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Abstract

Constructing pseudorandom generators for low degree polynomials has received
a considerable attention in the past decade. Viola [CC 2009], following an exciting
line of research, constructed a pseudorandom generator for degree d polynomials in
n variables, over any prime field. The seed length used is O(d log n + d2d), and thus
this construction yields a non-trivial result only for d = O(log n). Bogdanov [STOC
2005] presented a pseudorandom generator with seed length O(d4 log n). However, it
is promised to work only for fields of size Ω(d10 log2 n). The work of Lu [CCC 2012],
combined with that of Bogdanov, yields a pseudorandom generator with seed length
O(d4 log n) for fields of size Ω(d6+c) – independent of n, where c is an arbitrarily
small constant. Based on these works, Guruswami and Xing [CCC 2014] devised a
construction with a similar seed length for fields of size O(d6).

In this work we show that for any d, a random sub-code (with a proper dimension) of
any good algebraic geometry code, is a hitting set for degree d polynomials. By deran-
domizing this assertion, together with the work of Bogdanov, we obtain a construction
of a pseudorandom generator for degree d polynomials over fields of size O(d12), and
seed length O(d4 log n). The running-time of our construction is npoly(d). However, the
running-time can be improved to poly(n, d) assuming Riemann-Roch spaces of certain
algebraic function fields are, in some sense, strongly explicit. We believe this open
problem is interesting on its own, and take a first step at affirming the conjecture.

Although quantitatively our result does not match the parameters of Guruswami
and Xing, our construction is clean mathematically and conceptually simpler. We
consider the proof technique to be the main contribution of this paper, and believe
it will find other applications in complexity theory. In the heart of our proofs is a
reduction from the problem of assuring independence between monomials to the much
simpler problem of avoiding collisions over the integers. Our reduction heavily relies
on the Riemann-Roch theorem.
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1 Introduction

A pseudorandom generator for degree d polynomials is a function G : {0, 1}` → Fn that
“fools” any degree d polynomial in n variables over a field F. 1 That is, a random output
of G is ε-close, in statistical distance, to a uniformly random element of Fn, from the point
of view of any degree d polynomial. The input for G is called the seed. Naturally, the goal
is to devise an efficiently computable pseudorandom generator with seed length ` as small
as possible in terms of n, d and ε−1. In the introduction, for simplicity, we think of ε as
some small fixed constant, say, 1/10. A probabilistic argument shows that, computational
aspects aside, there exists a pseudorandom generator for degree d polynomials with seed
length O(d log n), and this upper bound is optimal [BV10].2

Small-bias sets, introduced by Naor and Naor [NN93], are pseudorandom generators
for linear functions (that is, d = 1), and explicit constructions with optimal seed length
` = O(log n) are known [NN93, ABN+92, AGHP92, BT09]. The first result to handle
larger degrees was obtained by Luby, Veličković and Wigderson [LVW93] (simplified by
Viola [Vio07]), which yields a pseudorandom generator for constant degree polynomials over
F2 with non-trivial, yet far from optimal, seed length 2O(

√
logn). Over the last decade, the

problem of constructing pseudorandom generators for degree d polynomials, for any given d,
has received considerable attention, and we briefly review this exciting line of research and
the techniques that were involved. See Table 1 for a summary of these results.

The first breakthrough in this line of research was obtained by Bogdanov [Bog05]. By
considering “large fields”, namely, fields with size that is allowed to depend on n, d, Bog-
danov [Bog05] gave a pseudorandom generator that fools degree d polynomials for all d,
assuming |F| ≥ Ω(d10 log2 n), having seed length O(d4 log n). Bogdanov applied classical
results from algebraic geometry for his construction.

A key result in Bogdanov’s work is a novel black-box reduction from the construction
of pseudorandom generators for degree d polynomials to the construction of hitting set
generators with density close to 1, for degree Ω(d4) polynomials. A hitting set generator of
density 1 − δ for degree d polynomials in F[y1, . . . , yn] is a function H : {0, 1}` → Fn such
that for every degree d polynomial f ∈ F[y1, . . . , yn], it holds that Prx∼{0,1}` [f(H(x)) = 0] ≤
δ. Bogdanov’s reduction can only yield pseudorandom generators for fields of size Ω(d6),
regardless of the field size required by the hitting set generator. However, on the positive
side, if the hitting set generator works for fields of size independent of n, then so does the
resulting pseudorandom generator.

