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Abstract

In 1994, Reck et al. showed how to realize any unitary transformation on a single photon using a
product of beamsplitters and phaseshifters. Here we show that any single beamsplitter that nontrivially
mixes two modes, also densely generates the set of unitary transformations (or orthogonal transforma-
tions, in the real case) on the single-photon subspace with m ≥ 3 modes. (We prove the same result
for any 2-mode real optical gate, and for any 2-mode optical gate combined with a generic phaseshifter.)
Experimentally, this means that one does not need tunable beamsplitters or phaseshifters for universality:
any nontrivial beamsplitter is universal for linear optics. Theoretically, it means that one cannot produce
“intermediate” models of linear optical computation (analogous to the Clifford group for qubits) by re-
stricting the allowed beamsplitters and phaseshifters: there is a dichotomy; one either gets a trivial set or
else a universal set. No similar classification theorem for gates acting on qubits is currently known. We
leave open the problem of classifying optical gates that act on 3 or more modes.

1 Introduction

Universal quantum computers have proved difficult to build. As one response, researchers have proposed
limited models of quantum computation, which might be easier to realize. Three examples are the one
clean qubit model of Knill and Laflamme [15], the commuting Hamiltonians model of Bremner, Jozsa, and
Shepherd [3], and the BosonSampling model of Aaronson and Arkhipov [1]. None of these models are
known or believed to be capable of universal quantum computation (or, depending on modeling details,
even universal classical computation). But all of them can perform certain estimation or sampling tasks for
which no polynomial-time classical algorithm is known.

One obvious way to define a limited model of quantum computation is to restrict the set of allowed
gates. However, almost every gate set is universal [17], and so are most “natural” gate sets. For example,
Controlled-NOT together with any real 1-qubit gate that does not square to the identity is universal [20].
As a result, very few nontrivial examples of non-universal gate sets are known. All known non-universal
gate sets on O(1) qubits, such as the Clifford group [9], are efficiently classically simulable, if the input
and measurement outcomes both belong to an appropriately chosen qubit basis1. As a result, it is tempting
to conjecture that there does not exist such an intermediate gate set: or more precisely, that any gate set
on O(1) qubits is either efficiently classical simulable (with appropriate input and output states), or else
universal for quantum computing. Strikingly, this dichotomy conjecture remains open even for the special
case of 1- and 2-qubit gates! We regard proving or disproving the conjecture as an important open problem
for quantum computing theory.

∗MIT. email: adam@csail.mit.edu.

†MIT. email: aaronson@csail.mit.edu.

1But not necessarily otherwise! For instance, suppose that a nonuniversal gate set G is efficiently simulable if inputs and
outputs are in the computational basis. Now conjugate G by a change of qubit basis to obtain a gate set G′. Clearly G′ is
efficiently classically simulable in the new qubit basis. However, it is unclear how to simulate the gates G′ if inputs and outputs are
in the computational basis. Along these lines, there is evidence that Clifford gates [14], permutation gates [13], and even diagonal
gates [3] can be hard to simulate in arbitrary bases.
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In this paper, we prove a related conjecture in the quantum linear optics model. In quantum optics,
the Hilbert space is not built up as a tensor product of qubits; instead it’s built up as a direct sum of optical
modes. An optical gate is then just a unitary transformation that acts nontrivially onO(1) of the modes, and
as the identity on the rest. Whenever we have a k-mode gate, we assume that we can apply it to any subset
of k modes (in any order), as often as desired. The most common optical gates considered are beamsplitters,
which act on 2 modes and correspond to a 2 × 2 unitary matrix with determinant −1;2 and phaseshifters,
which act on 1 mode and simply apply a phase eiθ. Note that any unitary transformation acting on the
1-photon Hilbert space automatically gets “lifted,” by homomorphism, to a unitary transformation acting
on the Hilbert space of n photons. Furthermore, every element of the n-photon linear-optical group—
that is, every n-photon unitary transformation achievable using linear optics—arises in this way (see [1,
Section 3] for details). Of course, if n ≥ 2, then there are also n-photon unitaries that cannot be achieved
linear-optically: that is, the n-photon linear-optical group is a proper subgroup of the full unitary group on
n-photon Hilbert space.

We call a set of optical gates S universal on m modes if it generates a dense subset of either SU(m)
(in the complex case) or SO(m) (in the real case). To clarify, if S is universal, this does not mean that
linear optics with S is universal for quantum computing! It only means that S densely generates the 1-
photon linear-optical group—or equivalently, the n-photon linear-optical group for any value of n. The
latter kind of universality is certainly relevant for quantum computation: first, it already suffices for the
BosonSampling proposal of Aaronson and Arkhipov [1]; and second, if the single resource of adaptive
measurements is added, then universal linear optics becomes enough for universal quantum computation,
by the famous result of Knill, Laflamme, and Milburn (KLM) [16]. On the other hand, if we wanted to
map a k-qubit Hilbert space directly onto an m-mode linear-optical Hilbert space, then as observed by Cerf,
Adami and Kwiat [6], we would need m ≥ 2k just for dimension-counting reasons.

