
Simulating Quantum Circuits with Sparse Output Distributions

Martin Schwarz∗1 and Maarten Van den Nest†2

1Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Austria
2Max Planck Institut für Quantenoptik, Hans-Kopfermann-Str. 1, D-85748 Garching, Germany

Abstract

We show that several quantum circuit families can be simulated efficiently classically if it is promised that their
output distribution is approximately sparse i.e. the distribution is close to one where only a polynomially small,
a priori unknown subset of the measurement probabilities are nonzero. Classical simulations are thereby obtained
for quantum circuits which—without the additional sparsity promise—are considered hard to simulate. Our results
apply in particular to a family of Fourier sampling circuits (which have structural similarities to Shor’s factoring
algorithm) but also to several other circuit families, such as IQP circuits. Our results provide examples of quantum
circuits that cannot achieve exponential speed-ups due to the presence of too much destructive interference i.e. too
many cancelations of amplitudes. The crux of our classical simulation is an efficient algorithm for approximating the
significant Fourier coefficients of a class of states called computationally tractable states. The latter result may have
applications beyond the scope of this work. In the proof we employ and extend sparse approximation techniques,
in particular the Kushilevitz-Mansour algorithm, in combination with probabilistic simulation methods for quantum
circuits.

1 Introduction
In this paper we present classical algorithms for the simulation of several related classes of quantum circuits containing
blocks of Quantum Fourier Transforms (QFTs). In particular, we consider n-qubit circuits with a QFT-Toffoli-QFT−1

block structure followed by a (partial) measurement immediately after the final QFT. Circuits of this kind are used in
various quantum algorithms, most notably Shor’s factoring algorithm. Whereas the circuits considered in this paper are
unlikely to have an efficient classical simulation in general, the aim of this work is to analyze under which additional
conditions an efficient classical simulation becomes possible. This provides an approach to identify features which
are essential in the (believed) superpolynomial speed-ups achieved by, say, the factoring algorithm. In this paper we
will in particular place restrictions on the output distribution of the circuit. In short, our results are as follows: given
the promise that the output distribution is approximately sparse (or “peaked”)—in the sense that only O(poly(n)) of
the O(2n) probabilities have significant magnitude of Ω(1/poly(n))—then an efficient classical simulation algorithm
is provided. Not unexpectedly, Shor’s algorithm does not satisfy such sparseness promise i.e. its output distribution is
“superpolynomially flat”. Our results thus imply that the approximate sparseness promise alone suffices to bring down
the (believed) superpolynomial speed-up achieved by the factoring algorithm to the realm of a classically simulatable
quantum computation. Below we provide a discussion of how our findings shed light on the factoring algorithm (see
Section 2).

The implications of our results are twofold. First, they pose restrictions on the design of fast quantum algorithms.
For example, our results show that any exact quantum algorithm adopting the QFT-Toffoli-QFT−1 block structure
(or more generally the structures considered in Theorems 1-4) which has as its output state a single computational
∗m.schwarz@univie.ac.at
†maarten.vandennest@mpq.mpg.de

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 154 (2013)

basis state containing the answer of the problem, can never achieve an exponential quantum speed-up. Given the
generality of the class of circuits considered, we believe that these classical simulation results may provide useful
insights for the quantum algorithms community. Second, the present results have conceptual implications as follows:
the exponential speed-up found in quantum algorithms is often related to the availability of interference of probability
amplitudes in this model. Indeed in several quantum algorithms, first a superposition of states is created using a QFT,
then amplitudes are manipulated in some nontrivial way using reversible (classical) gates, such that in a final QFT, by
means of interference, only desired basis states survive whereas the amplitudes for undesired states cancel out. Our
results imply that this qualitative picture has to be refined, since too much cancelation leading to only a few classical
output states (let alone a single one!) can in fact be simulated efficiently classically, and thus cannot offer exponential
speed-up. Indeed, our results imply that the final probability distribution must necessarily have super-polynomially
large support (e.g. in the same order as the full state space), in order to allow for exponential speed-up. Finally,
since only polynomially many measurements can be performed efficiently on the output state—and thus only a small
fraction of the necessarily large number of states can be sampled—the output distribution must have a special structure
such that meaningful information can be recovered from just a few measurements. Notably, the coset state produced by
Shor’s algorithm (and its generalizations) has group structure which is indeed exploited in the classical post-processing
step to recover the entire state space from just a few measurements (cf. Section 2).

The proof techniques we use to obtain our results are twofold. First, we use randomized classical simulation
methods for Computationally Tractable (CT) states as developed in [VdN11]. Furthermore the latter methods are
combined with algorithms for sublinear sparse Fourier transforms (SFTs), which have been pioneered in seminal work
by Goldreich-Levin [GL89] and Kushilevitz-Mansour [KM91] and which have been refined throughout the last two
decades [Man95, GGI+02, AGS03, GMS05, AGGM06, Iwe10, Aka10, HIKP12b, HIKP12a]. Our work also provides
further extensions of the above sparse approximation techniques.

Whereas to our knowledge this is the first paper which analyzes the effect of (approximate) sparseness of the
output distribution on the classical simulability of quantum circuits, from a more general point of view several works
are related to the present paper (e.g. in terms of the class of quantum circuits considered or in terms of the techniques
used). For example, a relevant series of papers regards [YS07, ALM06, Bro07], that all focus on efficient classical
simulation of the QFT with the aim of understanding better the workings of Shor’s factoring algorithm. In the latter
context, see also [VdN12, BVN12] for classical simulations of a class of circuits involving QFTs over finite abelian
groups supplemented with a particular family of group-theoretic operations (Normalizer circuits). Classical simulation
of CT states were considered in [VdN11] by one of us. In the latter work, the algorithms from Goldreich-Levin
[GL89] and Kushilevitz-Mansour [KM91] were applied in the context of classical simulation, albeit in a rather different
context compared to the present paper, namely to analyze the role of the classical postprocessing for quantum speed-
ups (more particularly in Simon’s algorithm). Further work on CT states is done in [Sta13]; the latter work also
analyzes the role of interference effects in quantum speed-ups (although from a different perspective then the present
paper). Below we will also make statements about classical simulability of IQP (Instanteneous Quantum Polynomial-
time) circuits. In [BJS11] it was shown (roughly speaking) that general IQP circuits cannot be simulated efficiently,
unless the polynomial hierarchy collapses. In contrast, here we show that IQP circuits with an additional sparseness
promise on the output distribution, are efficiently simulable classically. Finally, in [MO10] the authors consider and
generalize prior work on SFTs in a different direction i.e. unrelated to classical simulation issues; they prove a quantum
Goldreich-Levin theorem and use it for efficient quantum state tomography for quantum states that are approximately
sparse in the Pauli product operator basis.

2 Main results: statements and discussion
We prove four theorems, all similar in spirit, about efficient classical simulability of classes of quantum circuits with
a promise on the (approximate) sparseness of the output distributions and/or the output states. We call a probability
distribution over 2n events t-sparse, if only t probabilities are nonzero, and ε-approximately t-sparse if the probability
distribution is ε-close in `1-distance to a t-sparse one. Throughout this paper we will work with qubit systems and
sometimes indicate where generalizations of definitions and results to d-level systems are possible. The computational
basis states of an n-qubit system are denoted by |x〉 where x = x1 · · ·xn is an bit string. The set of n-bit strings will
be denoted by Bn.

2

A key concept we build upon in this work are computationally tractable states introduced in [VdN11], which
capture two key properties of simulable quantum states:

Definition 1 (Computationally Tractable (CT) states). An n-qubit state |ψ〉 is called ‘computationally tractable’ (CT)
if the following conditions hold:

1. it is possible to sample in poly(n) time with classical means from the probability distribution P = {px : x ∈
Bn} defined by px = |〈x|ψ〉|2, and

2. upon input of any bit string x, the coefficient 〈x|ψ〉 can be computed in poly(n) time on a classical computer.

The definition of CT states is straightforwardly generalized to states of systems of qudits. Several important
state families are CT: matrix product states with polynomial bond dimension, states generated by poly-size Clifford
circuits, states generated by poly-size nearest-neighbor matchgate circuits, states generated by bounded tree-width
circuits (where all aforementioned circuits act on standard basis inputs). For definitions of these classes and proofs
that they are CT states, we refer to [VdN11]. Further examples of CT states are states generated by normalizer circuits
over finite Abelian groups (acting on coset states) [VdN12, BVN12].

Example 1. For our purposes it will be especially useful to point out that the following classes of states are CT
[VdN11].

(i) Let |x〉 be an arbitrary n-qubit computational basis state, let F denote the quantum Fourier transform over Z2k

for some k ≤ n (acting on any subset of k qubits) and let T be a poly-size circuit of classical reversible gates
(e.g. Toffoli gates), then the state T F|x〉 is CT.

(ii) Let f : Bn → {1,−1} be a classically efficiently computable function, then the state |ψf 〉 = 1√
2n

∑
f(x)|x〉,

where the sum is over all n-bit strings x, is CT.

One may also consider a notion of CT states in the presence of oracles (see also [BH13]). We say that an n-
qubit state |ψ〉 is f -CT given access to an oracle f : {0, 1}m → {0, 1} (with m = poly(n)) if conditions (a)-(b) in
Definition 1 hold when allowing, instead of poly-time classical computations, poly-many queries to the oracle. For
example, if the function f in (ii) is given as an oracle, the state |ψf 〉 in Example 1 is trivially f -CT.

