
An Improved Deterministic #SAT Algorithm for

Small De Morgan Formulas

Ruiwen Chen∗ Valentine Kabanets† Nitin Saurabh‡

November 4, 2013

Abstract

We give a deterministic #SAT algorithm for de Morgan formulas of size up to n2.63, which

runs in time 2n−nΩ(1)

. This improves upon the deterministic #SAT algorithm of [CKK+13],
which has similar running time but works only for formulas of size less than n2.5.

Our new algorithm is based on the shrinkage of de Morgan formulas under random restric-
tions, shown by Paterson and Zwick [PZ93]. We prove a concentrated and constructive version
of their shrinkage result. Namely, we give a deterministic polynomial-time algorithm that se-
lects variables in a given de Morgan formula so that, with high probability over the random
assignments to the chosen variables, the original formula shrinks in size, when simplified using
a deterministic polynomial-time formula-simplification algorithm.

Keywords: de Morgan formulas, random restrictions, shrinkage, SAT algorithms.

1 Introduction

Subbotovskaya [Sub61] introduced the method of random restrictions to prove that Parity requires
de Morgan formulas of size Ω(n1.5), where a de Morgan formula is a boolean formula over the basis
{∨,∧,¬}. She showed that a random restriction of all but a fraction p of the input variables yields
a new formula whose size is expected to reduce by at least the factor p1.5. That is, the shrinkage
exponent Γ for de Morgan formulas is at least 1.5, where the shrinkage exponent is defined as the
least upper bound on γ such that the expected formula size shrinks by the factor pγ under a random
restriction leaving p fraction of variables free.

Impagliazzo and Nisan [IN93] argued that Subbotovskaya’s bound Γ > 1.5 is not optimal,
by showing that Γ > 1.556. Paterson and Zwick [PZ93] improved upon [IN93], getting Γ >
(5−
√

3)/2 ≈ 1.63. Finally, H̊astad [H̊as98] proved the tight bound Γ = 2; combined with Andreev’s
construction [And87], this yields a function in P requiring de Morgan formulas of size Ω(n3−o(1)).

While the original motivation for the shrinkage results of [Sub61, IN93, PZ93, H̊as98] was to
prove formula lower bounds, the same results turn out to be useful also for designing nontrivial
SAT algorithms for small de Morgan formulas. Santhanam [San10] strengthened Subbotovskaya’s
expected shrinkage result to concentrated shrinkage, i.e., shrinkage with high probability, and used
this to get a deterministic #SAT algorithm (counting the number of satisfying assignments) for

∗School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; ruiwenc@sfu.ca
†School of Computing Science, Simon Fraser University, Burnaby, B.C., Canada; kabanets@cs.sfu.ca
‡Institute of Mathematical Sciences, Chennai, India; nitin@imsc.res.in

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 150 (2013)

linear-size de Morgan formulas, with the running time 2n−Ω(n). Santhanam’s algorithm determinis-
tically selects a most frequent variable in the current formula, and recurses on the two subformulas
obtained by restricting the chosen variable to 0 and 1; after n−Ω(n) recursive calls, almost all ob-
tained formulas depend on fewer than the actual number of free variables remaining, which leads to
nontrivial savings over the brute-force SAT algorithm for the original formula. A similar algorithm
works also for formulas of size less than n2.5, with the running time 2n−n

Ω(1)
[CKK+13].

Motivated by average-case formula lower bounds, Komargodksi et al. [KRT13] (building upon
[IMZ12]) showed a concentrated-shrinkage version of H̊astad’s optimal result for the shrinkage
exponent Γ = 2. Combined with the aforementioned algorithm of Chen et al. [CKK+13], this
yields a nontrivial randomized zero-error #SAT algorithm for de Morgan formulas of size n3−o(1),
running in time 2n−n

Ω(1)
.

Is there a deterministic #SAT algorithm with similar running time that works for formulas of
size close to n3? We make a step in that direction, by giving such an algorithm for formulas up to
size n2.63.

1.1 Our main results and techniques

Our main result is a deterministic #SAT algorithm for de Morgan formulas of size up to n2.63,
running in time 2n−n

Ω(1)
.

Theorem 1.1 (Main). There is a deterministic algorithm for counting the number of satisfying
assignments in a given de Morgan formula on n variables of size at most n2.63 which runs in time
at most 2n−n

δ
, for some constant 0 < δ < 1.

As in [San10, CKK+13], we use a deterministic algorithm to choose a next variable to re-
strict, and then recurse on the two resulting restrictions of this variable to 0 and 1. Instead of
Subbotovskaya-inspired selection procedure (choosing the most frequent variable), we would like to
use the weight function introduced by Paterson and Zwick [PZ93], which measures the potential sav-
ings for each one-variable restriction, and selects a variable with the biggest savings. Since [PZ93]
gives the shrinkage exponent Γ ≈ 1.63, rather than Subbotovskaya’s 1.5, this could potentially lead
to an improved #SAT algorithm for larger de Morgan formulas.

However, computing the savings, as defined by [PZ93], is NP-hard, as it requires computing
the size of a smallest logical formula equivalent to a given one-variable restriction. In fact, the
shrinkage result of [PZ93] is nonconstructive in the following sense: the expected shrinkage in
size is proved for the minimal logical formula computing the restricted boolean function, rather
than for the formula obtained from the original formula using efficiently computable simplification
rules. In contrast, the shrinkage results of [Sub61, H̊as98] are constructive: the restricted formula
is expected to shrink in size when simplified using a certain explicit set of logical rules, so that the
new, simplified formula is computable in polynomial time from the original restricted formula.

