
The Ordering Principle in a

Fragment of Approximate Counting

Albert Atserias∗ Neil Thapen†

October 28, 2013

Abstract

The ordering principle states that every finite linear order has a
least element. We show that, in the relativized setting, the surjective
weak pigeonhole principle for polynomial time functions does not prove
a Herbrandized version of the ordering principle over T1

2. This answers
an open question raised in [Buss, Ko lodziejczyk and Thapen, 2012] and
completes their program to compare the strength of Jeřábek’s bounded
arithmetic theory for approximate counting with weakened versions
of it.

1 Introduction

We show that, in the relativized setting, the surjective weak pigeonhole
principle for polynomial time functions does not prove the Herbrandized
ordering principle over T1

2. This answers an open question from [2]. In
the rest of this section we will give a brief introduction to this problem.
We will assume a basic knowledge of the language and theories of bounded
arithmetic; standard references are [1] and [10].

The Herbrandized ordering principle HOP is a formula in the vocabulary
α = (≺, h), where ≺ is a binary relation symbol and h is a unary function
symbol. It asserts that if ≺ is a strict linear ordering of an interval [n] :=

∗Departament de Llenguatges i Sistemes Informàtics. Universitat Politècnica de
Catalunya, Barcelona, Spain (atserias@lsi.upc.edu). Research partially supported by
TIN2010-20967-C04-05 (TASSAT).

†Institute of Mathematics. Academy of Sciences of the Czech Republic, Prague, Czech
Republic (thapen@math.cas.cz). Research partially supported by grant IAA100190902
of GA AV ČR, and by Center of Excellence CE-ITI under grant P202/12/G061 of GA ČR
and RVO: 67985840.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 149 (2013)

{0, . . . , n− 1} and h maps [n] into [n], then there is some x ∈ [n] such that
h(x) is not the immediate predecessor of x. In other words, either there
exists a witness that ≺ is not a strict linear ordering of [n], or there exists
x ∈ [n] such that h(x) 6≺ x, or there exist x, y ∈ [n] such that h(x) ≺ y ≺ x.
The principle is expressed by a Σb

1(α) formula ∃z<n3 (θ(z, n)) where z codes
a possible witness (the biggest of which would be a triple witnessing that ≺
is not transitive) and θ is a quantifier-free PV(α) formula. We note that the
natural Herbrandization of the ordering principle would not contain the last
condition, about h giving the immediate predecessor. As in [2], including
this condition is convenient and also makes the principle weaker, and hence
makes our unprovability result stronger. Similar principles to HOP (without
this condition) have appeared as the generalized iteration principle in [4] and
as Herbrandized minimization in [5].

To define the surjective weak pigeonhole principle sWPHP, we first in-
troduce some notation: for a function f(z̄, x) of several arguments, we will
sometimes treat some of the arguments as parameters and write them as
subscripts, writing, for example, fz̄(x) for f considered as a family of one-
argument functions parametrized by z̄.

Given a function symbol f , the formula sPHPa
b (f) expresses that, if

b > a, then f is not a surjection from [a] onto [b]. We take the principle
sWPHP(PV(α)) to be the formula

∀a∀e
(
sPHPa

a2(ge)
)

where g(e, x) is a “universal” polynomial time function (with oracle α) which
we can think of as, for example, evaluating the Boolean circuit e on input x
(where e is allowed “oracle gates” for computing queries to α). The principle
expresses that no PV(α) function with parameters is a surjection from [a]
onto [a2], for any a > 1.

It is a long-standing open problem to separate Buss’ hierarchy Ti
2 of

bounded arithmetic theories by sentences of fixed complexity. This is un-
known even for the relativized hierarchy Ti

2(α) (although there is such a
separation known for the hierarchy Ti

1(α), which has polynomial rather than
quasipolynomial growth rate [6]). Techniques exist to separate PV(α) from
T1

2(α), and T1
2(α) from T2

2(α), by ∀Σb
1(α) sentences [4]. But these do not

seem to be useful in the case of T2
2(α) and T3

2(α).
The recent paper [2] tries to approach this problem from a different di-

rection by considering, rather than T2
2, Jeřábek’s theory T1

2 +sWPHP(PV2)
of approximate counting [9]. Here PV2 stands for a set of terms naming all
FPNP functions. This theory is called APC2 in [2], and sits at a similar level

2

in the hierarchy to T2
2. The authors do not show any separation of APC2

from anything higher, but do give ∀Σb
1(α) separations of certain subtheories

of APC2(α) from T2
2(α) and APC2(α) itself. In particular, they observe

that HOP is provable in both APC2(α) and T2
2(α) and show, among other

things, that PV(α) + sWPHP(PV2(α)) 6` HOP.1

Our result is that

T1
2(α) + sWPHP(PV(α)) 6` HOP.