Based on these definitions, we are now ready to state our main results.

Sparse output distributions
Theorem 1. Consider a unitary n-qubit quantum circuit composed of two blocks C = U2U1 with input state |ψin〉.
Suppose that the following conditions are fulfilled:

(a) the state U1|ψin〉 obtained after applying the first block is CT;

(b) the second block U2 is a QFT (or QFT−1) modulo 2k, for some k ≤ n, applied to any subset S of k qubits. The
circuit is followed by a measurement of the qubits in S in the computational basis, giving rise to a probability
distribution P .

(c) The distribution P is promised to be ε-approximately t-sparse for some ε ≤ 1/6 and for some t (and otherwise
no information about P is available).

Then there exists a randomized classical algorithm with runtime poly(n, t, 1/ε, log 1
δ) which outputs (by means of

listing all nonzero probabilities) an s-sparse probability distribution P ′ where s = O(t/ε); with probability at least
1 − δ, the distribution P ′ is O(ε)-close to P . Furthermore, it is possible to sample P ′ on a classical computer in
poly(n, t, 1/ε) time.

Thus, if the sparseness t is at most polynomially large in n, if the error ε is at worst polynomially small in n, and
if δ = 2−poly(n), then the classical simulation is efficient i.e. it runs in poly(n) time, and the probability of failure is
exponentially small.

3

rev. circuit
(e.g. Toffoli,

CNOTs)

Figure 1: Shor’s algorithm [Sho99] consists of (1) a quantum Fourier transform (QFT) on a subset of qubits, (2) a
block of reversible gates (a modular exponentiation circuit), and (3) an inverse QFT on the same subset qubits. Note
that the state |ψ〉 obtained after the first QFT is a computationally tractable (CT) state. Thus conditions (a) and (b) of
Theorem 1 are satisfied. However the output distribution of Shor’s algorithm is not sparse in general, as required by
our algorithm (cf. condition (c)).

We emphasize that, apart from the promise (c), no information about the structure of P is a priori available. For
example, suppose that P is promised to be approximately 1-sparse, where a distribution is 1-sparse if there exists a
single bit string x∗ which occurs with probability 1 and all other bit strings have probability 0. Then, crucially, we
do not assume knowledge of the bit string x∗, i.e a priori all (potentially exponentially many in n!) bit strings are
equally likely. Perhaps surprisingly, Theorem 1 implies that a good approximation of P can nevertheless be efficiently
computed.

Since several circuit families satisfy condition (a) (recall examples above and see [VdN11]), Theorem 1 yields
an efficient classical simulation of various types of circuits. For example, letting |ψin〉 be an arbitrary computational
basis input, the block U1 may be e.g. any poly-size Clifford circuit, nearest-neighbor matchgate circuit or bounded-
treewidth circuit. A particularly interesting class of circuits, denoted byAShor, is depicted in Figure 1. Note that Shor’s
factoring algorithm belongs to the class AShor. It is easily verified that, for any AShor circuit, the state of the quantum
register immediately before the second QFT is CT (recall Example 1 (i) from above). Thus any circuit in AShor
which, in addition, satisfies the sparseness condition (c) of Theorem 1 can be simulated efficiently classically. Upon
closer inspection of Shor’s factoring algorithm, one finds that its output distribution PShor generally contains super-
polynomially many nonzero probabilities and thus (non-surprisingly) Theorem 1 does not yield an efficient classical
simulation of the factoring algorithm. More precisely, the size of the support of the flat distribution PShor equals the
multiplicative order r of a randomly chosen integer x modulo N . For a general integer N , the order is conjectured to
be Ω(N/ log(N)) on average over all N [Arn05, KP13]. In the case of RSA, with N = pq, the primes p and q might
be chosen such that w.h.p. r ≈ N/4 [Sho11]. Nevertheless it is interesting that the mere promise of (approximate)
sparsity of the output distribution suffices to arrive at an efficient classical simulation for all AShor circuits, without
otherwise restricting the allowed operations. This implies that the feature that PShor is sufficiently flat is an essential
ingredient in the (believed) superpolynomial speed-up achieved by Shor’s factoring algorithm.

Another observation is the following. Any quantum circuit A satisfying (a)-(b) in Theorem 1 (for example any
AShor circuit) which, when implemented on a quantum computer, aspires to deliver a superpolynomial speed-up over
classical computers, must generate a distribution P which cannot be well-approximated by a poly(n)-sparse distribu-
tion. At the same time, at most poly(n) repetitions ofA are allowed if the total computational cost is to be polynomially
bounded, yielding only poly(n) samples of P . In other words, one only has access to ‘few’ samples of a distribution
which has support on a ‘large’ number of outputs. Yet somehow these few samples should contain sufficient infor-

4

mation to extract the final result of the computation with high probability (working within the standard bounded-error
setting). This point is nicely illustrated by considering again the factoring algorithm (or more generally the abelian
hidden subgroup algorithm). Here the output distribution is (close to) the uniform distribution over an unknown group
H (and determining this group is essentially the goal of the algorithm) and the final measurement only yields a small
set of O(log |H|) randomly chosen elements of H . However, since such a small set of randomly generated group
elements is with high probability a generating set of the group, a small number of measurements indeed suffices to
determine the entire group H .

Theorem 1 can be extended by allowing the block U2 to comprise tensor product operations, instead of the QFT:

Theorem 2. The conclusions of Theorem 1 also apply if condition (b) is replaced by

(b’) the second block U2 is an arbitrary tensor product unitary operation U2 = u1⊗· · ·⊗un. The circuit is followed
by a measurement of an arbitrary subset of qubits S in the computational basis, giving rise to a probability
distribution P .

In addition, the conclusions of Theorem 1 also apply when U2 is a tensor product operation as in (b’), but now for
quantum algorithms operating on the Hilbert space H = Cd1 ⊗ · · · ⊗Cdn with di = O(1) but otherwise arbitrary,
i.e. H is a system of n qudits of possibly different dimensions.

A first example of the setting considered in Theorem 2 regards the family of IQP circuits (Instantaneous Quantum
Polynomial time [SB09]). Here the input is an n-qubit computational basis state |x〉 and the circuit consists of gates of
the form exp[iθT] where θ is an arbitrary real parameter and where T is a tensor product of the form T = T1⊗· · ·⊗Tn
with Ti ∈ {I,X}. Since X = HZH , every IQP circuit C can be written as C = H⊗nC′H⊗n where C′ is obtained
by replacing each gate exp[iθT] by exp[iθT ′] where T ′ = T ′1 ⊗ · · · ⊗ T ′n with T ′i = HTiH . Thus T ′ is a tensor
product of Z operators and identity gates and hence each gate eiθT

′
is diagonal in the computational basis. Setting

U1 := C′H⊗n and U2 := H⊗n we find that conditions (a)-(b’) of Theorem 2 are fulfilled; indeed it is straightforward
to show that C′H⊗n|x〉 is a CT state. Thus Theorem 2 shows that any IQP circuit with an approximately sparse output
distribution can be simulated efficiently classically. This result is particularly interesting when compared to a hardness-
of-simulation result obtained for general IQP circuits (i.e. without sparseness promise) in [BJS11]. In the latter
work it was shown that an efficient, approximate classical simulation of IQP circuits (w.r.t. a certain multiplicative
approximation) would imply a collapse of the polynomial hierarchy.

A second example of the setting considered in Theorem 2 is the following. Consider a finite, possibly non-abelian
group G given as a direct product of n individual groups, G = G1 × · · · × Gn where the order of each Gi is O(1).
Define a Hilbert space HG with computational basis vectors |g〉 = |g1〉 ⊗ · · · ⊗ |gn〉 labeled by group elements
g = (g1, . . . , gn) ∈ G. The space HG is naturally associated with a tensor product of n individual spaces, each of
constant dimension. We may now consider quantum circuits of the following kind. The total Hilbert space isHG⊗Hn
whereHn is an n-qubit system. In analogy to Figure 1, we consider circuits of the block structure C = A3A2A1 where
A1 is the QFT over G acting on the registerHG, A2 is an arbitrary poly-size circuit of classical reversible gates acting
on the entire system and A3 is the inverse QFT over G. The input is |1G, 0n〉 where 1G is the neutral element in G
and 0n denotes the all-zeros n-bit string; the circuit is followed by measurement of the system HG in the basis {|g〉}.
Circuits of this kind are are of interest in the context of quantum algorithms for the (non-abelian) Hidden subgroup
problem (see e.g. [AMR07, Lom04]). For a definition of the QFT over a finite group we refer to e.g. [MRR06]; here
it suffices to mention that the QFT over a product group G = G1×· · ·×Gn is a tensor product operator. Furthermore
it is easily verified (recall also the discussion on CT states above) that condition (a) in Theorem 1 is satisfied with
U1 ≡ A2A1. Thus Theorem 2 implies that any quantum circuit of this kind which has an approximately sparse output
distribution can be simulated classically. This gives an example of a quantum circuit family comprising non-abelian
QFTs (albeit of a restricted kind) which can be simulated classically. For other examples of simulations of non-Abelian
QFTs we refer to [BV11].

Sparse output states
Let us present two more results regarding quantum circuits of the kinds considered in Theorem 1 and Theorem 2,
when promised that the output state is approximately sparse. In this case we show how an approximation of the latter
output state can be efficiently determined by means of a classical randomized algorithm.