Previously, Reck et al. [19] showed that the set of all phaseshifters and all beamsplitters is universal for
linear optics, on any number of modes. Therefore it is natural to ask: is there any S set of beamsplitters
and phaseshifters that generates a nontrivial set of linear-optical transformations, yet that still falls short of
generating all of them? Here by “nontrivial,” we simply mean that S does something more than permuting
the modes around or adding phases to them.

If such a set S existed, we could then ask the further question of whether the n-photon subgroup gener-
ated by S was

(a) efficiently simulable using a classical computer, despite being nontrivial (much like the Clifford group
for qubits),

(b) already sufficient for applications like BosonSampling and KLM, despite not being the full n-photon
linear-optical group, or

(c) of “intermediate” status, neither sufficient for BosonSampling and KLM nor efficiently simulable
classically.

The implications for our dichotomy conjecture would of course depend on the answer to that further
question.

In this paper, however, we show that the further question never even arises, since no such set S exists.
Indeed, any beamsplitter that acts nontrivially on 2 modes is universal on 3 or more modes. What makes
this result surprising is that it holds even if the beamsplitter angles are all rational multiples of π. A priori,
one might guess that by restricting the beamsplitter angles to (say) π/4, one could produce a linear-optical
analogue of the Clifford group; but our result shows that one cannot.

Our proof uses standard representation theory and the classification of closed subgroups of SU(3)
[8, 11]. From an experimental perspective, our result shows that any complex nontrivial beamsplitter

2Some references use a different convention and assume that beamsplitters have determinant +1 [18]. Note that these two
conventions are equivalent if one assumes that one can permute modes, i.e. apply the matrix

(
0 1
1 0

)
which has determinant −1.
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suffices to create any desired optical network. From a computational complexity perspective, it implies
a dichotomy theorem for optical gate sets: any set of beamsplitters or phaseshifters generates a set of op-
erations that is either trivially classically simulable (even on n-photon input states), or else universal for
quantum linear optics. In particular, any nontrivial beamsplitter can be used to perform BosonSampling;
there is no way to define an “intermediate” model of BosonSampling3 by restricting the allowed beamsplit-
ters and phaseshifters.

Note that our result holds only for beamsplitters, i.e., optical gates that act on 2 modes and have deter-
minant −1. We leave as an open problem whether our result can be extended to arbitrary 2-mode gates, or
to gates that act on 3 or more modes.

Our work is the first that we know of to explore limiting the power of quantum linear optics by limiting
the gate set. Previous work has considered varying the available input states and measurements. For
example, as mentioned earlier, Knill, Laflamme, and Milburn [16] showed that linear optics with adaptive
measurements is universal for quantum computation. Restricting to nonadaptive measurements seems to
reduce the computational power of linear optics, but Aaronson and Arkhipov [1] gave evidence that the
resulting model is still impossible to simulate efficiently using a classical computer. If Gaussian states are
used as inputs and measurements are taken in the Gaussian basis only, then the model is efficiently simulable
classically [2]; but with Gaussian-state inputs and photon-number measurements, there is recent evidence
for computational hardness.4

We hope that this work will serve as a first step toward proving the dichotomy conjecture for qubit-based
quantum circuits (i.e., the conjecture that every set of gates is either universal for quantum computation or
else efficiently classically simulable). The tensor product structure of qubits gives rise to a much more
complicated problem than the direct sum structure of linear optics. For that reason, one might expect the
linear-optical “model case” to be easier to tackle first, and the present work confirms that expectation.

2 Background and Our Results

In a linear optical system with m modes, the state of a photon is described by a vector |ψ〉 in an m-
dimensional Hilbert space. The basis states of the system are represented by strings |s1, s2 . . . sm〉 where
si ∈ {0, 1} denotes the number of photons in the ith mode, and Σm

j=1sj is the total number of photons (in
this case, 1). For example a 1-photon, 3-mode system has basis states |100〉, |010〉 and |001〉.

A k-local gate g is a k × k unitary matrix which acts on k modes at a time while acting in direct sum
with the identity on the remaining m − k modes. A beamsplitter b is a 2-local gate with determinant −1.
Therefore any beamsplitter has the form b =

(
α β∗

β −α∗
)

where |α|2 + |β|2 = 1. Let bij denote the matrix
action of applying the beamsplitter to modes i and j of a one-photon system. For example, if m = 3, we
have that

b12 =

α β∗ 0
β −α∗ 0
0 0 1

 b31 =

−α∗ 0 β
0 1 0
β∗ 0 α


when written in the computational basis. A beamsplitter is called nontrivial if |α| 6= 0 and |β| 6= 0, i.e. if
the beamsplitter mixes modes.

We say that a set S of optical gates densely generates a continuous group G of unitary transformations,
if the group H generated by S is a dense subgroup of G (that is, if H ≤ G and H contains arbitrarily
close approximations to every element of G). Then we call S universal on m modes if it densely generates
SU(m) or SO(m) when acting on m modes. (Due to the irrelevance of global phases, this is physically
equivalent to generating U(m) or O(m) respectively.) In this definition we are assuming that whenever we
have a k-mode gate in S, we can apply it to any subset of k modes (in any order), as often as desired. Note

3Here by “intermediate,” we mean computationally intermediate between classical computation and universal BosonSampling.