This resolves an open question in [2] and shows that weakening APC2(α),
either by reducing the amount of induction from Σb

1(α) to Σb
0(α) (that is,

from T1
2(α) to PV(α), see [7]), or by reducing the functions for which sWPHP

holds from PV2(α) to PV(α), gives a strictly weaker theory.
In Section 2 below we give the high-level proof of our result, and in

Sections 3 and 4 we prove some necessary technical lemmas. The most
important of these is Lemma 3, which shows how decision trees computing
functions in PV(α) are simplified under a certain random restriction. In
Section 5 we discuss a propositional version of our result.

We are grateful to Emı́l Jeřábek and Leszek Ko lodziejczyk for helpful
comments on earlier versions of this work.

2 Main theorem

We begin with some standard manipulations.

Lemma 1. Suppose φ(n) is a Σb
1(α) formula and

T1
2(α) + sWPHP(PV(α)) ` ∀n (φ(n)).

Then there is a term t = t(n) and a function symbol f ∈ PV(α) such that

T1
2(α) ` ∀n (t > 2 ∧ ∀v<t2 ∃u<t (fn(u) = v ∨ φ(n))).

1There is a technical issue here concerning our definition of sWPHP. There are three
versions considered in the paper [2]: that there is no surjection from [a] onto [a(1+1/|a|)];
from [a] onto [2a]; or from [a] onto [a2]. The notation sWPHP is used formally in [2]
only for the first (and strongest) version, while we, for the sake of simplicity, use it to
mean the third (and weakest). For our result, as in most cases, this makes no difference,
because the three versions are equivalent over S1

2(α) for PV(α) functions. However in the
result from [2] referred to here it does matter which version is used, because for PV2(α)
functions they are unlikely to be equivalent over PV(α) (see [8]). Precisely, the result is
for [a] onto [2a], and hence also for [a] onto [a2]. It is not known for [a] onto [a(1+1/|a|)].

3

Proof. This is proved by standard tricks about amplifying failures of the
weak pigeonhole principle (see for example [13]). In detail, we are given a
PV(α) function symbol g(e, x) such that

T1
2(α) + ∀a∀e

(
sPHPa

a2(ge)
)
` ∀n (φ(n)).

By Parikh’s theorem, there is a term p = p(n) such that

T1
2(α) ` ∀n ∃a<p∃e<p

(
¬sPHPa

a2(ge) ∨ φ(n)
)
.

We may assume without loss of generality that T1
2(α) proves p > 1. By

Corollary 2.2 of [13] there is a PV(α) function symbol G(e, a, b, x) such
that, in any model of S1

2(α) (and in particular any model of T1
2(α)), if ge is

a surjection from a onto a2 then Ge,a,b is a surjection from a onto b. Let
f(n, u) be the function

f : (n, (e, a, x)) 7→ G(e, a, p6, x)

where f interprets its second argument u as a triple (e, a, x) of numbers, each
in [p]. Then whenever there exist e and a in [p] such that ge is a surjection
from a onto a2, we also have that fn is a surjection from [p3] onto [p6]. The
lemma follows by putting t = p3.

Theorem 1. T1
2(α) + sWPHP(PV(α)) 6` HOP.

Proof. We assume the opposite to reach a contradiction. By Lemma 1 we
have a term t = t(n) and function symbol f ∈ PV(α) such that

T1
2(α) ` ∀n (t > 2 ∧ ∀v<t2 ∃u<t ∃z<n3 (fn(u) = v ∨ θ(z, n))) (1)

where w and θ(z, n) are the bounding term and the quantifier-free PV(α)-
formula, respectively, from the Σb

1(α)-formula expressing HOP.
By [3], this is witnessed by a PLS problem2, as follows. The problem is

given by a term s = s(v, n), a cost function C and a neighborhood function
N on [s], where C and N take n and v as parameters, run in time polynomial
in |n|, and have oracle access to ≺ and h. A solution to the problem is a
number x ∈ [s] such that C(N(x)) ≥ C(x). There is a polynomial time
reduction function g (which does not access the oracles) such that for all

2Our version of the PLS witnessing theorem is slightly different from the one that
appears in [3]. However their PLS problem (FL, cL, NL) is easily reducible to ours, by
putting C(x) = cL(x) and N(x) = NL(x) for x ∈ FL, and putting C(x) = q + 1 and
N(x) = 0 for x /∈ FL, where q is an upper bound on the cost in their instance.

