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Abstract

We establish a generic form of hardness amplification for the approximability of constant-
depth Boolean circuits by polynomials. Specifically, we show that if a Boolean circuit cannot
be pointwise approximated by low-degree polynomials to within constant error in a certain one-
sided sense, then an OR of disjoint copies of that circuit cannot be pointwise approximated even
with very high error. As our main application, we show that for every sequence of degrees d(n),
there is an explicit depth-three circuit F : {−1, 1}n → {−1, 1} of polynomial-size such that any

degree-d polynomial cannot pointwise approximate F to error better than 1−exp
(
−Ω̃(nd−3/2)

)
.

As a consequence of our main result, we obtain an exp
(
−Ω̃(n2/5)

)
upper bound on the the

discrepancy of a function in AC0, and an exp
(

Ω̃(n2/5)
)

lower bound on the threshold weight of

AC0, improving over the previous best results of exp
(
−Ω(n1/3)

)
and exp

(
Ω(n1/3)

)
respectively.

Our techniques also yield a new lower bound of Ω
(
n1/2/ log(d−2)/2(n)

)
on the approximate

degree of the AND-OR tree of depth d, which is tight up to polylogarithmic factors for any
constant d, as well as new bounds for read-once DNF formulas. In turn, these results imply new
lower bounds on the communication and circuit complexity of these classes, and demonstrate
strong limitations on existing PAC learning algorithms.

1 Introduction

The ε-approximate degree of a Boolean function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the
minimum degree of a real polynomial that approximates f to error ε in the `∞ norm. Approximate
degree has pervasive applications in theoretical computer science. For example, lower bounds on
approximate degree underly many tight lower bounds on quantum query complexity (e.g., [2,4,6,22,
44]), and have been used to resolve long-standing open questions in communication complexity (see
for example the survey paper by Sherstov [39]). Meanwhile, upper bounds on approximate degree
underly many of the best known agnostic learning and PAC learning algorithms (e.g. [19,23,24,37]).

Despite the range and importance of these applications, large gaps remain in our understanding
of approximate degree. The approximate degree of any symmetric Boolean function has been
understood since Paturi’s 1992 paper [35], but once we move beyond symmetric functions, few
general results are known.
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In this paper, we perform a careful study of the approximate degree of constant-depth Boolean
circuits. In particular, we establish a generic form of hardness amplification for approximate degree:
we show that if a Boolean circuit f cannot be pointwise approximated to within constant error in
a certain one-sided sense by low-degree polynomials, then the circuit F obtained by taking an OR
of disjoint copies of f cannot be pointwise approximated even with error exponentially close to 1.
Notice that if f is computed by a circuit of polynomial size and constant depth, than so is F .

Our proof extends a recent line of work [12, 28, 38, 46] that seeks to prove approximate degree
lower bounds by constructing explicit dual polynomials, which are dual solutions to a linear program
that captures the approximate degree of any function. Specifically, we show that given a dual poly-
nomial demonstrating that f cannot be approximated to within constant error, we can construct a
dual polynomial demonstrating that F cannot be approximated even with error exponentially close
to 1.

As the main application of our hardness amplification technique, we exhibit an explicit function
F : {−1, 1}n → {−1, 1} computed by a polynomial size circuit of depth three for which any degree-d

polynomial cannot pointwise approximate F to error 1−exp
(
−Ω̃(nd−3/2)

)
. We then use this result

to obtain new bounds on two quantities that play central roles in learning theory, communication
complexity, and circuit complexity: discrepancy and threshold weight. Specifically, we prove a a

new upper bound of exp
(
−Ω̃(n2/5)

)
for the discrepancy of a function in AC0, and a new lower

bound of exp
(

Ω̃(n2/5)
)

for the threshold weight of AC0. Our techniques also yield new lower

bounds for read-once DNF formulas and constant-depth AND-OR trees.
In Section 2, we provide a detailed summary of our results and their relationship to prior

work, as well as their applications to learning theory, communication complexity, and circuit lower
bounds.

2 Summary of Results

2.1 Hardness Amplification

Central to our work is a measure of the complexity of a Boolean function that we call one-sided

approximate degree. We denote this quantity by õdeg(f). This measure captures the least degree
of a real polynomial that pointwise approximates f to within constant error in a certain one-sided
sense (made precise in Section 3). This is the complexity measure that we amplify for constant-
depth circuits: given a depth k circuit f on m variables that has one-sided approximate degree
greater than d, we show how to generically transform f into a depth k+1 circuit F on t ·m variables
such that F cannot be pointwise approximated by degree d polynomials even to error 1− 2−t.

Theorem 1. Suppose f : {−1, 1}m → {−1, 1} has one-sided approximate degree õdeg1/2(f) > d.
Denote by F : {−1, 1}m·t → {−1, 1} the block-wise composition ORt(f, . . . , f), where ORt denotes
the OR function on t variables. Then F cannot be pointwise approximated by degree-d polynomials
even to within error 1− 2−t by degree-d polynomials. That is, the (1− 2−t)-approximate degree of
F is greater than d.

A dual formulation of one-sided approximate degree was previously exploited by Gavinsky and
Sherstov to separate the communication versions of NP and co-NP [15], as well as by the current
authors [12] and independently by Sherstov [38] to resolve the approximate degree of the two-level
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AND-OR tree. In this paper, we introduce a primal formulation of one-sided approximate degree.
This allows us to express Theorem 1 as a form of hardness amplification from one-sided approximate
degree to approximate degree.

Prior Work on Hardness Amplification for Approximate Degree. For the purposes of this
discussion, we informally consider a hardness amplification result for approximate degree to be any
statement of the following form: Fix two functions f : {−1, 1}m → {−1, 1} and g : {−1, 1}t →
{−1, 1}. Then the composed function g(f, . . . , f) : {−1, 1}m·t → {−1, 1} is strictly harder to
approximate in the `∞ norm by low-degree polynomials than is the original function g.

We think of such a result as establishing that application of the outer function g to t disjoint
copies of f amplifies the hardness of f . Here we consider polynomial degree to be a resource, and
“harder to approximate” can refer either to the amount of resources required for the approximation,
to the error of the approximation, or to a combination of the two.

Two particular kinds of hardness amplification results for approximate degree have received par-
ticular attention. Direct-sum theorems focus on amplifying the degree required to obtain an approx-
imation, but do not focus on amplifying the error. For example, a typical direct-sum theorem iden-
tifies conditions on f and g that guarantee that d̃egε(g(f, . . . , f)) ≥ d̃egε(g) · d̃egε(f). In contrast,
a direct-product theorem focuses on amplifying both the error and the minimum degree required to
achieve this error. An XOR lemma is a special case of either type of theorem where the combining
function g is the XOR function. Ideally, an XOR lemma of the direct-product form establishes that
there exists a sufficiently small constant δ > 0 such that d̃eg1−2−δt(XORt(f, . . . , f)) ≥ t · d̃eg1/3(f).
That is, an XOR lemma establishes that approximating the XOR of t disjoint copies of f requires
a t-fold blowup in degree relative to f , even if one allows error exponentially close to 1.

O’Donnell and Servedio [34] proved an XOR lemma for threshold degree, establishing that
XORt(f, . . . , f) has threshold degree t times the threshold degree of f . In later work, Sherstov
[46] proved a direct sum result for approximate degree that holds whenever the combining function
g has low block-sensitivity. His techniques also capture O’Donnell and Servedio’s XOR lemma
for threshold degree as a special case. In [44], Sherstov proved a number of hardness amplification
results for approximate degree. Most notably, he proved an optimal XOR lemma, as well as a direct-
sum theorem that holds whenever the combining function has close to maximal approximate degree
(i.e., approximate degree Ω(t)). Sherstov used his XOR lemma to prove direct product theorems
for quantum query complexity, and in subsequent work [45], to show direct product theorems for
the multiparty communication of set disjointness.

Comparison to Prior Work. In this paper, we are interested in establishing approximate degree
lower bounds for constant-depth circuits over the basis {AND,OR,NOT}. For this purpose, it is

essential to consider combining functions (such as OR, see Theorem 1) that are themselves in AC0,
ruling out the use of XOR as a combining function. Our hardness amplification result (Theorem 1)
is orthogonal to direct-sum theorems: direct-sum theorems focus on amplifying degree but not error,
while Theorem 1 focuses on amplifying error but not degree. Curiously, Theorem 1 is nonetheless
a critical ingredient in our proof of a direct-sum type theorem for AND-OR trees of constant depth
(Theorem 9 below).

2.2 Lower Bounds For AC0

In our primary applications of Theorem 1, we let f : {−1, 1}m → {−1, 1} be the Element Dis-
tinctness function (defined in Section 3). Aaronson and Shi showed that the approximate degree
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Reference Discrepancy Bound Circuit Depth

Sherstov [43] exp(−Ω(n1/5)) 3

Buhrman et al. [11] exp(−Ω(n1/3)) 3

Sherstov [42] exp(−Ω(n1/3)) 3

This work exp
(
−Ω̃(n2/5)

)
4

Table 1: Comparison of our new discrepancy bound for AC0 to prior work. The circuit depth
column lists the depth of the circuit used to exhibit the bound.

of Element Distinctness is Ω(m2/3/ logm) [2]. This is the best-known lower bound for the

approximate degree of a function in AC0. We show in Appendix A that even the one-sided ap-
proximate degree of Element Distinctness is Ω(m2/3/ logm).

Applying Theorem 1 to Element Distinctness, we obtain a depth-three Boolean circuit F
with m · t inputs such that d̃egε(F ) = Ω̃(m2/3), for ε = 1−2−t. By choosing t and m appropriately,
we obtain a depth-three circuit on n = t · m variables of size poly(n) such that any degree-d

polynomial cannot pointwise approximate F to error better than 1− exp
(
−Ω̃(nd−3/2)

)
.

Corollary 2. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n → {−1, 1} of
size poly(n) such that any degree-d polynomial cannot pointwise approximate F to error better

than 1− exp
(
−Ω̃(nd−3/2)

)
. In particular, any polynomial of degree at most n2/5 cannot pointwise

approximate F to error better than 1− exp
(
−Ω̃(n2/5)

)
.

Discrepancy Upper Bound. Discrepancy, defined formally in Section 5, is a central quantity in
communication complexity and circuit complexity. For instance, upper bounds on the discrepancy
of a function f immediately yield lower bounds on the cost of small-bias communication protocols
for computing f (see Section 2.5 for details). The first exponentially small discrepancy upper

bounds for AC0 were proved by Burhman et al. [11] and Sherstov [42,43], who exhibited constant-
depth circuits with discrepancy exp(−Ω(n1/3)). Our results improve the best-known upper bound

to exp
(
−Ω̃(n2/5)

)
.

In particular, Sherstov [42] developed a powerful technique, known as the pattern-matrix
method, that allows one to automatically translate lower bounds on the ε-approximate degree
of a Boolean function F into lower bounds on the discrepancy of a related function F ′ as long as ε
is exponentially close to one. By combining the pattern-matrix method with Corollary 2, we obtain
the following result.

Corollary 3. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} with discrepancy

exp
(
−Ω̃(n2/5)

)
.

Threshold Weight Lower Bounds. A polynomial threshold function (PTF) for a Boolean
function f is a multilinear polynomial p with integer coefficients that agrees in sign with f on all
Boolean inputs. The weight of an n-variate polynomial p is the sum of the absolute value of its
coefficients. The degree-d threshold weight of a Boolean function f : {−1, 1}n → {−1, 1}, denoted
W (f, d), refers to the least weight of a degree-d PTF for f . We let W (f) denote the quantity
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W (f, n), i.e., the least weight of any threshold function for f regardless of its degree. As discussed
below in Section 2.5, threshold weight has important applications in learning theory.

Threshold weight is closely related to ε-approximate degree when ε is very close to 1 (see Section

3.3). We can thus translate Corollary 2 into lower bounds on the degree-d threshold weight of AC0.

Corollary 4. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n → {−1, 1} of size

poly(n) such that W (F, d) ≥ exp
(

Ω̃(nd−3/2)
)

. In particular, W (F, n2/5) = exp
(

Ω̃(n2/5)
)

.

A result of Krause [26] allows us to extend our new degree-d threshold weight lower bound for
F into a degree independent threshold weight lower bound for a related function F ′. The previous
best lower bound on the threshold weight of AC0 was exp

(
Ω(n1/3)

)
, due to Krause and Pudlák

[27].

Corollary 5. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} satisfying W (F ′) =

exp
(

Ω̃(n2/5)
)

.

Moreover, while the threshold weight bound of Corollary 5 is stated for polynomial thresh-
old functions over {−1, 1}n, we show that the same threshold weight lower bound also holds for
polynomials over {0, 1}n.

2.3 Lower Bounds for Read-Once DNFs and CNFs

Our techniques also yield new lower bounds on the approximate degree and degree-d threshold
weight of read-once DNF and CNF formulas. Before stating our results, we discuss relevant prior
work.

In their seminal work on perceptrons, Minsky and Papert exhibited a read-once DNF f :
{−1, 1}n → {−1, 1} with threshold degree Ω(n1/3) [31]. That is, no polynomial p of degree o(n1/3)
can sign-represent f , regardless of the weight of p. However, to our knowledge no non-trivial lower
bound on the degree-d threshold weight of read-once DNFs was known for any d = ω(n1/3).

In an influential result, Beigel [9] exhibited a polynomial-size (read-many) DNF called ODD-

MAX-BIT satisfying the following: there is some constant δ > 0 such that d̃eg
1−2−δn/d2

(ODD-

MAX-BIT) > d, and hence also W (ODD-MAX-BIT, d) = exp
(
Ω(n/d2)

)
(see Section 3.3).