Lu [Lu12], among other results, gave a construction of a hitting set generator for low
degree polynomials, with better parameters than those obtained by Bogdanov. The key idea
in Lu’s construction is to take several dependent samples of a small-bias set (over a finite
field with an appropriate size), where the samples are taken by performing a random walk
on an expander. Quantitatively, together with Bogdanov’s reduction, Lu’s work yields a
pseudorandom generator for fields of size as small as O(d6+c), using O((d4/c) · log n) random

1By “degree” we mean total degree.
2By “optimal” we mean optimal up to a multiplicative constant factor.
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bits, for any desired c ∈ (0, 1). 3 Very recently (in fact, after the publication of this paper)
Guruswami and Xing [GX13] devised a pseudorandom generator for fields with size O(d6)
that uses O(d4 log n) random bits.

Going back to constant size fields (namely, fields with size independent of n, d; in particu-
lar F2), Bogdanov and Viola [BV10] completely strayed from the work [Bog05], and suggested
the elegant claim stating that the sum of d independent samples of any small-bias set fools
degree d polynomials. Bogdanov and Viola proved this claim assuming the d vs. d − 1
inverse conjecture for the Gowers norm. The resulting seed length is O(d log n) + f(d, |F|),
where f is some function of d, |F|. Bogdanov and Viola gave an unconditional proof for the
case of quadratic and cubic polynomials (i.e., d = 2, 3) over any prime field. Not too long
afterwards, the above conjecture was proved for |F| > d by Green and Tao [GT07]. Together,
these two results imply a pseudorandom generator for any degree d polynomial, with seed
length as above, assuming |F| > d, .

Somewhat surprisingly, the d vs. d − 1 inverse conjecture for the Gowers norm was
proved to be false for |F| ≤ d, as discovered independently by Green and Tao [GT07] and
by Lovett, Meshulam and Samorodnitsky [LMS08]. Nevertheless, Lovett [Lov08] proved,
unconditionally, that the sum of 2d independent samples from any small-bias set fools degree
d polynomials, over any prime field. Moreover, Kaufman and Lovett [KL08] observed that
the proof of Bogdanov and Viola can be conditioned on a weaker claim than the (false) d vs.
d − 1 inverse conjecture for the Gowers norm, and this weaker claim was proved in [KL08]
for all prime fields.

Finally, Viola [Vio09b] gave a surprisingly simple proof, based on basic Fourier analysis,
for the claim that over any prime field, the sum of d independent samples from a small-bias
set fools degree d polynomials. Viola’s analysis improved upon the results mentioned above
in all aspects (i.e., seed length and field size), excluding Lu’s pseudorandom generator, which
has incomparable parameters. The only remaining caveat in Viola’s construction is that the
seed length has an exponential dependence on d (more precisely, it is O(d log n+d·2d)). Thus,
it gives no meaningful pseudorandom generator for degree d = Ω(log n) (see also [Vio09a]).

1.1 Our Results

In this work we give a clean mathematical construction of a hitting set generator with
density close to 1 for low degree polynomials, based on the deep and fundamental Riemann-
Roch theorem from algebraic geometry. By applying Bogdanov’s reduction we obtain a
pseudorandom generator.

In Section 1.2 we give a detailed, though informal, overview of our proofs. However, we
consider the proof technique to be the main contribution of this paper, and so, we start this
section by giving a very informal description of our proof technique.

Consider a linear code C ⊆ Fmq with dimension n and relative distance 1− δ. The code
C can be viewed as a hitting set generator with density 1 − δ for degree 1 polynomials
over Fq[y1, . . . , yn] in the following way: Let c1, . . . , cn be some basis for C. The hitting set

3This is somewhat implicit in Lu’s work (see the paragraph following Theorem 1 in [Lu12]).
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generator induced by C is defined by sampling a coordinate r ∼ [m] uniformly at random
and outputting the sequence ((c1)r, . . . , (cn)r) ∈ Fnq . To see that this is indeed a hitting set
generator with density 1− δ, consider a non-zero linear function f(y1, . . . , yn) = α1y1 + · · ·+
αnyn over Fq. By applying f on a random output of the above (claimed to be) hitting set
generator, one gets the field element α1(c1)r + · · ·+αn(cn)r = (α1c1 + · · ·+αncn)r. Since not
all αi’s are zeros, α1c1 + · · · + αncn is a non-zero codeword in C, and thus, the probability
over r that (α1c1+ · · ·+αncn)r = 0 is at most δ, as desired. By considering optimal algebraic
geometry codes, one can take m and q to be as small as m = O(n/δ) and q = O(1/δ2).