4

choices of oracles ≺ and h, for all n and v and all x ∈ [s], if x is a solution
to the problem then g(x) is a witness 〈u, z〉 for the existential quantifiers on
the right-hand side of (1).

Before we continue we need some definitions. Let n, p and q be positive
integers such that q divides p and p/q < n − p. Let m = p/q. A random
restriction ρ with these parameters is a partition of [n] into linearly ordered
sets chosen randomly as follows:

1. choose a random set B0 ⊆ [n] of cardinality n− p,

2. randomly partition [n] \B0 into blocks B1, . . . , Bq of cardinality m,

3. choose a random linear ordering ≺i of each Bi for i ∈ {0, . . . , q}.

The conditions on n, p and q imply that m < n − p. Consequently we
will call B0 the big block and the other blocks small blocks. For every x ∈
[n], we write Bx for the unique block that contains x. Let R(n, p, q) be
the set of all restrictions ρ with parameters n, p and q as above. If ρ =
(B0, . . . , Bq,≺0, . . . ,≺q) is a restriction in R(n, p, q) with blocks B0, . . . , Bq

and linear orderings ≺0, . . . ,≺q, we say that a total linear ordering ≺ of [n]
is compatible with ρ if it satisfies three conditions:

1. ≺ extends ≺i for every i ∈ {0, . . . q},
2. Bi is ≺-convex3 for every i ∈ {0, . . . , q}, and

3. x ≺ y for every x ∈ [n] \B0 and every y ∈ B0.

Notice that there are always exactly q! total linear orderings compatible
with ρ, corresponding to the q! possible ways of arranging the small blocks
B1, . . . , Bq below the big block B0.

We continue with the proof. Let n0 be a large integer, and let n ≥ n0

be an exact eighth power, so that p := n1/2 and q := n1/8 are both integers.
Note that m := p/q = n3/8 is also an integer. Given a total linear ordering ≺
of [n] let h≺ be the predecessor function arising from ≺, except that h(z) = z
for the ≺-minimum element z ∈ [n], and also h(z) = z for every z 6∈ [n]. We
will call oracles (≺, h≺) of this form standard. We say that such an oracle
is compatible with a restriction ρ if ≺ is compatible with ρ.

Lemma 2. There is a restriction ρ ∈ R(n, p, q) with n, p and q as specified,
and a number v ∈ [t2], such that for every u ∈ [t] we have fn(u) 6= v under
every standard oracle (≺, h≺) compatible with ρ.

3If (S, <) is a linearly ordered set, we say that a subset C ⊆ S is <-convex if whenever
x and y belong to C and z in S is such that x < z and z < y, then also z belongs to C.

5

The proof of this lemma takes up Sections 3 and 4 of this paper. We
show now how we use it to obtain a contradiction.

Let ρ and v be given by the lemma. Let |n|k be a bound on the number
of oracle queries and replies that can occur in a computation of the cost
or neighbourhood functions C or N . For large enough n, we may assume
that 3|n|k + 3 < q. Let A be the set of partially-defined oracles α = (≺, h)
arising in the following way. Choose ` ≤ |n|k of the small blocks of ρ
and arrange them in any order as Bi1 , . . . , Bi` . Let the domain of ≺ be
the union of all these blocks together with B0, and let ≺ be a total linear
ordering of this domain, with the ordering inside each block given by ρ and
the ordering between blocks given by Bi1 ≺ · · · ≺ Bi` ≺ B0. Let h be
defined everywhere on this domain except for its ≺-minimum element, as
the predecessor function arising from ≺.

Let M be the set of pairs (x, α) of x ∈ [s] and α ∈ A for which the cost
Cα(x) of x under α is defined. We claim that M is non-empty, and that for
any (x, α) ∈ M , there is (y, β) ∈ M such that Cβ(y) < Cα(x). Together
these imply a contradiction, since costs must be positive.

To see that M is non-empty, we simulate a computation of C(0), con-
structing a partial oracle α as we go. At the beginning of the simulation,
we set α to be the ordering ≺ given by ρ on B0 and undefined elsewhere,
with the corresponding predecessor function h defined on B0 without its
≺-minimum element. Each time a query is made about any element z cur-
rently outside the domain of ≺, we add the block Bz containing z to the
bottom of our ordering ≺ and extend h appropriately, in particular setting
h(w) to be w′, where w is the minimum element of our current ordering and
w′ is the maximum element of the new block. If h(z) is queried where z is
currently the ≺-minimum element, we take any unused block and similarly
add it to the bottom of the ordering. We add at most |n|k < q blocks over
the course of the simulation, so never run out of unused blocks to add in
this second case.