Klivans and Servedio showed that Beigel’s lower bound is essentially tight for d < n1/3 [24].
Very recently, Servedio, Tan, and Thaler showed an alternative lower bound on the degree-d
threshold weight of ODD-MAX-BIT. Specifically, they showed that W (ODD-MAX-BIT, d) =

exp
(

Ω
(√

n/d
))

[37]. The lower bound of Servedio et al. improves over Beigel’s for any d > n1/3,

and is essentially tight in this regime (i.e., when d > n1/3).
While ODD-MAX-BIT is a relatively simple DNF (in fact, it is a decision list), it is not a

read-once DNF. Our results extend the lower bounds of Servedio et al. and Beigel from decision
lists to read-once DNFs and CNFs. In the statement of the results below, we restrict ourselves to
DNFs, as the case of CNFs is entirely analogous.

2.3.1 Extending the Lower Bound of Servedio et al. to Read-Once DNFs

In order to extend the lower bound of Servedio et al. to read-once DNFs and CNFs, we extend
our hardness amplification techniques from one-sided approximate degree to a quantity we call
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degree-d one-sided non-constant approximate weight. This quantity captures the least weight of a
polynomial of degree at most d that pointwise approximates f in a certain one-sided sense (again,
made precise in Section 3). We denote the degree-d one-sided approximate weight of a Boolean
function f by W ∗ε (f, d), where ε is an error parameter.

We prove the following analog of Theorem 1.

Theorem 6. Fix d > 0. Let f : {−1, 1}m → {−1, 1}, and suppose that W ∗3/4(f, d) > w. Let

F : {−1, 1}m·t → {−1, 1} denote the function ORt(f, . . . , f). Then any degree-d polynomial that
approximates F to within error 1− 2−t requires weight 2−5tw.

Adapting a proof of Servedio et al., we can show that W ∗3/4(ANDm, d) ≥ 2Ω(m/d). By applying
Theorem 6 with f = ANDm, along with standard manipulations, we are able to extend the lower
bound of Servedio et al. to read-once CNFs and DNFs.

Corollary 7. For each d = o(n/ log4 n), there is a read-once DNF F satisfying W (F, d) =

exp
(

Ω(
√
n/d)

)
.

In particular, there is a read-once DNF that cannot be computed by any PTF of poly(n) weight,
unless the degree is Ω̃(n).

2.3.2 Extending Beigel’s Lower Bound to Read-Once DNFs

It is known that õdeg(ANDm) = Ω(m1/2). By applying Theorem 1 with f = ANDm, we obtain the
following result.

Corollary 8. There is an (explicit) read-once DNF F : {−1, 1}n → {−1, 1} with d̃eg
1−2−n/d2

(F ) =
Ω(d).

We remark that for d < n1/3, Corollary 8 is subsumed by Minsky and Papert’s seminal result
that exhibited a read-once DNF F with threshold degree Ω(n1/3) [31]. However, for d > n1/3, it
is not subsumed by Minsky and Papert’s result, nor by Corollary 7. Indeed, Corollary 7 yields
a lower bound on the degree-d threshold weight of read-once DNFs, but not a lower bound on
the approximate-degree of read-once DNFs (see Section 3.3 for further discussion on the separation
between these quantities).

2.4 Approximate Degree Lower Bounds for AND-OR Trees

The d-level AND-OR tree on n variables is a function described by a read-once circuit of depth
d consisting of alternating layers of AND gates and OR gates. We assume for simplicity that all
gates have fan-in n1/d. For example, the two-level AND-OR tree is a read-once CNF in which all
gates have fan-in n1/2.

Until recently, the approximate degree of AND-OR trees of depth two or greater had resisted
characterization, despite 19 years of attention [4,12,18,33,38,46,48]. The case of of depth two was
reposed as challenge problem by Aaronson in 2008 [1], as it captured the limitations of existing
lower bound techniques. This case was resolved earlier this year by the current authors [12], and
independently by Sherstov [38], who proved a lower bound of Ω(

√
n), matching an upper bound of

Høyer, Mosca, and de Wolf [18]. However, the case of depth three or greater remained open. To our
knowledge, the best known lower bound for d ≥ 3 was Ω(n1/4+1/2d), which follows by combining
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the depth-two lower bound [12, 38] with an earlier direct-sum theorem of Sherstov [46, Theorem
3.1].

By combining our hardness amplification result (Theorem 1) with techniques of our earlier work

[12], we improve this lower bound to Ω
(
n1/2/ log(d−2)/2(n)

)
for any constant d ≥ 2. A result of

Sherstov [40] yields an upper bound of O(n1/2) for constant d, demonstrating that our result is
optimal up to polylogarithmic factors.

Theorem 9. Let AND-ORd,n denote the d-level AND-OR tree on n variables. Then d̃eg(AND-ORd,n) =

Ω
(
n1/2/ log(d−2)/2 n

)
for any constant d > 0.

2.5 Applications

In this section, we detail applications of the results described above to communication complexity,
circuit complexity, and computational learning theory.

2.5.1 Communication Complexity

Let f : X × Y → {−1, 1}, where X and Y are finite sets. Consider a two-party communication
problem in which Alice is given an input x ∈ X, Bob is given an input y ∈ Y , and their goal is to
compute f(x, y) with probability 1/2 + β for some bias β > 0. Alice and Bob each have access to
an arbitrarily long sequence of private random bits, and the cost C(P ) of a protocol P is the worst-
case number of bits they must exchange over all inputs (x, y) ∈ X × Y . Babai et al. [5] defined
the PP communication model to capture the complexity of computing f with small bias. The PP
communication complexity of f , denoted by PP(f), is the minimum value of C(P ) + log(1/β(P ))
over all protocols P that compute f with positive bias.

It is well known [21] that PP communication is essentially characterized by discrepancy: if
f : {−1, 1}n×{−1, 1}n → {−1, 1}, then PP(f) = Θ (log (1/ disc(f)) + log n). It follows immediately

that our exp
(
−Ω̃(n2/5)

)
upper bound on the discrepancy of an AC0 function f implies an Ω̃(n2/5)

lower bound on PP(f). The previous best lower bound on PP(f) for an AC0 function f was Ω(n1/3)
[11,42].

2.5.2 Circuit Complexity

Constant-depth circuits of majority gates are known to be surprisingly powerful. Most strikingly,
Allender [3] showed that any function in AC0 can be computed by a depth three circuit of majority

gates of quasipolynomial size. This prompted Krause and Pudlák [27] to ask whether every AC0

function could be computed by depth two majority gates of polynomial size. This question was
resolved in the negative by Sherstov [43], who exhibited an AC0 function that cannot be computed
even by majority-of-threshold circuits of size exp(n1/5) (later sharpened to exp(n1/3) [42]), and
independently by Buhrman, Vereshchagin, and de Wolf [11], who obtained an exp(n1/3) lower

bound on the size of majority-of-threshold circuits computing a different AC0 function.
It is well-known that a discrepancy upper bound for F yields a lower bound on the size of

majority-of-threshold circuits computing F [16, 17, 32, 43], and indeed, the circuit lower bounds
of [11, 42, 43] are all proved using discrepancy. Through this connection, our discrepancy upper
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bound of Corollary 3 sharpens the previous lower bounds by yielding a depth-four Boolean cir-
cuit F of polynomial size such that any majority-of-threshold circuit computing F requires size

exp
(

Ω̃(n2/5)
)

.

Corollary 10. There is a depth-four Boolean circuit F : {−1, 1}n → {−1, 1} of size poly(n) such

that every majority-of-threshold circuit computing F has size exp
(

Ω̃(n2/5)
)

.

2.5.3 Learning Theory

Our results have a number of consequences in computational learning theory. We discuss them
below.

Technical Background: The Generalized Winnow Algorithm. The Generalized Winnow
algorithm is one of the most powerful known algorithms for online learning [24,30,37]. Suppose we
are given a concept class C of functions mapping n-bit inputs to {−1, 1}, as well as a collection of
polynomial-time computable “feature” functions F . The Generalized Winnow algorithm learns a
concept in C by maintaining as a hypothesis a low-weight linear threshold function of features in
F .

Suppose that each f ∈ C has a low-weight linear threshold representation

f(x) = sgn

∑
hi∈F

wihi(x)

 ,

where each wi is an integer, and
∑

i |wi| ≤W . A remarkable property of the Generalized Winnow
algorithm is that its mistake bound depends only logarithmically on the size of the feature set F ,
and polynomially on the weight bound W (here the mistake bound refers to the worst-case number
of mistakes an online learning algorithm makes over any sequence of examples). Meanwhile, its
running time per example is polynomial in the size of the feature set. Standard techniques can
be used to transform any online learning algorithm into a PAC learning algorithm whose sample
complexity is proportional to the mistake bound.

PAC Learning AC0 via Generalized Winnow. Valiant famously posed the problem of PAC
learning DNF formulas in his original paper [51] introducing the PAC model. The fastest known
algorithm for this problem is due to Klivans and Servedio. It is based on linear programming,

and takes time exp
(
Õ(n1/3)

)
[23]. At the core of this algorithm is a fundamental structural

result for DNFs: Klivans and Servedio showed that every DNF of size s can be computed by a
polynomial threshold function of degree O(n1/3 log s). However, the weight of the PTF arising in
this construction can grow doubly-exponentially with n. Klivans and Servedio asked whether it is

possible that every polynomial-size DNF has a PTF of degree Õ(n1/3), and weight exp
(
Õ(n1/3)

)
– an affirmative answer to this question would imply that the Generalized Winnow Algorithm (run

over the feature set of all low-degree parities) can also PAC learn DNFs in time exp
(
Õ(n1/3)

)
.

Such a result would be attractive, as the Generalized Winnow algorithm is substantially simpler
than the linear programming algorithm of Klivans and Servedio.
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While we do not resolve the question of Klivans and Servedio for DNFs, we do resolve it
in the negative for depth-three circuits. In fact, we rule out the possibility of the Generalized

Winnow algorithm PAC learning depth-three Boolean circuits in time exp
(
Õ(n2/5)

)
regardless

of the underlying feature set. That is, our lower bound holds even on feature sets that are not
low-degree parities.

Specifically, Corollary 4 implies the following result. The proof is identical to [43, Theorem 8.1]
and is omitted for brevity.

Corollary 11. Let C denote the concept class of polynomial-size depth-three Boolean circuits. Let
F = {h1, . . . , hm : {−1, 1}n → {−1, 1}} be arbitrary Boolean functions such that every f ∈ C can be
expressed as f(x) = sgn (

∑m
i=1wihi(x)) for some integers w1, . . . , wm with |w1|+ · · ·+ |wm| ≤ W .

Then m ·W > exp
(

Ω̃(n2/5)
)

.

PAC Learning AC0 via Boosting. While an exp
(

Ω̃(n1/3)
)

-time algorithm is known for PAC

learning polynomial-size DNF formulas, no exp (o(n))-time algorithm is known even for learning
polynomial-size depth-three Boolean circuits. A natural approach to this problem is as follows.
Suppose that every function f in a concept class C can be computed by a PTF (of arbitrary degree)
over {0, 1}n with weight at most W . The well-known discriminator lemma of Hajnal et al. [17]
implies that under any distribution, there is some conjunction (possibly of width Ω(n)) that has
correlation at least 1/W with f . One can then apply an agnostic learning algorithm for conjunctions

(such as the exp
(
Õ(n1/2)

)
-time polynomial regression algorithm of Kalai et al. [19]), combined

with standard boosting techniques, to PAC-learn C in time polynomial in max
(

exp
(
Õ(n1/2)

)
,W
)

.

Thus, if one could prove an exp(Õ(n1/2)) upper bound (for PTFs over {0, 1}n) on the threshold

weight of AC0, one would obtain an exp(Õ(n1/2))-time algorithm for PAC learning AC0. While

our exp(Ω̃(n2/5)) threshold weight lower bound for AC0 does not rule out this possibility, it does
establish new limitations for this technique. In particular, our threshold weight lower bound implies
that even if faster algorithms for agnostically learning conjunctions are discovered, this boosting-

based approach to learning AC0 cannot run in time better than exp
(

Ω̃(n2/5)
)

.

Attribute-Efficient Learning. Attribute-efficient learning is a clean framework that captures
the challenging and important problem of learning in the presence of irrelevant information [10].
A class C of Boolean functions over {−1, 1}n is said to be attribute-efficiently learnable if there
is a poly(n)-time online algorithm that learns any f ∈ C with mistake bound polynomial in the
representation size of f . For example, the concept class of read-once DNFs that depend on k � n
of their input variables is attribute-efficiently learnable if there is an online learning algorithm for
this class that runs in time poly(n) per example and achieves mistake bound poly(k, log n).

Attribute-efficient learning is a challenging problem, and many simple concept classes are not
known to be attribute-efficiently learnable, including decision lists and read-once DNFs. The Gener-
alized Winnow algorithm, run over the feature-space of low-degree parities, marks the best progress
toward attribute-efficient learning of these concept classes (see e.g. [24, 37]). Prior to our work, it
was unknown whether this approach could learn read-once DNFs depending on k variables in time

exp
(
Õ(n1/3)

)
per example and with mistake bound poly(k, log n), as such a guarantee would hold

if every read-once DNF on n variables were computed by a polynomial threshold function of degree

9



Õ(n1/3) and weight poly(n). Corollary 7 rules out this possibility in a very strong sense, as it
implies the existence of a read-once DNF that cannot be computed by any PTF of poly(n) weight,
unless the degree is Ω̃(n). Similarly, Corollary 2 establishes new limitations on the efficiency of the
Generalized Winnow algorithm in the context of attribute-efficient learning of depth-three Boolean
circuits.

2.6 Organization

Section 3 establishes terminology, introduces our main technique based on LP-duality, and proves
essential technical lemmas. Section 4 establishes our central hardness amplification result for ap-
proximate degree (Theorem 1). It then applies this result to the Element Distinctness function
to obtain our new lower bounds on “accuracy vs. degree” tradeoffs for pointwise approximating
AC0 by polynomials (Corollary 2). Section 5 proves our new discrepancy upper bound for an AC0

function (Corollary 3). Section 6 proves our new threshold weight lower bound for AC0 (Corollaries
4 and 5). Section 7 proves our new lower bounds for read-once DNFs (Theorem 6, Corollary 7,
and Corollary 8). Section 8 proves our new approximate degree lower bound for AND-OR trees
(Theorem 9). Section 9 concludes with suggestions for further research directions.