4See http://www.scottaaronson.com/blog/?p=1579
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that we consider real SO(m) evolutions to be universal as well; this is because the distinction between real
and complex optical networks is mostly irrelevant5 to computational applications of linear optics, such as
the KLM protocol [16] and BosonSampling [1].

A basic result in quantum optics, proved by Reck et al. [19], says that the collection of all beamsplitters
and phaseshifters is universal. Specifically, given any target unitary U on m modes, there exists a sequence
of O(m2) beamsplitters and phaseshifters whose product is exactly U . Reck et al.’s proof also shows an
analogous result for real beamsplitters - namely, that any orthogonal matrix O can be written as the product
of O(m2) real beamsplitters. Furthermore, it can easily be shown that there exist two beamsplitters b, b′

whose products densely generate O(2). Therefore b and b′ can be used to simulate any real beamsplitter,
and hence by Reck et al. [19], the set {b, b′} is universal for linear optics.

In this paper, we consider the universality of a single beamsplitter b. If b is trivial, then on m modes
the matrices bij generates a subgroup of Pm, the set of m × m unitary matrices with all entries having
norm zero or one. This is obviously non-universal, and the state evolutions on any number of photons are
trivial to simulate classically. Our main result is that any nontrivial beamsplitter densely generates either all
orthogonal transformations on 3 modes (in the real case), or all unitary transformations on 3 modes (in the
complex case). From this, it follows easily from Reck et al. [19] that such a beamsplitter is also universal
on m modes for any m ≥ 3.

Theorem 2.1. Let b be any nontrivial beamsplitter. Then the set S = {b12, b13, b23}, obtained by applying
b to all possible pairs among 3 photon modes,6 densely generates either SO(3) (if all entries of b are real)
or SU(3) (if any entry of b is non-real).

Corollary 2.2. Any nontrivial beamsplitter is universal on m ≥ 3 modes.

Proof. By Theorem 2.1, the set S = {b12, b13, b23} densely generates all orthogonal matrices with deter-
minant 1. But since b has determinant −1, we know that S must generate all orthogonal matrices with
determinant −1 as well.7 Therefore, S densely generates the action of any real beamsplitter b′ acting on 2
out of 3 modes. So by Reck et al [19], S also densely generates all orthogonal matrices on m modes for
m ≥ 3.

Note that, although our proof of universality on 3 modes is nonconstructive, by the Solovay-Kitaev
Theorem [7], there is an efficient algorithm that, given any target unitary U , finds a sequence of b’s ap-
proximating U up to error ε in O

(
log3.97(1ε )

)
time. Thus, our universality result also implies an efficient

algorithm to construct any target unitary using beamsplitters in the same manner as Reck et al. [19].
We now proceed to a proof of Theorem 2.1.

3 Proof of Main Theorem

We first consider applying a fixed beamsplitter

b =

(
α β∗

β −α∗
)
,

where α and β are complex and |α|2 + |β|2 = 1, to 2 modes of a 3-mode optical system. We take pairwise
products of these beamsplitter actions to generate 3 special unitary matrices. These 3 unitaries densely

5The one case we know about where the real/complex distinction might matter is when using error-correcting codes. There,
applying all possible orthogonal transformations to the physical modes/qubits might not suffice to apply all orthogonal transfor-
mations to the encoded modes/qubits. This could conceivably be an issue, for example, in the scheme of Gottesman, Kitaev, and
Preskill [10] for universal quantum computing with linear optics.

6Technically, we could also consider the unitaries b21, b31, b32, obtained by applying b to the same pairs of modes but reversing
their order. However, this turns out not to give us any advantage.

7Indeed any orthogonal O with determinant −1 can be written as O = b−1
12 O

′ = b12O
′ for some O′ of determinant 1.

4



generate some group of matrices G ≤ SU(3). We then use the representation theory of subgroups of
SU(3) described in the work of Fairbairn et al. [8], Hanany [11], and He [12] to show that the beamsplitter
must generate either all SO(3) matrices (if the beamsplitter is real) or all SU(3) matrices (if the beamsplitter
has a complex entry).

Consider applying our beamsplitter to a 3-mode system. Let R1, R2, R3 be defined as the pairwise
products of the beamsplitter actions below:

R1 = b12b13 =

α2 β∗ αβ∗

αβ −α∗ |β|2
β 0 −α∗

 R2 = b23b13 =

 α 0 β∗

|β|2 α −α∗β∗
−α∗β β α∗2


R3 = b12b23 =

α αβ∗ β∗2

β −|α|2 −α∗β∗
0 β −α∗


Since R1, R2, R3 are even products of matrices of determinant −1, they are all elements of SU(3). Let

G ≤ SU(3) be the subgroup densely generated by the set {R1, R2, R3}. Let GM be the set of matrices
representing G under this construction. First we will show that these matrices GM form an irreducible
representation of G.

Claim 3.1. The set {R1, R2, R3} generates an irreducible 3-dimensional representation of G.

Proof. Suppose that some matrix

U =

A D G
B E H
C F I


commutes withR1,R2, andR3. Then we claim that U is a constant multiple of the identity, i.e.A = E = I
and D = G = H = B = C = F = 0.