Clearly, the idea above breaks even for degree 2 polynomials 4 – after all, what is the
meaning of multiplying two codewords? However, there is a meaning for multiplying code-
words of an algebraic geometry code (and of any evaluation code in general), and our ap-
proach for constructing a hitting set generator for low degree polynomials exploits this extra
structure (see Section 1.2). In particular, we prove that for any d, with high probability, a
random sub-code with an appropriate dimension of an algebraic geometry code is a hitting
set generator for degree d polynomials.

The claim mentioned above, which is implicit in our proofs, relies on the Riemann-Roch
theorem. At the heart of the proof lies a reduction from the problem of assuring indepen-
dence between the monomials of the polynomial we are trying to fool, to that of avoiding
collisions over the integers. We perform a suitable derandomization of the above state-
ment, and together with Bogdanov’s reduction, obtain the following explicit construction of
a pseudorandom generator.

Theorem 1.1. Let p be a prime power, and let q = p2. Let d ∈ N and ε > 0 be such
that q = Ω(d12/ε4). Then, there exists a pseudorandom generator with bias ε for degree d
polynomials in Fq[y1, . . . , yn], with seed length O(d4 log(n) + log(1/ε)). The running-time
of the pseudorandom generator is poly(nd

4
, 1/ε). Moreover, assuming Conjecture 1.4 (see

Section 1.3) the running-time is poly(n, d, log (1/ε)).

Although Theorem 1.1’s field size and running time do not match the best known con-
struction [GX13], we believe our construction of a hitting set generator has the advantage of
being cleaner mathematically, and in particular it does not rely on any previous work. We
consider the novel proof technique to be the main contribution of this paper, and believe it
will find other applications. We also give an alternative construction that has running-time
poly(n, d, log (1/ε)) and seed length O(d4 log(n)+log(1/ε)). However, it is promised to work
only for fields of size depending also on n.

Theorem 1.2. Let p be a prime power, and let q = p2. Let n, d ∈ N and ε > 0 be such that

q = Ω

((
d10

ε2
· log (n/ε)

log log n

)2
)
.

Then, there exists a pseudorandom generator with bias ε for degree d polynomials in Fq[y1, . . . , yn],
with seed length O(d4 log(n) + log(1/ε)). The running-time of the pseudorandom generator
is poly(n, d, log (1/ε)).

4In fact, it also breaks when the linear function has a constant coefficient α0 6= 0.
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1.2 Proof Overview

As mentioned above, by Bogdanov’s reduction (see Theorem 2.3), to construct a pseudoran-
dom generator for degree d polynomials, it is enough to construct a hitting set generator with
density close to 1 for degree poly(d) polynomials. In order to describe our hitting set gen-
erator, we also consider the number of monomials a given polynomial has (i.e., its sparsity),
which we denote by s. We do so as our proofs work naturally with respect to s. It should
be noted that constructing pseudorandom generators (and hitting set generators) for sparse
polynomials has also received attention in the literature (see, e.g., [KS01, Bog05, Lu12]).

In the following proof overview we make use of standard notations and results from
algebraic function fields. The unfamiliarized reader is referred to Section 2 for the formal
definitions.

Let F/Fq be an algebraic function field. Assume P∞ is a rational place of F/Fq. For an
integer r, consider the Riemann-Roch space L(r · P∞) with dimension n and basis vectors
f1, . . . , fn. We recall that the Riemann-Roch theorem implies that if r ≥ 2g(F ) − 1 then
n = r−g(F )+1. However, in this proof overview, we allow ourselves to assume for simplicity
that n = r, and that v∞(fi) = −i for i = 1, . . . , n. Even though such an assumption cannot
be met, it would be illustrative to show our ideas.

Influenced by the novel construction of algebraic geometry codes, introduced by Goppa [Gop81]
(see [Sti93], Chapter 2) and by the construction of small-bias sets based on algebraic geome-
try codes by Ben-Aroya and Ta-Shma [BT09], a first attempt for a construction of a hitting
set generator for degree d polynomials is the following.