While the constructiveness of shrinkage is unimportant for proving formula lower bounds, it is
crucial for designing shrinkage-based #SAT algorithms for de Morgan formulas, such as those in
[San10, CKK+13, KRT13]. Our main technical contribution is a proof of the constructive version
of the result in [PZ93]: we give deterministic polynomial-time algorithms for formula simplification
and extend the analysis of [PZ93] to show expected shrinkage of formulas with respect to this
efficiently computable simplification procedure. The same simplification procedure allows us to
choose, in deterministic polynomial-time, which variable should be restricted next. The merit
of deterministic variable selection and concentrated and constructive shrinkage, for a shrinkage

2

exponent Γ, is that they yield a deterministic satisfiability algorithm for de Morgan formulas up to
size nΓ+1−o(1), using an approach of [CKK+13].

Namely, once we have this constructive shrinkage result, based on restricting one variable at a
time, we apply the martingale-based analysis of [KR13, CKK+13] to derive a concentrated version
of constructive shrinkage, showing that almost all random settings of the selected variables yield
restricted formulas of reduced size, where the restricted formulas are simplified by our efficient
procedure. The shrinkage exponent Γ = (5 −

√
3)/2 ≈ 1.63 is the same as in [PZ93]. Using

[CKK+13], we then get a deterministic #SAT algorithm, running in time 2n−n
Ω(1)

, that works for
de Morgan formulas of size up to nΓ+1−o(1) ≈ n2.63.

1.2 Related work

The deep interplay between lower bounds and satisfiability algorithms has been witnessed in several
circuit models. For example, Paturi, Pudlak and Zane [PPZ99] give a randomized algorithm for
k-SAT running in time O(n2s2n−n/k), where n is the number of variables and s is the formula
size; they also show that PARITY requires depth-3 circuits of size Ω(n1/42

√
n). More generally,

Williams [Wil10] shows that a “better-than-trivial” algorithm for Circuit Satisfiability, for a class
C of circuits, implies a super-polynomial lower bounds against the circuit class C for some language
in NEXP; using this approach, Williams [Wil11] obtains a superpolynomial lower bound against
ACC0 circuits1 by designing a nontrivial SAT algorithm for ACC0 circuits.

Following [San10], Seto and Tamaki [ST12] get a nontrivial #SAT algorithm for general linear-
size formulas (over an arbitrary basis). Impagliazzo et al. [IMP12] use a generalization of H̊astad’s
Switching Lemma [H̊as86], an analogue of shrinkage for AC0 circuits2, to give a nontrivial random-

ized zero-error #SAT algorithm for depth-d AC0 circuits on n inputs of size up to 2n
1/(d−1)

. Beame
et al. [BIS12] give a nontrivial deterministic #SAT algorithm for AC0 circuits, however, only for
circuits of much smaller size than that of [IMP12].

Recently, the method of (pseudo) random restrictions has also been used to get pseudoran-
dom generators (yielding additive-approximation #SAT algorithms) for small de Morgan formu-
las [IMZ12] and AC0 circuits [TX13].

Remainder of the paper. We give basic definitions in Section 2. Section 3 contains our efficient
formula-simplification procedures. We use these procedures in Section 4 to prove a constructive and
concentrated shrinkage result for de Morgan formulas. This is then used in Section 5 to describe
and analyze our #SAT algorithm from Theorem 1.1. Section 6 contains some open questions.

2 Preliminaries

A (de Morgan) formula is a binary tree where each leaf is labeled by a literal (a variable x or its
negation x) or a constant (0 or 1), and each internal node is labeled by ∧ or ∨. A formula naturally
computes a boolean function on its input variables.

Let F be a formula with no constant leaves. We define the size of F , denoted by L(F), as
number of leaves in F . Following [PZ93], we define a twig to be a subtree with exactly two leaves.
Let T (F) be the number of twigs in F . We define the weight of F as w(F) = L(F) + α · T (F),

1constant-depth, unbounded fanin circuits, using AND, OR, NOT, and (MOD m) gates, for any integer m
2constant-depth, unbounded fanin circuits, using AND, OR, and NOT gates

3

where α =
√

3 − 1 ≈ 0.732. For convenience, if F is a constant, we define L(F) = w(F) = 0. We
say F is trivial if it is a constant or a literal. Note that we define the size and weight only for
formulas which are either constants or with no constant leaves; this is without loss of generality
since constants can always be eliminated using a simplification procedure below.

It is easy to see that L(F) +α 6 w(F) 6 L(F)(1 +α/2), since the number of twigs in a formula
is at least one and at most half of the number of leaves.

We denote by F |x=1 the formula obtained from F by substituting each appearance of x by 1
and x by 0; F |x=0 is similar. We say a formula ∨-depends (∧-depends) on a literal y if there is a
path from the root to a leaf labeled by y such that every internal node on the path (including the
root) is labeled by ∨ (by ∧).

3 Formula simplification procedures

3.1 Basic simplification

We define a procedure Simplify to eliminate constants, redundant literals and redundant twigs in a
formula. The procedure includes the standard constant simplification rules and a natural extension
of the one-variable simplification rules from [H̊as98].