Given (x, α) in M , to find a suitable (y, β) in M we simulate a computa-
tion of N(x), save this value as y, and then simulate a computation of C(y),
all using a partial oracle γ which we construct as we go. At the beginning
we set γ to be α. We extend γ as needed during the simulation, as in the
previous paragraph. As 3|n|k < q, we never run out of unused blocks. To
construct β, first remove from γ every block that does not appear in oracle
queries or replies in the computation of Cγ(y). Then adjust h to skip over
any holes, so that for each block B except for the bottom-most, h(w) = w′

where w is the minimum element of B and w′ is the maximum element of
the block below B. This cannot change the computation of C(y), since if

6

h(w) had been queried in that computation then the reply would have come
from the block B′ immediately below B in γ, and hence we would not have
removed B′. Since the computation of Cγ(y) makes at most |n|k queries,
the resulting β belongs to A.

It remains to show that Cβ(y) < Cα(x). It is enough to show Cγ(y) <
Cγ(x). Suppose not. Then under any standard oracle γ′ which extends γ
and is compatible with ρ we have Cγ′

(Nγ′
(x)) ≥ Cγ′

(x), implying that x is a
solution of our PLS problem in γ′ and thus, by the properties of ρ, that g(x)
is a pair 〈u, z〉 where z is a witness to HOP. Considered as such a witness,
z mentions at most three elements of [n]. We construct a particular such γ′

from γ by first adding to the bottom of our ordering the blocks containing
those of the three elements which are not yet in the domain of γ, and then
all the remaining blocks in any order. Note that, as 3|n|k + 3 < q, we added
at least one block below the three elements mentioned in z. Finally we let
h(x) = x for the minimal element x of the total ordering we have constructed
and for every x 6∈ [n]. Thus γ′ is a standard oracle, compatible with ρ, in
which z does not witness HOP because h(w) is the immediate predecessor
of w for each element of [n] mentioned in z. This completes the proof.

3 Frames and frame decision trees

The computation of an oracle Turing machine can be modeled by a decision
tree, in which each internal node is labeled with an oracle query and has
children corresponding to the possible replies, and each leaf is labeled with
an output value. In this section we define a particular kind of tree computing
the function fn(u) from Lemma 2 under standard oracles. In Section 4 we
will show that, for a random restriction ρ, the expected number of paths
through the tree consistent with ρ, and hence the expected number of output
values of fn(u) that can occur over all standard oracles consistent with ρ,
is small (in fact it is less than 2, if n is large enough). Lemma 2 will follow
easily.

The proof of this bound is complicated by the fact that in our random re-
strictions oracle replies are not independent of each other, which will require
us to work with conditional probabilities. To consider, briefly, a simpler ex-
ample, suppose that our machine only queried a unary oracle for a subset
A of [n]. Fix a small probability p and let σ be the usual random restric-
tion which independently sets each bit of A to 0 or 1, each with probability
(1 − p)/2, or leaves it unset with probability p. Let T be a tree model-
ing computations of the machine, where we may assume that no bit of A

7

is queried more than once along any path. Let v be any node in T . The
expected number of replies consistent with σ to the query x ∈ A? labeling v
is then 2p+(1−p) = 1+p. It is straightforward to show (as in the first part
of the proof of Lemma 3 below) that the expected number of paths through
T consistent with σ is thus at most (1 + p)d, where d is the height of T .

Returning to our proof, let n, fn and t be as in the proof of Theorem 1.
We may assume without loss of generality, by adding dummy oracle queries
as necessary, that the machine computing fn(u) on a standard oracle works
in the following way. It maintains a set S ⊆ [n] of points and some total
ordering ≺ of S. Furthermore for some pairs x, y ∈ S it knows that h(x) = y.
It can ask two kinds of oracle query. The first is an ordering query, for
x ∈ [n] \ S. This involves writing x? on the oracle tape, and getting
as a reply the position of x in the oracle’s ordering ≺ with respect to all
elements of S. Assuming that ≺ is a linear ordering, there are at most |S|+1
possible replies. The second is a predecessor query, for x ∈ S where h(x)
is not known. This involves writing h(x)? on the oracle tape, and getting
as a reply some y ∈ [n]. There are at most n possible replies. Finally the
computation outputs some v ∈ [t2].

In the rest of this section we give a formal definition of frames and frame
decision trees, which we will use to model computations of fn(u) on standard
oracles. A frame consists of:

1. a set S ⊆ [n],

2. a linear ordering ≺ of S,

3. a partition C0, . . . , Cr−1 of S into ≺-convex sets.