The failing hitting set generator

1. Sample a rational place P 6= P∞ uniformly at random.

2. Output (f1(P ), . . . , fn(P )).

As in Goppa’s argument, we note that since P 6= P∞, each fi can be evaluated at P and thus
the output is well-defined. Moreover, the output is indeed a vector in Fnq since P is rational.

To analyze this attempt of a hitting set generator, consider a non-zero degree d polynomial
h ∈ Fq[y1, . . . , yn] having s monomials. The hitting set generator above maps a basis function
fi, evaluated at a random rational place P , to each variable yi. This induces a mapping from
each monomial yd11 · · · ydnn of h to the function fd11 · · · fdnn (which is then evaluated at P ). We
note that the latter function is contained in L(nd · P∞) as it has no poles outside P∞, and

v∞(fd11 · · · fdnn ) =
n∑
i=1

div∞(fi) =
n∑
i=1

di(−i) ≥
n∑
i=1

di(−n) ≥ −nd.

Thus, h is mapped to a function f ∈ L(nd · P∞). If we knew f is a non-zero function then
an argument similar to that of Goppa would complete the proof. However, it could be the
case that the monomials of h induce functions that are linearly dependent over Fq. This may
result in h being mapped to f = 0.
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To overcome this obstacle, we recall that functions with different valuations are linearly
independent over Fq. Thus, if we could guarantee that all monomials of h are mapped to
functions with distinct valuations, then no cancelation can occur, and in particular, f would
be a non-zero function. 5 We thus reduced the question of the linear independence of the
induced functions to a question about avoiding collisions over the integers.

We stress that the fact that for every prescribed valuation v ≥ 2g(F ) − 1, there exists
a function f ∈ L(v · P∞) \ L((v − 1) · P∞) is very deep and follows by the Riemann-Roch
theorem. This is what enables us to carry out the reduction.

Going back to the technical details, to avoid the collisions over the integers we use
randomness. The following is a hitting set generator that actually works, yet is extremely
wasteful in terms of random bits.

The working, yet wasteful, hitting set generator

1. Sample (Z1, . . . , Zn) uniformly at random from [m]n, where m is a parameter we fix
later on.

2. For each i ∈ [n], find a function fi ∈ L(Zi · P∞) \ L((Zi − 1) · P∞).

3. Sample a rational place P 6= P∞ uniformly at random.

4. Output (f1(P ), . . . , fn(P )).

To analyze this hitting set generator, consider two distinct monomials yd11 · · · ydnn , y
d′1
1 · · · y

d′n
n

of h. These monomials are mapped to the functions fd11 · · · fdnn , f
d′1
1 · · · f

d′n
n respectively. Note

that v∞(fd11 · · · fdnn ) =
∑n

i=1 diZi and v∞(f
d′1
1 · · · f

d′n
n ) =

∑n
i=1 d

′
iZi. Thus, the valuation of

these two functions will collide if and only if

n∑
i=1

(di − d′i)Zi = 0. (1)

Since the Zi’s are chosen uniformly and independently at random from [m], Equation (1)
holds with probability at most 1/m. Thus, by union bound over all pairs of h’s monomials,
except with probability

(
s
2

)
· 1
m

, the monomials of h are mapped to functions with distinct
valuations. By taking m = s2/δ, we have that f ∈ L(md ·P∞) is a non-zero function, except
with probability δ. Conditioned on this event, one can follow Goppa’s argument to show
that the algorithm above is indeed a hitting set generator with density close to 1.

Saving on random bits. Although the hitting set generator above works, it requires
Ω(n log s) random bits (while O(n log |F|) random bits are suffice to sample a uniform n
tuple over F). One way to save on random bits is to exploit the locality of the “test”

5In fact, it is enough to guarantee that the minimal valuation is obtained by exactly one function. We
believe that this fact can be used to slightly improve the sample space size of our construction.
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for the Zi’s in Equation (1). Indeed, at most 2d of the n summands are non-zero. Taking
advantage of this locality can be done by using a 2d-wise independent family of hash functions
H = {h : [n]→ [m]}, where for simplicity we take δ to be constant and so m = O(s2). More
precisely, Zi is obtained by sampling h ∼ H and setting Zi = h(i). This idea can be shown
to work, and the number of random bits used is substantially lower – O(d log(ns)), which
is O(d2 log n) under no assumption on the sparsity (i.e., s = O(nd), which follows by the
bound on the degree).