From the claim, it follows easily that the representation is irreducible. Indeed, suppose the representa-
tion is reducible, so preserves a non-trivial subspace. Since our representation is unitary, this implies that
our representation is decomposable, i.e. by a change of basis it can be brought into block-diagonal form.8

In the new basis, the matrix consisting of 1’s on the diagonal in the first block, and 2’s in the diagonal of
the second block, commutes with all elements of G, and in particular with R1, R2, R3. But that matrix
is not a multiple of the identity. Hence if only multiples of the identity commute with R1, R2, R3, the
representation must be irreducible.

We now prove the claim. First, since U commutes with R1,A D G
B E H
C F I

α2 β∗ αβ∗

αβ −α∗ |β|2
β 0 −α∗

 =

α2 β∗ αβ∗

αβ −α∗ |β|2
β 0 −α∗

A D G
B E H
C F I


This imposes 9 equations. Below we give the equations coming from the (1,1), (1,2), (2,2), (2,3), and (3,2)
entries of the above matrices respectively.

(Dα+G)β = (Cα+B)β∗ (1)

(A− E − Fα)β∗ = D(α2 + α∗) (2)

Bβ∗ = Dαβ + Fββ∗ (3)

Bαβ∗ + Eββ∗ −Hα∗ = Gαβ −Hα∗ + Iββ∗ (4)

Cβ∗ = Dβ (5)

8To see the equivalence of “reducible” and “decomposable” for unitary representations, it suffices to note that, if a set of unitary
matrices always map a subspace V to itself, then they cannot map any vector not in V to a vector in V , since this would violate
unitarity.
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Note that equations (5) and (1) imply that

Gβ = Bβ∗ (6)

So by equation (4) we have
Eββ∗ = Iββ∗ (7)

So since 0 < |β| < 1, we have I = E.
In total so far we have I = E, Gβ = Bβ∗ and Cβ∗ = Dβ.
Next, since U commutes with R2,A D G

B E H
C F E

 α 0 β∗

|β|2 α −α∗β∗
−α∗β β α∗2

 =

 α 0 β∗

|β|2 α −α∗β∗
−α∗β β α∗2

A D G
B E H
C F E


This imposes another 9 equations. Here are the equations from the (1,1), (2,1) and (2,2) entries respectively,
which we have simplified using I = E, Gβ = Bβ∗ and Cβ∗ = Dβ:

Dβ = Dββ∗ −Gα∗β (8)

Eββ∗ −Hα∗β = Aββ∗ − Cα∗β∗ (9)

Hβ = Dββ∗ − Fα∗β∗ (10)

Note that equations (8) and (10), combined with the fact that Gβ = Bβ∗, imply that Dβ = Hβ, and
hence D = H .

Plugging this in to equation (9), we see that Eββ∗ − Dα∗β = Aββ∗ − Cα∗β∗. Using Cβ∗ = Dβ
these last two terms cancel, so Eββ∗ = Aββ∗, and hence E = A. So overall we have established that
A = E = I , D = H , B = F , Gβ = Bβ∗ and Cβ∗ = Dβ.

Now suppose B = 0. Then we have from above that B = F = G = 0. By equation (8) we also have
Dβ = Dββ∗ ⇒ D = 0 since 0 < |β| < 1. Hence we have C = 0 as well by the fact that Cβ∗ = Dβ.
Therefore U is a multiple of the identity, as desired.

So it suffices to prove that B = 0. Suppose B 6= 0; then we will derive a contradiction.
Since U commutes with R3,A D G

B A D
C B A

α αβ∗ β∗2

β −|α|2 −α∗β∗
0 β −α∗

 =

α αβ∗ β∗2

β −|α|2 −α∗β∗
0 β −α∗

A D G
B A D
C B A


This imposes yet another 9 equations, but we will only need the one coming from the (2,2) entry of the
above matrices to complete the proof:

Bαβ∗ = −Bα∗β∗ (11)

Since B 6= 0, equation (11) implies that α = −α∗, i.e. α is pure imaginary. Furthermore, since
Gβ = Bβ∗, we have G 6= 0 as well. Using this, we can write out equations (2) and (3) as follows:

(−Bα)β∗ = D(α2 − α) ⇒ Gβ= D(1− α) (12)

Bβ∗ = Dαβ + Fββ∗ ⇒ G = Dα+Gβ (13)

Summing these equations, we see thatG = D. Plugging back into equation (13), we see that β = 1−α.
Since α is pure imaginary this contradicts |α|2 + |β|2 = 1.

To summarize, if U commutes with all elements of G, then U is a multiple of the identity. This proves
the claim and hence the theorem.
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We have learned that the set GM forms a 3-dimensional irreducible representation of G. We now
leverage this fact, along with the classification of finite subgroups of SU(3), to show that G is not finite.

Claim 3.2. G is infinite.

Proof. By Claim 3.1, if G is finite then {R1, R2, R3} generates an irreducible representation of G. The
finite subgroups of SU(3) consist of the finite subgroups of SU(2), eleven exceptional finite subgroups,
and two infinite families of “dihedral-like” groups, whose irreducible representations are classified in [8]
[11][12]. Our proof proceeds by simply enumerating the possible finite groups thatG could be, and showing
that {R1, R2, R3} cannot generate an irreducible representation of any of them.

