f = G(f1, . . . , fc),
for some function G : Fc → F.

Proof of Theorem 1.5. We show by a counter-positive argument that if f is not an affine extractor
for dimension k′ with bias δ, then f is not an affine disperser for dimension k. Let f : Fn2 → F2

be a function which is not an affine extractor for dimension k′ with bias δ. Then, there exists an
affine subspace u0 +U , with dim(U) = k′ such that bias(f |u0+U ) > δ. Let u1, . . . , uk′ be a basis for

U and let g : Fk′2 → F2 be the function defined by g(y1, . . . , yk′) = f(u0 +
∑k′

i=1 ui · yi). Then, g is
a biased polynomial of degree ≤ d. Applying Theorem 6.1 to g, we can write it as G(g1, . . . , gc),
where the gi’s are of degree at most d− 1, and c = c(d, δ) as defined in Theorem 6.1.
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By Theorem 3.7, there is an affine subspace W of Fk′2 with dimension α · (k′/c)1/(d−2) for which
all the gi’s are constant, for some constant α > 0. In particular g|W is constant, which implies
that there exists a subspace of Fn2 , with the same dimension, on which the original function f is

constant. Taking k′ = kd−2 · c(d,δ)
αd−2 completes the proof.

For degree 3 and 4, we rely on stronger results from [HS10]. Although degree 3 was treated
in [BSK12], we present it here for completeness.

Theorem 6.2. Let f : Fn2 → F2 be an affine disperser for dimension k of degree d. If d = 3 then f
is an affine extractor for dimension k′ = k +O(log(1/δ)2) with bias δ. If d = 4 then f is an affine
extractor for dimension k′ = k · poly(1/δ) with bias δ.

Proof. As in the proof of Theorem 1.5, it is enough to show that if g is a degree 3 or 4 polynomial
over F2 with k′ variables and bias ≥ δ then there exists a subspace of dimension k on which g is
constant. We consider the two cases deg(f) = 3, 4 separately.

Cubic (deg(g) = 3). Implicit in [HS10], any polynomial of degree 3 with bias ≥ δ, in particular
g, can be represented as

∑r
i=1 `i(x) · qi(x) + q0(x) where the `i’s are linearly independent linear

functions (with no constant term), deg(qi) ≤ 2 and r = O(log2(1/δ)). Restricting to the subspace
W defined by {x : `i(x) = 0} reduces the degree of g to at most 2, and by Claim 3.4, this is also
true for any coset of this subspace. By averaging, there is a coset on which bias(g|w+W ) ≥ δ. By
Dickson’s theorem [Dic01], there is an affine subspace w′+W ′ of w+W of co-dimension O(log(1/δ))
on which g is constant. Setting k′ = k +O(log2(1/δ)) ensures that dim(W ′) is at least k.

Quartic, (deg(g) = 4). Theorem 4 in [HS10] states that any polynomial of degree 4 with bias
≥ δ, in particular g, can be represented as

∑r
i=1 `i(x) · gi(x) +

∑r
i=1 qi(x) · q′i(x) + g0(x) where

deg(`i) ≤ 1, deg(qi) ≤ 2, deg(q′i) ≤ 2, deg(gi) ≤ 3 and r = poly(1/δ). By Theorem 3.7, there exists
a subspace W of dimension Ω(n/r) on which all `i’s, qi’s and q′i’s are constants. By Claim 3.4, in
any coset of W the degrees of `i, qi and q′i for i = 1, . . . , r are decreased by at least 1, hence g|w+W

is of degree at most 3 for any coset w+W . Since bias(g) ≥ δ, by averaging there is a coset on which
bias(g|w+W ) ≥ δ. Using the earlier case of biased cubic polynomials, there is an affine subspace
w′ + W ′ of dimension Ω(n/r) − O(log2(1/δ)) on which g is constant. Setting k′ = k · poly(1/δ)
ensures that the dimension of W ′ is at least k.

7 AC0[⊕] Circuits and Affine Extractors / Dispersers

In Section 7.1 we (easily) derive lower bounds on the dimension for which an AC0 circuit can be
affine disperser. In Section 7.2 we prove that a depth 2 AC0[⊕] circuit on n inputs cannot compute
an affine disperser for dimension no(1). We do so by a reduction to Theorem 3.1.