In our constructions we sample the sequence (Z1, . . . , Zn) using even fewer random bits
– O(log(sd log n)), by exploiting the fact that the test for the randomness of the Zi’s in
Equation (1) is not only local but in fact a sparse linear function with bounded coefficients
(see Section 3). Under no assumption on the sparsity, this boils down to O(d log n) random
bits. We call these “supporting” pseudorandom object which we construct ε-biased for linear
tests modulo m with d-bounded coefficients.

Computing a function with a given valuation. Another issue we point out is that
the algorithm assumes it can find a function f ∈ L(r · P∞) \ L((r − 1) · P∞), given r.
Finding a basis for L(r ·P∞) can be done in time poly(r), when F is the Garcia-Stichtenoth
tower [SAK+01] (and more generally using Heß’s algorithm [Heß02]). Thus, one can find f
in time poly(r). However, r can be as large as Ω(nd). We conjecture that finding f can be
done in time polylog(r) (see Section 1.3). Unconditionally, we show how to find f as above
in time polylog(r) for large enough r (see Theorem 1.5). This allows us to construct a hitting
set generator that runs in time poly(n), as apposed to npoly(d). However, this introduces a
dependency of the field size in n, s (see Theorem 1.2).

1.3 The Explicitness of L(r · P∞) in the Garcia-Stichtenoth Tower
of Function Fields

Definition 1.3. Let F = {Fk/Fq}∞k=0 be a family of function fields. Let

G = {G(k) | G(k) is a rational place of Fk}.

We say {L(r · G(k))}r,k is fully explicit if there exists an algorithm that on input k, r such
that r ≥ 2g(Fk)− 1, finds a function f ∈ L(r ·G(k)) \ L((r − 1) ·G(k)) in time polylog(r).

For concreteness we work with the Garcia-Stichtenoth tower of function fields over Fq, where

p is a prime power and q = p2 [GS96] (see Preliminaries). We consider G(k) = P
(k)
∞ . Our

conjecture states that {L(r · P (k)
∞ )}r,k is fully explicit. Namely,

Conjecture 1.4. Let p be a prime power, and let q = p2. Consider the kth level, Fk, of the
Garcia-Stichtenoth tower. Then, for any integer r ≥ 2g(Fk) − 1, one can find a function

f ∈ L(r · P (k)
∞ ) \ L((r − 1) · P (k)

∞ ) in time polylog(r).

Shum et al. [SAK+01] devised an algorithm that given k, r as inputs, such that r ≥ 2g(Fk)−1,

runs in time poly(r) and computes a basis for L(r · P (k)
∞ ). Therefore, one can find some
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function f ∈ L(r ·P (k)
∞ )\L((r−1) ·P (k)

∞ ) in time poly(r). The algorithm of Shum et al. seems
to be inherently “global”, in the sense that it heavily relies on finding all basis vectors in order
to find f . Heß’s algorithm [Heß02] also seems to rely on a global approach. Conjecture 1.4

asserts that a function with a given valuation r at P
(k)
∞ (having no poles elsewhere), can be

found “locally”, without resorting to the computation of all basis vectors. In fact, even an
exp( 5
√

log r)-time algorithm suffices for the pseudorandom generator from Theorem 1.1 to
run in time poly(n), for d < log n.

It is worth noting that {L(r · P (k)
∞ )}r,k in the Hermitian tower of function fields is fully

explicit. Indeed, a basis for L(r · P (k)
∞ ) in this tower is given by{

xi11 · · ·x
ik
k

∣∣ i1, . . . , ik ≥ 0, i2, . . . , ik ≤ p− 1 and
k∑
j=1

ijp
k−j(p+ 1)j−1 ≤ r

}
.

However, the algebraic geometry code that is based on this tower is not a good code. One
can instantiate our meta pseudorandom generator with this tower, however in Theorem 1.2
we obtain better parameters.

We make a first step at affirming Conjecture 1.4 by proving that the conjecture does hold
for many values of r.

Theorem 1.5. Let p be a prime power, and let q = p2. There exists an algorithm that given
integers r, k, p such that

kpk+1 − pk − 1

p− 1
− pk + 1 ≤ r ≤ kpk+1 − pk − 1

p− 1
,

finds a function f ∈ L(r · P (k)
∞ ) \ L((r − 1) · P (k)

∞ ) in the Garcia-Stichtenoth tower over Fq.
The running time of the algorithm is polylog(r).