First we eliminate the possibility that G is an exceptional finite subgroup of SU(3). Of the eleven
exceptional subgroups, only six of them have 3-dimensional irreps: they are labeled Σ(60), Σ(168), Σ(216),
Σ(36 × 3), Σ(216 × 3), and Σ(360 × 3). So by Claim 3.1, if G is finite and exceptional, then it is one of
these six groups.

The character tables of these groups are provided in [8] and [11]. Recall that the character of an element
of a representation is the trace of its representative matrix. The traces of the matrices R1, R2, R3, denoted
T1, T2, T3, are given by

T1 = α2 − 2α∗ (14)

T2 = (α∗)2 + 2α (15)

T3 = −|α|2 + α− α∗ = −|α|2 + 2Im(α) (16)

We will show that these cannot be the characters of the elements of a 3-dimensional irrep of Σ(60), Σ(168),
Σ(216), Σ(36× 3),Σ(216× 3) or Σ(360× 3).

There are two 3-dimensional irreps of Σ(60) up to conjugation [8]. The characters of their elements all
lie in the set

{
0,−1, 3, 1+

√
5

2 , 1−
√
5

2

}
. Note that 0 < |α|2 < 1, which means that T3 cannot be in this set

unless T3 = 1−
√
5

2 and Im(α) = 0. But then this implies α = ±
√√

5−1
2 . Plugging this into T1 and T2, we

see they are not in the set of allowed values. Hence G is not Σ(60).
There are two 3-dimensional irreps of Σ(168) up to conjugation [8]. The characters of their elements

all lie in the set S =
{

0,±1, 3, 12(−1± i
√

7)
}

. Since 0 < |α|2 < 1, if T3 is in this set it must have

value 1
2(−1 ± i

√
7). Therefore we must have α = ±3

4 ±
√
7
4 i. This implies that α2 = 2

16 ±
3
√
7

16 i and

2α∗ = ±3
4 ±

√
7
4 i. Regardless of the signs chosen, this means that T1 is not in the set S of allowed values.

Hence G is not Σ(168).
There is one 3-dimensional irrep of Σ(216) up to conjugation [8]. The characters of its elements all lie

in the set {0,−1, 3}. Since T3 cannot be in this set, G is not Σ(216).
There are eight 3-dimensional irreps of Σ(36 × 3) up to conjugation [11]. The characters of their

elements all lie in the set S = {0,±1,±e3,±e23,±e4,±e712,±e1112 ± 3,±3e3,±3e23} where en = e
2πi
n .

Since Re(T3) = −|α|2 and 0 < |α|2 < 1, if T3 ∈ S then we must have T3 ∈ {±e3,±e23,±e712,±e1112}.

Solving for α gives us α ∈
{
±
√
5±
√
3i

4 , ±
√

8
√
3−1±i
4

}
. A straightforward evaluation of possible values of

T1 shows T1 /∈ S. So T1 and T3 cannot be characters of these irreps, and hence G is not Σ(36× 3).
There are seven 3-dimensional irreps of Σ(216 × 3) up to conjugation [11]. The characters of their

elements all lie in the set

S = {0,±1, 3,±e3,±e23,−e29,−e49,−e59,−e79,±e29+e59, 2e
2
9+e59,−e29−2e59, e

4
9+e79, e

4
9+2e79,−2e49−e79}.

If T3 ∈ S, then for each case we can solve for α and hence T1. As above, a straightforward calculation
shows that for no T3 ∈ S do we have T1 ∈ S. Hence G is not Σ(216× 3).

There are four 3-dimensional irreps of Σ(360 × 3) up to conjugation [11]. The characters of their
elements all lie in the set

S = {0,±1,±e3,±e23, 3e3, 3e23,−e5 − e45,−e25 − e35,−e15 − e415,−e715 − e1315,−e1115 − e1415,−e215 − e815}.
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Again a straightforward calculation shows that for no T3 ∈ S do we have T1 ∈ S. Hence G is not
Σ(360× 3).

We have therefore shown that GM is not an irrep of an exceptional finite subgroup of SU(3).
Next we will show that GM is not in one of the two infinite families of “dihedral-like” finite subgroups

of SU(3), which are called ∆(3n2) and ∆(6n2) and are indexed by n ∈ N. The 3-dimensional irreps of
∆(3n2) are labeled by integers m1,m2 ∈ {0, . . . , n − 1}, and have conjugacy classes labeled by letters
A,C,E and numbers p, q ∈ {0, . . . , n − 1}. The respective characters are either 0 for conjugacy classes
C(p, q) and E(p, q) or

e
2πi
n

(m1p+m2q) + e
2πi
n

(m1q−m2(p+q)) + e
2πi
n

(−m1(p+q)+m2p) (17)

for conjugacy class A(p, q).
Assume that GM is an irrep of ∆(3n2) for some n—we will derive a contradiction shortly. Then the