7.1 AC0 Circuits Cannot Compute Affine Dispersers for Dimension o(n/polylog(n))

The next lemma, following H̊astad’s work [H̊as86], appears in [BS90].

Lemma 7.1 ([BS90], Corollary 3.7, restated). Let f : Fn2 → F2 be a function computable by a depth
d and size s Boolean circuit. Then, there is a restriction ρ leaving n

10(10 log(s))d−2 − log(s) variables

alive, under which f |ρ is constant.
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Lemma 7.1 readily implies the following corollary.

Corollary 7.2. Let f : Fn2 → F2 be a function computable by a Boolean circuit of depth d and size
s. Then, f cannot be a bit fixing disperser (and, in particular, f cannot be an affine disperser) for
min-entropy k < n

10(10 log(s))d−2 − log(s).

7.2 Depth 2 AC0[⊕] Circuits Cannot Compute Good Affine Dispersers

As mentioned in the introduction, to prove Theorem 1.7, one only needs to prove Lemma 1.6.

Proof of Lemma 1.6. During the proof we will exploit the fact that if a function f on n inputs is
an affine disperser for dimension k, then fixing the values of m inputs or even the values of m linear
functions on the inputs, one gets an affine disperser on n−m inputs for the same dimension k.

We assume that the top gate is an XOR gate. Afterwards we justify this assumption by showing
that if the top gate is not an XOR gate, then the circuit C could not have computed an affine
disperser with the claimed parameters to begin with.

Note that one might as well assume that there are no XOR gates at the bottom level. Indeed,
assume there are t XOR gates at the bottom level, and denote by `1, . . . , `t the linear functions
computed by these gates, respectively. Define the linear function ` = `1 ⊕ · · · ⊕ `t. Note that if `
is the constant 1 then by removing all the t gates from C and wiring the constant 1 as an input
to the top gate, one gets an equivalent circuit with no XOR gates at the bottom layer. Assume
therefore that ` is not the constant 1. Then, by removing all the XOR gates at the bottom layer,
we get a circuit, with no XOR gates at the bottom layer, that is equivalent to the original circuit
on the affine subspace {x : `(x) = 0}. Hence, the resulting circuit is an affine disperser on n − 1
inputs for dimension k.

We perform a random restriction to all variables, leaving a variable alive with probability
p = 1

4
√
n

and otherwise setting the value of a variable uniformly and independently at random. We

show that the restriction shrinks all OR,AND gates to have fan-in smaller than 2d with positive
probability. We consider AND gates, but our arguments may be carried to OR gates similarly. The
restriction shrinks every AND gate in the following way: if one of the literals which is an input to
the AND gate is false under the restriction, the AND gate is eliminated. Otherwise, the AND gate
shrinks to be the AND of all the remaining live variables. We wish to bound the probability that
each AND gate is of fan-in greater than 2d after the restriction. Let m be the fan-in of the AND
gate before the restriction, and m′ its fan-in afterwards. We have

Pr[m′ ≥ 2d] =

m∑
i=2d

(
m

i

)
· pi ·

(
1− p

2

)m−i
≤

m∑
i=2d

(
m

i

)
· pi · (1/2)m−i = (1/2)m ·

m∑
i=2d

(
m

i

)
· (2p)i .

Since 2p is smaller than 1, the right hand side of the above inequality is at most (1/2)m ·2m ·(2p)2d =
(2p)2d. Thus, Pr[m′ ≥ 2d] ≤ (2p)2d. By our choice of parameter p, this is at most 1/(4n)d. By
union bound over all ≤ nd AND and OR gates, with probability at least 1 − 1/4d ≥ 3/4 over the
random restrictions, the fan-in of all AND and OR gates, under the restriction, is smaller than 2d.
Furthermore, by Chernoff bound, with probability greater than 1/2 over the random restrictions,
the number of surviving variables is at least