3 Preliminaries

We work with Boolean functions f : {−1, 1}n → {−1, 1} under the standard convention that
1 corresponds to logical false, and −1 corresponds to logical true. For a real-valued function
r : {−1, 1}n → R, we let ‖r‖∞ = maxx∈{−1,1}n |r(x)| denote the `∞ norm of r. We let ORn and
ANDn denote the OR function and AND function on n variables respectively. Define s̃gn(t) = −1
if t < 0 and 1 otherwise. For a set S ⊆ [n] = {1, . . . , n}, let χS(x) :=

∏
i∈S xi denote the parity

function over variables indexed by S.
We now define the notions of approximate degree, approximate weight, threshold degree, thresh-

old weight, and their one-sided variants.

3.1 Polynomial Approximations and their Dual Characterizations

3.1.1 Approximate Degree

The ε-approximate degree of a function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the minimum
(total) degree of any real polynomial p such that ‖p − f‖∞ ≤ ε, i.e., |p(x) − f(x)| ≤ ε for all

x ∈ {−1, 1}n. We use d̃eg(f) to denote d̃eg1/3(f), and use this to refer to the approximate degree

of a function without qualification. The choice of 1/3 is arbitrary, as d̃eg(f) is related to d̃egε(f)
by a constant factor for any constant ε ∈ (0, 1).

Given a Boolean function f , let p be a real polynomial that minimizes ‖p − f‖∞ among all
polynomials of degree at most d. Since we work over x ∈ {−1, 1}n, we may assume without loss of
generality that p is multilinear with the representation p(x) =

∑
|S|≤d cSχS(x) where the coefficients

cS are real numbers. Then p is an optimum of the following linear program.

10



min ε

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for each x ∈ {−1, 1}n

cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x)f(x)

such that
∑

x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d

φ(x) ∈ R for each x ∈ {−1, 1}n

Strong LP-duality thus yields the following well-known dual characterization of approximate
degree (cf. [42]).

Theorem 12. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then d̃egε(f) > d if and only if
there is a polynomial φ : {−1, 1}n → R such that∑

x∈{−1,1}n
f(x)φ(x) > ε, (1)

∑
x∈{−1,1}n

|φ(x)| = 1, (2)

and ∑
x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d. (3)

If φ satisfies Eq. (3), we say φ has pure high degree d. We refer to any feasible solution φ to the
dual LP as a dual polynomial for f .

3.1.2 One-Sided Approximate Degree

We introduce a relaxed notion of the approximate degree of f which we call the one-sided ε-

approximate degree, denoted by õdegε(f). This is the least degree of a real polynomial p with
one-sided distance at most ε from f , where the one-sided distance between p and f is defined to
be the smallest ε such that

1. |p(x)− 1| ≤ ε for all x ∈ f−1(1).

2. p(x) ≤ −1 + ε for all x ∈ f−1(−1).

That is, we require p to be very accurate on inputs in f−1(1), but only require “one-sided

accuracy” on inputs in f−1(−1). We use õdeg(f) to denote õdeg1/3(f), and refer to this quantity
without qualification as the one-sided approximate degree of f .

The primal and dual LPs change in a simple but crucial way if we look at one-sided approximate
degree rather than approximate degree. Let p(x) =

∑
|S|≤d cSχS(x) be a polynomial of degree d that

minimizes the one-sided distance from f . Then p is an optimum of the following linear program.
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min ε

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for each x ∈ f−1(1)∑
|S|≤d cSχS(x) ≤ −1 + ε for each x ∈ f−1(−1)

cS ∈ R for each |S| ≤ d
ε ≥ 0

The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x)f(x)

such that
∑

x∈{−1,1}n |φ(x)| = 1∑
x∈{−1,1}n φ(x)χS(x) = 0 for each |S| ≤ d

φ(x) ≤ 0 for each x ∈ f−1(−1)
φ(x) ∈ R for each x ∈ {−1, 1}n

We again appeal to strong LP-duality for the following dual characterization of one-sided ap-
proximate degree.

Theorem 13. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then õdegε(f) > d if and only
if there is a polynomial φ : {−1, 1}n → R such that∑

x∈{−1,1}n
f(x)φ(x) > ε, (4)

∑
x∈{−1,1}n

|φ(x)| = 1, (5)

∑
x∈{−1,1}n

φ(x)χS(x) = 0 for each |S| ≤ d, (6)

and
φ(x) ≤ 0 for each x ∈ f−1(−1). (7)

Observe that a feasible solution φ to this dual LP is a feasible solution to the dual LP for
approximate degree, with the additional constraint that φ(x) agrees in sign with f(x) whenever
x ∈ f−1(−1). We refer to any such feasible solution φ as a dual polynomial for f with one-sided
error. Dual polynomials with one-sided error have recently played an important role in resolving
open problems in communication complexity [15] and resolving the approximate degree of the
two-level AND-OR tree [12,38]. They will play a critical role in our proof of Theorem 1 as well.

3.1.3 Approximate Weight

We define the degree-d ε-approximate weight of f , Wε(f, d), to be the minimum weight of a degree-d
polynomial that approximates f pointwise to error ε. Recall that the weight of a polynomial p is
the L1 norm of its coefficients. If d̃egε(f) > d, we define Wε(f, d) =∞.

For a fixed error parameter ε and degree d, the degree-d ε-approximate weight of a function f
is captured by the following linear program.

12



min
∑
|S|≤d |cS |

such that
∣∣∣f(x)−

∑
|S|≤d cSχS(x)

∣∣∣ ≤ ε for each x ∈ {−1, 1}n

cS ∈ R for each |S| ≤ d

The dual LP is as follows.

max
∑

x∈{−1,1}n φ(x)f(x)− ε
∑

x∈{−1,1}n |φ(x)|
such that

∣∣∣∑x∈{−1,1}n φ(x)χS(x)
∣∣∣ ≤ 1 for each |S| ≤ d

φ(x) ∈ R for each x ∈ {−1, 1}n

We thus obtain the following duality theorem.

Theorem 14. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then Wε(f, d) > w if and only
if there is a polynomial φ : {−1, 1}n → R such that∑

x∈{−1,1}n
f(x)φ(x)− ε

∑
x∈{−1,1}n

|φ(x)| > w, (8)

∣∣∣∣∣∣
∑

x∈{−1,1}n
φ(x)χS(x)

∣∣∣∣∣∣ ≤ 1 for each |S| ≤ d. (9)

3.1.4 One-Sided Non-Constant Approximate Weight

To derive our new lower bound on the degree-d threshold weight of read-once DNFs (Corol-
lary 7), we need the following technical variation on approximate weight. Given a polynomial
p(x) =

∑
S cSχS(x), define the non-constant weight of p to be the L1 norm of its coefficients ex-

cluding the constant term, i.e.,
∑

S 6=∅ |cS |. We then define the degree-d one-sided non-constant
ε-approximate weight of f , denoted by W ∗ε (f, d) to be the minimum non-constant weight of a
polynomial that approximates f to one-sided distance ε. Linear programming duality yields the
following characterization of W ∗ε (f, d).

Theorem 15. Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then W ∗ε (f, d) > w if and only
if there is a polynomial φ : {−1, 1}n → R such that∑

x∈{−1,1}n
f(x)φ(x)− ε

∑
x∈{−1,1}n

|φ(x)| > w, (10)

∣∣∣∣∣∣
∑

x∈{−1,1}n
φ(x)χS(x)

∣∣∣∣∣∣ ≤ 1 for each 0 < |S| ≤ d, (11)

∑
x∈{−1,1}n

φ(x) = 0, (12)

φ(x) ≤ 0 for each x ∈ f−1(−1). (13)
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3.1.5 Threshold Degree and Threshold Weight

We say a polynomial p(x) =
∑

S cSχS(x) with integer coefficients is a polynomial threshold function
(PTF) for a Boolean function f if p sign-represents f at all Boolean inputs, i.e., if f(x)p(x) > 0 for
all x ∈ {−1, 1}n. The threshold degree of f , deg±(f), is the minimum degree of a PTF for f .

The threshold weight W (f) is the minimum weight of any PTF for f . Observe that this definition
is only meaningful because the coefficients of any PTF for f are required to be integers, as any
positive constant multiple of a PTF for f also sign-represents f . More generally, it is of interest to
study the tradeoff between the weight and degree necessary for PTF representations. To this end,
we define the degree-d threshold weight W (f, d) to be the minimum weight of a degree-d PTF for
f . If deg±(f) > d, define W (f, d) =∞.

While threshold weight is naturally captured by an integer program rather than a linear pro-
gram, it still admits an important dual characterization, obtained by combining results of Freund
[14] and Hajnal et al. [17] (see also [16,42]).

Theorem 16. Let f : {−1, 1}n → {−1, 1} and fix an integer d ≥ deg±(f). Then for every
probability distribution µ on {−1, 1}n,

|Ex∼µ[f(x)χS(x)]| ≥ 1

W (f, d)
for each |S| ≤ d. (14)

Moreover, there exists a distribution µ for which

|Ex∼µ[f(x)χS(x)]| ≤
(

2n

W (f, d)

)1/2

for each |S| ≤ d. (15)

3.2 The One-Sided Approximate Degree of AC0

We now exhibit a depth-two circuit having one-sided approximate degree Ω̃(n2/3). Let N and R be
positive integers such that N ≥ R and R is a power of 2. We define the Element Distinctness
function with range R as follows. The function takes n = N logR bits as input, and interprets its
input as N blocks (x1, . . . , xN ) with each block consisting of logR bits. Each block is interpreted
as a number in the range [R], and the function evaluates to TRUE if and only if all N numbers are
distinct.

It is straightforward to check that for R = poly(N), the Element Distinctness function with
range R is computed by a CNF formula of polynomial size. Indeed, the function evaluates to TRUE
if and only if there is no number K ∈ [R] for which there is a pair of distinct indices i, j ∈ [N ] such
that xi = xj = K. Thus, the following natural CNF computes Element Distinctness (noting
that for any fixed K, the inner formula is computed by a bitwise OR):

f(x1, . . . , xN ) =

R∧
K=1

∧
i 6=j

(xi 6= K) ∨ (xj 6= K).

Aaronson and Shi [2] showed that when R > 3N/2, the approximate degree of Element
Distinctness is Ω(N2/3). Ambainis [4] extended the lower bound to the “small-range” case where
R = N . For the remainder of the paper, we will use the term Element Distinctness without
qualification to refer to the small-range case.
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By manipulating a dual witness for the high approximate degree of Element Distinctness,

we can in fact show that õdeg1/3(Element Distinctness) = Ω(N2/3). We provide the argument
in Appendix A.

3.3 Relating Degree-d Threshold Weight to High-Error Approximations

In this paper, we will often need to translate lower bounds on d̃egε(f) for some function f with ε
very close to 1 into lower bounds on the degree-d threshold weight of f . This is possible because
degree-d PTFs of weight w are closely related to degree-d pointwise approximations with error
1− 1/w. In fact, these notions are essentially equivalent when w ≥

(
n
d

)
[42]. The relationships we

will need are formalized in the following lemma.

Lemma 17. Let f : {−1, 1}n → {−1, 1} be a Boolean function, and let w > 0. Then (1) ⇒ (2) ⇒
(3).

(1) d̃eg1− 1
w

(f) > d.

(2) W1− 1
w

(f, d) > 1.

(3) W (f, d) > w.

Lemma 17 implies that a PTF of degree d and weight w can be transformed into (1 − 1/w)-
approximation of degree d. Indeed, the proof will go by way of such a transformation.

Proof. Clearly (1) implies (2), since W1− 1
w

(f, d) = ∞ when d̃eg1− 1
w

(f) > d. To show that (2)

implies (3), suppose there is a PTF p for f having weight w and degree d. Since p has integer
coefficients and is nonzero on Boolean inputs, |p(x)| ≥ 1 on {−1, 1}n. Moreover, |p(x)| ≤ w by the
weight bound, so the polynomial 1

wp(x) is a (1− 1
w )-approximation to f with weight 1.

Remark: We stress that the converse of Lemma 17 fails badly when w �
(
n
d

)
. For example,

we show in Corollary 7 that for any d > 0 there exists a read-once DNF F satisfying W (F, d) ≥
exp

(√
n/d

)
. In particular, this yields an exponential lower bound on the degree-d threshold weight

of F for any d = n1−δ, with δ > 0 a constant. Yet it follows from a result of Sherstov [40] that

d̃eg1/3(F ) = O(n1/2) for any read-once DNF F .

4 Lower Bounds for AC0

4.1 Hardness Amplification for Approximate Degree

In this section, we show how to generically transform a circuit f with one-sided approximate
degree d into a circuit F with ε-approximate degree d for ε = 1 − 2−t. That is, while f cannot
be approximated to error 1/2 by degree d polynomials, F cannot even be approximated to error
1− 2−t by polynomials of the same degree.

Intuitively, our proof proceeds by taking a dual witness ψ to the high one-sided approximate
degree of f , and a certain dual witness Ψ for the function ORt, and combines them to obtain a dual
witness for the fact that d̃eg1−2−t(ORt(f, . . . , f)) > d. Our analysis of the combined dual witness
crucially exploits two properties: first, that ψ has one-sided error and second, that the vector whose
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entries are all equal to −1 has very large (in fact, maximal) Hamming distance from the unique
input in OR−1

t (1).
Our method of combining the two dual witnesses was first introduced by Sherstov [46, Theorem

3.3] and independently by Lee [28]. This method has also been exploited by the authors in [12] to
resolve the approximate degree of the two-level AND-OR tree, and by Sherstov [44] to prove direct
sum and direct product theorems for polynomial approximation. Our principle insight in the proof
of Theorem 1 lies in our choice of the appropriate dual witness for ORt to use in the proof, and
subsequent analysis of the combined dual witness.