5

An n-qubit state |ϕ〉 is called ε-approximately t-sparsee if there exists a state |ϕ′〉 which is ε-close to |ψ〉 and for
which at most t amplitudes 〈x|ϕ′〉 (with |x〉 computational basis states) are nonzero (see also section 4).

Theorem 3. Consider a unitary n-qubit quantum circuit composed of two blocks C = U2U1 with input state |ψin〉.
Suppose that the following conditions are fulfilled:

(a) the state U1|ψin〉 obtained after applying the first block is CT;

(b) the second block U2 is the QFT modulo 2n or its inverse.

(c) The final state |ψout〉 = C|ψin〉 is promised to be
√
ε-approximately t-sparse for some ε ≤ 1/6 and some t.

Then there exists a randomized classical algorithm with runtime poly(n, t, 1/ε, log 1
δ) which outputs (by means of

listing all nonzero amplitudes) an s-sparse state |ψ〉 which, with probability at least 1 − δ, is O(
√
ε)-close to |ψout〉,

where s = O(t/ε).

Theorem 4. The conclusions of Theorem 3 also apply if condition (b) is replaced by

(b’) the second block U2 is an arbitrary tensor product unitary operation U2 = u1 ⊗ · · · ⊗ un.

In addition, the conclusions of Theorem 3 also apply when U2 is a tensor product operation as in (b’), but now for
quantum algorithms operating on the Hilbert spaceH = Cd1 ⊗ · · · ⊗Cdn with di = O(1) but otherwise arbitrary.

Theorem 3 and Theorem 4 are closely connected to an important result in theoretical computer science, namely
the Kushilevitz-Mansour (KM) algorithm [KM91]: if one has oracle access to a Boolean function f : Bn → {1,−1}
which is promised to have an approximately sparse Fourier spectrum, it is possible to compute a sparse approximation
of f in polynomial time. We connect our result to Kushilevitz-Mansour by considering Theorem 4 for an n-qubit
system where

|ψin〉 ≡ |ψf 〉 =
1

2n/2

∑
x

f(x)|x〉 (1)

is a CT state, U1 ≡ I and U2 ≡ H⊗n where H is the Hadamard gate. Then Theorem 4 implies that if H⊗n|ψf 〉
is promised to be approximately sparse, then a sparse approximation of the latter state can be computed efficiently.
This is effectively (a version of) the KM result, stated in the language of quantum computing. Similarly, Theorem 3
relates to a version of the KM result [Man95] considered for transformations of Boolean functions under the Fourier
transform over Z2n . The proof method of the KM theorem, suitably generalized to our setting at hand, will be an
important tool for us.

Computing significant weights
Whereas Theorems 1 to 4 involve a promise about the approximate sparseness of the output distributions/states, our
final result does not. The following theorem asserts that, for CT states expanded in the Fourier basis, it is possible to
efficiently determine (in a suitable approximate and probabilistic sense) all Fourier coefficients which are larger than
some threshold value; a similar result also holds for CT states expanded in product bases. The result is in the present
paper mainly used as a technique in the proof of Theorems 3 and 4 (similar to the proof of Kushilevitz-Mansour).
However we believe it may be of independent interest, given the broadness of the class of CT states and the frequent
usage of Fourier transforms.

Let Z2n denote the cyclic group of integers modulo 2n. Any n-bit string x is identified with an element of Z2n via
the binary expansion. Recall that the quantum Fourier transform over Z2n is the following n-qubit unitary operator:

F2n =
1√
2n

∑
x,y∈Z2n

exp

(
2πixy

2n

)
|x〉〈y |. (2)

and the Fourier basis is simply the orthonormal basis {|Fx〉 : x ∈ Bn} defined by |Fx〉 = F2n |x〉.

6

Theorem 5. Let |ψ〉 be an n-qubit CT state and consider its expansion in the Fourier basis:

|ψ〉 =
∑

ψ̂x|Fx〉. (3)

There exists a randomized classical algorithm with runtime poly(n, 1θ , log 1
π) which outputs a list L = {x1, . . . , xl}

where l ≤ 2/θ and where each xi is an n-bit string such that, with probability at least 1− π:

(a) for all y ∈ L, it holds that |ψ̂x|2 ≥ θ
2 ;

(b) every k-bit string x satisfying |ψ̂x|2 ≥ θ belongs to the list L;

Furthermore, given any x ∈ Bn, there exists a classical algorithm with runtime poly(n, 1/ε, log 1
δ) which, with

probability at least 1− δ, outputs an ε-approximation of ψ̂x. Finally, the above results also holds if the Fourier basis
is replaced by a product basis {U |x〉} where U = U1 ⊗ · · · ⊗ Un is an arbitrary tensor product unitary operator.

3 Proof outline and organization of the paper
In Section 4 we discuss ε-approximately t-sparse distributions and states. A key property will be Lemma 7 where we
show that the large probabilities contain most of the information of an approximately sparse distribution i.e. discarding
the small probabilities does not introduce too much error.

It will be a key point in our proofs that the output distributions of the quantum circuits considered in Theorems 1
to 4, as well as a suitable subset of their marginal distributions, are what will be called here additively approximable.
The latter are distributions whose individual probabilities can be efficiently approximated with a randomized classical
algorithm with a performance in terms of error and success probability which is similar to the one given by the Cher-
noff bound. Our analysis of additively approximable distributions (Section 5 and Section 6), which is a significant
component in the proofs of our main results, will not make reference to quantum computing (the latter is done as of
Section 7). In Section 5, we introduce the notion of additively approximable distributions and develop their properties.
An important feature will be established in Theorem 10 where we show that, for any probability distribution which is
itself additively approximable and for which a designated subset of its marginals are additively approximable as well,
it is possible to efficiently determine (in a suitable approximate sense) those probabilities which are larger than some
given, sufficiently large, threshold value. This lemma, in combination with Lemma 7 mentioned above, will yield an
efficient algorithm to (approximately) sample any ε-approximately t-sparse distribution which is additively approx-
imable and whose marginals are as well; this algorithm is given in Section 6 (Theorem 11). The results developed in
Section 5 to Section 6 will follow the general proof idea of the Kushilevitz-Mansour theorem [KM91, GL89].

In Section 7 we recall classical simulation properties of CT states. Finally, in Section 8 the proofs of our main
results are given: the main strategy is to show that the output distributions of the circuits considered in our main
theorems, as well as their marginals, are additively approximable.

4 Approximate sparseness

4.1 Basic definitions
We call a quantum state |ϕ〉 t-sparse (relative to the computational basis), if at most t amplitudes 〈x|ϕ〉 are nonzero.
We will use the standard `2-norm as as the natural distance measure for two pure states. Thus we will call two quantum
states |ϕ〉, |ψ〉 ε-close, if ‖|ϕ〉 − |ψ〉‖2 ≤ ε. We call a normalized pure state |ϕ〉 ε-approximately t-sparse if there
exists a, not necessarily normalized, t-sparse vector which is ε-close to |ϕ〉. In this paper we will mostly be interested
in a sparseness t which scales at most polynomially with the number of qubits n, and in an error ε which is worst
polynomially small in n. Note that in the definition of approximate sparseness we allow the t-sparse vector to be an
unnormalized state (this will be a convenient definition in our proofs). However, if |ϕ〉 is ε-approximately t-sparse
and if ε is sufficiently small (namely ε ≤ 0.5), there always exists a normalized t-sparse state |ϕ′〉 which isO(ε)-close
to |ϕ〉 as well (see Section 4.2).

7

Similar to sparse quantum states, we call a probability distribution P = {px : x ∈ Bn} on the set of n-bit strings
t-sparse if at most t of its probabilities px are nonzero. The distance between two probability distributions P and P ′
will be measured in terms of the total variation distance, defined by

‖P − P ′‖1 =
∑
|px − p′x|. (4)

We say thatP is ε-approximately t-sparse if there exists a t-sparse vector v = (vx : x ∈ Bn) such that
∑
|px−vx| ≤ ε.

The entries vx may a priori be arbitrary complex numbers. However, similar to above, if P is ε-approximately t-sparse
and if ε is sufficiently small, there always exists a normalized probability distribution P ′ which is t-sparse and such
that ‖P − P ′‖1 ≤ O(ε) (see Section 4.2).