Each Ci is called an h-chain. If C is an h-chain, we write min(C) and max(C)
for its minimum and maximum elements in the linear ordering ≺, respec-
tively. We always assume that the partition of S into h-chains C0, . . . , Cr−1

is given in the order induced by ≺ on their least elements, which by ≺-
convexity means that

min(Ci−1) � max(Ci−1) ≺ min(Ci) � max(Ci)

for every i ∈ {1, . . . , r − 1}. For every x in S, we write Cx for the unique
h-chain that contains x. The unique frame with empty S is called the empty
frame. A total linear ordering ≺′ of [n] is compatible with S if ≺′ extends
≺, and every h-chain in S remains ≺′-convex.

A frame decision tree (FDT) is a tree whose nodes are labeled by frames
satisfying certain conditions, which we describe below. Each leaf node is

8

assigned an output, which is an element of [t2]. Each non-leaf node labeled
by a frame (S,≺, C0, . . . , Cr−1) is assigned one of two types of queries: an
ordering query x? for some x in [n] \ S, or a predecessor query h(x)? for
some x in S with x = min(Cx).

A node labeled by an ordering query has r + 1 children, one for each i in
{0, . . . , r}. The child corresponding to i ∈ {0, . . . , r} is an FDT whose root
is labeled by a frame derived from the frame of its parent by extending S to
S∪{x}, extending the linear ordering ≺ to y ≺ x for every y ∈ C0∪. . .∪Ci−1

and x ≺ y for every y ∈ Ci ∪ · · · ∪ Cr−1, and with the following partition of
S ∪ {x} into h-chains:

C0, . . . , Ci−1, {x}, Ci, . . . , Cr−1.

For a node labeled by a predecessor query, there are two cases. The first
case occurs if Cx = C0, representing the situation in which x is the smallest
element of S. In this case the tree has one child for each possible reply z
in [n] \ S, and one extra child, representing the possibility that h(x) = x.
The child corresponding to z ∈ [n] \ S is an FDT whose root is labeled by
the frame that has S extended to S∪{z}, the linear ordering ≺ extended to
z ≺ y for every y in S, and the following partition of S ∪ {z} into h-chains:

{z} ∪ C0, C1, . . . , Cr−1.

The child corresponding to the reply h(x) = x is an FDT whose root is
labeled by the same frame as its parent.

The second case occurs if Cx = Ci for some i > 0, representing the
situation in which there are already elements of S smaller than x. In this case
the tree has one child for each z in [n] \ S and one child for z = max(Ci−1).
The child corresponding to z ∈ [n] \ S is an FDT whose root is labeled by
the frame that has S extended to S∪{z}, the linear ordering ≺ extended to
y ≺ z for every y ∈ C0 ∪ · · · ∪ Ci−1 and z ≺ y for every y ∈ Ci ∪ · · · ∪ Cr−1,
and the following partition of S ∪ {z} into h-chains:

C0, . . . , Ci−1, {z} ∪ Ci, Ci+1, . . . , Cr−1.

The child corresponding to z = max(Ci−1) is an FDT whose root is labeled
by the frame that has the same set S, the same linear ordering ≺, and the
following partition of S into h-chains:

C0, . . . , Ci−2, Ci−1 ∪ Ci, Ci+1, . . . , Cr−1.

If π = (S,≺, C0, . . . , Cr−1) is a frame and ρ = (B0, . . . , Bq,≺0, . . . ,≺q)
is a restriction from R(n, p, q), we say that ρ and π are compatible, denoted

9

by ρ ‖ π, if there exists a total linear ordering ≺′ of [n] which is compatible
with both ρ and π. If T is an FDT and ρ is a restriction, the restricted tree
T |ρ is defined by deleting each subtree whose root is labeled by a frame that
is not compatible with ρ.

4 Decision trees under random restrictions

Let n0, n, p, q, m, fn and t be as in the proof of Theorem 1. In particular
p = n1/2, q = n1/8 and m = p/q = n3/8 are integers. We prove the following
technical lemma:

Lemma 3. If n0 is large enough, T is an FDT modeling the computation
of fn(u) for some u ∈ [t], and ρ is a random restriction from R(n, p, q) with
n, p and q as specified, then the expected number of leaves in T |ρ is at most
(1 + n−1/10)d, where d is the height of T .

Using this lemma we can now prove Lemma 2. Recall that our goal is to
find a restriction ρ ∈ R(n, p, q) and a number v ∈ [t2] such that fn(u) 6= v
for every u ∈ [t] under every standard oracle compatible with ρ.