Theorem 1. Let f : {−1, 1}m → {−1, 1} be a function with õdeg1/2(f) > d. Let F : {−1, 1}mt →
{−1, 1} denote the function ORt(f, . . . , f). Then d̃eg1−2−t(F ) > d.

We remark that it is necessary that the one-sided approximated degree of f is large, rather
than that just the approximate degree of f is large. Theorem 1 is easily seen to be false with one-
sided approximate degree replaced by approximate degree. Consider for example the case where
f = ORm. Then F = ORt(ORm, . . . ,ORm) = ORmt. It is well-known that d̃eg(ORm) = Ω(

√
m),

so Theorem 1 with d̃eg in place of õdeg would say that d̃eg1−2−t(ORmt) = Ω(
√
mt). Yet the

polynomial q(y) = 1
mt(1/2−

∑t
i=1

∑m
j=1 yij) demonstrates that d̃eg1− 1

2mt
(ORmt) = 1 for all values

of t. However, Theorem 1 does not apply because the one-sided approximate degree of f = ORm

is constant.

Proof. Let ψ be a dual polynomial for f with one-sided error whose existence is guaranteed by the

assumption that õdeg1/2(f) > d. By Theorem 13, ψ satisfies:∑
x∈{−1,1}m

ψ(x)f(x) > 1/2, (16)

∑
x∈{−1,1}m

|ψ(x)| = 1, (17)

∑
x∈{−1,1}m

ψ(x)χS(x) = 0 for each |S| ≤ d and (18)

ψ(x) < 0 for each x ∈ f−1(−1). (19)

We will construct a dual solution ζ that witnesses the fact that d̃eg1−2−t(F ) > d. Specifically,
ζ must satisfy the three conditions of Theorem 12:∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt) > 1− 2−t. (20)

∑
(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| = 1. (21)

∑
(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt) = 0 for each |S| ≤ d. (22)

Let 1 denote the all-ones vector. Let Ψ : {−1, 1}t → {−1, 1} be defined such that Ψ(1) = 1/2,
Ψ(−1) = −1/2, and Ψ(x) = 0 for all other x. Notice that
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∑
(x1,...,xt)∈({−1,1}m)t

Ψ(x1, . . . , xt) = 0 (23)

We define ζ : ({−1, 1}m)t → R by

ζ(x1, . . . , xt) := 2tΨ(. . . , s̃gn(ψ(xi)), . . . )
t∏
i=1

|ψ(xi)|, (24)

where xi = (xi,1, . . . , xi,m).
Eq. (24) combines dual functions Ψ and ψ to obtain a dual witness ζ in exactly the same manner

as in the works of Sherstov [46, Theorem 3.3] and Lee [28]. The analysis in these works implies
without modification that ζ satisfies Equations Eq. (21) and Eq. (22). We provide this analysis in
Appendix B for completeness, and here focus on arguing that (20) holds. As we remarked earlier,
the properties we exploit to show this are (1) that ψ has one-sided error and (2) that the the vector
−1 has Hamming distance t from the (unique) input in OR−1

t (1).
We now prove that (20) holds. Let µ be the distribution on ({−1, 1}m)t given by µ(x1, . . . , xt) =∏t

i=1 |ψ(xi)|. Since ψ is orthogonal to the constant polynomial, it has expected value 0, and hence
the string (. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in {−1, 1}t when one samples (x1, . . . , xt)
according to µ. Observe that ∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt)

= 2tEµ[Ψ(. . . , s̃gn(ψ(xi)), . . . ) ORt (. . . , f(xi), . . . )]

=
∑

z∈{−1,1}t
Ψ(z)

 ∑
(x1,...,xt)∈({−1,1}m)t

ORt (. . . , f(xi), . . . )µ(x1, . . . , xt|z)

 , (25)

where µ(x|z) denotes the probability of x under µ, conditioned on (. . . , s̃gn(ψ(xi)), . . . ) = z.
Let A1 = {x ∈ {−1, 1}m : ψ(x) ≥ 0, f(x) = −1} and A−1 = {x ∈ {−1, 1}m : ψ(x) < 0, f(x) =

1}, so A1 ∪ A−1 is the set of all inputs x where the sign of ψ(x) disagrees with f(x). Notice that∑
x∈A1∪A−1

|ψ(x)| < 1/4 because ψ has correlation 1/2 with f .

As noted in [46], for any given z ∈ {−1, 1}t, the following two random variables are identically
distributed:

• The string (. . . , f(xi), . . . ) when one chooses (. . . , xi, . . . ) from the conditional distribution
µ(·|z).

• The string (. . . , yizi, . . . ), where y ∈ {−1, 1}t is a random string whose ith bit independently
takes on value −1 with probability 2

∑
x∈Azi

|ψ(x)| < 1/2.

Thus, Expression (25) equals ∑
z∈{−1,1}t

Ψ(z) ·E[ORt(. . . , yizi, . . . )], (26)
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where y ∈ {−1, 1}t is a random string whose ith bit independently takes on value −1 with
probability 2

∑
x∈Azi

|ψ(x)| < 1/2. We first argue that the term corresponding to z = 1 contributes

Ψ(z) = 1/2 to Expression (26). By Eq. (19), if f(x) = −1, then s̃gn(ψ(x)) = −1. This implies
that A1 is empty; that is, if s̃gn(ψ(x)) = 1, then it must be the case that f(x) = 1. Therefore, for
z = 1, the yi’s are all 1 with probability 1, and hence Ey[ORt (. . . , yizi, . . . )] = ORt (1) = 1. Thus
the term corresponding to z = 1 contributes Ψ(z) ORt(z) = 1/2 to Expression (26) as claimed.

All z 6∈ {1,−1} are given zero weight by Ψ and hence contribute nothing to the sum. All that
remains is to show that the contribution of the term z = −1 to the sum is 1

2(1− 2−t). Since each
yi = 1 independently with probability at least 1/2, and ORt(. . . ,−yi, . . . ) = 1 as long as there is
at least one yi 6= −1, we conclude that E[ORt(. . . , yizi, . . . )] ≥ 1− 2−t+1. It follows that the term
corresponding to z = −1 contributes at least 1

2(1− 2−t+1) to the sum. Thus,∑
z∈{−1,1}t

Ψ(z) ·E[ORt(. . . , yizi, . . . )] ≥
1

2
+

1

2
(1− 2−t+1) = 1− 2−t.

This completes the proof.

Remark: Since the set A1 within the proof of Theorem 1 is empty, the “combined” dual witness ζ

constructed in the proof in fact has one-sided error. Thus, the proof establishes that õdeg1−2−t(F ) >

d, which is a stronger conclusion than the d̃eg1−2−t(F ) > d bound appearing in the theorem
statement. We chose to state Theorem 1 as an approximate degree lower bound, rather than as a
one-sided approximate degree lower bound, for easier comparison with prior work on approximate
degree.

We are now in a position to prove our new lower bound on “accuracy vs. degree” tradeoffs for
pointwise approximating AC0 functions by polynomials.

Corollary 2. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n → {−1, 1} of
size poly(n) such that any degree-d polynomial cannot pointwise approximate F to error better

than 1− exp
(
−Ω̃(nd−3/2)

)
. In particular, any polynomial of degree at most n2/5 cannot pointwise

approximate F to error better than 1− exp
(
−Ω̃(n2/5)

)
.

Proof. Let t = n/d3/2, and m = d3/2. Define F = ORt(f, . . . , f) where f : {−1, 1}m → {−1, 1}
computes the Element Distinctness problem. The discussion in Section 3.2 implies that f is
computed by a depth-2 circuit, and that f has one-sided approximate degree Ω̃(m2/3). The claim
now follows by Theorem 1.

4.2 On the Tightness of Theorem 1 and Corollary 2

We now argue that the approximate degree lower bound proved in Theorem 1 is essentially tight.
In particular, we show that the function F for which Corollary 2 yields a (1− exp(−Ω̃(n2/5))-error
lower bound for approximating polynomials of degree n2/5 actually admits a (1 − exp(−Õ(n2/5))-
approximating polynomial of degree Õ(n2/5).

Our nearly-matching upper bound makes use of a well-known paradigm for constructing low-
weight PTFs (and hence, by Lemma 17, low-accuracy pointwise approximations) for composed
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functions by way of rational approximations (see e.g. [46]). Suppose f : {−1, 1}m → {−1, 1} is
pointwise approximated by a rational function in the sense that for every x ∈ {−1, 1}m,∣∣∣∣f(x)− p(x)

q(x)

∣∣∣∣ < 1

t
,

where p, q are polynomials of degree d and weight w and q(x) > 0 on {−1, 1}m. Then observe that
the block composition

ORt(f(x1), . . . , f(xt)) = sgn(1− t+ f(x1) + · · ·+ f(xt)) = sgn

(
t− t+

p(x1)

q(x1)
+ . . .

p(xt)

q(xt)

)
.

Multiplying
(

1− t+ p(x1)
q(x1) + . . . p(xt)q(xt)

)
by the positive quantity q(x1) · · · · · q(xt) and clearing de-

nominators yields a PTF for the composed function of degree td and weight at most wt(m+ tw).
We now construct a rational approximation for f = Element Distinctness with the desired

properties. Recall from Section 3.2 that Element Distinctness on m variables has a CNF
representation where the top AND gate has fan-in s := O(m3) and each OR gate has fan-in
O(logm). It is easy to check that ANDs : {−1, 1}s → {−1, 1} admits the rational approximation

ts− 1 + t
∑s

i=1 xi
ts+ 1 + t

∑s
i=1 xi

with error 1/t, degree d = 1, and weight w = O(st). Moreover, each bottom OR gate in the
CNF can be computed exactly by a degree O(logm) polynomial with weight 1. Composing these
constructions yields a rational approximation for Element Distinctness with error 1/t, degree
d = O(logm) = O(log t) and weight O(st) = poly(t). Therefore, F has a PTF of degree Õ(t) and
weight exp(Õ(t)). By the construction of Lemma 17, F also has a (1− exp(−Õ(t)))-approximation
of degree Õ(t). Taking t = n2/5 gives the desired result.

4.3 A Sharp Threshold in Accuracy-Degree Tradeoffs

The rational approximations developed in the previous section, combined with the lower bound of
Theorem 1 and Corollary 2, reveal a “sharp threshold” in the degree required to approximate a
particular function F within a given error parameter. Recall that Theorem 1 and Corollary 2 yield
a lower bound of d = Ω(m2/3/ logm) on the ε-approximate degree of F = ORt(f, . . . , f), where f is
the Element Distinctness function on m variables and ε = 1− 2−t. In the following discussion,
consider any t = d1−Ω(1).

If our goal is to approximate F to within error (1−exp(−Õ(t))), then the rational approximation
techniques described in the preceding section yield an approximating polynomial of degree Õ(t).
On the other hand, if we desire even slightly better error of 1 − 2−t, then our accuracy-degree
tradeoff lower bound of Theorem 1 shows that we require degree d = ω(t). That is, if we demand
error that is slightly better than 1 − exp(−Õ(t)), there is an asymptotic jump from Õ(t) to Ω(d)
in the required degree.

5 Discrepancy of AC0

In this section we prove our new exponentially small upper bound on the discrepancy of a function
in AC0. Consider a Boolean function f : X × Y → {−1, 1}, and let M (f) be its communication
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matrix M (f) = [f(x, y)]x∈X,y∈Y . A combinatorial rectangle of X × Y is a set of the form A × B
with A ⊆ X and B ⊆ Y . For a distribution µ over X × Y , the discrepancy of f with respect to µ
is defined to be the maximum over all rectangles R of the bias of f on R. That is:

discµ(f) = max
R

∣∣∣∣∣∣
∑

(x,y)∈R

µ(x, y)f(x, y)

∣∣∣∣∣∣ .
The discrepancy of f , disc(f) is defined to be minµ discµ(f).

Sherstov’s pattern matrix method [42] shows how to generically transform an AC0 function with

high threshold degree or high threshold weight into another AC0 function with low discrepancy.

Theorem 18 ([42], adapted from Corollary 1.2 and Theorem 7.3). Let F : {−1, 1}n → {−1, 1} be
given, and define the communication problem F ′ : {−1, 1}4n × {−1, 1}4n → {−1, 1} by

F ′(x, y) = F (. . . ,∨4
j=1(xi,j ∧ yi,j), . . . ).

Then for every integer d ≥ 0,

disc(F ′)2 ≤ max

{
2n

W (F, d− 1)
, 2−d

}
.

We apply this theorem to the function F : {−1, 1}n → {−1, 1} of Corollary 2. This function

has ε-approximate degree n2/5 for ε = 1 − 2−Ω̃(n2/5), and hence by by Lemma 17 it holds that
W (f, n2/5) = 2Ω̃(n2/5). We thus obtain our new discrepancy upper bound for AC0 as stated in
Corollary 3, restated here for the reader’s convenience.

Corollary 3. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} with discrepancy

exp
(
−Ω̃(n2/5)

)
.

6 Threshold Weight of AC0

Combing Lemma 17 with Corollary 2 yields Corollary 4, restated here for the reader’s convenience.

Corollary 4. For every d > 0, there is a depth-3 Boolean circuit F : {−1, 1}n → {−1, 1} of size

poly(n) such that W (F, d) ≥ exp
(

Ω̃(nd−3/2)
)

. In particular, W (F, n2/5) = exp
(

Ω̃(n2/5)
)

.

A result of Krause [26] allows us to extend our new degree-d threshold weight lower bound for

AC0 into an exp
(

Ω̃
(
n2/5

))
degree independent threshold weight lower bound for a related function

F ′. We give a slight modification (Lemma 19) that is cleaner to apply, and asymptotically recovers
Krause’s result when the weights under consideration are superpolynomially large. Our restatement
admits a new and simple proof based on LP duality that we present in Appendix C.