Simplify(F):

If F is trivial, done. Otherwise, apply the following transformations whenever possible.
We denote by y a literal and G a subformula.

1. Constant elimination.

(a) If a subformula is of the form 0 ∧G, replace it by 0.

(b) If a subformula is of the form 1 ∨G, replace it by 1.

(c) If a subformula is of the form 1 ∧G or 0 ∨G, replace it by G.

2. One-variable simplification.

(a) If a subformula is of the form y ∨ G and y or y appears in G, replace the
subformula by y ∨G|y=0.

(b) If a subformula is of the form y ∧ G and y or y appears in G, replace the
subformula by y ∧G|y=1.

(c) If a subformula G is of the form G1 ∨ G2 for non-trivial G1 and G2, and G
∨-depends on a literal y, then replace G by y ∨G|y=0.

(d) If a subformula G is of the form G1 ∧ G2 for non-trivial G1 and G2, and G
∧-depends on a literal y, then replace G by y ∧G|y=1.

We call a formula simplified if it is invariant under the procedure Simplify. Note that a
simplified formula may not be a smallest logically equivalent formula; for example, (x∧ y)∨ (x∧ y)
is already simplified but it is logically equivalent to y.

The rules 1(a)–(c) and 2(a)–(b) are from [H̊as98, San10]. Rules 2(c)–(d) are a natural general-
ization of the one-variable rule of [H̊as98], which allow us to eliminate more redundant literals and
reduce the formula weight. For example, the formula (x∨ y)∨ (x∧ y) simplifies to x∨ y under our
rules but not the rules in [H̊as98, San10]. For another example, the formula (x ∨ y) ∨ (z ∧w) with
weight 4 + 2α simplifies to x ∨ (y ∨ (z ∧ w)) with weight 4 + α.

4

The procedure Simplify reduces the formula size and does not increase the number of twigs.

Lemma 3.1. Let F be a formula with no constant leaves. Suppose we substitute k leaves of F
by constants, and run Simplify which produces a new formula F ′. Then L(F ′) 6 L(F) − k and
T (F ′) 6 T (F).

Proof. If F is a literal, this is obvious. Suppose that F is not trivial.
We first consider constant-elimination rules. Each replacement removes at least one leaf, so the

formula size reduces by at least k. For rules 1(a)–(b), at most one new twig may be formed, but
at least one old twig is removed. For rule 1(c), if G is not a literal, the twigs will not change; if G
is a literal, one old twig is removed and at most one new twig is formed.

Now consider one-variable simplification rules. For rules 2(a)–(b), new constants are introduced,
which will be eliminated later; the number of twigs does not increase by constant elimination. For
rules 2(c)–(d), the formula size does not increase; if G|y=0 is a literal, then a new twig is formed
but at least one old twig will be removed; otherwise, the twigs will not change.

Lemma 3.2. Simplify runs in polynomial time.

Proof. Simplify checks if any simplification rule is applicable, and terminates when none of the
rules are applicable. At each round, it takes polynomial time to check whether a rule applies and,
if so, to transform the formula by the rule. Next we bound the number of rounds.

For rules 1(a)–(c), at least one leaf is eliminated. For rules 2(a)–(b), at least one constant leaf is
introduced and will then be eliminated. So, the number of rounds where one of 1(a)–(c) or 2(a)–(b)
is active is at most 2 ·L(F). Next we bound the number of rounds where one of 2(c)–(d) is active.

Call a nontrivial subformula G without constant leaves stable if none of the rules 2(a)–(d) are
applicable to G; that is, G is either y ∨H or y ∧H where y or y does not appear in H, or G does
not ∨-depend or ∧-depend on any literal. For a non-trivial formula F without constant leaves, we
define q(F) =

∑
G L(G) where G ranges over all subformulas of F which are unstable.

Consider rules 2(c)–(d). When we replace an unstable subformula G by y ∨G|y=0 or y ∧G|y=1

and eliminate the constants, the quantity q(F) reduces by at least one, since either all of G is
eliminated or the new unstable formula is smaller than G. Since q(F) 6 poly(L(F)), the number
of rounds where one of 2(c)–(d) is active is at most poly(L(F)).

3.2 Simplification under all one-variable restrictions

Here we consider how a formula simplifies when one of its variables is restricted. Let F be a formula.
We define a recursive procedure RestrictSimplify which produces a collection of formulas for F
under all one-variable restrictions. We denote the output of the procedure by {Fy}, where y ranges
over all literals. Note that each Fy is logically equivalent to F |y=1.

The idea behind the transformations in RestrictSimplify is the following. When a formula
simplifies to a literal under some one-variable restriction, then the formula must be logically equiv-
alent to some special form. For example, if we know that F |x=1 simplifies to a literal y, then F
itself must be logically equivalent to (x ∧ y) ∨ (x ∧ G) for some G. This logically equivalent form
may help to simplify F under other one-variable restrictions.

RestrictSimplify(F):

If F is a constant c, then let Fy := c for all y. If F is a literal, then let Fy := F |y=1 for
all y.

5

If F is G∨H or G∧H, recursively call RestrictSimplify to compute {Gy} and {Hy},
and initialize each Fy := Simplify(Gy ∨Hy) or Fy := Simplify(Gy ∧Hy), respectively.
Then apply the following transformations whenever possible.