The support of a probability distribution P = {px : x ∈ Bn} is the set of all x for which px 6= 0. If A ⊆ Bn, the
restriction of P to A is the subnormalized distribution {qx : x ∈ Bn} defined by

qx =

{
px if x ∈ A
0 otherwise. (5)

Similarly, the support of an n-qubit state is the set of all x for which 〈x|ϕ〉 6= 0. If A ⊆ Bn, the restriction of |ϕ〉 to A
is the subnormalized state ∑

x∈A
〈x|ϕ〉|x〉. (6)

4.2 Basic properties
Let P = {px : x ∈ Bn} be an arbitrary probability distribution. Let At ⊆ Bn be a subset which, roughly speaking,
contains t bit strings corresponding to the t largest probabilities of P . More formally, At satisfies the properties (i)
|At| = t and (ii) px ≥ py for all x ∈ At and y /∈ At. Note that there may be more than one set At with this
property (e.g. if multiple probabilities happen to be equal). For our purposes the particular choice of At will however
be irrelevant. Let P[t] denote the restriction of P to At. Note that P[t] is t-sparse. Furthermore it is straightforward
to show that, for any t-sparse vector v = (vx : x ∈ Bn) (where the vx may be arbitrary complex numbers), one
has ‖P[t] − P‖1 ≤ ‖v − P‖1 i.e. P[t] has minimal distance to P among all such t-sparse v’s. It follows that P is
ε-approximately t-sparse iff

‖P − P[t]‖1 ≤ ε. (7)

Next we show that, for any ε-approximately t-sparse distribution P with ε ≤ 0.5 there always exists a t-sparse
normalized distribution P ′ which is O(ε)-close to P . To see this, set P ′ := P[t]/‖P[t]‖1. Owing to eq. (7) we have

1− ε ≤ ‖P[t]‖1 ≤ 1. (8)

We then find

‖P ′ − P‖1 =
‖P[t]− ‖P[t]‖1 · P‖1

‖P[t]‖1
≤ ‖P[t]− ‖P[t]‖1 · P‖1

1− ε

≤ ‖P[t]− P‖1
1− ε

+
(1− ‖P[t]‖1) · ‖P‖1

1− ε
≤ 2ε

1− ε
. (9)

Here in the equality we used the definition of P[t]; in the first inequality we used eq. (8); in the second inequality we
used the triangle inequality; finally we used eq. (7) and eq. (8). Then, if ε ≤ 0.5, we have ‖P ′ − P‖1 ≤ 4ε.

Let |ϕ〉 be an n-qubit state. In analogy with above, let At ⊆ Bn be a subset which, roughly speaking, contains t
bit strings corresponding to the t largest amplitudes of |ϕ〉. More formally, At satisfies (i) |At| = t and (ii) |〈x|ϕ〉| ≥
|〈y|ϕ〉| for all x ∈ At and y /∈ At. Letting |ϕ[t]〉 denote the restriction of |ϕ〉 to At, it is straightforward to show that
|ϕ[t]〉 has minimal `2-distance to |ϕ〉 among all t-sparse vectors. It follows that |ϕ〉 is ε-approximately t-sparse iff

‖|ϕ〉 − |ϕ[t]〉‖2 ≤ ε. (10)

8

Fully analogous to above, for any ε-approximately t-sparse state |ϕ〉 with ε ≤ 0.5 there always exists a t-sparse
normalized state |ϕ′〉 which is O(ε)-close to |ϕ〉. The state |ϕ′〉 := |ϕ[t]〉/‖|ϕ[t]〉‖2 does the job.

Let |ϕ〉 be an n-qubit pure state and let P be the probability distribution arising from measuring all qubits of
|ϕ〉 in the computational basis. We may then ask whether P is approximate sparse or whether the full state |ϕ〉 is
approximately sparse, where in the former case closeness is measured w.r.t. total variation distance and in the latter
case it is measured w.r.t. `2 distance. Next we show that both notions of approximate sparseness are equivalent up to
a square-root rescaling of the accuracy ε (which is mostly harmless if one is ultimately interested in ε = 1/poly(n),
as we will mostly be in this paper).

Lemma 6. Let |ϕ〉 be an n-qubit pure state and let P be the probability distribution arising from measuring all qubits
of |ϕ〉 in the computational basis. Then |ϕ〉 is

√
ε-approximately t-sparse (relative to the `2-distance, as above) iff P

is ε-approximately t-sparse (relative to the total variation distance, as above).

Proof. Define px = |〈x|ϕ〉|2 for all x. As above, let At be a set of t n-bit string satisfying px ≥ py for all x ∈ At
and y /∈ At. This is (trivially) equivalent to |〈x|ϕ〉| ≥ |〈y|ϕ〉| for all x ∈ At and y /∈ At. Let P[t] denote the
restriction of P to At and similarly |ϕ[t]〉 is the restriction of |ϕ〉 to At. Recall that |ϕ〉 is

√
ε-approximately t-sparse

iff ‖|ϕ〉 − |ϕ[t]〉‖2 ≤
√
ε and that P is ε-approximately t-sparse iff ‖P − P[t]‖1 ≤ ε. A straightforward application

of definitions now shows that ‖|ϕ〉 − |ϕ[t]〉‖2 = ‖P − P[t]‖, since both expressions coincide with∑
x/∈At

|〈x|ϕ〉|2. (11)

This shows that ‖|ϕ〉 − |ϕ[t]〉‖2 ≤
√
ε iff ‖P − P[t]‖1 ≤ ε.

4.3 Sparse distributions have large coefficients
The next lemma shows that, for an approximately sparse probability distribution, the ‘small’ probabilities can be ig-
nored without introducing much error. This property will be important in the proof of our main results, in combination
with Theorem 10 which states that the large probabilities can be efficiently computed for certain distributions. The
following lemma is also closely related to [KM91, Lemma 3.11]

Lemma 7. Let P = {px : x ∈ Bn} be an ε-approximately t-sparse probability distribution. Define Bε,t to be the
subset of all bit strings x such that px ≥ ε/t. Define the subnormalized distribution Qε,t to be the restriction of P to
Bε,t. Then Qε,t is O(ε)-close to P . More precisely ‖Qε,t − P‖1 ≤ 2ε.

Proof. Let At ⊆ Bn and P[t] be defined as in Section 4.2. Recall that ‖P[t] − P‖1 ≤ ε owing to the approximate
sparseness of P . Furthermore construct P ′ as follows: start from P[t] and set all probabilities with magnitudes ≤ ε

t
to zero; let C denote the support of P ′. Note that C ⊆ At and thus |At \ C| ≤ t. Furthermore px ≤ ε/t for every
x ∈ At \ C. Then

‖P − P ′‖1 ≤ ‖P − P[t]‖1 + ‖P[t]− P ′‖1
≤ ε+

∑
x∈At\C

px ≤ ε+ t · ε
t

= 2ε. (12)

Note also that C ⊆ Bε,t since px ≥ ε/t for all x ∈ C. Thus both P ′ and Qε,t are restrictions of P , and that the
support Bε,t of Qε,t contains the support C of P ′. This implies that ‖P − Qε,t‖1 ≤ ‖P − P ′‖1. Together with (12)
this proves the result.

An analogous result holds for approximately sparse quantum states. We do not make it explicit here since it will
not be needed in our proofs of the main results.

9

5 Additively approximable probability distributions

5.1 Definition and basic properties
The Chernoff-Hoeffding bound is a basic tool in probability theory which will be used in this work. Whereas the
bound is usually stated for real-valued random variables, here we state a simple generalization to the complex-valued
case, which follows from the real-valued case by bounding real and imaginary parts of independently.

Lemma 8 (Chernoff-Hoeffding bound). Let X1, . . . , XT be i.i.d. complex-valued random variables with E := EXi

and |Xi| ≤ 1 for every i = 1, . . . , T . Then with T = 4
ε2 log(4

δ) we have

Pr

{∣∣∣∣∣ 1

T

T∑
i=1

Xi − E

∣∣∣∣∣ ≤ ε
}
≥ 1− δ

A proof of Lemma 8 can be found in Appendix A. The main application of the Chernoff bound used in this work will
be in the following context. Let F : Bn → C be an efficiently computable complex function (i.e. computable in
polynomial time on a deterministic classical computer) satisfying |F (x)| ≤ 1 for all x ∈ Bn and let P := {px : x ∈
Bn} be a probability distribution on the set of n-bit strings which can be sampled in poly(n) time on a randomized
classical computer. Then a direct application of the Chernoff-Hoeffding bound shows that there exists a classical
randomized algorithm to estimate

〈F 〉 :=
∑

pxF (x) (13)

with error ε and probability at least 1 − δ in poly(n, 1ε , log 1
δ) time. This means that in poly(n) time it is possible to

achieve an accuracy ε = 1/poly(n) and exponentially small failure probability δ = 2−poly(n).
Next we introduce a definition for functions that are approximable with randomized classical algorithms having a

performance in terms of error ε and failure probability δ that is analogous to those obtained by applying the Chernoff
bound (see also [BFLW05] for a related notion of additive approximations).

Definition 2. A function f : Bn → C is said to be additively approximable if their exists a randomized classical
algorithm with runtime poly(n, 1/ε, log 1

δ) which, on input of an n-bit bit string x, outputs with probability at least
1 − δ an ε-approximation of f(x). A probability distribution P = {px} on the set of n-bit strings is said to be
additively approximable if the function x→ px is additively approximable.

Note that any P which can be sampled classically in poly(n) time is additively approximable since each individual
probability can essentially be computed by sampling the distribution. More precisely, to estimate px, write px =∑
δ(x, y)py where δ(x, y) equals 1 if x = y and 0 otherwise. We have thus rewritten px as the expectation value of

F ≡ δ(x, ·) which is a poly(n)-time computable function satisfying |F (x)| ≤ 1 for all x ∈ Bn. The discussion above
Definition 2 then immediately implies that P is additively approximable.

In the example discussed in eq. (13) we found that 〈F 〉 can be efficiently approximated provided that F was
efficiently computable on a deterministic computer. In the following lemma it is shown that the same performance in
estimating 〈F 〉 can be achieved even when F is only additively approximable. The argument is a basic application of
the Chernoff bound.

Lemma 9. Let F : Bn → C be an additively approximable function and let P := {px : x ∈ Bn} be a probability
distribution which can be sampled in poly(n) time on a classical computer. Then there exists a classical randomized
algorithm to estimate 〈F 〉 :=

∑
pxF (x) with error ε and probability 1− δ in poly(n, 1ε , log 1

δ) time.