Lemma 19. Let F : {−1, 1}n → {−1, 1} be a Boolean function, and define F ′ : {−1, 1}3n →
{−1, 1} by

F ′(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := F (. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . . ).

Then

W (F ′)2 ≥ min

{
W (F, d)

2n
, 2d
}
.
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Combining Corollary 4 and Lemma 19 yields Corollary 5. This improves over the previous best
threshold weight lower bound for AC0, which was exp

(
Ω(n1/3)

)
[27].

Corollary 5. There is a depth-4 Boolean circuit F ′ : {−1, 1}n → {−1, 1} satisfying W (F ′) =

exp
(

Ω̃(n2/5)
)

.

Proof. Let F be the circuit of Corollary 2 and let F ′ be the depth-four circuit obtained by applying
Lemma 19 to F . Let d = n2/5/ logc n for a sufficiently large constant c. Then Corollary 4 implies

that W (F, d) ≥ 2n2d, and hence W (F ′) ≥ 2d/2 = 2Ω̃(n2/5) by Lemma 19.

Remark: While the threshold weight bound of Corollary 5 is stated for polynomial threshold
functions over {−1, 1}n (i.e., for polynomials that are integer linear combinations of parities), the
same threshold weight lower bound also holds for polynomials over {0, 1}n, or equivalently, for
integer linear combinations of conjunctions. This can be seen as follows.

Given a set S ⊆ [n], let ANDS : {−1, 1}n → {−1, 1} denote the AND function restricted to
variables in S. Given a sign-representation p =

∑
S cS ANDS for F of weight w, let

∑
S p̂(S)χS

denote the Fourier representation of p. It is easy to check that the L1-norm of the Fourier coefficients
of each conjunction ANDS is at most 3, so the weight of the Fourier expansion of p is w′ :=∑

S |p̂(S)| ≤ 3w. However, we cannot simply conclude that w/3 ≥ w′ ≥ W (f) because the
coefficients p̂(S) are not necessarily integers.

Nonetheless, note that |p(x)| ≥ 1 for all x ∈ {−1, 1}n, since p has integer coefficients. That
is, p is a sign-representation for f over {−1, 1}n of weight w′ and with margin at least 1. It

follows by Theorem 16 that exp
(

Ω̃(n2/5)
)

= W (f) ≤ 2n(w′)2 = poly(n,w). We conclude that

w = exp
(

Ω̃(n2/5)
)

as desired.

The same argument shows that all of our lower bounds on degree-d threshold weight proved in
this paper hold for PTFs over {0, 1}n, in addition to PTFs over {−1, 1}n.

7 Lower Bounds for Read-Once DNFs

In this section we derive new approximate degree and degree-d threshold weight lower bounds for
read-once DNF formulas. The lower bounds we prove are essentially identical to those proved by
Beigel [8] and Servedio et al. [37] for the decision list ODD-MAX-BIT, which is not computable
by a read-once DNF. Our first construction (Corollary 7) yields a degree-d threshold weight lower

bound of 2Ω(
√
n/d), matching the lower bound proved by Servedio et al. for the decision list ODD-

MAX-BIT. In Section 7.3, we show that this is essentially optimal in the “high-degree” regime
where d = Ω(n1/3).

Our second lower bound (Corollary 8) exhibits a DNF with (1 − 2−n/d
2
)-approximate degree

Ω(d), matching Beigel’s lower bound for ODD-MAX-BIT. As we remarked in the introduction,
for d < n1/3, Corollary 8 is subsumed by Minsky and Papert’s seminal result exhibiting a read-once
DNF F with threshold degree Ω(n1/3). However, for d > n1/3, it is not subsumed by Minsky
and Papert’s result, nor by Corollary 7. While Corollary 7 yields a lower bound on the degree-d
threshold weight of read-once DNFs, it does not yield a lower bound on the approximate-degree of
read-once DNFs. As described in Section 3.3, while d̃eg1− 1

w
(F ) > d implies that W (F, d) > w,

the reverse implication does not hold when w �
(
n
d

)
(and in fact the read-once DNF considered in

Corollary 7 is an explicit example of the reverse implication failing badly).
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7.1 Extending the Lower Bound of Servedio et al. to Read-Once DNFs

7.1.1 Hardness Amplification for Approximate Weight

We now extend our hardness amplification techniques from approximate degree to approximate
weight. This extension forms the technical heart of our proof that the lower bound of Servedio et
al. applies to read-once DNFs.

Theorem 6. Let f : {−1, 1}m → {−1, 1} be a function with one-sided non-constant approximate
weight W ∗3/4(f, d) > w. Let F : {−1, 1}mt → {−1, 1} denote the function ORt(f, . . . , f). Then F

has degree-d (1− 2−t)-approximate weight W1−2−t(F, d) > 2−5tw.

Proof. Let ψ be a dual polynomial for f with one-sided error whose existence is guaranteed by the
assumption that W ∗3/4(f, d) > w. Then by Theorem 15, ψ satisfies:∑

x∈{−1,1}m
ψ(x)f(x)− 3

4

∑
x∈{−1,1}m

|ψ(x)| > w, (27)

∣∣∣∣∣∣
∑

x∈{−1,1}m
ψ(x)χS(x)

∣∣∣∣∣∣ ≤ 1 for each 0 < |S| ≤ d, (28)

∑
x∈{−1,1}m

ψ(x) = 0, and (29)

ψ(x) < 0 for each x ∈ f−1(−1). (30)

We will construct a dual solution ζ that witnesses the fact that W1−2−t(F, d) > 2−5tw. Specifi-
cally, by Theorem 14, ζ must satisfy the following conditions:∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt)− (1− 2−t)|ζ(x1, . . . , xt)| > 2−5tw. (31)

∣∣∣∣∣∣
∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

∣∣∣∣∣∣ ≤ 1 for each |S| ≤ d. (32)

As before, let Ψ : {−1, 1}t → {−1, 1} be defined such that Ψ(1) = 1/2, Ψ(−1) = −1/2, and
Ψ(x) = 0 for all other x, where 1 denotes the all-ones vector. We define ζ : ({−1, 1}m)t → R by

ζ(x1, . . . , xt) := MtΨ(. . . , s̃gn(ψ(xi)), . . . )

t∏
i=1

|ψ(xi)|, (33)

where xi = (xi,1, . . . , xi,m) and Mt is a normalization term to be determined later.
We start with Eq. (32) to determine an appropriate choice of Mt. Notice that since Ψ is

orthogonal on {−1, 1}t to constant functions, its expected value is 0. Thus, we may write the
Fourier representation for Ψ as

Ψ(z) =
∑

T⊆{1,...,t}
T 6=∅

Ψ̂(T )χT (z)
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for some real numbers Ψ̂(T ). We can thus write

ζ(x1, . . . , xt) = Mt

∑
T 6=∅

Ψ̂(T )
∏
i∈T

ψ(xi)
∏
i/∈T

|ψ(xi)|.

Given a subset S ⊆ {1, . . . , t}× {1, . . . ,m} with |S| ≤ d, partition S = ({1}×S1)∪ · · · ∪ ({t}×St)
where each Si ⊆ {1, . . . ,m}. Then∑
(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

= Mt

∑
T 6=∅

Ψ̂(T )
∏
i∈T

 ∑
xi∈{−1,1}m

ψ(xi)χSi(xi)


︸ ︷︷ ︸

∏
i/∈T

 ∑
xi∈{−1,1}m

|ψ(xi)|χSi(xi)

 .

Since |S| ≤ d, we have that |Si| ≤ d for every index i ∈ {1, . . . , t}. For each set T , each of the
underbraced factors is bounded in absolute value by 1 by (28). Writing

‖ψ‖1 :=
∑

x∈{−1,1}m
|ψ(x)|

for notational convenience, we see that∣∣∣∣∣∣
∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

∣∣∣∣∣∣ ≤Mt

∑
T 6=∅

Ψ̂(T )‖ψ‖t−|T |1 ≤Mt · t2t−1‖ψ‖t−1
1 .

Taking Mt = 2−2t‖ψ‖1−t1 gives (32).
We now proceed to verify (31). Let µ be the distribution on ({−1, 1}m)t given by µ(x1, . . . , xt) =

‖ψ‖−t1

∏t
i=1 |ψ(xi)|. Since ψ is orthogonal to the constant polynomial, it has expected value 0,

and hence the string (. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in {−1, 1}t when one samples
(x1, . . . , xt) according to µ. Observe that∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)F (x1, . . . , xt)

= Mt‖ψ‖t1Eµ[Ψ(. . . , s̃gn(ψ(xi)), . . . ) ORt (. . . , f(xi), . . . )]

= 2−3t‖ψ‖1
∑

z∈{−1,1}t
Ψ(z)

 ∑
(x1,...,xt)∈({−1,1}m)t

ORt (. . . , f(xi), . . . )µ(x1, . . . , xt|z)

 , (34)

where µ(x|z) denotes the probability of x under µ, conditioned on (. . . , s̃gn(ψ(xi)), . . . ) = z.
Let A1 = {x ∈ {−1, 1}m : ψ(x) ≥ 0, f(x) = −1} and A−1 = {x ∈ {−1, 1}m : ψ(x) < 0, f(x) =

1}. Then 2
∑

x∈A1∪A−1
|ψ(x)| < 1

4‖ψ‖1 − w because ψ has correlation at least w + 3
4‖ψ‖1 with f .

As before, for any z ∈ {−1, 1}t, the following two random variables are identically distributed:

• The string (. . . , f(xi), . . . ) when one chooses (. . . , xi, . . . ) from the conditional distribution
µ(·|z).
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• The string (. . . , yizi, . . . ), where y ∈ {−1, 1}t is a random string whose ith bit independently
takes on value −1 with probability 2

‖ψ‖1
∑

x∈Azi
|ψ(x)| < 1/4− w/‖ψ‖1.

Thus, the correlation is

2−3t‖ψ‖1
∑

z∈{−1,1}t
Ψ(z) ·E[ORt(. . . , yizi, . . . )], (35)

where y ∈ {−1, 1}t is a random string whose ith bit independently takes on value −1 with
probability 2

∑
x∈Azi

|ψ(x)| < 1/4 − w/‖ψ‖1. As in the proof of Theorem 1, the one-sided error

(30) of the dual witness ψ implies that the input z = 1 contributes Ψ(z) = 1/2 to Expression (35).
All z 6∈ {1,−1} are given zero weight by Ψ and hence contribute nothing to the sum. All that
remains is to show that the contribution of the term z = −1 to the sum is 1

2(1−2−2t+1). Since each
yi = 1 independently with probability at least 3/4 +w/‖ψ‖1, and ORt(. . . ,−yi, . . . ) = 1 as long as
there is at least one yi 6= −1, we conclude that E[ORt(. . . , yizi, . . . )] ≥ 1− 2−2t+1. It follows that
the term corresponding to z = −1 contributes at least 1

2(1− 2−2t+1) to the sum. Thus,

2−3t‖ψ‖1
∑

z∈{−1,1}t
Ψ(z)·E[ORt(. . . , yizi, . . . )] ≥ 2−3t‖ψ‖1

(
1

2
+

1

2
(1− 2−2t+1)

)
= 2−3t(1−2−2t)‖ψ‖1.

Since ψ is orthogonal to the constant polynomial by Eq. (29), it has expected value 0, and hence
the string (. . . , s̃gn(ψ(xi)), . . . ) is distributed uniformly in {−1, 1}t when one samples (x1, . . . , xt)
according to µ. Thus,∑

(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| = 2−3t‖ψ‖1
∑

z∈{−1,1}t
|Ψ(z)| = 2−3t‖ψ‖1,

.
Now the left-hand side of Expression (31) is at least

2−3t(1− 2−2t)‖ψ‖1 − (1− 2−t) · 2−3t‖ψ‖1 > 2−5t‖ψ‖1 > 2−5tw,

where the last inequality follows from condition (27). This completes the proof.

7.1.2 Completing the Proof of Corollary 7

We adapt an argument of Servedio et al. to prove the following one-sided approximate weight lower
bound for the function ANDn.

Lemma 20. Let d = o(n/ log2 n). Then the function ANDn has one-sided non-constant approxi-
mate weight W ∗3/4(ANDn, d) = 2Ω(n/d).

Our proof of Lemma 20 follows a symmetrization argument due to Servedio et al. [37]. The key
in their proof is the following Markov-type inequality that gives a sharp bound on the derivative
of a bounded polynomial in terms of both its degree and weight.

Lemma 21 ([37], Lemma 1). Let P : R→ R be a degree-d polynomial such that
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1. The coefficients of P each have absolute value at most w, and

2. 1/2 ≤ maxx∈[−1,1] |p(x)| ≤ R.

Then maxx∈[−1,1] |p′(x)| = O(d ·R ·max{logW, log d}).

Proof of Lemma 20. Let p : Rn → R be a real polynomial with degree d and non-constant weight
w that has one-sided distance at most 3/4 from ANDn. Specifically, p(−1) ≤ −1/4 and 1/4 ≤
p(x) ≤ 7/4 at all other Boolean inputs. We will show that w = 2Ω(n/d). First observe that if
p(−1) ≤ −7/4, then the polynomial

q(x) =
p(x)− 1

|p(−1)− 1|
+ 1

is a true (3/4)-approximation to ANDn with weight smaller than w+ 1, so we can assume without
loss of generality that p is in fact a (3/4)-approximation to ANDn.

Define the univariate polynomial

P (t) := Ex←µt [p(x)]

where µt is the product distribution over {−1, 1}n where each coordinate xj is independently set
to 1 with probability (1 + t)/2. Notice that P (t) is obtained from the multivariate expansion of
p(x1, . . . , xn) by replacing each variable xi with t. It is readily verified that P satisfies the following
properties.

1. P (−1) = p(−1) and P (1) = p(1),

2. |P (t)| ≤ 7
4 for all t ∈ [−1, 1], and

3. degP ≤ deg p = d.

4. P has non-constant weight at most w.

By combining properties (1) and (4), we additionally see that the constant term P (0) has absolute
value at most w + 7

4 . We can then verify that P satisfies the conditions of Lemma 21.