trace of eachRi must be zero (ifRi is a representative of conjugacy class C or E) or of the form of equation
(17) (ifRi is a representative of conjugacy classA). However, we can show that none of the traces Ti can be
0 because our beamsplitter is nontrivial. Indeed T3 cannot be zero as 0 < |α|2 < 1. We know that in order
for T1 to be zero, we need α2 = 2α∗, which implies |α| = 2 which is not possible, and likewise with T2.
Hence each Ti must have the form of equation (17), which implies each Ri is in conjugacy class A(pi, qi)
for some choice of pi, qi. However, looking at the multiplication table for this group provided in [8, Table
VIII], we have that A(p, q)A(p′, q′) = A (p+ q mod n, p′ + q′ mod n). Hence the Ti’s cannot possibly
generate all of ∆(3n2) for any n, since they cannot generate elements in the conjugacy classes C(p, q) or
E(p, q). This contradicts our assumption that the Ri’s generate an irrep of ∆(3n2). Therefore GM is not
an irrep of ∆(3n2) for any n.

Next we turn our attention to the second family of dihedral-like finite subgroups of SU(3), labeled
∆(6n2). The group ∆(6n2) contains 6 families of conjugacy classes, labeled by A,B,C,D,E, F and by
integers p, q as above. The 3-dimensional irreps of Σ(6n2) are again labeled by (m1,m2), which now take
values in (m, 0), (0,m) or (m,m), as well as t ∈ {0, 1}. The character of each element is

Tr(A(p, q)) = e
2πi
n

(m1p+m2q) + e
2πi
n

(m1q−m2(p+q)) + e
2πi
n

(−m1(p+q)+m2p) (18)

Tr(B(p, q)) = (−1)te
2πi
n

(m1p+m2q) (19)

Tr(D(p, q)) = (−1)te
2πi
n (m1(

n
2
−p−q)+m2p) (20)

Tr(F (p, q)) = (−1)te
2πi
n (m1q+m2(

n
2
−p−q)) (21)

Tr(C(p, q)) = Tr(E(p, q)) = 0 (22)

We now eliminate the possibility that GM is an irrep of ∆(6n2) for any n. Again assume by way of
contradiction that GM is an irrep of ∆(6n2) for some n. Then each Ri must be in one of the families of
conjugacy classesA,B,C,D,E, F , and each trace Ti must have the corresponding character from equations
(18)-(22). As noted previously each Ti cannot be 0, so in fact each Ri must be in classes A,B,D or F .
Furthemore, we will show the following Lemma:

Lemma 3.3. If GM is an irrep of ∆(6n2), then at least two of the Ri are in conjugacy class family A.

By Lemma 3.3, at most one of the Ri’s is in class B, D or F while the remaining Ri’s are in class A.
However, by examining the multiplication table for this group provided in [8, Table VIII], one can see that
any number of elements from conjugacy class A plus one element from class B, D, or F cannot generate
the entire group. This contradicts our assumption that the Ri’s generate an irrep of ∆(6n2). Hence GM is
not an irrep of ∆(6n2) so G cannot be ∆(6n2) by Claim 3.1.

We now prove Lemma 3.3 before continuing the proof of Claim 3.2.

Proof of Lemma 3.3 . Assume thatGM is an irrep of ∆(6n2). We will show that at most one of the matrices
R1, R2, R3 can be of class B, D or F . Hence at least two of {R1, R2, R3} must be representatives of
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conjugacy class A. We proceed by enumerating all pairs Ri, Rj for i 6= j and show that it’s not possible
for both Ri and Rj to be of class B, D or F .

Let α = a+ bi where a and b are real. If Ri is of conjugacy class B,D or F , then Ti has norm 1, which
imposes the following equations on a and b:

|T1|2 = 1⇒ (a2 + b2)2 + 4[a2(1− a) + b2(3 + a)] = 1 (23)

|T2|2 = 1⇒ (a2 + b2)2 + 4[a2(1 + a) + b2(1− 3a)] = 1 (24)

|T3|2 = 1⇒ (a2 + b2)2 + 4b2 = 1 (25)

First suppose that R1 and R2 are both members of conjugacy classes B, D, or F . Then |T1| =
|T2| = 1. The only solutions to equations (23) and (24) in which 0 < |α|2 = a2 + b2 < 1 are(
a = 0, b = ±

√√
5− 2

)
and

(
a = ±1

2

√
3(
√

5− 2), b = ±1
2

√√
5− 2

)
. Note also that the product

R1R2 must be in conjugacy class C or E according to the group multiplication table in [8, Table VIII].
Hence the trace of R1R2 must be 0 if GM is an irrep of ∆(6n2). This implies that

Tr(R1R2) = α3 − α∗3 + |β|2
(
1 + β + β∗ − |α|2

)
− |α|2 = 0 (26)

Since we have α = a + bi where the values of a and b are one of the six possibilities above, one can see
that there is no β which satisfies equation (26). Indeed, note that α3 − α∗3 is nonzero and pure imaginary,
while the rest of the expression is real, so the terms in equation (26) cannot sum to zero. This provides the
desired contradiction. We conclude that R1 and R2 cannot both be of conjugacy class B, D, or F .