Proof of Lemma 2. For each u ∈ [t], there is a frame decision tree Tu which
computes the value of fn(u) under all standard oracles. The height du of
Tu is bounded by a fixed polynomial function of |n|, say |n|k. Applying
Lemma 3, the expected number of leaves in Tu|ρ is at most (1 +n−1/10)du ≤
(1 + n−1/10)|n|

k
< 2, for large enough n0.

Now let Nρ be the sum, over all u ∈ [t], of the number of leaves in Tu|ρ.
By linearity of expectation, the expected value of Nρ over ρ ∈ R(n, p, q) is
less than 2t. Hence there is at least one ρ with Nρ < 2t. Fix such a ρ,
and observe that since t > 2 we have Nρ < t2 and hence there must exist
some v ∈ [t2] which does not appear as the label of any leaf of any Tu|ρ.
Therefore, for every standard oracle compatible with ρ and every u ∈ [t] we
have fn(u) 6= v, as required.

Finally we prove Lemma 3.

Proof of Lemma 3. For every node v in T , let N(v, ρ) be the number of
leaves in the subtree of T |ρ rooted at v, if the subtree rooted at v survives
in T |ρ, and 0 otherwise. Let π(v) be the frame that labels v in T . We prove
that

E
ρ‖π(v)

[N(v, ρ)] ≤ (1 + n−1/10)δ, (2)

10

where δ is the height of v in T and the expectation is over the probability
space of random restrictions conditioned on the event that ρ ‖ π(v). The
lemma will follow since the frame at the root is the empty frame, which is
compatible with every restriction.

We prove (2) by induction on the height δ of v. If v is a leaf, then
N(v, ρ) ≤ 1 with probability one and there is nothing to prove. If v is a
non-leaf node and v0, . . . , v`−1 are the children of v in T , then

E
ρ‖π(v)

[N(v, ρ)] =
∑
i∈[`]

E
ρ‖π(v)

[N(vi, ρ)]

=
∑
i∈[`]

Pr
ρ‖π(v)

[ρ ‖ π(vi)] · E
ρ‖π(vi)

[N(vi, ρ)] (3)

≤ (1 + n−1/10)δ−1 ·
∑
i∈[`]

Pr
ρ‖π(v)

[ρ ‖ π(vi)] (4)

= (1 + n−1/10)δ−1 · E
ρ‖π(v)

[C(v, ρ)], (5)

where C(v, ρ) in the last equation is the random variable that counts the
number of children vi of v such that ρ ‖ π(vi). The identity in (3) follows
from the fact that if ρ is not compatible with π(vi) then N(v, ρ) = 0. The
inequality in (4) follows from the induction hypothesis, and the identity in
(5) follows from the definition of C(v, ρ). Thus, it suffices to show that

E
ρ‖π(v)

[C(v, ρ)] ≤ 1 + n−1/10. (6)

We proceed by cases on the type of query at v. For what follows, let
π(v) = (S,≺, C0, . . . , Cr−1) be the frame that labels v. Note that the
structure of the frames that label the nodes of the tree guarantees that
r ≤ |S| ≤ d. We make use of these inequalities below.

Ordering query. The query at v is of the type x? for x ∈ [n] \ S. In order
to bound C(v, ρ) for each fixed ρ we distinguish two cases: (a) x ∈ B0 and
(b) x 6∈ B0. In case (a) we have C(v, ρ) = 1. This is because ρ gives a
total ordering ≺0 of B0, and any ordering of [n] compatible with ρ puts all
elements of B0 above all elements of [n] \ B0. Hence exactly one child vi

of v will satisfy ρ ‖ π(vi), namely the child whose frame places x above all
elements of S \ B0 and in the ordering relation to the elements of S ∩ B0

that is given by ≺0. In case (b) we have the bound C(v, ρ) ≤ r + 1 ≤ d + 1
inherited from the structure of T . To complete the argument it suffices to
bound the probability that x 6∈ B0. In order to do this, let A be the set of ρ

11

that are compatible with π(v) and let B be the set of ρ that satisfy x 6∈ B0.
Then:

Claim 1.

Pr
ρ‖π(v)

[x /∈ B0] =
|A ∩B|
|A|

≤ (q + 1) ·m
n− p− d

.

Proof. We show this by constructing an injective map

F : (A ∩B)× [n− p− d] → A× [q + 1]× [m]

as follows. We are given ρ ∈ A ∩ B and j ∈ [n − p − d] and we want to
produce ρ′ ∈ A and (b, k) ∈ [q + 1]× [m].