1. The coefficients of P each have absolute value at most w + 7
4 and

2. 1/2 ≤ maxx∈[−1,1] |P (t)| ≤ 7
4 .

Thus we conclude that |P ′(t)| = O(dmax{logw, log d}) for t ∈ [−1, 1]. On the other hand, at
t0 = −1 + 2/n, we have Prx←µt0 [x = −1n] = (1 − 1

n)n < 1/e, so P (t0) ≥ 1 − 2
e . Since P (−1) =

p(−1) ≤ −1
4 , by the mean value theorem, there is some t ∈ [−1, t0] where P ′(t) ≥ n

4 . Thus we have

dmax{logw, log d} = Ω(n), and hence w = 2Ω(n/d) as long as d = o(n/ log2 n).

Finally, we are in a position to prove Corollary 7, restated here for the reader’s convenience.

Corollary 7. For each d = o(n/ log4 n), there is a read-once DNF F satisfying W (F, d) =

exp
(

Ω(
√
n/d)

)
.
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Proof. Set m = α
√
nd where α is a constant to be determined later, and let t = n/m = Ω(

√
n/d).

Let F = ORt(ANDm, . . . ,ANDm). By Lemma 20, the inner function ANDm has degree-d one-
sided non-constant approximate weight W ∗3/4(ANDm, d) = 2βm/d for some constant β. Since d =

o(m/ log2m), by Theorem 6 the composed function F has degree-d approximate weight

W1−2−t(F, d) = 2−5t+βm/d = 2(−5/α+β)
√
n/d.

Setting α > 5/β, we get that this approximate weight is greater than 1. By Lemma 17, we have

that W (F, d) > 2−t = 2Ω(
√
n/d).

7.2 Extending Beigel’s Lower Bound to Read-Once DNFs

Corollary 8. There is an (explicit) read-once DNF F : {−1, 1}n → {−1, 1} with d̃eg
1−2−n/d2

(F ) =
Ω(d).

Proof. Let m = d2, t = n/d2, and f = ANDm. Then Theorem 1 guarantees that

d̃eg1−2−t (ORt(ANDm, . . . ,ANDm)) > õdeg(f).

The claim then follows from the fact that õdeg(ANDm) = Ω(
√
m) = Ω(d), which can be seen by

observing that Nisan and Szegedy’s proof that d̃eg(ANDm) = Ω(
√
m) in fact extends to one-sided

approximate degree [33]. Alternatively, it can be directly shown that any dual witness (as defined in

Theorem 12) for the fact that d̃eg(ANDm) = Ω(
√
m) must have one-sided error (cf. [15, Theorem

5.1]).

7.3 On the Tightness of Corollaries 7 and 8

In Section 4.2, we showed that Corollary 2 is essentially tight by exhibiting a nearly-matching upper
bound based on rational approximations. A similar construction shows that any DNF of top fan-in

t is computed by a PTF of degree Õ(t) and weight exp
(
Õ(t)

)
. This construction immediately

shows that Corollary 7 is tight (up to logarithmic factors) for all d > n1/3. Indeed, the DNF F
for which Corollary 7 demonstrates W (F, d) ≥ exp(Ω(

√
n/d)) has top fan-in t =

√
n/d, which is

less than d for all d > n1/3. This construction also reveals a sharp thresholding phenomenon for
the read-once DNFs considered in Corollaries 7 and 8 that is similar to the one observed for the
depth-three circuit considered in Section 4.3.

However, we can provide an alternative construction that demonstrates the tightness of both
Corollaries 7 and 8. Specifically, rather than utilizing rational approximation techniques, we can
construct a PTF for a read-once DNF by composing a PTF for the top OR gate with low-degree
(polynomial, rather than rational) pointwise approximations to each of the individual terms. We
provide this construction because of its power to explain why the lower bounds of Corollaries 7 and
8 take their particular forms.

Fix any function f : {−1, 1}m → {−1, 1}, and let p : {−1, 1}m → {−1, 1} be a polynomial of
degree d and weight w such that |p(x) − f(x)| < 1/t for all x ∈ {−1, 1}m. Let F (x1, . . . , xt) =
ORt(f(x1), . . . , f(xt)). Then for (x1, . . . , xt) ∈ {−1, 1}m·t, the identity F (x1, . . . xt) = sgn(1 − t +∑t

i=1 p(xi)) yields a PTF for F of degree at most d and weight at most tw + t+ 1.
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Recall that Corollary 7 yields a lower bound of W (F, d) = exp
(

Ω(
√
n/d)

)
, where F is the

read-once DNF with top fan-in roughly t =
√
n/d and bottom fan-in roughly m =

√
nd. Servedio

et al. [37] showed that for any d > m1/2, there is a polynomial p of degree Õ(d) and weight

exp
(
Õ(m/d+ log t)

)
= exp

(
Õ
(√

n/d
))

that approximates the function ANDm to error 1/t2.

Hence, as long as d > n1/3, the polynomial 1 − t +
∑t

i=1 p(xi) is a PTF for F of degree Õ(d) and

weight exp
(
Õ(
√
n/d)

)
, showing that Corollary 7 is tight up to logarithmic factors.

Similarly, recall that Corollary 8 yields a lower bound of d̃eg
1−2n/d

2 (F ) = Ω(d), where F is

the read-once DNF with top fan t = n/d2 and bottom fan-in m = d2. It is well-known that a
transformation of the Chebyshev polynomials yields a polynomial p of degree Õ(m1/2) and weight

exp
(
Õ(m1/2 + log t)

)
that approximates ANDm to error better than 1/t2 (see e.g. [24]). Hence,

1−t+
∑t

i=1 p(xi) is a PTF for F of degree Õ(d) and weight exp(Õ(d+log t)) = exp(Õ(n/d2)) when
d < n1/3. The transformation of Lemma 17 then shows that Corollary 8 is tight up to logarithmic
factors in this parameter range.

8 Lower Bounds for AND-OR Trees

The d-level AND-OR tree (respectively, OR-AND tree) on n variables is a function described by a
read-once circuit of depth d consisting of alternating layers of AND gates and OR gates, with the
root gate being an AND gate (respectively, an OR gate). We assume throughout this section that
all gates have fan-in n1/d; for example, the two-level AND-OR tree is a read-once CNF in which all
gates have fan-in n1/2. The assumption on the fan-in is not essential to our analysis in this section,
which in fact applies to any read-once Boolean circuit such that all gates at any given layer have
the same fan-in. We will let AND-ORd,n (respectively, OR-ANDd,n) denote the d-level AND-OR
tree (respectively, OR-AND tree) on n variables.

The current authors [12], and independently Sherstov [38], resolved the approximate degree of
AND-OR2,n by proving an optimal Ω(n1/2) lower bound in this case. However, the techniques of
[12, 38] break down for the case of depth three or greater; to the best of our knowledge, the best
lower bound that follows from prior work is Ω(n1/4+1/2d), which can be derived by combining the
depth-two lower bound [12,38] with an earlier direct-sum theorem of Sherstov [46, Theorem 3.1].

In this section, we extend the methods of our prior work [12] to prove an Ω
(
n1/2/ log(d−2)/2 n

)
lower bound on the approximate degree of AND-ORd,n for any constant d > 0. This matches an

upper bound of Sherstov [40] up to a log(d−2)/2 n factor.

Theorem 9. Let AND-ORd,n denote the d-level AND-OR tree on n variables. Then d̃eg(AND-ORd,n) =

Ω
(
n1/2/ log(d−2)/2 n

)
for any constant d > 0.

8.1 Proof Outline.

To introduce our proof technique, we first describe the method used in [12] to construct an optimal
dual polynomial in the case d = 2, and we identify why this method breaks down when trying to
extend to the case d = 3. We then explain how to use our hardness amplification result (Theorem
1) to construct a different dual polynomial that does extend to the case d = 3.
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Let m = n1/2 denote the fan-in of all gates in OR-AND2,n. In our earlier work [12], we con-
structed a dual polynomial for OR-AND2,n as follows.1 We let γ1 be a dual polynomial witnessing

the fact that õdeg(ANDm) = Ω
(
m1/2

)
, and we let γ2 be a dual polynomial witnessing the fact

that d̃eg(ORm) = Ω
(
m1/2

)
. We then combined the dual witnesses γ1 and γ2, using the same

“combining” technique as in Eq. (24), to obtain a function γ3 : {−1, 1}m2 → R defined via:

γ3(x1, . . . , xm) := 2mγ2(. . . , s̃gn(γ1(xi)), . . . )
m∏
i=1

|γ1(xi)|,

where xi = (xi,1, . . . , xi,m). It followed from earlier work [46] that γ3 has pure high degree equal
to the product of the pure high degree of γ1 and the pure high degree of γ2, yielding an Ω(m)
lower bound on the pure high degree of γ3. The new ingredient of the analysis in [12] was to use
the one-sided error of the “inner” dual witness γ1 to argue that γ3 also had good correlation with
OR-AND2.

Extending to Depth Three. Let M = n1/3 denote the fan-in of all gates in AND-OR3,n.
In constructing a dual witness for AND-OR3,n = ANDM (OR-AND2,M2 , . . . ,OR-AND2,M2), it is
natural to try the following approach. Let γ4 be a dual polynomial witnessing the fact that the
approximate degree of ANDM = Ω(

√
M). Then we can combine γ3 and γ4 in the same manner as

above to obtain a dual function γ5:

γ5(x1, . . . , xM ) := 2Mγ4(. . . , s̃gn(γ3(xi)), . . . )

M∏
i=1

|γ3(xi)|, (36)

where xi = (xi,1, . . . , xi,M2). The difficulty in establishing that γ5 is a dual witness to the high
approximate degree of AND-OR3,n is in showing that γ5 has good correlation with AND-OR3.
In our earlier work, we showed γ3 has large correlation with OR-AND2,n by exploiting the fact
that the inner dual witness γ1 had one-sided error, i.e., γ1(y) agrees in sign with ANDM whenever
y ∈ AND−1

M (−1) . However, γ3 itself does not satisfy an analogous property: there are inputs
xi ∈ OR-AND−1

2,M2(−1) such that γ3(xi) > 0, and there are inputs xi ∈ OR-AND−1
2,M2(1) such that

γ3(xi) < 0.
To circumvent this issue, we use a different inner dual witness γ′3 within Eq. (36). Our con-

struction of γ′3 will utilize our hardness amplification analysis to achieve the following: while γ′3
will have error “on both sides”, the error from the “wrong side” will be very small. The hardness
amplification step will cause γ′3 to have pure high degree that is lower than that of the dual witness
γ3 constructed in [12] by a

√
log n factor. However, the hardness amplification step will permit us

to prove the desired lower bound on the correlation of γ5 with AND-OR3,n.

8.2 Proof of Theorem 9

Proof. We begin by proving the claimed lower bound for AND-OR3,n before explaining how to
extend the argument to AND-ORd,n for an arbitrary depth d > 0.

1We actually constructed a dual polynomial for AND-OR2,n, but the analysis for the case of OR-AND2,n is entirely
analogous.
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Notation. There will be a total of seven intermediate dual witnesses that arise in our construction
of a dual witness ψ7 for AND-OR3,n. We will denote these seven dual witnesses as ψ1, . . . , ψ7. Let
M = n1/3 denote the fan-in of all gates in AND-OR3,n. Our goal is to construct a dual witness ψ7

to demonstrate that d̃eg(AND-OR3,n) = Ω
(
n1/2/ log1/2 n

)
.

To this end, define ψ6 to be a dual polynomial witnessing the fact that õdeg.99(ANDM ) =
Ω(
√
M). By Theorem 12, there is some d6 = Ω(

√
M) such that ψ6 satisfies:∑

a∈{−1,1}M
ψ6(a) ANDM (a) > .99, (37)

∑
a∈{−1,1}M

|ψ6(a)| = 1, (38)

∑
a∈{−1,1}M

ψ6(a)χS(a) = 0 for each |S| ≤ d6 and (39)

ψ6(−1) < 0. (40)

As stated in the proof outline, we are ultimately going to construct a function ψ5 : {−1, 1}M2 →
R that serves as a dual witness to the high approximate degree of OR-AND2,M2 while having “almost
no error on the wrong side”. We will then define our final dual witness ψ7 via

ψ7(x1, . . . , xM ) := 2Mψ6(. . . , s̃gn(ψ5(xi)), . . . )
M∏
i=1

|ψ5(xi)|, (41)

where xi = (xi,1, . . . , xi,M2).

Construction of ψ5. Consider the function OR-AND2,M2 . Let t = 100 logn. We view the root
OR gate as an OR of ORs, where the top OR has fan-in M/t and the bottom OR gates each have
fan-in t. Thus, we are now thinking of the two-level OR-AND tree as a three-level circuit, where
the top two levels consist of OR gates, and the bottom level consists of AND gates. Consider the
function F = ORt(ANDM , . . . ,ANDM ). Corollary 8 constructs a dual witness ψ3 demonstrating

that there is some d3 = Ω(
√
M) such that õdeg1−2−t(F ) ≥ d2 (see the Remark following the proof

of Theorem 1). This dual witness ψ3 was defined via:

ψ3(b1, . . . , bt) := 2tψ2(. . . , s̃gn(ψ1(bi)), . . . )

M∏
i=1

|ψ1(bi)|,

where bi = (bi,1, . . . , bi,M ), ψ1 was a dual witness to the high one-sided approximate degree of
ANDM , and ψ2 was defined such that ψ2(1) = 1/2, ψ2(−1) = −1/2, and ψ2 evaluates to 0 for all
other inputs in {−1, 1}t.