Proof. By generating K = O(1
ε2 log 1

δ) bit strings x1, . . . , xK from the distribution P , the inequality∣∣∣∣∣ 1

K

K∑
i=1

F (xi)− 〈F 〉

∣∣∣∣∣ ≤ ε/2 (14)

holds with probability at least 1−δ/2, owing to the Chernoff bound. Then, for each xi we compute a complex number
ci satisfying |ci − F (xi)| ≤ ε

2 with probability at least 1− δ/(2K). Since F is additively approximable, each ci can

10

be computed in time

T = poly(n, 2ε , log 2K
δ) = poly(n, 1ε , log 1

δ). (15)

Thus the total runtime of computing all values ci is KT = poly(n, 1ε , log 1
δ). The total probability that each ci is

ε
2 -close to F (xi) and that (14) holds is at least

(1− δ
2) · (1− δ

2K)K ≥ (1− δ
2) · (1− δ

2) ≥ 1− δ (16)

where we have repeatedly used that (1− a)r ≥ 1− ra for all positive integers r and for all a ∈ [0, 1]. It follows that,
with probability at least 1− δ, we have

| 1

K

K∑
i=1

ci − 〈F 〉| ≤ ε (17)

by using the triangle inequality.

5.2 Estimating large coefficients
The following theorem contains the property of additive approximations which is most important for our purposes.
It is a statement that, for distributions which are additively approximable and for which also (a designated subset of)
the marginals are additively approximable, there exists an efficient algorithm to determine those probabilities which
are larger than some given threshold value. The proof technique is a type of binary search algorithm which is a direct
generalization of the proof of the Kushilevitz-Mansour algorithm [KM91].

Theorem 10. Let P = {px : x ∈ Bk} be a probability distribution. Let Pm denote the marginal probability
distribution of the first m bits, for every m ranging from 1 to k (with Pk ≡ P). Suppose that all distributions Pm are
additively approximable. Then the following holds: given θ, π > 0, there exists a randomized classical algorithm with
runtime poly(k, 1θ , log 1

π) which outputs a list L = {x1, . . . , xl} where l ≤ 2/θ and where each xi is an k-bit string
such that, with probability at least 1− π:

(a) for all y ∈ L, it holds that p(y) ≥ θ
2 ;

(b) every k-bit string x satisfying p(x) ≥ θ belongs to the list L;

Proof. For any integer m ≤ k we denote by p(x1 · · ·xm) the marginal probability of the bit string x1 · · ·xm. We
point out the basic fact that

p(x1 · · ·xm−1) ≥ p(x1 · · ·xm−1xm) (18)

for all m and for all xj’s.
The algorithm will consist of k steps. In each step we construct a list Lm containing a certain collection of m-bit

strings, where m ranges from 1 to k. The final list Lk will satisfy (a)-(b) with probability at least 1 − π. In the
algorithm we will repeatedly invoke that each Pm is additively approximable; whenever an additive approximation of
any Pm will be considered, we will set the required probability of success to be at least 1 − δ with δ := θπ/2k and
the accuracy to be ε := θ/4. Each single estimate of such a probability can be done in time

Nsingle = poly(k,
1

ε
, log

1

δ
) = poly(k,

1

θ
, log

1

π
). (19)

Step 1. The listL1 ⊆ B1 ≡ {0, 1} is computed as follows. We use thatP1 is additively approximable and compute
p(0) (i.e. the probability of the outcome 0 on the first bit). More formally, we compute a number c(0) satisfying

|c(0)− p(0)| ≤ θ/4 (20)

11

with probability at least 1− δ. If c(0) ≥ 3θ/4 then define the bit 0 to belong to the list L1. Analogously we compute
c(1) as an approximation of p(1) and add the bit 1 to L1 if c(1) ≥ 3θ/4.

Step 2. To compute the list L2 ⊆ B2 ≡ {00, 01, 10, 11} we use that P2 is additively approximable as follows. For
every x ∈ L1 and u ∈ {0, 1} we compute an θ/4-approximation of p(xu) with probability at least 1 − δ, yielding a
number c(xu) in analogy to Step 1. If c(xu) ≥ 3θ/4 then we add the bit pair xu to the list L2.

Steps 3-k. The above procedure is continued for all m = 3 · · · k where in the m-th step we use that Pm is
additively approximable. To compute the list Lm ⊆ Bm, for every x1 · · ·xm−1 ∈ Lm−1 and u ∈ {0, 1} we
compute c(x1 · · ·xm−1u), which is an θ/4-approximation of p(x1 · · ·xm−1u) with probability at least 1 − δ. If
c(x1 · · ·xm−1u) ≥ 3θ/4 then we add the bit string x1 · · ·xm−1u to the list Lm.

Finally, if at some point in the above algorithm one of the lists Lm contains strictly more than 2/θ elements, the
algorithm is halted and all subsequent lists Lm+1, . . . , Lk are defined to be empty. With this extra constraint, we
ensure that at most 2k/θ probabilities are estimated. It follows that the total runtime of the algorithm is

2k

θ
·Nsingle = poly(k,

1

θ
, log

1

π
). (21)

Furthermore, since at most 2k/θ probabilities are estimated, each succeeding with probability 1 − δ, the probability
that all estimates succeed is at least (1− δ) 2k

θ ≥ 1− 2k
θ δ = 1− π.

From this point on we consider the case that all estimates succeed, and claim that in this case the listLk satisfies (a)-
(b). We make the following observations. First, for every m we prove property (a’): For all x1 · · ·xm ∈ Lm it holds
that p(x1 · · ·xm) ≥ θ/2. This is true since c(x1 · · ·xm) is an θ

4 -approximation of p(x1 · · ·xm) and since x1 · · ·xm
was only added to Lm if c(x1 · · ·xm) ≥ 3θ/4. Property (a’) implies that the list Lk satisfies (a). Furthermore, property
(a’) implies that every list Lm contains at most 2/θ bit strings (since probability distributions are normalized to sum
up to 1). This shows that, as long as all estimates of the probabilities are successful, the halting procedure described
above need never be applied (indeed, the latter is only incorporated in the algorithm to ensure that successive failed
estimations of probabilities do not result in an (exponentially) long runtime).

Second, we argue that each Lm satisfies property (b’): If p(x1 · · ·xm) ≥ θ then x1 · · ·xm ∈ Lm. To see this,
we argue by induction on m. For m = 1, property (b’) follows immediately from the definition of L1. Furthermore
suppose that y = y1 · · · ym satisfies p(y) ≥ θ. Then, using eq. (18) we have p(y1 · · · ym−1) ≥ θ and thus, by
induction, we have y1 · · · ym−1 ∈ Lm−1. The definition of Lm now immediately implies that y1 · · · ym ∈ Lm. This
shows that property (b’) holds for all Lm, so that Lk satisfies (b) as desired.

6 Algorithm for additively approximable, approximately sparse distribu-
tions

We now arrive at an efficient algorithm which, on input of a probability distribution P which is promised to be
approximately sparse and which satisfies the conditions of Theorem 10, outputs an (exactly) sparse distribution P ′
which is close to P . In addition, the distribution P ′ can be sampled efficiently. The proof will be obtained by
combining Theorem 10 and Lemma 7. The argument is straightforward but somewhat tedious since some care is
required in choosing suitable epsilons and deltas. We also note that Theorem 11 is closely related to theorem 3.11 in
[KM91], which provides a randomized classical algorithm for computing representations of Boolean functions which
are promised to be approximately sparse.

Theorem 11. Let P be a distribution on Bk which satisfies the following conditions:

(i) P is promised to be ε-approximately t-sparse, where ε ≤ 1/6.

(ii) P and its marginals Pm (m = 1, . . . , k) are additively approximable as in Theorem 10.

Then there exists a randomized classical algorithm with runtime poly(k, t, 1ε , log 1
δ) which outputs (by means of listing

all nonzero probabilities) an s-sparse probability distributionP ′ = {p′x} where s = O(t/ε) such that, with probability
at least 1− δ, P ′ is O(ε)-close to P (more precisely ‖P −P ′‖1 ≤ 12ε). Furthermore, p′x ≥ ε/8t for all p′x which are
nonzero. Finally, it is possible to sample P ′ on a classical computer in poly(k, t, 1/ε) time.

12

Proof. First we invoke Theorem 10 with θ := ε/t and

π := δ
2t/ε+1 . (22)

This yields, with probability at least 1− π, a list L of k-bit strings satisfying conditions (a)-(b), within a runtime

N1 = poly(k, 1θ , log 1
π) = poly(k, t, 1ε , log 1

δ). (23)

Note that |L| ≤ 2t/ε. Second, since P is additively approximable, each individual probability px with x ∈ L can be
computed with success probability at least 1− π and with an error ε′ set to

ε′ := min{ε/|L|, ε/4t} (24)

in time

N2 = poly(k, 1
ε′ , log 1

π) = poly(k, t, 1ε , log 1
δ). (25)

This yields a list of numbers {cx : x ∈ L} such that |px − cx| ≤ ε′ for all x ∈ L if all evaluations were successful.
Up to this point, the runtime of the algorithm is N = N1 + |L|N2 which scales as poly(k, t, 1ε , log 1

δ), and the total
success probability is at least

(1− π)|L|+1 ≥ 1− (|L|+ 1)π ≥ 1− δ (26)

where we have used (22) and the property |L| ≤ 2t/ε. From this point on, the entire algorithm proceeds deterministi-
cally.