Let Bi be the block Bx containing x. We know i 6= 0, so |Bi| = m.
Enumerate Bi as b0, . . . , bm−1 using the ordering ≺i of ρ, and let k ∈ [m] be
the index of x in this enumeration. Enumerate the first n− p− d elements
of B0 \ S as a0, . . . , an−p−d−1 using the ordering ≺0 of ρ (recall that |B0| =
n − p > m > d ≥ |S|). Let ρ′ be ρ with x swapped with aj . Order the
blocks in ρ′ by their least element in the standard ordering of [n] and let
b ∈ [q + 1] be the index, in this ordering of blocks, of the block in ρ to which
x belonged before the swapping. Let F map (ρ, j) to (ρ′, b, k).

Clearly ρ′ belongs to A since from a total linear ordering ≺′ of [n] that
witnesses ρ ‖ π(v) we can get another total linear ordering of [n] that wit-
nesses ρ′ ‖ π(v) by swapping the positions of x and aj in ≺′. To show that
the map is injective, suppose we are given (ρ′, b, k) in its range. Then we
can recover j by looking at the index of x in the block B0 of ρ′ under the
ordering ≺0 in ρ′. Now order the blocks of ρ′ by their least element in the
standard ordering of [n] and let Bj be the block with index b in this ordering
of blocks. Finally recover ρ by swapping x with the element with index k in
Bj under the ordering ≺j of ρ′.

Putting this together, in the case of an ordering query we get

E
ρ‖π(v)

[C(v, ρ)] ≤ 1 · Pr
ρ‖π(v)

[x ∈ B0] + (d + 1) · Pr
ρ‖π(v)

[x /∈ B0]

≤ 1 +
(d + 1) · (q + 1) ·m

n− p− d
≤ 1 + n−1/10,

where the last inequality holds for large enough n0 because d is bounded by
a fixed polynomial function of |n|. This gives (6) as required.

Predecessor query. The query at v is of the type h(x)? for x ∈ S with
x = min(Cx). In order to bound C(v, ρ) for each fixed ρ we again distinguish

12

two cases: (a) x 6= min(Bx) and (b) x = min(Bx), where in both cases the
minimum in Bx is taken with respect to the linear ordering on Bx defined
in ρ. In case (a) we have C(v, ρ) ≤ 1 as only one child vi survives in
the sense of satisfying ρ ‖ π(vi), namely the child that corresponds to the
unique predecessor of x in Bx. In case (b) observe that in a standard oracle
compatible with ρ, the predecessor of x = min(Bx) (if one exists) must be
max(Bj) for some small block Bj distinct from Bx, where the maximum in
Bj is taken with respect to ≺j ; there is also the possibility that h(x) = x.
Hence there are at most q + 1 possibilities and we have C(v, ρ) ≤ q + 1.
To complete the argument it suffices to bound the probability that x =
min(Bx). In order to do this, let A be the set of ρ that are compatible with
π(v) and let C be the set of ρ that have x = min(Bx). Then:

Claim 2.

Pr
ρ‖π(v)

[x = min(Bx)] =
|A ∩ C|
|A|

≤ q + 1
m− d

.

Proof. We show this by constructing an injective map

G : (A ∩ C)× [m− d] → A× [q + 1]

as follows. We are given ρ ∈ A∩C and j ∈ [m− d] and we want to produce
ρ′ ∈ A and b ∈ [q + 1].

Order the small blocks of ρ by their least element in the standard ordering
of [n] and let Bi be the first small block, in this ordering of blocks, which
contains no element of S. Since |S| ≤ d < q such a block exists. Enumerate
Bi as b0, . . . , bm−1 using the ordering ≺i of ρ. Let ρ′ be ρ with the elements
of the h-chain Cx swapped with bj , . . . , bj+|Cx|−1. Since j < m − d and
|Cx| ≤ |S| ≤ d, this is well defined. Order the blocks in ρ′ by their least
element in the standard ordering of [n] and let b ∈ [q+1] be the index, in this
ordering of blocks, of the block to which x belonged before the swapping.
Let G map (ρ, j) to (ρ′, b).

Using the facts that x = min(Bx) = min(Cx) and Bi ∩ S = ∅, we argue
that ρ′ is compatible with π(v) as follows. From a total linear ordering ≺′

of [n] that witnesses ρ ‖ π(v) we construct a total linear ordering of [n] that
witnesses ρ′ ‖ π(v) in two stages. We first swap the positions of Cx and
bj , . . . , bj+|Cx|−1 in ≺′. This gives us compatibility with ρ′. We then remove
the block Bi from the place it occupies in ≺′ and re-insert it just before the
block Bx. This preserves compatibility with ρ′ and gives us compatibility
with π(v), since it puts the elements of Cx back into their correct position
in the ordering with respect to the other elements of S. Thus ρ′ ∈ A.