The proof of Theorem 1 showed that ψ3 satisfies:∑
b∈{−1,1}t·M

ψ3(b)F (b) > 1− 2−t = 1− 1/n100, (42)

∑
b∈{−1,1}t·M

|ψ3(b)| = 1, (43)
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∑
b∈{−1,1}t·M

ψ3(b)χS(b) = 0 for each |S| ≤ d3 and (44)

ψ3(b) < 0 for each b ∈ F−1(−1). (45)

Now let ψ4 denote a dual witness to the fact that d̃eg.99(ORM/t) = Ω(
√
M/t). As observed in

[15, Theorem 5.1], any dual witness for this fact will have one-sided error, but on the side opposite

from the one we used to define õdeg. Thus there is some d4 = Ω(
√
M/t) such that the following

equations hold: ∑
w∈{−1,1}M/t

ψ4(w) ORM/t(w) > .99, (46)

∑
w∈{−1,1}M/t

|ψ4(w)| = 1, (47)

∑
w∈{−1,1}M/t

ψ4(w)χS(w) = 0 for each |S| ≤ d4 and (48)

ψ4(1) > 0. (49)

Finally, we combine the dual witnesses ψ4 and ψ3 to obtain the desired function ψ5:

ψ5(z1, . . . , zM/t) := 2M/tψ4(. . . , s̃gn(ψ3(zi)), . . . )

M∏
i=1

|ψ3(zi)|, (50)

where zi = (zi,1, . . . , zi,t·M ).

Analysis of ψ5. The analysis in [12] immediately implies that ψ5 has L1-norm equal to 1, has
pure high degree at least d3 · d4 = Ω

(
M/
√
t
)

= Ω
(
M/
√

log n
)
, and that the correlation of ψ5 with

OR-AND2,M2 is at least .99− 2−t ≥ .98. We claim that ψ5 satisfies an additional property, which

formalizes the notion that ψ5 has “almost no error on the wrong side”. Let A−1 = {z ∈ {−1, 1}M2
:

ψ5(z) < 0,OR-AND2,M2(z) = 1}. We will show that:∑
z∈A−1

|ψ5(z)| ≤ 1/n100. (51)

To establish Eq. (51), we first collect some observations. Let B−1 = {zi ∈ {−1, 1}M ·t : ψ3(zi) <
0, F (zi) = 1}.

• Observation 1: For every z = (z1, . . . , zM/t) ∈
(
{−1, 1}t·M

)M/t
in A−1, the following property

must hold: zi ∈ B−1 for every i such that ψ3(zi) < 0. This holds because F (zi) = 1 for all
i ∈ {1, . . . ,M/t}, since OR-AND2,M2(z) = 1.

• Observation 2: For every z = (z1, . . . , zM/t) ∈
(
{−1, 1}t·M

)M/t ∈ A−1, there must exist a zi
such that ψ3(zi) < 0. This is because, if ψ3(zi) ≥ 0 for all i ∈ {1, . . . ,M/t}, then ψ5(z) agrees
in sign with ψ4(1) > 0 (see Eq. (49)), contradicting the assumption that z ∈ A−1.
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• Observation 3: Let µ be the distribution on {−1, 1}M2
defined via: µ(z1, . . . , zM/t) =

∏M/t
i=1 |ψ3(zi)|.

Since ψ3 is balanced, the string (. . . , s̃gn(ψ3(zi)), . . . ) is distributed uniformly in {−1, 1}M/t

when one samples z = (z1, . . . , zM/t) according to µ.

• Observation 4: Because ψ3 has correlation 1 − 1/n100 with F (see Eq. (42)), the following
equation holds: ∑

zi∈B−1

|ψ3(zi)| ≤ 1/2n100.

• Observation 5: As in the proof of Theorem 1, let µ(z|w) denote the probability of z under µ,
conditioned on (. . . , s̃gn(ψ3(zi)), . . . ) = w. If z ∼ µ(·|w) for some string w where wi = −1,
then the probability that F (zi) = 1 when s̃gn(ψ3(zi)) = wi is 2

∑
zi∈B−1

|ψ3(zi)|.

Thus, we may write:

∑
z∈A−1

|ψ5(z)| =
∑
z∈A−1

2M/t|ψ4(. . . , s̃gn(ψ3(zi)), . . . )|
∏
i

|ψ3(zi)|

≤
∑

w∈{−1,1}M/t,w 6=1

|ψ4(w)| · Pr
z∼µ(·|w)

[zi ∈ B−1 ∀i : wi = −1]

≤
∑

w∈{−1,1}M/t
|ψ4(w)| · 1/n100 ≤ 1/n100.

Here, the equality holds by definition of ψ5 (see Eq. (50)), the first inequality holds by Obser-
vations 1, 2 and 3, the second inequality holds by Observations 4 and 5, and the fourth inequality
holds because the L1 norm of ψ4 is 1 (see Eq. (47)).

Bounding the Correlation of ψ7 with AND-OR3,n. Using Equation Eq. (51), it is possible to
adapt the analysis of [12] to show that

∑
x ψ7(x) AND-OR3,n(x) > .95. The goal of the analysis is

to show that ∑
x

ψ7(x) AND-OR3,n(x) ≈
∑

a∈{−1,1}M
ψ6(a) ANDM (a) > .99. (52)

To this end, let A−1 = {z ∈ {−1, 1}M2
: ψ5(z) < 0,OR-AND2,M2(z) = 1} as above, and let A1 =

{z ∈ {−1, 1}2,M2
: ψ5(z) ≥ 0,OR-AND2,M2(z) = −1}. Notice that A1 ∪A−1 is the set of all inputs

z where the sign of ψ5(z) disagrees with OR-AND2,M2(z). Notice that
∑

z∈A1∪A−1
|ψ5(z)| ≤ .01

because ψ5 has correlation at least .98 with OR-AND2,M2 .

Let ν be the distribution on
(
{−1, 1}M2

)M
given by ν(x1, . . . , xM ) =

∏M
i=1 |ν(xi)|. Since ν is or-

thogonal to the constant polynomial, it has expected value 0, and hence the string (. . . , s̃gn(ψ5(xi)), . . . )
is distributed uniformly in {−1, 1}M when one samples (x1, . . . , xM ) according to ν. Let ν(xi|a)
denote the probability of xi under ν, conditioned on (. . . , s̃gn(ψ5(xi)), . . . ) = a.

For any given a ∈ {−1, 1}M , the following two random variables are identically distributed:
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• The string (. . . ,OR-AND2,M2(xi), . . . ) when one chooses (. . . , xi, . . . ) from the conditional
distribution ν(·|a).

• The string (. . . , yiai, . . . ), where y ∈ {−1, 1}M is a random string whose ith bit independently
takes on value −1 with probability 2

∑
xi∈Aai

|ν(xi)| ≤ .02.

Thus, the left hand side of Expression (52) equals∑
a∈{−1,1}M

ψ7(a) ·E[ANDM (. . . , yiai, . . . )], (53)

where y ∈ {−1, 1}M is a random string whose ith bit independently takes on value −1 with
probability 2

∑
xi∈Aai

|ψ(xi)| ≤ .02.

All a 6= −1M can be handled exactly as in [12] and [46] to argue that they contribute at least
(1− .02)ψ6(a) to the sum. The key property exploited here is that ANDM has low block-sensitivity
on these points, allowing us to apply the following proposition.

Proposition 22 ([46]). Let f : {−1, 1}M → {−1, 1} be a given Boolean function. Let y ∈ {−1, 1}M
be a random string whose ith bit is set to −1 with probability at most γ ∈ [0, 1], and to +1 otherwise,
independently for each i. Then for every a ∈ {−1, 1}M ,

Py[f(a1, . . . , aM ) 6= f(a1y1, . . . , aMaM )] ≤ 2γ bsa(f).

In particular, since bsa(ANDM ) = 1 for all a 6= −1M , Proposition 22 implies that for all
a 6= −1M , and a = ANDM , Py[f(a1, . . . , aM ) = f(a1y1, . . . , aMyM )] ≥ 1− .02.

We next argue that the term corresponding to a = −1M contributes at least (1−2M/n100)ψ6(a)
to Expression (53). By Eq. (51) and a union bound, for a = −1M , the yi’s are all −1 with
probability 1 − 2M/n100, and hence Ey[ANDM (. . . , yizi, . . . )] ≥ (1 − 2M/n100)ANDM (−1M ) =
−(1 − 2M/n100). By Eq. (40), s̃gn(ψ6(−1M )) = −1, and thus the term corresponding to a =
−1M contributes at least (1 − 2M/n100)ψ6(a) to Expression (26) as claimed. We conclude that∑

x ψ7(x) AND-OR3,n ≥ .97.

Completing the proof for d = 3. The proof that ψ7 has L1-norm 1 and has pure high degree at

least d5 · d6 = Ω
(
n1/2/ log1/2(n)

)
is identical to prior work [46] (see also Appendix B). Combined

with the fact that
∑

x ψ7(x) AND-OR3,n ≥ .97, we conclude that ψ7 is a dual witness to the fact

that d̃eg.95(AND-OR3,n) = Ω
(
n1/2/ log1/2(n)

)
.

The case of general d. For ease of exposition, we focus on the case where d is odd; the case of even
d is similar. To construct a dual witness proving that d̃eg(AND-ORd,n) = Ω(n1/2/ log(d−2)/2(n)),
we inductively assume that there exists a dual witness ψ′1 for the function G = AND-ORd−2,n1−2/d

satisfying the following properties for some d′1 = Ω(n(1−2/d)/2/ log(d−3)/2(n)).∑
y∈{−1,1}n1−2/d

ψ′1(y)G(y) > .99, (54)

∑
y∈{−1,1}n1−2/d

|ψ′1(y)| = 1, and (55)
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∑
y∈{−1,1}n1−2/d

ψ′1(y)χS(y) = 0 for each |S| ≤ d′1. (56)

In addition, define C1 = {y : ψ′1(y) > 0, G(y) = −1}. We assume inductively that∑
y∈C1

|ψ′1(y)| ≤ 2n1−2/d/n100. (57)

Eq. (57) intuitively captures the property that ψ′1 has “almost no error on the wrong side”. (We
clarify that when lower bounding the approximate degree of OR-ANDd,n rather than AND-ORd,n,
we replace the inductive hypothesis of Eq. (57) with the equivalent bound on

∑
y∈C−1

|ψ′1(y)|, where

C−1 = {y : ψ′1(y) < 0,OR-ANDd−2,n1−2/d(y) = 1}.)
As a base case of the induction, the dual witness ψ1 that we used in the case d = 3 clearly

satisfies the above properties (in fact, ψ1 had one-sided error, and therefore satisfied an even stronger
condition than Eq. (57)).

Now we set M = n1/d, and define ψ2, ψ3, . . . , ψ7 exactly as in the case d = 3, but with the
dual witness ψ′1 in place of the dual witness ψ1. That is, we let ψ2 : {−1, 1}t → R be defined via
ψ2(1) = 1/2, ψ2(−1) = −1/2, and ψ2(bi) = 0 for all other bi ∈ {−1, 1}t. We define

ψ3(b1, . . . , bt) := 2tψ2(. . . , s̃gn(ψ′1(bi)), . . . )
M∏
i=1

|ψ′1(bi)|,

where bi = (bi,1, . . . , xi,M ). We define ψ4 to be a dual witness to the fact that d̃eg.99(ORM/t) =

Ω(
√
M/t) for t = 100 log n. We define ψ5 exactly as in Eq. (50). We define ψ6 to be a dual witness

to the high one-sided approximate degree of ANDM , and we define ψ7 exactly as in Eq. (41).

As above, ψ7 has L1-norm 1 and pure high degree at least d′1 · d4 · d6 = Ω
(
n1/2/ log(d−2)/2(n)

)
.

Here, d′1 = Ω
(
n(1−2/d)/2/ log(d−3)/2(n)

)
denotes the pure high degree of ψ′1, d4 = Ω

(
(M/t)1/2

)
denotes the pure high degree of ψ4, and d6 = Ω

(
M1/2

)
denotes the pure high degree of ψ6.

The analysis that ψ7 has large correlation with AND-ORd,n proceeds identically to the above,
with one modification. In the case of d = 3, ψ1 had one-sided error, so we could directly invoke our
hardness amplification result (Theorem 1) to conclude that ψ3 also had one-sided error, as well as
correlation 1 − 2−t with the target function ORt(G, . . . , G). In the case of general d, ψ′1 does not
have one-sided error. However, ψ′1 “almost” has one-sided error, as formalized by Eq. (57). It is
straightforward to modify the proof of Theorem 1 to show though ψ′1 satisfies a weaker condition
than did ψ1, the dual witness ψ3 nonetheless satisfies the following properties.

Let B−1 = {zi ∈ {−1, 1}n1−2/d·t : ψ3(zi) < 0,ORt(G, . . . , G)(zi) = 1}, and let B1 = {zi ∈
{−1, 1}n1−2/d·t : ψ3(zi) > 0,ORt(G, . . . , G)(zi) = −1}. Then:

•
∑

zi∈B−1
|ψ3(zi)| ≤ 2−t.

•
∑

zi∈B1
|ψ3(zi)| ≤ t · 2n1−2/d/n100.

That is, ψ3 has error exponentially small in t on one side, and the error on the other side blows
up by at most a factor of t relative to ψ1. This permits us to obtain a variant of Eq. (51), namely:∑

z∈A−1

|ψ5(z)| ≤ 2tM/n100, (58)
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where as above A−1 is defined to via:

A−1 = {z ∈ {−1, 1}n1−1/d
: ψ5(z) < 0,OR-ANDd−1,n1−1/d(z) = 1}.

The remainder of the analysis establishing that ψ7 has high correlation with AND-ORd,n is now
the same as in the case d = 3. In addition, Eq. (58) ensures that the inductive hypothesis holds
for depth d+ 1 (by setting ψ′1 within the construction at depth d+ 1 equal to ψ5). This completes
the induction and the proof.