Suppose there are two literals x and y over distinct variables such that Fx = y.

1. If Fx = y, then let Fw := y|w=1 for every literal w.

2. If Fx = z for some literal z /∈ {x, x, y}, then let Fw := Simplify((x∧y)∨(x∧z)|w=1)
for every literal w.

3. (a) If neither x nor x appears in Fy, then let Fy := 1; (b) otherwise, let Fy :=
Simplify(x ∨ (Fy|x=0)).

4. (a) If neither x nor x appears in Fy, then let Fy := 0; (b) otherwise, let Fy :=
Simplify(x ∧ (Fy|x=0)).

5. For z /∈ {x, x, y, y}, if neither x nor x appears in Fz, then let Fz := y.

Correctness of RestrictSimplify. The above transformations are based on logical implications.
In case 1, Fx = Fx = y implies that F ≡ y. In case 2, Fx = y and Fx = z implies that
F ≡ (x∧ y)∨ (x∧ z). Note that in this case z might be y. In case 3, we have Fy|x=1 ≡ Fx|y=1 = 1;
if neither x nor x appears in Fy then Fy = Fy|x=1 ≡ 1, otherwise Fy ≡ x∨ (Fy|x=0). Case 4 is dual
to case 3. In case 5, if neither x nor x appears in Fz then Fz = Fz|x=1 ≡ Fx|z=1 = y.

Remark 3.3. It is possible to introduce more simplifications rules in RestrictSimplify, e.g.,
when Fx is a constant for some literal x, or when, in case 5, x or x appears in Fz

3. However, such
simplifications are not needed for our proof of constructive shrinkage.

Next we argue the efficiency of RestrictSimplify.

Lemma 3.4. RestrictSimplify runs in polynomial time.

Proof. The base case is obvious. For induction, suppose F = G ∨ H, where F is on n variables.
The procedure makes two recursive calls on G and H, and then simplifies the collection {Fy}.
The transformations on the collection {Fy}, except case 3(b) and 4(b), reduce the formulas to the
smallest possible size. In case 3(b) (similarly 4(b)), Fy becomes constant 1, or literal x, or non-
trivial; this will not trigger another transformation. Thus the transformations on the collection
{Fy} run in time poly(n,L(F)).

We conclude that the time spent at each node of the formula F is poly(n,L(F)), and so the
overall time is L(F) · poly(n,L(F)) = poly(n,L(F)), as required.

We will need the following basic property of the procedure RestrictSimplify.

Claim 3.5. For F = G ∨ H or F = G ∧ H, we have w(Fy) 6 w(Gy) + w(Hy), for all literals y
except those where Gy and Hy are literals over distinct variables.

Proof. Let F = G∨H; the other case is identical. We initialize Fy := Simplify(Gy∨Hy), and so the
required inequality holds initially. All transformations, except 3(b) and 4(b), produce the smallest
logically equivalent formula; rules 3(b) and 4(b) do not increase the weight of the formula.

3then we could let Fz := (x ∧ y) ∨ (x ∧ Simplify(Fz|x=0))

6

The solo structure of a formula F is the relation on literals defined by x ⇒ y if Fx = y, where
the collection of formulas {Fx} is produced by the procedure RestrictSimplify. The following
lemma gives all possible solo structures; it resembles the characterization of solo structures for
boolean functions from [PZ93].

Lemma 3.6. The solo structure of a non-trivial formula F must be in one of the following forms:

(i) the empty relation,

(ii) there exists y such that for all literals x /∈ {y, y} we have x⇒ y in the relation,

(iii) {x1 ⇒ y, . . . , xk ⇒ y} for some k > 1 and xi’s are over distinct variables,

(iv) {x⇒ y, y ⇒ x, x⇒ y, y ⇒ x},

(v) {x⇒ y, x⇒ z},

(vi) {x⇒ y, y ⇒ x},

(vii) {x⇒ y, y ⇒ x}.

Proof. If none of Fx is a literal, then this is case (i). Otherwise, suppose that Fx = y for some
literals x, y. If x is the only literal such that Fx is a literal, then this is case (iii) with k = 1. Next
we assume there is another literal x′ such that Fx′ = y′ for some literal y′. We consider different
possibilities of x′ and the implications by the transformations in RestrictSimplify.

If x′ = x, consider different cases of y′. If y′ = y, then by the transformation 1 in Restrict-
Simplify we have Fw = y for all w /∈ {y, y} and this gives case (ii). If y′ /∈ {x, x, y}, then by the
transformation 2 in RestrictSimplify we have Fw := Simplify((x ∧ y) ∨ (x ∧ y′)|w=1); this gives
either case (iv) if y′ = y or case (v) if y′ /∈ {x, x, y, y}.

If x′ = y, then we have both Fx = y and Fy = y′. By the transformation 3(a)-(b) in Restrict-
Simplify, the only possibility for y′ is that y′ = x. This gives either case (iv) if Fx = y or case (vi)
otherwise.

If x′ = y, then we have both Fx = y and Fy = y′. By the transformation 4(a)-(b) in Restrict-
Simplify, the only possibility for y′ is that y′ = x. This gives either case (iv) if Fx = y or case
(vii) otherwise.

If x′ /∈ {x, x, y, y}, then by the transformation 5 in RestrictSimplify, the only possibility for
y′ is y′ = y. Note that y′ cannot be x or x since y′|x=1 = Fx′ |x=1 ≡ Fx|x′=1 = y|x′=1 = y. This
gives case (iii) with k > 2.