Next suppose that R1 and R3 are both of conjugacy class B, D or F . Then |T1| = |T3| = 1. If
α = a + bi as before, the equations (23) and (25), combined with the fact that 0 < |α|2 = a2 + b2 < 1,
imply that a = 0 and b = ±

√√
5− 2. Again, using the group multiplication table in [8, Table VIII] we

must have that R1R3 is of class C or E so

Tr(R1R3) = α3 + α∗|α|2 + α∗2 + |β|2(1 + β + β∗ + α2) = 0 (27)

Since α = ±i
√√

5− 2, this is a contradiction—for the terms α3 +α∗|α|2 of equation (27) are nonzero and
pure imaginary while the remaining terms are real. Hence R1 and R3 cannot both be of conjugacy class B,
D, or F .

Finally suppose that R2 and R3 are both of conjugacy class B, D, or F . Then |T2| = |T3| = 1. If
α = a + bi then the only solutions to equations (24) and (25) in which 0 < |α|2 = a2 + b2 < 1 are(
a = 0, b = ±

√√
5− 2

)
and (a ≈ 0.437668, b ≈ ±0.457975). Furthermore using the group multiplica-

tion table in [8, Table VIII] we must have that R2R3 is of class C or E so

Tr(R2R3) = α2 − α∗3 − α|α|2 + |β|2(αβ∗ − α∗β∗ − 2α∗) = 0 (28)

With slightly more work, one can again check that equation (28) cannot be satisfied with the above values
of α, under the additional constraint that |α|2 + |β|2 = 1, providing the desired contradiction. Hence R2

and R3 cannot both be of conjugacy class B, D, or F , which completes the proof of Lemma 3.3.

We have therefore eliminated the possiblity thatGM is an irrep of ∆(6n2) for any n, and soG 6= ∆(6n2)
by Claim 3.1.

Finally we will show thatG is not a finite subgroup of SU(2). Since SU(2) is a double cover of SO(3),
ifG is a finite subgroup of SU(2), thenGmust be either a finite subgroup of SO(3) or else the double cover
of such a subgroup. We first eliminate the finite subgroups of SO(3). The dihedral and cyclic subgroups
have no 3-dimensional irreps; hence G cannot be one of these by Claim 3.1. The icosahedral subgroup is
isomorphic to Σ(60) so has already been eliminated. The octahedral and tetrahedral subgroups do have
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3-dimensional irreps. However, the characters of their elements all lie in the set {0,±1,±3}, so these can
be eliminated just as the exceptional groups of SU(3) were eliminated.

Now all that remains are double covers of the finite subgroups of SO(3). The binary dihedral groups,
also known as the dicyclic groups, have no 3-dimensional irreps, so G cannot be a binary dihedral group
by Claim 3.1. The binary tetrahedral group has one 3-dimensional irrep, with character values in the set
{0,±1,±3}. So T3 cannot be in this set as noted above.

The binary octahedral group has two 3-dimensional irreps, with character values also in {0,±1,±3},
so is likewise eliminated. The binary icosahedral group has two 3-dimensional irreps, with all characters in
the set {0,−1, 3,

√
5±1
2 }. As discussed in the case of Σ(60), our traces cannot take these values.

In summary, by enumeration of the finite subgroups of SU(3), we have shown that G cannot be finite.

Corollary 3.4. G is a continuous (Lie) subgroup of SU(3).

Proof. G is infinite by Claim 3.2. FurthermoreG is closed because it is the set of matrices densely generated
by {R1, R2, R3}. It is well-known that a closed, infinite subgroup of a Lie group is also a Lie group (this is
Cartan’s theorem [5]). The corollary follows.

Next we show that G must be either SO(3), SU(2) or SU(3). Furthermore, the set of matrices GM
densely generated by {R1, R2, R3} consists of either all SO(3) matrices or all SU(3) matrices.

Claim 3.5. G is either SO(3), SU(2), or SU(3). Furthermore, GM consists of either all 3 × 3 special
unitary matrices (if the beamsplitter b has a non-real entry), or all 3× 3 special orthogonal matrices (if b is
real).

Proof. Since R1, R2, and R3 do not commute, G is nonabelian. By Corollary 3.4, we know G is a Lie
group, and furthermore G is closed. The nonabelian closed connected Lie subgroups of SU(3) are well-
known [4]: they are SU(3), SU(2) × U(1), SU(2), and SO(3). Meanwhile, the closed disconnected Lie
subgroups of SU(3) are ∆(3∞) and ∆(6∞), as described in [8].

Note that ∆(3∞) and ∆(6∞) are the analogues of ∆(3n2) and ∆(6n2) as n → ∞. Our above
arguments showing that G 6= ∆(3n2) and G 6= ∆(6n2) carry over in this limit, because at no point did we
use the fact that n or m were finite. Therefore G cannot be either of these continuous groups.

By Claim 3.1, G has a 3-dimensional irrep. Of the remaining groups, only SU(2), SO(3), and SU(3)
have 3-dimensional irreps. Furthermore, it is well known that the only 3-dimensional irrep of SU(2) is as
SO(3). This is because SU(2) has exactly one irrep in each finite dimension (See [4, Section II.5] or [21]
for details), and SU(2) has an obvious representation as SO(3) via the fact that SU(2) is a double cover of
SO(3). Since we are only concerned with the set of matrices GM generated, without loss of generality we
can assume G is either SO(3) or SU(3).