9 Conclusion

Approximate degree is an important measure of the complexity of a Boolean function, and as
highlighted above, it has numerous applications throughout theoretical computer science. We have
established a generic form of hardness amplification for approximate degree: a way of taking a
Boolean circuit that cannot be pointwise approximated by low-degree polynomials to within con-
stant error in a certain one-sided sense, and constructing a deeper circuit that cannot be pointwise
approximated even with very high error. We used this hardness amplification result to obtain new
bounds on the discrepancy and threshold weight of AC0, as well as to obtain new lower bounds
for read-once DNFs and AND-OR trees of constant depth. Moreover, our hardness amplification
techniques pave the way for further progress – they will automatically translate new lower bounds
on the one-sided approximate degree of AC0 into new bounds on the threshold weight and dis-
crepancy of AC0. For example, our techniques show that an Ω̃(n) lower bound on the one-sided

approximate degree of AC0 would imply an exp
(

Ω̃(
√
n)
)

lower bound on the threshold weight of

AC0 and an exp
(
−Ω̃(
√
n)
)

upper bound on the discrepancy of AC0.

Our results naturally open a number of important directions for future work. In this paper, we
exhibited a depth-three circuit F (consisting of an OR of disjoint copies of Element Distinctness)

with threshold weight W (F, n2/5) = exp
(

Ω̃
(
n2/5

))
. This bound is tight in the sense that there

exists a PTF of degree Õ(n2/5) and weight exp
(
Õ(n2/5)

)
that computes F . However, we conjecture

that F in fact has threshold degree Ω̃(n2/5); that is, for a sufficiently small constant c, we conjecture
that W (F, cn2/5/ log n) = ∞. Such a lower bound would represent the first super-polylogarithmic
improvement over Minsky and Papert’s seminal Ω(n1/3) lower bound on the threshold degree of

AC0 from 1968 [31,34].
Another interesting problem is to determine the discrepancy of polynomial-size DNF formulas.

We showed an exp
(
−Ω̃(n2/5)

)
upper bound for the discrepancy of polynomial-size depth-three

circuits, but for DNFs the best known upper bound remains exp
(
−Ω(n1/3)

)
, while the best known

lower bound is exp
(
−Õ(n1/2)

)
(this follows from an intermediate result of Klivans and Servedio

[23]). Closing this gap would settle O’Donnell and Servedio’s question of whether the Generalized

Winnow or Perceptron algorithms can learn DNF formulas in time exp
(
Õ(n1/3)

)
.
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A One-Sided Approximate Degree of Element Distinctness

Improving on results of Aaronson and Shi [2], Ambainis [4] showed that the Element Distinct-
ness problem with small range has approximate degree Ω̃(n2/3). Recall that the Element Dis-
tinctness problem on input size n = N logN , where N is a power of 2, takes as input N blocks of
length logN and evaluates to −1 if and only if the blocks are distinct. We will show that there is a
dual witness Ψ for the high approximate degree of Element Distinctness having one-sided error.
Hence, this dual witness actually demonstrates that Element Distinctness has high one-sided
approximate degree.

The idea is that any dual witness for Element Distinctness can be “symmetrized” to produce
a new dual witness Ψ that is constant on inputs x ∈ T , where T is the set of inputs for which
Element Distinctness evaluates to true. We then use the fact that Ψ is balanced to argue that
the total correlation of Ψ with Element Distinctness is a constant multiple of the correlation
restricted to inputs in T . Since Ψ has positive correlation with Element Distinctness, it follows
that Ψ must have the correct sign on all inputs in T , as desired.

Formally, let ψ be a dual witness for the fact that f = Element Distinctness has ε-
approximate degree d = Ω̃(n2/3) for some constant ε. By Theorem 12,∑

x∈{−1,1}n
f(x)ψ(x) > ε, (59)

∑
x∈{−1,1}n

|ψ(x)| = 1, (60)

and ∑
x∈{−1,1}n

ψ(x)χS(x) = 0 for each |S| ≤ d. (61)

For any permutation σ ∈ SN , and x = (x1, . . . , xN ) ∈ {−1, 1}n, define

σ(x) = (xσ(1), . . . , xσ(N)).

That is, σ acts on {−1, 1}n by permuting the N blocks of length logN . Observe that for every
σ ∈ SN and every x ∈ {−1, 1}n,

f(σ(x)) = f(x). (62)

Now define the symmetrized dual witness

Ψ(x) = Eσ∈SN [ψ(σ(x))].

We will show that Ψ is a dual witness for f with one-sided error by checking the conditions of
Theorem 13. First,

∑
x∈{−1,1}n

Ψ(x)f(x) = Eσ∈SN

[∑
x

ψ(σ(x))f(x)

]

= Eσ∈SN

[∑
x

ψ(x)f(x)

]
by Eq. (62)

> ε by (59),
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verifying (4). Condition (5) is immediate from (60). Condition (6) follows because

∑
x∈{−1,1}n

Ψ(x)χS(x) = Eσ∈SN

[∑
x

ψ(x)χσ(S)(x)

]

where σ(S) = {σ(i) : i ∈ S} and from (61).
Finally, we check the one-sided error condition (7). We will first show that Ψ is constant on

f−1(−1). Let x∗ = (x∗1, . . . , x
∗
N ) where x∗i is the binary encoding of i. Since there are only N

distinct strings of length logN , f(x) = −1 if and only if x = σx(x∗) for some σx ∈ SN . Therefore,
if f(x) = −1, then

Ψ(x) = Eσ∈SN [ψ(σ(x))] = Eσ∈SN [ψ((σ ◦ σx)(x∗))] = Ψ(x∗),

so Ψ is constant on f−1(−1).
By condition (4) it holds that∑

x∈f−1(1)

Ψ(x)−
∑

x∈f−1(−1)

Ψ(x) > ε,

and by condition (5) applied to χS for S = ∅ it holds that∑
x∈f−1(1)

Ψ(x) +
∑

x∈f−1(−1)

Ψ(x) = 0.

Subtracting the second equation from the first, we conclude that

−2
∑

x∈f−1(−1)

Ψ(x) > ε.

Since Ψ is constant on f−1(−1), this implies that Ψ(x) < 0 whenever x ∈ f−1(−1), proving (7).

B Final Details of the Proof of Theorem 1

B.1 Proof of Equation 21

Let µ be the distribution on ({−1, 1}m)t given by µ(x1, . . . , xt) =
∏t
i=1 |ψ(xi)|. Since ψ is orthogonal

to the constant polynomial, it has expected value 0, and hence the string (. . . , s̃gn(ψ(xi)), . . . ) is
distributed uniformly in {−1, 1}t when one samples (x1, . . . , xt) according to µ. Thus,∑

(x1,...,xt)∈({−1,1}m)t

|ζ(x1, . . . , xt)| =
∑

z∈{−1,1}t
|Ψ(z)| = |Ψ(1)|+ |Ψ(−1)| = 1,

proving Eq. (21).
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B.2 Proof of Equation 22

We prove that the polynomial ζ defined in Eq. (24) satisfies Eq. (22), reproduced here for conve-
nience. ∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt) = 0 for each |S| ≤ d. (22)

To prove Eq. (22), notice that since Ψ is orthogonal on {−1, 1}t to constant functions, we have
the Fourier representation

Ψ(z) =
∑

T⊆{1,...,t}
T 6=∅

Ψ̂(T )χT (z)

for some reals Ψ̂(T ). We can thus write

ζ(x1, . . . , xt) = 2t
∑
T 6=∅

Ψ̂(T )
∏
i∈T

ψ(xi)
∏
i/∈T

|ψ(xi)|.

Given a subset S ⊆ {1, . . . , t}× {1, . . . ,m} with |S| ≤ d, partition S = ({1}×S1)∪ · · · ∪ ({t}×St)
where each Si ⊆ {1, . . . ,m}. Then∑

(x1,...,xt)∈({−1,1}m)t

ζ(x1, . . . , xt)χS(x1, . . . , xt)

= 2t
∑
T 6=∅

Ψ̂(T )
∏
i∈T

 ∑
xi∈{−1,1}m

ψ(xi)χSi(xi)


︸ ︷︷ ︸

∏
i/∈T

 ∑
xi∈{−1,1}m

|ψ(xi)|χSi(xi)

 .

Since |S| ≤ d, we have that |Si| ≤ d for every index i ∈ {1, . . . , t}. Thus for each set T , at least
one of the underbraced factors is zero, as χSi is orthogonal to ψ whenever |Si| ≤ d.

C Degree Independent Threshold Weight Bounds via Duality

In this section, we use the dual characterization of threshold weight to give a new proof of a version
of Krause’s result translating degree-d threshold weight lower bounds for a function F into degree
independent threshold weight lower bounds for a related function F ′. Specifically, we prove the
lemma

Lemma 19. Let F : {−1, 1}n → {−1, 1} be a Boolean function, and define F ′ : {−1, 1}3n →
{−1, 1} by

F ′(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) := F (. . . , (z̄i ∧ xi) ∨ (zi ∧ yi), . . . ).

Then

W (F ′)2 ≥ min

{
W (F, d)

2n
, 2d
}
.
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Proof. By Theorem 16 (condition (14)), it suffices to exhibit a distribution µ′ over {−1, 1}3n for
which

|E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)]| ≤ max

{(
2n

W (F, d)

)1/2

, 2−d/2

}
for all S ⊆ {1, . . . , 3n}.

We construct the distribution µ′ as follows. By condition (15) of Theorem 16, there is a
probability distribution µ over {−1, 1}n such that

|Ew∼µ[F (w)χS(w)]| ≤
(

2n

W (F, d)

)1/2

for each |S| ≤ d. (63)

Define µ′(x, y, z) = 2−2nµ(Selz(x, y)), where Selz(x, y) = (. . . , (z̄i∧xi)∨(zi∧yi), . . . ) selects for each
index in [n] a bit from either x or y according to z. The distribution µ′ has a natural interpretation
as follows: it first selects the string z uniformly at random from {−1, 1}n. Next, it sets the values of
the variables in (x, y) that are selected by z so that they are distributed according to the distribution
µ. Finally, it sets the values of the unselected variables in (x, y) uniformly at random.

Note that µ′ is indeed a probability distribution, as for every string w ∈ {−1, 1}n, there are
exactly 22n strings (x, y, z) for which Selz(x, y) = w. Moreover, this observation allows us to write

E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)] = 2−2n

∑
w∈{−1,1}n

F (w)µ(w)
∑

(x,y,z):Selz(x,y)=w

χS(x, y, z).

Write S as the disjoint union ({1} × S1) ∪ ({2} × S2) ∪ ({3} × S3) where S1, S2, S3 correspond to
indices in x, y, z respectively. Then the expectation becomes

2−2n
∑

z∈{−1,1}n
χS3(z)

∑
w∈{−1,1}n

F (w)µ(w)
∑

(x,y):Selz(x,y)=w

χS1(x)χS2(y)

︸ ︷︷ ︸
Let G(z) denote the underbraced sum.

Suppose there is an index i ∈ S3 that is not contained in S1 ∪ S2. Then for every z ∈ {−1, 1}n,
the string zi obtained from z by flipping the bit at index i satisfies χS3(zi) = −χS3(z). On the
other hand, for any (x, y) ∈ {−1, 1}2n, if we set x′ = (x1, . . . , xi−1, yi, xi+1, . . . , xn) and analogously
set y′ = (y1, . . . , yi−1, xi, yi+1, . . . , yn), then Selz(x, y) = Selzi(x

′, y′). Moreover, because i 6∈ S1∪S2,
it holds that χS1(x′)χS2(y′) = χS1(x)χS2(y). It follows that G(z) = G(zi), as each term (x, y) in
the underbraced sum defining G(z) is “matched” by term (x′, y′) in the underbraced sum defining
G(zi). When combined with the fact that χS3(zi) = −χS3(z), we see that the terms corresponding
to z and zi in the outer sum cancel out, and hence the entire outer sum evaluates to zero. We
conclude that for the expectation to be nonzero, we must have S3 ⊆ S1 ∪ S2, and we assume this
holds for the remainder of the proof.

Consider any i ∈ S1. Then we claim that G(z) = 0 whenever zi selects yi, i.e., for any z such
that zi = −1. This can be seen by another pairing argument: If Selz(x, y) = w but zi selects yi,
then Selz(x

i, y) = w as well. However, χS1(x) = −χS1(xi) because i ∈ S1. This ensures that the
innermost sum is zero and hence G(z) = 0. The analogous statement holds also for any i ∈ S2,
so for G(z) to be nonzero, it must hold that zi = 1 for all i ∈ S1 and zi = −1 for all i ∈ S2.
Below, we refer to such a z as a “contributing” z, and all other values of z as “non-contributing”.
In particular, we must have S1 ∩ S2 = ∅ for z to be contributing.
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For any fixed contributing z, it holds that∑
(x,y):Selz(x,y)=w

χS1(x)χS2(y) = 2nχS1∪S2(w).

Therefore, it holds that

|E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)]| = 2−2n

∣∣∣∣∣∣
∑

z∈{−1,1}n
χS3(z)G(z)

∣∣∣∣∣∣
≤ 2−n

∑
z:G(z)6=0

∣∣∣∣∣∣
∑

w∈{−1,1}n
F (w)µ(w)χS1∪S2(w)

∣∣∣∣∣∣
≤ 2−|S1|−|S2|

∣∣∣∣∣∣
∑

w∈{−1,1}n
F (w)µ(w)χS1∪S2(w)

∣∣∣∣∣∣ , (64)

where inequality (64) used the fact that G(z) = 0 for any non-contributing z.
Now we consider two cases for the size of S. First suppose |S| ≤ d, so in particular, |S1∪S2| ≤ d.

Then Eq. (63) and inequality (64) implies that

|E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)]| ≤

(
2n

W (f, d)

)1/2

.

Second, suppose that |S| > d. We have argued that if E(x,y,z)∼µ′ [F
′(x, y, z)χS(x, y, z)] 6= 0, then

S3 ⊆ S1 ∪ S2. Hence, it must be the case that |S1|+ |S2| ≥ |S|/2 > d/2. Therefore, inequality (64)
implies that E(x,y,z)∼µ′ [F

′(x, y, z)χS(x, y, z)] ≤ 2−d/2. This completes the proof.
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