4 Constructive and concentrated shrinkage

Here we prove a constructive and concentrated version of the shrinkage result from [PZ93]. For
each literal y of a given formula F , we define the savings (reduction in weight of F) when we replace
F by the new formula Fy, as computed by the procedure RestrictSimplify. We first prove that
the lower bound on the average savings (over all variables of F) shown by [PZ93] continues to hold
with respect to our efficiently computable one-variable restrictions Fy.

7

4.1 Average savings under one-variable restrictions

Assume a formula F is simplified; otherwise, let F := Simplify(F). For a formula F and a
literal y, we define σy(F) = w(F) − w(Fy), where Fy is produced by RestrictSimplify. Let
σ(F) =

∑
x(σx(F) + σx(F)), where the summation ranges over all variables of F . The quantity

σ(F) measures the total savings under all one-variable restrictions.

Theorem 4.1. For any formula F , it holds that

σ(F)

w(F)
> 2γ,

where γ = (5−
√

3)/2 ≈ 1.63.

The proof is by induction, as in [PZ93]. The difficulty here is that we need to apply the “syntactic
simplifications” defined by the procedure RestrictSimplify, instead of using the smallest logically
equivalent formulas as in [PZ93].

For the base case, we analyze all possible formulas of size at most 4.

Lemma 4.2. For any simplified formula F of size at most 4, it holds that σ(F)/w(F) > 2γ.

Proof. Table 1 lists all simplified formulas (or their duals) of size at most 4, together with the
savings. The cases labeled by * were not consider in [PZ93] since they are not the smallest logically
equivalent formulas.

Table 1: Savings for all formulas with 2 6 L(F) 6 4

Formula Weight w(F) Savings σ(F) σ(F)/w(F)

x ∨ y 2 + α 6 + 4α = 2γ
x ∨ (y ∧ z) 3 + α 10 + 3α = 2γ
x ∨ (y ∨ z) 3 + α 12 + 3α > 2γ

x ∨ (y ∧ (z ∧ w)) 4 + α 17 + 4α > 2γ
x ∨ (y ∧ (z ∨ w)) 4 + α 15 + 2α > 2γ
x ∨ (y ∨ (z ∧ w)) 4 + α 16 + 2α > 2γ
x ∨ (y ∨ (z ∨ w)) 4 + α 20 + 4α > 2γ
(x ∧ y) ∨ (z ∧ w) 4 + 2α 12 + 8α = 2γ

* (x ∧ y) ∨ (x ∧ y) 4 + 2α 14 + 8α > 2γ
* (x ∧ y) ∨ (x ∧ y) 4 + 2α 14 + 8α > 2γ

(x ∧ y) ∨ (x ∧ y) 4 + 2α 12 + 8α = 2γ
* (x ∧ y) ∨ (x ∧ z) 4 + 2α 16 + 9α > 2γ

(x ∧ y) ∨ (x ∧ z) 4 + 2α 14 + 8α > 2γ

For formulas of size larger than 4, we consider whether one child of the root is trivial. Without
loss of generality, we assume the root is labeled by ∨; the other case is dual.

Lemma 4.3. If F is a simplified formula of the form x ∨G for some literal x and subformula G,
and L(F) > 5, then σ(F)/w(F) > 2γ.

8

Proof. The proof is similar to [PZ93]. Without loss of generality, assume x is a variable. Since F
is simplified, we get that x does not appear in G. Let k be the number of literals y such that Gy is
a literal. We will show that the k twigs produced by restricting these literals can be compensated.
For k 6 4, by the induction hypothesis on G and the fact that w(F) = 1 + w(G), we have

σ(F) = σx(F) + σx(F) + σ(G)− kα
> 1 + w(F) + 2γ · (w(F)− 1)− 4α

= 2γ · w(F) + w(F)− (4α+ 2γ − 1)

> 2γ · w(F)

since w(F) > L(F) + α > 5.7 > (4α+ 2γ − 1) ≈ 5.2.
If k > 5, then

σ(F) > 1 + w(F) + 5(w(F)− (2 + α))

> 6w(F)− (9 + 5α)

> 2γ · w(F)

since w(F) > 5.7 > (9 + 5α)/(6− 2γ) ≈ 4.7.

Now we consider formulas where both children of the root are non-trivial.

Lemma 4.4. Suppose F is of the form G ∨ H with L(F) > 5 and G,H are non-trivial. Then
σ(F)/w(F) > 2γ.

Intuitively, we need to take care of the cases where both G and H simplify to literals on distinct
variables (thereby forming a new twig); otherwise the result holds by the induction hypothesis.
Suppose Gx ∨Hx is a twig for some literal x. Then σx(F) = σx(G) + σx(H) − α, i.e., we get the
savings from restricting x in G and H, but then need to pay the penalty α for the twig created.
We will argue that there are “extra savings” from restricting other literals in the formula F that
can be used to compensate for the penalty α at x.

Proof. We first prove that, for a literal x, if Gx and Hx are not literals over distinct variables,
then σx(F) > σx(G) + σx(H). Since w(F) = w(G) + w(H), the claim follows from w(Fx) 6
w(Gx) + w(Hx), which holds by Claim 3.5.