Define cx to be 0 for all x /∈ L and let C = {cx : x ∈ Bk} denote the resulting list of 2k coefficients. Now let
Qε,t = {qx} be the restriction of P toBε,t, whereBε,t is the set of strings satisfying px ≥ ε/t, as defined in Lemma 7.
Note that Bε,t ⊆ L (recall condition (b) of Theorem 10 and the fact that here θ = ε/t). Then

‖C − P‖1 =
∑
x∈L
|cx − px|+

∑
x/∈L

px ≤ |L| · ε′ +
∑
x/∈L

px

≤ ε+
∑
x/∈L

px ≤ ε+
∑
x/∈Bε,t

px = ε+ ‖P −Qε,t‖1 ≤ 3ε. (27)

Here in the first inequality we used that |cx − px| ≤ ε′ for all x ∈ L; in the second, we used the definition of ε′; in the
third, we used Bε,t ⊆ L; in the equality, we used the definition of Qε,t; finally, we used Lemma 7.

Since |cx−px| ≤ ε′ ≤ ε/4t (recall the definition of ε′) and since px ≥ ε/2t owing to condition (a) of Theorem 10,
we have cx ≥ ε/4t for every x ∈ L; in particular, all cx are nonnegative. Finally, we set P ′ to be C divided by its
1-norm ‖C‖1 =

∑
|cx|, so that P ′ is a proper probability distribution. Since P ′ is |L|-sparse, computing P ′ from

C can be done in O(|L|) =poly(t, 1/ε) time. Putting everything together, the total runtime for computing P ′ scales
as poly(k, t, 1ε , log 1

δ). We now show that P ′ is also O(ε)-close to P . The argument is straightforward and fully
analogous to the one in Section 4.2, cf. (8)-(9). Since ‖C − P‖1 ≤ 3ε and ‖P‖1 = 1 we have

1− 3ε ≤ ‖C‖1 ≤ 1 + 3ε. (28)

We then find

‖P ′ − P‖1 =
‖C − ‖C‖1 · P‖1

‖C‖1
≤ ‖C − ‖C‖1 · P‖1

1− 3ε

≤ ‖C − P‖1
1− 3ε

+
|1− ‖C‖1| · ‖P‖1

1− 3ε
≤ 6ε

1− 3ε
. (29)

Then, for ε ≤ 1/6, we have ‖P ′ − P‖1 ≤ 12ε. Note also that p′x ≥ ε/8t for all x ∈ L follows by combining the
inequalities cx ≥ ε/4t and ‖C‖ ≤ 1 + 3ε and ε ≤ 1/6.

Finally, we show how to sample P ′. For a bit string x1 · · ·xm with m between 1 and k, let p′(x1 · · ·xm) denote
the marginal probability of P ′ for obtaining x1 · · ·xm on the first m bits. Since P is s-sparse with s = O(t/ε), each
p′(x1 · · ·xm) can be computed from P ′ in poly(s) = poly(t, 1/ε) time on input of x1 · · ·xm. By a standard argument,
the property that all such marginals can be computed, allows to sample P ′ in poly(k, t, 1/ε) time [JVV86, Val02,
TD04].

13

7 Classical simulation of CT states
Here we review two classical simulation results for CT states which will be used in the proofs of our results. An
n-qubit unitary operator U is said to be efficiently computable basis-preserving if there exist efficiently computable
functions f, f ′ : Bn → Bn and g, g′ : Bn → C where |g(x)| = 1 = |g′(x)| for all x ∈ Bn, such that, for every
computational basis state |x〉, one has

U |x〉 = g(x)|f(x)〉 and U†|x〉 = g′(x)|f ′(x)〉 (30)

A notable example of efficiently computable basis preserving operations is given by operators comprising tensor
products of Pauli matrices 1, X, Y, Z.

Lemma 12 ([VdN11]). Let |ψ〉 and |ϕ〉 be CT n-qubit states and let A be an efficiently computable basis-preserving
n-qubit operation. Then there exists a randomized classical algorithm with runtime poly(n, 1/ε, log 1

δ) which outputs
an approximation of 〈ψ |A|ϕ〉 with accuracy ε and success probability at least 1− δ.

Lemma 13 ([VdN11]). Let |ψ〉 and |ϕ〉 be CT n-qubit states, let |ξ〉 and |χ〉 be CT k-qubit states with k ≤ n.
Then there exists a randomized classical algorithm with runtime poly(n, 1/ε, log 1

δ) which outputs an approximation
of 〈ϕ|[|ξ〉〈χ| ⊗ 1]|ψ〉 with accuracy ε and success probability at least 1− δ.

The above results are slightly more detailed then the corresponding results in [VdN11] since the latter reference
does not provide explicit information about the scaling with ε and δ. For completeness, proofs of Lemma 12 and
Lemma 13 (which are straightforward extensions of the proofs in [VdN11]) are given in Appendix B.

8 Proofs of main results

8.1 Proof of Theorem 1
The proof will be obtained by showing that the output distribution of any quantum circuit considered in Theorem 1
satisfies the conditions of Theorem 11. We introduce some further basic definitions. For any positive integer d, let Xd,
Zd be generalized Pauli operators (also known as Weyl operators) [Got99], which act on the d-level computational
basis states |x〉 (with x ∈ Zd) as follows

Xd|x〉 = |x+ 1〉 (31)

Zd|x〉 = e
2πi
d x|x〉 (32)

where x + 1 is defined modulo d. Note that the order of both Xd is d (i.e. is the smallest integer r ≥ 2 satisfying
Xr
d = I is precisely d), as is the order of Zd. Let Fd denote the Fourier transform over Zd. A straightforward

application of definitions [Got99] shows that

F†dZdFd = Xd. and FdZdF†d = X†d. (33)

Theorem 1 now follows immediately from Theorem 11 in combination with the following result:

Lemma 14. Let P be a probability distribution on Bk arising from a quantum circuit satisfying conditions (a)-(b) in
Theorem 1. Let Pm denote the marginal distributions arising from measurement of the firstm qubits, form = 1, . . . , k
(with P ≡ Pm). Then each Pm is additively approximable.

Proof. Without loss of generality we let S be the set of first k qubits. For a k-bit string x = (x1, . . . , xk), consider the
associated k-bit integer x̂ := x120 +x22 + · · ·+xk2k−1. The standard basis states of a k-qubit system will be labeled
both by the set of k-bit strings x and the associated integers x̂ depending on which formulation is most convenient.
Below we will use the basic fact that, for any m = 1, . . . , k,

x̂ mod 2m = x120 + · · ·+ xm2m−1. (34)

14

Let m ∈ {1, . . . , k}. For an m-bit string y = y1 · · · ym, consider the projector (acting on k qubits)

|y1 · · · ym〉〈y1 · · · ym| ⊗ I ≡ P (y) (35)

where I denotes the identity on the last k −m qubits. Thus P (y) is the projector onto those k-qubit computational
basis states |x〉 where the first m bits of x coincide with y. Owing to (34), this means that P (y) is the projector on
those computational |x〉 satisfying x̂ mod 2m = ŷ, where ŷ := y120 + · · · + ym2m−1. Let Z2k ≡ Z and X2k ≡ X

denote the generalized Pauli operators acting on C2k . A straightforward application of the definition of Z shows that

x̂ mod 2m = ŷ iff αŷZ2k−m |x̂〉 = |x̂〉 with α := e−
2πi
2m . (36)

This implies that P (y) coincides with the projector onto the eigenspace of M := αŷZ2k−m with eigenvalue 1. This
projector can be obtained by averaging over all powers of M ; since the order of M is 2m (recall that the order of Z is
2k), this implies that

P (y) =
1

2m

2m−1∑
u=0

Mu. (37)

Let F ≡ F2k denote the Fourier transform modulo 2k. We consider the scenario where F is applied in the block U2;
the case where F† is applied is treated in full analogy and is omitted here. Denoting N := αŷX2k−m (i.e. we replace
Z by X ≡ X2k in the definition of M) and recalling the first identity of eq. (32) we find

F†P (y)F =
1

2m

2m−1∑
u=0

Nu. (38)

Now denote the n-qubit CT state generated after application of the block U1 by |CT〉. Furthermore denote the marginal
probability of obtaining the bit string y when measuring the first m qubits at the end of the circuit by p(y). Then

p(y) = 〈CT|[F†P (y)F]⊗ I|CT〉 (39)

where I denotes the identity acting on the last n− k qubits. Using Lemma 14 we find

p(y1 · · · ym) =
1

2m

2m−1∑
u=0

〈CT|Nu ⊗ I|CT〉. (40)

It easily follows from the definition of N that each Nu ⊗ I is efficiently computable basis-preserving (as defined
in section 7). Together with Lemma 12 this implies that the function u ∈ Z2m → 〈CT|Nu ⊗ I|CT〉 is additively
approximable. But then Lemma 9 implies that y → p(y) is additively approximable as well.

8.2 Proof of Theorem 2
Similar to the proof of Theorem 1, also the proof of Theorem 2 follows immediately by showing that the output
distribution of any quantum circuit considered in Theorem 2 satisfies the conditions of Theorem 11. The latter is done
next.

Lemma 15. Let P be a probability distribution on Bk arising from a quantum circuit satisfying conditions (a)-(b’) in
Theorem 2. Let Pm denote the marginal distributions arising from measurement of the firstm qubits, form = 1, . . . , k
(with P ≡ Pm). Then each Pm is additively approximable.