It is well-known that the only 3-dimensional irrep of SU(3) is the natural one, as the group of all 3× 3
special unitary matrices ([4, Section VI.5]). Likewise, the only 3-dimensional irrep of SO(3) is the natural
one, up to conjugation by a unitary [4]. Hence GM consists of either all 3×3 special unitary matrices (case
A), or all 3× 3 special orthogonal matrices conjugated by some unitary U (case B).

We now show that if the beamsplitter b is real, then we are in case B and without loss of generality the
conjugating unitary U is real. Hence GM is the set of all 3× 3 orthogonal matrices. Otherwise, if b has a
complex entry, we will show we are in case A and GM is the set of all 3× 3 special unitary matrices.

First, suppose b is real. Then all matrices in our generating set are orthogonal, so all matrices in GM
are orthogonal. Hence we are in case B, and since all matrices in GM are real, without loss of generality U
is a real matrix as well.

Now suppose that b has a complex entry. Then either α or β are not real. First, suppose α is not real.
Then Tr(R1) = α2 − 2α∗ is not real because 0 < |α| < 1. But since conjugating a matrix by a unitary
preserves its trace, and we are in case B, the traces of all matrices in GM must be real. In particular Tr(R1)
must be real, which is a contradiction. Therefore if α is not real then we must be in case A.
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Next, suppose β is not real. Then we can obtain a similar contradiction. Let β = p + qi where p and
q are real. By direct calculation one can show that Im (Tr(R1R2R3R1)) = |β|4

(
β∗2 + 2β

)
. Since our

beamsplitter is nontrivial, |β|4 6= 0, so this quantity is 0 if and only if β∗2 + 2β = 0⇔ 2q(1− p) = 0. But
this cannot occur, since q 6= 0 (because β is not real), and 1−p 6= 0 (because the beamsplitter is nontrivial).
Hence in this case Tr(R1R2R3R1) is imaginary, which contradicts the fact we are in case B. Therefore if
β is not real then we must be in case A, which completes the proof.

Theorem 2.1 follows from Claim 3.5. Having proved our main result, we can now easily show two
alternative versions of the theorem as well.

Corollary 3.6. Any nontrivial 2-mode optical gate g =
(
a b
c d

)
(not necessarily of determinant −1), plus the

set of all phaseshifters densely generates SU(m) on m ≥ 3 modes.

Proof. Since g is unitary we have det(g) = eiθ for some θ. By composing g with a phase of ei
π−θ
2 , we

obtain a nontrivial beamsplitter g′ of determinant −1. The gate g′ is universal by Theorem 2.1, hence this
gate set is universal as well.

Corollary 3.7. Any nontrivial 2-mode real optical gate g is universal for quantum linear optics.

Proof. Since g is real, g must have determinant ±1. The case of det(g) = −1 is handled by Theorem
2.1, so we now prove the det(g) = +1 case. In this case g is a rotation by an angle θ. The fact that g
is nontrivial means θ is not a multiple of π/2. The beamsplitter actions b12, b23, b13 can be viewed as 3-
dimensional rotations by angle θ about the x, y and z axes. So the question reduces to “For which angles θ
(other than multiples of π/2) do rotations by θ about the x, y and z axes fail to densely generate all possible
rotations?”

This question is easily answered using the well-known classification of closed subgroups of SO(3).
The finite subgroups of SO(3) are the cyclic, dihedral, tetrahedral, octahedral, and icosahedral groups. One
can easily check that our gate g cannot generate a representation of one of these groups, and hence densely
generates some infinite group G. By the same reasoning as in Corollary 3.4, we conclude that G is a Lie
subgroup of SO(3).

The Lie subgroups of SO(3) are SO(3), U(1) (all rotations about one axis) and U(1)×Z2 (all rotations
about one axis, plus a rotation by π perpendicular to the axis). Again one can easily eliminate the possibility
that G is U(1) or U(1)× Z2, and hence G must be all of SO(3).

We have proven universality on 3 modes for real nontrivial g with determinant +1. Universality on
m ≥ 3 modes follows by a real analog of Reck et al. [19], namely that any rotation matrix in SO(m) can
be expressed as the product of O(m2) real 2× 2 optical gates of determinant 1.

4 Open Questions

At the moment our dichotomy theorem only holds for beamsplitters, which act on 2 modes at a time and
have determinant −1. As we said before, we leave open whether the dichotomy can be extended to 2-mode
gates with determinant other than −1. Although the phases of gates are irrelevant in the qubit model, the
phases unfortunately are relevant in linear optics—and that is the source of the difficulty. Note that the
previous universality result of Reck et al. [19] simply assumed that arbitrary phaseshifters were available
for free, so this issue did not arise.

Another open problem is whether our dichotomy can be extended to k-mode optical gates for all con-
stants k. Such a result would complete the linear-optical analogue of the dichotomy conjecture for standard
quantum circuits. The case k = 3 seems doable because the representations of all finite subgroups of SU(4)
are known [12]. But already the case k = 4 seems more difficult, because the representations of all finite
subgroups of SU(5) have not yet been classified. Thus, a proof for arbitrary k would probably require more
advanced techniques in representation theory.
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