Let k be the number of different literals x such that Gx ∨ Hx is a twig (i.e., Gx and Hx are
literals over distinct variables). Thus there are k twigs created as we consider all possible one-
variable restrictions. We will argue that, for different cases of k, the weight kα of these new twigs
can be compensated from savings in other restrictions.

Case k = 0: We have σy(F) > σy(G) + σy(H) for all literals y, and thus σ(F) > σ(G) + σ(H).
The result follows directly by the induction hypothesis on G and H.

Case 1 6 k 6 2: Let x be such that Gx = y and Hx = z. Without loss of generality, assume
x, y, z are distinct variables. Consider F under the restrictions y = 1 and z = 1. We will argue
that the extra savings from applying Simplify on Gy ∨Hy and Gz ∨Hz are at least 2 > kα.

Since Gx = y, transformation 3(a)–(b) in RestrictSimplify guarantee that either Gy is con-
stant 1 or it ∨-depends on x. Similarly either Hz is constant 1 or it ∨-depends on x. Since

9

Hy|x=1 ≡ Hx|y=1 = z, we get that Hy is not a constant (it depends on z), and if it is a literal it
must be z. Similarly Gz is not a constant (it depends on y), and if it is a literal it must be y.

We first consider the case that either Gy or Hz is constant 1. If Gy = Hz = 1, then there are
at least 2 savings from simplifying Gy ∨Hy and Gz ∨Hz by eliminating constants. If Gy = 1 and
Hy is not a literal, then there are at least 2 savings from simplifying Gy ∨Hy. If Gy = 1, Hy = z
and Hz 6= 1, we first have one saving from simplifying Gy ∨Hy; then since Hy = z and Hz 6= 1, by
the transformation 3(b) in RestrictSimplify Hz ∨-depends on y, and since Gz depends on y, we
get another saving from simplifying Gz ∨Hz. The cases where Hz = 1 are similar.

Next we consider that both Gy and Hz ∨-depends on x. In the following we analyze different
possibilities for Hy and Gz.

• If x appears in both Hy and Gz, then there are at least 2 savings from simplifying Gy ∨Hy

and Gz ∨Hz by eliminating x.

• If x appears in Hy but not Gz, then by the transformation 5 in RestrictSimplify we have
Gz = y, and thus Gy ∨-depends on both x and z. Then since Hy depends on both x and z,
we have two savings from simplifying Gy ∨Hy by eliminating both x and z from Hy.

• If x appears in Gz but not Hy, this is similar to the previous case.

• If x appears in neither Hy nor Gz, then by the transformation 5 in RestrictSimplify we
have Gz = y and Hy = z. Thus Gy ∨-depends on both x and z, and Hz ∨-depends on both
x and y. Therefore we have at least 2 savings, one from simplifying Gy ∨Hy by eliminating
z, and another from simplifying Gz ∨Hz by eliminating y.

Case k > 3: By Lemma 3.6, the solo structure of G and H must be one of cases (ii), (iii), or (iv).
First assume that either G or H is in case (ii) of Lemma 3.6. Without loss of generality, suppose

G is in case (ii); then G is logically equivalent to a literal y but itself is non-trivial, which implies
that w(G) > 4 + α. (The smallest non-trivial, simplified formula equivalent to a literal has size at
least 4). We have that w(Gz) = 1 for at least k literals z /∈ {y, y}, and w(Gy) = w(Gy) = 0. Then
by the fact that w(F) = w(G) + w(H) and the induction hypothesis on H, we have

σ(F) > k(w(G)− 1) + 2w(G) + σ(H)− kα
> 2γ · w(F) + (2 + k − 2γ)w(G)− k(1 + α)

> 2γ · w(F).

If both G and H are in case (iv), then, under each restriction, they reduce to literals on the
same variable. Since in case (iii) all xi’s are over distinct variables, it is not possible that one of G
and H is in case (iv) while the other is in case (iii). Thus, we now only need to analyze if both G
and H are in case (iii).

Without loss of generality, suppose that x1, . . . , xk, y, z are distinct variables such that Gxi = y
and Hxi = z for i = 1, . . . , k. By the transformation 3 in RestrictSimplify, either Gy = 1 or Gy
∨-depends on x1, . . . , xk; and Hz is similar.

If every xi appears in Hy, then there are k savings from simplifying Gy ∨ Hy by eliminating
xi’s. Similarly, if every xi appears in Gz, there are also k savings from simplifying Gz ∨Hz.

10

If some xi does not appear in Hy and some xi does not appear in Gz. By the transformation 5
in RestrictSimplify, we have Hy = z and Gz = y. Therefore,

σxi(F) = w(F)− (2 + α), i = 1, . . . , k

σy(F) > 1 + (w(H)− 1) = w(H)

σz(F) > 1 + (w(G)− 1) = w(G)∑
v

σv(F) > L(F) > w(F)/(1 + α/2), v ranges over all variables of F

Summing the above cases together yields σ(F) > 2γ · w(F).

Proof of Theorem 4.1. The proof is by combining the base case in Lemma 4.2 and the two inductive
cases in Lemma 4.3 and Lemma 4.4.

4.2 Concentrated shrinkage

Theorem 4.1 characterizes the average shrinkage of the weight of a formula when a randomly
chosen literal is restricted. Given a formula F on n variables, if we randomly pick one variable and
randomly assign it 0 or 1, the weight of the restricted formula (produced by RestrictSimplify)
reduces by at least γ · w(F)/n on average.