Proof. We prove the result for qubit systems; the proof will carry over straightforwardly to systems of qudits of
potentially different dimensions. Without loss of generality we let S be the set of first k qubits. For an m-bit string
y = y1 · · · ym with m ≤ k, let p(y) denote the marginal probability of the outcome y1 · · · ym when measuring the first
m qubits at the end of the circuit. We need to show that the function y → p(y) is additively approximable. Denote the

15

CT state generated after application of the block U1 by |CT〉. Since U2 = u1 ⊗ · · · ⊗ un is a tensor product operator
and since |y〉 is a product state, we have

p(y) = 〈CT|U†[|y〉〈y | ⊗ 1]U |CT〉 = 〈CT||α〉〈α| ⊗ 1|CT〉 (41)

for some m-qubit tensor product state |α〉 (with efficiently computable description). Since product states are CT,
Lemma 13 immediately implies that y → p(y) is additively approximable.

8.3 Proof of Theorem 3 and Theorem 4
Lemma 16. Let |CT〉 be an n-qubit CT state, let U = U1 ⊗ · · · ⊗ Un be a unitary tensor product operator and
let F denote the Fourier transform modulo 2n. Then the following functions are additively approximable (where
x = x1 · · ·xn is an n-bit string):

x → 〈x|F|CT〉 (42)
x → 〈x|F†|CT〉 (43)
x → 〈x|U |CT〉. (44)

The last function is still additively approximable when generalized to tensor product operators acting on n qudit
systems with potentially different dimensions.

Proof. A straightforward application of definitions shows that the states F|x〉, F†|x〉 and U |x〉 are CT. The result then
immediately follows from Lemma 12 (with A being the identity).

Lemma 17. Let c, c′ be two complex numbers satisfying c 6= 0 and |c− c′| ≤ α for some α > 0. Let c = θ|c| where θ
is the phase of c and similarly c′ = θ′|c′|. Then |θ − θ′| ≤ 2α/|c|.

Proof. Since |c− c′| ≤ α, we have ||c| − |c′|| ≤ α. Then

|θ − θ′||c| = |c− θ′|c|| ≤ |c− c′|+ |c′ − θ′|c|| = |c− c′|+ ||c′| − |c|| ≤ 2α. (45)

Next we prove Theorem 3 and Theorem 4. Let |ψout〉 denote the final state in any of the settings considered in
Theorem 3 and Theorem 4. We write 〈x|ψout〉 = γx

√
px where γx is the phase and px the modulus squared, so that

P = {px} is the probability distribution arising from measuring all qubits of |ψout〉 in the computational basis. Since
|ψout〉 is

√
ε-approximately t-sparse, P is ε-approximately t-sparse by Lemma 6. Recalling Lemma 14 and Lemma 15,

we find that all conditions of Theorem 11 are fulfilled. Thus there exists a randomized classical algorithm with runtime
poly(n, t, 1ε , log 1

δ) which outputs an s-sparse probability distribution P ′ = {p′x} where s = O(t/ε) such that, with
probability at least 1− δ, ‖P ′−P‖1 ≤ 12ε. Let L be the list of bit strings as in the proof of Theorem 11. Recall from
the latter proof also the following properties: |L| ≤ 2t/ε; L is precisely the support of P ′; px ≥ ε/2t for every x ∈ L.

Thus far we have computed an approximationP ′ of the probability distributionP . Next we will also approximately
compute the amplitudes of |ψout〉 by employing Lemma 16. For every x ∈ L we compute a complex number ax
satisfying

|ax − 〈x|ψout〉| ≤
√
ε3/8t. (46)

Owing to Lemma 16, the function x → 〈x|ψout〉 is additively approximable. Therefore each individual ax can be
computed with success probability at least 1 − δ/|L| in time N = poly(n, t, 1ε , log 1

δ). Thus the total runtime for
computing all ax is |L|T = poly(n, t, 1ε , log 1

δ) and the total success probability is at least 1− δ. We then compute the
complex phase θx of each ax (which requires O(|L|) computational steps in total) and define the state

|ϕ〉 :=
∑
x∈L

θx
√
p′x|x〉. (47)

16

Note that |ϕ〉 has 2-norm equal to 1: indeed ‖|ϕ〉‖22 coincides with
∑
x∈L p

′
x which equals 1 since L coincides with

the support of P ′. Next we prove that |ϕ〉 is O(
√
ε)-close to |ψout〉. The idea of the argument is rather straightforward

but the details will be somewhat tedious.
First we show that the phase θx is close to γx for every x ∈ L (recall that the latter is the phase of 〈x|ψout〉): using

Lemma 17 and recalling that px ≥ ε/2t, we have

|θx − γx| ≤ 2 ·
√
ε3

8t
· 1
√
px
≤ ε. (48)

This implies that

‖
∑
x∈L

(θx − γx)
√
p′x|x〉‖22 =

∑
x∈L
|θx − γx|22p′x ≤ ε2

∑
x∈L

p′x ≤ ε2. (49)

For every two numbers a, b ≥ 0 we have |a− b|2 ≤ |a2 − b2|. This implies that∑
|
√
p′x −

√
px|2 ≤

∑
|p′x − px| = ‖P ′ − P‖1 ≤ 12ε (50)

where the sums are over all x ∈ Bn. Hence

‖|ψout〉 −
∑
x∈L

γx
√
p′x|x〉‖22 =

∑
x∈L
|γx
√
px − γx

√
p′x|2 +

∑
x/∈L

px

=
∑
x∈L
|√px −

√
p′x|2 +

∑
x/∈L

px

=
∑
x∈Bn

|√px −
√
px
′|2 ≤ 12ε (51)

where in the last equality we used that p′x = 0 for all x /∈ L. Writing

|ϕ〉 =
∑
x∈L

γx
√
p′x|x〉+

∑
x∈L

(θx − γx)
√
p′x|x〉 (52)

and using the triangle inequality, we then find

‖|ψout〉 − |ϕ〉‖2 ≤ ‖|ψout〉 −
∑
x∈L

γx
√
p′x|x〉‖2 + ‖

∑
x∈L

(θx − γx)
√
p′x|x〉‖2

≤
√

12ε+ ε ≤ 5
√
ε. (53)

8.4 Proof of Theorem 5
Denote by P = {px : x ∈ Bn} the probability distribution arising from a standard basis measurement of all n qubits
performed on the state F†2n |ψ〉. Then px = |ψ̂x|2. It follows from Lemma 14 that P and its marginals Pm fulfill
all conditions of Theorem 10. The latter result then immediately implies the existence of a classical algorithm with
runtime poly(k, 1θ , log 1

π) which outputs a list L = {x1, . . . , xl} where l ≤ 2/θ such that, with probability at least
1 − π, conditions (a) and (b) in Theorem 5 are fulfilled. Furthermore, Lemma 16 implies that, given any x ∈ Bn,
there exists a classical algorithm with runtime poly(n, 1/ε, log 1

δ) which, with probability at least 1 − δ, outputs an
ε-approximation of ψ̂x, since ψ̂x = 〈x|F†2n |ψ〉.

Fully analogously, for U = U1 ⊗ · · · ⊗ Un let P = {px} be the probability distribution arising from a standard
basis measurement of all n qubits performed on the state U†|ψ〉. The extension of Theorem 5 to the product basis
{U |x〉} is now obtained by combining Lemma 15, Theorem 10, and Lemma 16.

17

9 Further research
In the classical simulation algorithms given in this paper, we have not optimized the degree or constants involved in
the polynomial-time simulation. While our algorithm is a generalization of [KM91, GL89], for optimal performance
one could try to adapt the more advanced, query-optimal algorithm of [HIKP12a] to our setting.

References
[AGGM06] A. Akavia, O. Goldreich, S. Goldwasser, and D. Moshkovitz. On basing one-way functions on NP-

hardness. In Proceedings of the thirty-eighth annual ACM symposium on Theory of computing, pages
701–710. ACM, 2006.

[AGS03] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates using list decoding. In Foundations
of Computer Science, 2003. Proceedings. 44th Annual IEEE Symposium on, volume 44, pages 146–157,
Oct. 2003.

[Aka10] A. Akavia. Deterministic sparse fourier approximation via fooling arithmetic progressions. In Pro-
ceedings of the 2010 Conference on Learning Theory, AT Kalai and M. Mohri, eds., Omnipress, pages
381–393, 2010.

[ALM06] D. Aharonov, Z. Landau, and J. Makowsky. The quantum fft can be classically simulated. quant-
ph/0611156, 2006.

[AMR07] Gorjan Alagic, Cristopher Moore, and Alexander Russell. Quantum algorithms for simon’s problem over
general groups. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1217–1224. Society for Industrial and Applied Mathematics, 2007.

[Arn05] V Arnold. Number-theoretical turbulence in fermat–euler arithmetics and large young diagrams geometry
statistics. Journal of Mathematical Fluid Mechanics, 7:S4–S50, 2005.

[BFLW05] M Bordewich, M Freedman, L Lovász, and D Welsh. Approximate counting and quantum computation.
Combinatorics Probability and Computing, 14(5):737–754, 2005.

[BH13] Fernando G.S.L. Brandao and Michal Horodecki. Exponential Quantum Speed-ups are Generic. Quan-
tum Information and Computation, 13:0901–0924, 2013.

[BJS11] Michael J Bremner, Richard Jozsa, and Dan J Shepherd. Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Science, 467(2126):459–472, 2011.