√
n/5. Therefore, there exists a restriction where the

number of surviving variables is
√
n/5 and all AND and OR gates in the resulting circuit, under

the restriction, have fan-in smaller than 2d. Expressing the resulting circuit as a polynomial over
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F2 we get a polynomial on
√
n/5 variables with degree at most 2d which is an affine disperser for

dimension k.
We are left to justify the assumption that the top gate must be an XOR gate. For contradiction,

assume that the top gate is an OR gate. The case where the top gate is an AND gate is handled
similarly. If there is an XOR gate at the bottom layer of C, we choose such gate and consider
the affine subspace of co-dimension 1 on which this XOR gate outputs 1. Since the top gate is
an OR gate, the circuit C is the constant 1 on an affine subspace of co-dimension 1. This stands
in contradiction as k is (much) smaller than n − 1. Thus, we obtain a depth 2 AC0 circuit with
size s = nd. However, under the assumption that k < n/10 − log(s) this is a contradiction to
Corollary 7.2.
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A Depth 3 AC0[⊕] Circuits Can Compute Optimal Affine Extrac-
tors

We start this section by giving a proof for the following folklore claim. We bother doing so because
afterwards we argue that the proof implies, in fact, something stronger, which we make use of.

Claim A.1. There exist universal constants n0, c such that the following holds. For every ε > 0
and n > n0 there exists an affine extractor for dimension k with bias ε, f : Fn2 → F2, where
k = log n

ε2
+ log log n

ε2
+ c.

The proof of Claim A.1 makes use of Hoeffding bound.

Theorem A.2 (Hoeffding Bound). Let X1, . . . , Xn be independent random variables for which
Xi ∈ [ai, bi]. Define X = 1

n ·
∑n

i=1Xi, and let µ = E[X]. Then,

Pr[|X − µ| ≥ ε] ≤ 2 · exp

(
− 2n2ε2∑n

i=1 (bi − ai)2

)
.

Proof of Claim A.1. Let F : Fn2 → F2 be a random function, that is, {F (x)}x∈Fn2 are independent
random bits. Fix an affine subspace u0 + U ⊆ Fn2 of dimension k as defined above. By Hoeffding
Bound (Theorem A.2),

Pr

 1

2k

∣∣∣∣∣∣
∑

u∈u0+U

(−1)F (u)

∣∣∣∣∣∣ ≥ ε
 ≤ 2 · exp

(
−2kε2

2

)
.

The number of affine subspaces of dimension k is bounded by 2n
(

2n

k

)
≤ 2(k+1)n. Hence, by union

bound over all affine subspaces, if 2(k+1)n · 2e−2kε2/2 < 1 then there exists a function f : Fn2 → F2

that is an affine extractor for dimension k with bias ε. It is a simple calculation to show that our
choice of k suffices for the above equation to hold.

For the proof of Theorem A.6, we introduce the following notion.

Definition A.3. An (n, k, d) linear injector with size m is a family of d×n matrices {A1, . . . , Am}
over F2 with the following property: for every subspace U ⊆ Fn2 of dimension k, there exists an
i ∈ [m] such that ker(Ai) ∩ U = {0}.

Lemma A.4. For every n, k such that 2 ≤ k ≤ n, there exists an (n, k, k + 1) linear injector with
size m = nk.
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Proof. Fix a subspace U ⊆ Fn2 of dimension k. Let A be a d× n matrix such that every entry of A
is sampled from F2 uniformly and independently at random. For every u ∈ U \ {0} it holds that
Pr[Au = 0] = 2−d. By taking the union bound over all elements in U \ {0}, we get that

Pr[ker(A) ∩ U 6= {0}] ≤ 2k−d.

Let A1, . . . , Am be d × n matrices such that the entry of each of the matrices is sampled from F2

uniformly and independently at random. By the above equation, it holds that

Pr[∀i ∈ [m] ker(Ai) ∩ U 6= {0}] ≤ 2m(k−d).

The number of linear subspaces of dimension k is bounded above by
(

2n

k

)
, which is bounded above

by 2nk−1 for k ≥ 2. Thus, if 2nk−1 · 2m(k−d) < 1 there exists an (n, k, d) linear injector with size m.
The latter equation holds for d = k + 1 and m = nk.

Lemma A.5. Let n0, c be the constants from Claim A.1. Let n > n0 and let k, ε be such that
k = log n

ε2
+ log log n

ε2
+ c. Let {A1, . . . , Am} be an (n, k, d) linear injector with size m. Then, there

exist functions f1, . . . , fm : Fd2 → F2 such that the function f : Fn2 → F2 defined by

f(x) =
m⊕
i=1

fi(Aix) (A.1)

is an affine extractor for dimension k with bias ε.