The procedure RestrictSimplify also allows us to deterministically pick the variable with the
best savings in polynomial time. That is, given a formula F , we run RestrictSimplify to produce
a collection of formulas {Fy}, and then pick a variable x such that σx(F) + σx(F) is maximized.
We show that randomly restricting such a variable significantly reduces the expected weight of the
simplified formula.

Lemma 4.5. Let F be a formula on n variables. Let x be the variable such that σx(F) + σx(F) is
maximized. Let F ′ be Fx or Fx with equal probability. Then we have w(F ′) 6 w(F)− 1 and

E[w(F ′)] 6

(
1− 1

n

)γ
· w(F).

Proof. Restricting a variable eliminates at least one leaf; therefore w(F ′) 6 w(F)− 1.
By Theorem 4.1, n(σx(F) + σx(F)) > σ(F) > 2γ · w(F). Then we have

E[w(F ′)] = w(F)− 1

2
(σx(F) + σx(F)) 6

(
1− γ

n

)
· w(F) 6

(
1− 1

n

)γ
· w(F),

as required.

Next we use the martingale-based analysis from [KR13, CKK+13] to derive a “high-probability
shrinkage” result from Lemma 4.5. Recall that a sequence of random variables X0, X1, X2, . . . , Xn

is a supermartingale with respect to a sequence of random variables R1, R2, . . . , Rn if E[Xi |
Ri−1, . . . , R1] 6 Xi−1, for 1 6 i 6 n. We need the following version of Azuma’s inequality.

Lemma 4.6 ([CKK+13]). Let {Xi}ni=0 be a supermartingale with respect to {Ri}ni=1. Let Yi =
Xi −Xi−1. If, for every 1 6 i 6 n, the random variable Yi (conditioned on Ri−1, . . . , R1) assumes
two values with equal probability, and there exists a constant ci > 0 such that Yi 6 ci, then, for any
λ, we have

Pr[Xn −X0 > λ] 6 exp

(
− λ2

2
∑n

i=1 c
2
i

)
.

11

Let F0 = F be a formula on n variables. For 1 6 i 6 n, let Fi be the (random) formula obtained
from Fi−1 by assigning the variable with the best savings with a random value Ri ∈ {0, 1}. We
define random variables Wi := w(Fi), wi := logWi and

Zi := wi − wi−1 − γ log

(
1− 1

n− i+ 1

)
.

We have the following.

Lemma 4.7. Let X0 = 0 and Xi =
∑i

j=1 Zj. Then the sequence {Xi} is a supermartingale with

respect to {Ri}, and, for each Zi, we have Zi 6 ci := −γ log
(

1− 1
n−i+1

)
.

Proof. Since wi 6 wi−1, we have Zi 6 ci. By Jensen’s inequality and Lemma 4.5, we get

E[wi | Ri−1, . . . , R1] 6 log E[Wi | Ri−1, . . . , R1]

6 log

(
Wi−1

(
1− 1

n− i+ 1

)γ)
= wi−1 + γ log

(
1− 1

n− i+ 1

)
.

This implies E[Zi | Ri−1, . . . , R1] 6 0 and so {Xi} is a supermartingale.

Now we can prove that the weight of a given de Morgan formula reduces with high probability
under the restriction process defined above.

Lemma 4.8 (Concentrated weight shrinkage). Let F be any given de Morgan formula on n vari-
ables. For any k > 10, we have

Pr

[
w(Fn−k) > 2 · w(F) ·

(
k

n

)γ]
< 2−k/10.

Proof. Let λ be arbitrary, and let ci’s be as defined in Lemma 4.7. By Lemmas 4.7 and 4.6, we get

Pr

 i∑
j=1

Zj > λ

 6 exp

(
− λ2

2
∑i

j=1 c
2
j

)
.

For the left-hand side, we get by the definition of Zj ’s that
∑i

j=1 Zj = wi −w0 − γ log n−i
n . Hence,

Pr

 i∑
j=1

Zj > λ

 = Pr

[
wi − w0 − γ log

(
n− i
n

)
> λ

]
= Pr

[
Wi > eλW0

(
n− i
n

)γ]
.

For each 1 6 j 6 i, we have cj 6 γ
n−j , using the inequality log(1 + x) 6 x. Thus,

∑i
j=1 c

2
j is at

most

γ2
i∑

j=1

(
1

n− j

)2

6 γ2
i∑

j=1

(
1

n− j − 1
− 1

n− j

)
= γ2 ·

(
1

n− i− 1
− 1

n− 1

)
6 γ2 · 1

n− i− 1
.

12

Taking i = n− k, we get

Pr

[
Wn−k > eλW0

(
k

n

)γ]
6 exp

(
− λ2

2
∑n−k

j=1 c
2
j

)
6 e−λ

2(k−1)/2γ2
.

Choosing λ = ln 2 concludes the proof.

Finally, by w(F)/(1 + α/2) 6 L(F) 6 w(F) for all F , we get from Lemma 4.8 the desired
concentrated constructive shrinkage with respect to the restriction process defined above.

Corollary 4.9 (Concentrated constructive shrinkage). Let F be an arbitrary de Morgan formula.
There exist constants c, d > 1 such that, for any k > 10,

Pr

[
L(Fn−k) > c · L(F) ·

(
k

n

)γ]
< 2−k/d.