[Bro07] Daniel E Browne. Efficient classical simulation of the quantum fourier transform. New Journal of Physics,
9(5):146, 2007.

[BV11] Juan Bermejo-Vega. Classical simulations of non-abelian quantum fourier transforms. Master’s thesis,
Technische Universität München, 2011.

[BVN12] Juan Bermejo-Vega and Maarten Van den Nest. Classical simulations of Abelian-group normalizer cir-
cuits with intermediate measurements. arXiv preprint arXiv:1210.3637, 2012.

[GGI+02] A.C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal sparse fourier represen-
tations via sampling. In Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 152–161. ACM, 2002.

[GL89] O. Goldreich and LA Levin. A hard-core predicate for all one-way functions. In Proceedings of the
twenty-first annual ACM symposium on Theory of computing, pages 25–32. ACM, 1989.

18

[GMS05] A. Gilbert, S. Muthukrishnan, and M. Strauss. Improved time bounds for near-optimal sparse fourier
representations. In Proceedings of SPIE, volume 5914, page 59141A, 2005.

[Got99] Daniel Gottesman. Fault-tolerant quantum computation with higher-dimensional systems. In Quantum
Computing and Quantum Communications, pages 302–313. Springer, 1999.

[HIKP12a] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse fourier transform. In Proceedings
of the 44th symposium on Theory of Computing, pages 563–578. ACM, 2012.

[HIKP12b] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and practical algorithm for sparse fourier trans-
form. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1183–1194. SIAM, 2012.

[Iwe10] MA Iwen. Combinatorial sublinear-time fourier algorithms. Foundations of Computational Mathematics,
10(3):303–338, 2010.

[JVV86] Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial structures
from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

[KM91] E. Kushilevitz and Y. Mansour. Learning decision trees using the Fourier spectrum. In Proceedings of
the twenty-third annual ACM symposium on Theory of computing, pages 455–464. ACM, 1991.

[KP13] Pär Kurlberg and Carl Pomerance. On a problem of Arnold: The average multiplicative order of a given
integer. Algebra & Number Theory, 7(4):981–999, 2013.

[Lom04] Chris Lomont. The hidden subgroup problem-review and open problems. arXiv preprint quant-
ph/0411037, 2004.

[Man95] Y. Mansour. Randomized interpolation and approximation of sparse polynomials. SIAM Journal on
Computing, 24(2):357–368, 1995.

[MO10] Ashley Montanaro and Tobias J Osborne. Quantum boolean functions. Chicago Journal OF Theoretical
Computer Science, 1:1–45, 2010.

[MRR06] Cristopher Moore, Daniel Rockmore, and Alexander Russell. Generic quantum fourier transforms. ACM
Transactions on Algorithms (TALG), 2(4):707–723, 2006.

[SB09] Dan Shepherd and Michael J Bremner. Temporally unstructured quantum computation. Proceedings of
the Royal Society A: Mathematical, Physical and Engineering Science, 465(2105):1413–1439, 2009.

[Sho99] P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer. SIAM review, 41(2):303–332, 1999.

[Sho11] Peter Shor. Lower bounds on the period in integer factorization?
http://cstheory.stackexchange.com/questions/7043/lower-bounds-on-the-period-in-integer-factorization,
2011.

[Sta13] Dan Stahlke. Quantum interference as a resource for quantum speedup. arXiv preprint arXiv:1305.2186,
2013.

[TD04] Barbara M Terhal and David P DiVincenzo. Adptive quantum computation, constant depth quantum
circuits and arthur-merlin games. Quantum Information & Computation, 4(2):134–145, 2004.

[Val02] Leslie G Valiant. Quantum circuits that can be simulated classically in polynomial time. SIAM Journal
on Computing, 31(4):1229–1254, 2002.

[VdN10] Maarten Van den Nest. Classical simulation of quantum computation, the Gottesman-Knill theorem, and
slightly beyond. Quantum Information and Computation, 10(3-4):0258–0271, 2010.

19

[VdN11] Maarten Van den Nest. Simulating quantum computers with probabilistic methods. Quantum Information
and Computation, 11(9-10):784–812, 2011.

[VdN12] Maarten Van den Nest. Efficient classical simulations of quantum fourier transforms and normalizer
circuits over abelian groups. arXiv preprint arXiv:1201.4867, 2012.

[YS07] Nadav Yoran and Anthony J. Short. Efficient classical simulation of the approximate quantum fourier
transform. Phys. Rev. A, 76:042321, Oct 2007.

A Proof of lemma 8
We recall the standard Chernoff-Hoeffding bound for real-valued random variables.

Theorem 18 (Chernoff-Hoeffding bound). Let X1, . . . , XT be i.i.d. real random variables. Assume that |Xi| ≤ 1
and denote E := EXi. Then

Prob

{∣∣∣∣∣ 1

T

T∑
i=1

Xi − E

∣∣∣∣∣ ≤ ε
}
≥ 1− 2e−

Tε2

2 . (54)

The proof of the complex-valued version of the Chernoff-Hoeffding bound as given in lemma 8 is an immediate corol-
lary of the real-valued version, as follows. For complex-valued random variables X1, . . . , XT we apply Theorem 18
independently to the real and imaginary parts of the Xi, where we choose ε̃ = ε√

2
. Denoting Y := 1

T

∑T
i=1Xi − E,

this yields lower bounds for the probabilities that Re(Y) ≤ ε̃ and Im(Y) ≤ ε̃. Putting things together we find

Prob

{∣∣∣∣∣ 1

T

T∑
i=1

Xi − E

∣∣∣∣∣ ≤ ε
}
≥ 1− 4e−

Tε2

4 . (55)

B Proofs of lemmas 12 and 13
In this section we give explicit quantitative versions of the definition and theorems about CT states, which were only
stated implicitly in [VdN10].

Definition 3 (Computationally Tractable (CT) states). An n-qubit state |ψ〉 is called ‘computationally tractable’ (CT)
if the following conditions hold:

1. [Sample] it is possible to sample in time s|ψ〉 = O(poly(n)) with classical means from the probability distri-
bution Prob(x) = |〈x|ψ〉|2 on the set of n-bit strings x.

2. [Query] upon input of any bit string x, the coefficient 〈x|ψ〉 can be computed in c|ψ〉 = O(poly(n)) time on a
classical computer.

The proof of lemma 12 will follow immediately from the following result:

Lemma 19. Let |ψ〉 and |ϕ〉 be two CT n-qubit states and let s = s|ψ〉 + s|ϕ〉, c = c|ψ〉 + c|ϕ〉. Then there exists a
randomized classical algorithm to compute µ such that |〈ϕ|ψ〉−µ| ≤ ε in time O(s+cε2 log(4

δ)) with error probability
δ.

Proof. Denote px := |〈x|ψ〉|2 and qx := |〈x|ϕ〉|2 . Since |ψ〉 and |ϕ〉 are CT states, it is possible to sample from the
probability distributions {px} and {qx} in time s (Definition 3, Item 1). Define the function α : {0, 1}n 7→ {0, 1} by
α(x) = 1 if px ≥ qx and α(x) = 0 otherwise, for every n-bit string x, and define the function β by β(x) := 1−α(x).
Then α and β can be computed in time O(c) since px and qx can be computed in time c each by Item 2 in Definition 3.
The overlap 〈ϕ|ψ〉 is equal to

〈ϕ|ψ〉 =
∑
〈ϕ|x〉〈x|ψ〉α(x) +

∑
〈ϕ|x〉〈x|ψ〉β(x) (56)

20

where the sums are over all n-bit strings x. Defining the functions F and G by

F (x) =
〈ϕ|x〉〈x|ψ〉

px
α(x), G(x) =

〈ϕ|x〉〈x|ψ〉
qx

β(x) (57)

we have 〈ϕ|ψ〉 = 〈F 〉 + 〈G〉, where 〈F 〉 =
∑
pxF (x) and 〈G〉 =

∑
pxG(x). It follows from the query property

(Definition 3, Item 2) of CT states, that F and G can be evaluated in time O(c). Furthermore, both |F (x)| and |G(x)|
are not greater than 1. It thus follows from Lemma 8, that both 〈F 〉 and 〈G〉 can be approximated with accuracy
ε/2 and error probability at most δ/2 by estimating the averages over samples from the distributions px and qx,
respectively. More precisely, let Xi, 1 ≤ i ≤ T , be samples drawn from distribution {px} with T = 16

ε2 log(8
δ), and let

µF = 1
T

∑T
i=1 F (Xi), (and similarly for samples Yi drawn from {qx}, µG = 1

T

∑T
i=1G(Yi)), then it follows from

Lemma 8 that

Pr {|µF − 〈F 〉| ≤ ε/2} ≥ 1− δ/2 (58)
Pr {|µG − 〈G〉| ≤ ε/2} ≥ 1− δ/2 (59)

Thus we conclude that 〈ϕ|ψ〉 can be approximated by µ = µF + µG in time O(s+cε2 log(4
δ)) such that

Pr {|µ− 〈ϕ|ψ〉| ≤ ε} ≥ 1− δ (60)

The proof of lemma 13 is obtained by noting that any partial overlap of n-qubit CT states (as considered in lemma
13) can be re-expressed (via a poly(n) time classical reduction) as a complete overlap 〈φ|φ′〉 where |φ〉 and |φ′〉 are
CT states on O(n) qubits. Invoking lemma 12 then proves the result.

21

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