Proof. Recall that in the proof of Claim A.1, we took F to be a random function. We observe
however, that the proof did not use the full independence offered by a uniformly sampled random
function. In fact, the proof required only that for every affine subspace u0 + U ⊆ Fn2 of dimension
k, {f(u)}u∈u0+U are independent random bits.

Let F1, . . . , Fm : Fd2 → F2 be independent random functions, that is, the random bits {Fi(x)}i∈[m],x∈Fd2
are independent. Define the random function F : Fn2 → F2 as follows

F (x) =
m⊕
i=1

Fi(Aix).

We claim that for every affine subspace u0 +U ⊆ Fn2 of dimension k, the random bits {F (u)}u∈u0+U

are independent. By the observation above, proving this will conclude the proof. Let u0 + U ⊆ Fn2
be an affine subspace of dimension k. As {A1, . . . , Am} is an (n, k, d) linear injector, there exists an
i ∈ [m] such that ker(Ai) ∩ U = {0}. This implies that for every two distinct elements u, v ∈ U it
holds that Ai(u0 +u) 6= Ai(u0 +v). Otherwise Ai(u+v) = 0 and thus u+v, a non-zero vector in U ,
lies in ker(Ai). This stands in contradiction to the choice of i. Recall that Fi is a random function,
and from the above it follows that Ai behaves as an injection to the domain u0 + U . Hence, the
random bits {Fi(Aiu)}u∈u0+U are independent. Since F (x) is defined to be the XOR of Fi(Aix)
with m − 1 other independent random variables, we get that {F (u)}u∈u0+U are also independent
random bits, as claimed.

Theorem A.6. Let f be the function from Equation (A.1), where {A1, . . . , Am} is the (n, k, d)
linear injector from Lemma A.4 (that is, m = nk and d = k + 1). Then, f is an affine extractor
for dimension k and bias ε, where k = log (n/ε2) + log log (n/ε2) +O(1). Moreover,
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1. deg(f) = log (n/ε2) + log log (n/ε2) +O(1).

2. f can be realized by an XOR−AND−XOR circuit of size O((n/ε)2 · log3 (n/ε)).

3. f can be realized by a De Morgan formula of size O((n5/ε2) · log3 (n/ε)).

Proof. To prove the first item, we note that each of the fi’s is a function on d = k + 1 inputs, and
thus can be computed by a polynomial with degree at most k+ 1. The proof then follows as in the
computation of f , each fi is composed with linear functions of the variables, and f is the XOR of
the fi’s.

To prove the second item, we show an XOR−AND−XOR circuit C with the desired size, that
computes the function f . Since each of the functions fi are degree d polynomials on d inputs,
each of them can be computed by an XOR− AND circuit, where the fan-in of the top XOR gate is
bounded above by 2d and the fan-in of each AND gate is at most d. Thus, for i ∈ [m], each of the
functions fi(Aix) on n inputs is computable by an XOR− AND− XOR circuit.

By its definition, f is the XOR of these functions and so one can collapse this XOR together
with the top m XOR gates. This yields an XOR− AND− XOR circuit C that computes f .

The size of the circuit C is O(m ·d ·2d) as each of the m functions fi(Aix) applies 2d AND gates,
each on d XOR gates (whom in turn compute the linear injector). Since m = nk and d = k + 1,
size(C) = O((n/ε)2 · log3(n/ε)) as stated.

As for the third item, we show a De Morgan formula with the desired size, that computes f .
Since each of the functions fi are on d inputs, each of them can be computed by a De Morgan
formula of size O(2d). Moreover, every XOR operation needed for the computation of the linear
injector {A1, . . . , Am} can be implemented in size O(n2). Replacing each leaf in the formula for
fi with the relevant formula computing the corresponding bit of Aix (or its negation), results in
an O(2dn2) size De Morgan formula computing fi(Aix). Again, since the XOR of bits y1, . . . , ym
can be computed by a De Morgan formula of size O(m2), and one can replace each leaf marked by
yi (or ¬yi) with the formula computing fi(Aix) (or its negation), one gets a De Morgan formula
computing f of size

O(m2 · 2d · n2) = O((nk)2 · 2k · n2) = O((n5/ε2) · log3(n/ε)),

as desired.
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