5 #SAT Algorithm for n2.63-size de Morgan Formulas

Here we prove our main result.

Theorem 5.1. There is a deterministic algorithm for counting the number of satisfying assignments
in a given formula on n variables of size at most n2.63 which runs in time t(n) 6 2n−n

δ
, for some

constant 0 < δ < 1.

Proof. Suppose we have a formula F on n variables of size n1+γ−ε for a small constant ε > 0. Let
k = nα such that α < ε/γ. We build a restriction decision tree with 2n−k branches as follows:

Starting with F at the root, run RestrictSimplify to produce a collection {Fy}, pick
the variable x which will make the largest reduction in the weight of the current formula.
Make the two formulas Fx and Fx the children of the current node. Continue recursively
on Fx and Fx until get a full binary tree of depth exactly n− k.

Note that constructing this decision tree takes time 2n−kpoly(n), since the procedure Restrict-
Simplify runs in polynomial time. By Corollary 4.9, all but at most 2−k/d fraction of the leaves
have the formula size L(Fn−k) < c · L(F)

(
k
n

)γ
= cn1−ε+γα.

To solve #SAT for all “big” formulas (those that haven’t shrunk), we use the brute-force
enumeration over all possible assignments to the k free variables left. The running time is at most
2n−k · 2−k/d · 2k · poly(n) 6 2n−k/d · poly(n).

For “small” formulas (those that shrunk to the size less than cn1−ε+γα), we use memoization.
First, we enumerate all formulas of such size, and compute and store the number of satisfying
assignments for each of them. Then, as we go over the leaves of the decision tree that correspond
to small formulas, we simply look up the stored answers for these formulas.

There are at most 2O(n1−ε+γα)poly(n) such formulas, and counting the satisfying assignments
for each one (with k inputs) takes time 2kpoly(n). Including pre-processing, computing #SAT for
all small formulas takes time at most 2n−k · poly(n) + 2O(n1−ε+γα) · 2k · poly(n) 6 2n−k · poly(n).

The overall running time of our #SAT algorithm is bounded by 2n−n
δ

for some δ > 0.

13

6 Open questions

The main open question is whether there is a nontrivial deterministic #SAT algorithm for de
Morgan formulas of size up to n3−o(1). Is it possible to derandomize the randomized zero-error
algorithm of [KRT13] that is based on H̊astad’s shrinkage result [H̊as98]?

Is it possible to improve the analysis of the shrinkage result of [PZ93] (by considering more
general patterns than just twigs), getting a better shrinkage exponent? If so, this could lead to a
deterministic #SAT algorithm for larger de Morgan formulas.

References

[And87] A.E. Andreev. On a method of obtaining more than quadratic effective lower bounds for
the complexity of π-schemes. Vestnik Moskovskogo Universiteta. Matematika, 42(1):70–
73, 1987. English translation in Moscow University Mathematics Bulletin.

[BIS12] P. Beame, R. Impagliazzo, and S. Srinivasan. Approximating AC0 by small height
decision trees and a deterministic algorithm for #AC0SAT. In Proceedings of the Twenty-
Seventh Annual IEEE Conference on Computational Complexity, pages 117–125, 2012.

[CKK+13] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining cir-
cuit lower bound proofs for meta-algorithms. Electronic Colloquium on Computational
Complexity, 20(57), 2013.

[H̊as86] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[H̊as98] J. H̊astad. The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on
Computing, 27:48–64, 1998.

[IMP12] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for AC0. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 961–972, 2012.

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In
Proceedings of the Fifty-Third Annual IEEE Symposium on Foundations of Computer
Science, pages 111–119, 2012.

[IN93] R. Impagliazzo and N. Nisan. The effect of random restrictions on formula size. Random
Structures and Algorithms, 4(2):121–134, 1993.

[KR13] I. Komargodski and R. Raz. Average-case lower bounds for formula size. In Proceedings
of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pages 171–180,
2013.

[KRT13] I. Komargodski, R. Raz, and A. Tal. Improved average-case lower bounds for DeMorgan
formula size. Electronic Colloquium on Computational Complexity, 20(58), 2013.

[PPZ99] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago Journal of
Theoretical Computer Science, 1999.

14

[PZ93] M. Paterson and U. Zwick. Shrinkage of de Morgan formulae under restriction. Random
Structures and Algorithms, 4(2):135–150, 1993.

[San10] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In Proceedings of the Fifty-First Annual IEEE Symposium on Foundations
of Computer Science, pages 183–192, 2010.

[ST12] K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness for for-
mulas over the full binary basis. In Proceedings of the Twenty-Seventh Annual IEEE
Conference on Computational Complexity, pages 107–116, 2012.

[Sub61] B.A. Subbotovskaya. Realizations of linear function by formulas using ∨, &, −. Doklady
Akademii Nauk SSSR, 136(3):553–555, 1961. English translation in Soviet Mathematics
Doklady.

[TX13] L. Trevisan and T. Xue. A derandomized switching lemma and an improved deran-
domization of AC0. In Proceedings of the Twenty-Eighth Annual IEEE Conference on
Computational Complexity, pages 242–247, 2013.

[Wil10] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing,
pages 231–240, 2010.

[Wil11] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the Twenty-Sixth
Annual IEEE Conference on Computational Complexity, pages 115–125, 2011.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