13

To show that the map is injective, suppose we are given (ρ′, b) in its
range. Order the blocks of ρ′ by their least element in the standard ordering
of [n]. Let R1 be the block in position b in this ordering of blocks and let
R2 be the block containing Cx. Then we can recover j by looking at the
place where Cx appears in R2, and we can recover ρ by swapping Cx from
R2 with the first |Cx| elements of R1.

Putting this together, in the case of a predecessor query we get

E
ρ‖π(v)

[C(v, ρ)] ≤ 1 · Pr
ρ‖π(v)

[x 6= min(Bx)] + (q + 1) · Pr
ρ‖π(v)

[x = min(Bx)]

≤ 1 +
(q + 1)2

m− d
≤ 1 + n−1/10,

where the last inequality holds for large enough n0 because d is bounded by a
fixed polynomial function of |n|. This gives (6) as required. This completes
the proof of Lemma 3.

5 A propositional version of our result

Let HOPn be the negation of HOP on the interval [n], written as a propo-
sitional formula with propositional variables for the ordering ≺ and for the
bits of the predecessor function h. Let f be any polynomial time func-
tion with oracles ≺ and h and let t = t(n) be any quasipolynomial term.
Let An,v be a propositional formula asserting that there is no u ∈ [t] such
that fn(u) = v. We may take both HOPn and An,v to be narrow CNFs,
that is, conjunctions of quasipolynomially many clauses, with each clause of
polylogarithmic width in n.

By a standard translation of first-order into propositional proofs (via
treelike Res(log) [11, 12], or see [2] for a translation via PLS problems), if it
were true that T1

2(α) + sWPHP(PV(α)) ` HOP then it would follow that

(i) HOPn ∧An,v has polylogarithmic width resolution refutations, for all
v ∈ [t2].

Observe that for each assignment to the propositional variables, the formula
An,v is true for almost all v ∈ [t2]. Hence, given any probability distribution
R of assignments, by an averaging argument there is some v ∈ [t2] for which
An,v is true with high probability. Hence in particular from (i) it would
follow that

14

(ii) for every distribution R, there is a narrow CNF A, which is true
with high probability, such that HOPn ∧A has polylogarithmic width
resolution refutations.

This is called a random narrow resolution refutation of HOPn over R in [2].
The proof of our main result, with minor modifications, also shows that (i)
is false. We are not able to say anything about (ii).

References

[1] S. Buss. Bounded arithmetic. Bibliopolis, 1986.

[2] S. Buss, L. Ko lodziejczyk, and N. Thapen, Fragments of approximate
counting. Manuscript, available at www.math.cas.cz/∼thapen/, 2012.

[3] S. Buss and J. Kraj́ıček, An application of Boolean complexity to separa-
tion problems in bounded arithmetic. Proceedings of the London Math-
ematical Society, 69:1-21, 1994.

[4] M. Chiari and J. Kraj́ıček, Witnessing functions in bounded arithmetic
and search problems. Journal of Symbolic Logic, 63(3):1095-1115, 1998.

[5] J. Hanika. Search problems and bounded arithmetic. Doctoral the-
sis, Charles University, available at eccc.hpi-web.de/static/books/
theses/, 2004.

[6] R. Impagliazzo and J. Kraj́ıček, A note on conservativity relations
among bounded arithmetic theories. Mathematical Logic Quarterly,
48(3):375-377, 2002.

[7] E. Jeřábek, The strength of sharply bounded induction. Mathematical
Logic Quarterly, 52(6):613-624, 2006.

[8] E. Jeřábek, On independence of variants of the weak pigeonhole prin-
ciple. Journal of Logic and Computation, 17(3):587-604, 2007.

[9] E. Jeřábek, Approximate counting by hashing in bounded arithmetic.
Journal of Symbolic Logic, 74(3):829-860, 2009.

[10] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic and Computa-
tional Complexity. Cambridge University Press, 1995.

[11] J. Kraj́ıček, On the weak pigeonhole principle. Fundamenta Mathemat-
icae, 170:123-140, 2001.

15

[12] M. Lauria, Short Res*(polylog) Refutations if and only if Narrow Res
Refutations. Manuscript, available at arXiv:1310.5714, 2011.

[13] N. Thapen, A model-theoretic characterization of the weak pigeonhole
principle. Annals of Pure and Applied Logic, 118:175-195, 2002.

16

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