This weaker version of the conjecture enables us to prove Theorem 1.2. The proof of Theo-
rem 1.5 follows straightforwardly from the work of Pellikaan, Stichtenoth and Torres [PST98],
and we give it in Section 5.1.

2 Preliminaries

We denote by log (·) the logarithm to base 2. The set {1, . . . , n} is denoted by [n]. Through-
out the paper, for readability, we suppress flooring and ceiling.

Pseudorandom generators and hitting set generators for low degree polynomials

Definition 2.1. A function G : {0, 1}` → Fn is called a pseudorandom generator with bias
ε for degree d polynomials, if for every degree d polynomial f ∈ F[y1, . . . , yn], the statistical
distance between f(x) and f(G(y)), where x, y are sampled uniformly from Fn and {0, 1}`
respectively, is at most ε.
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Definition 2.2. A function H : {0, 1}` → Fn is called a hitting set generator of density
1 − δ for degree d polynomials, if for every non-zero degree d polynomial f ∈ F[y1, . . . , yn],
Prx∼{0,1}` [f(H(x)) = 0] ≤ δ.

Bogdanov [Bog05] gave a black-box reduction from the construction of pseudorandom gen-
erators for low degree polynomials to the construction of hitting set generators with density
close to 1 for low degree polynomials.

Theorem 2.3 ([Bog05], Theorem 3.1 restated). Let G1 : {0, 1}`1 → F2n−1
q be a hitting set

generator of density 1− δ for polynomials of degree 3d2. Let G2 : {0, 1}`2 → Fn−1q be a hitting
set generator of density 1−δ for polynomials of degree 3d4. Suppose that G1 maps a seed x1 to
(v1, . . . , vn, w2, . . . , wn) ∈ F2n−1

q and G2 maps a seed x2 to (z2, . . . , zn) ∈ Fn−1q . Then, the map
G′ : {0, 1}`1+`2×F2

q → Fnq given by G′(x1, x2, s, t) = (s+v1, w2s+z2t+v2, . . . , wns+znt+vn)

is a pseudorandom generator for degree d polynomials, with bias O(
√
δd+ d2q−1/2 + d6q−1).

Background of Algebraic Function Fields

In this section we recall standard notions from the theory of algebraic function fields (see,
e.g., [Sti93]). For a prime power q, we denote the field with q elements by Fq. The rational
function field is denoted by Fq(x), where x is some transcendental element over Fq. An
algebraic function field over Fq, denoted by F/Fq, is a finite algebraic extension of Fq(x). A
discrete valuation of F/Fq is a function v : F → Z ∪ {∞} with the following properties:

1. v(f) = 0 for all non-zero f ∈ Fq.

2. v(f) =∞ if and only if f = 0.

3. v(fg) = v(f) + v(g) for all f, g ∈ F .

4. v(f + g) ≥ min(v(f), v(g)).

5. There exists f ∈ F such that v(f) = 1.

In fact, it follows that for f, g ∈ F with distinct valuations, v(f + g) = min(v(f), v(g)).
In particular, elements f1, . . . , fs ∈ F with pairwise distinct valuations under some discrete
valuation v are linearly independent over the base field Fq.

As its name suggests, one should think of the elements of a function field as functions.
These functions are evaluated on places. Every discrete valuation induces a place P , {f ∈
F | v(f) > 0} and also a valuation ring O , {f ∈ F | v(f) ≥ 0}. P is a maximal ideal of O
and so FP , O/P is a field. For f ∈ O, the coset of f in FP is denoted by f(P ). This defines
an embedding of Fq into FP . The degree of the place P , denoted by deg(P ), is defined as
[FP : Fq]. A place is called rational if deg(P ) = 1. In such a case, FP is isomorphic to Fq.

The number of rational places of F/Fq is finite and is denoted by N(F ). If v(f) < 0
then the place P induced by v is called a pole of f . If v(f) > 0 then P is called a zero
of f . A divisor is a formal sum of places D =

∑
P nPP , where nP is non-zero only for

finitely many places P . We write vP (D) = nP . The degree of a divisor is defined by
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deg(D) ,
∑

P nP degP . For two divisors D,E, we write D ≥ E, if vP (D) ≥ vP (E) for all
places P . The principal divisor of a non-zero function f ∈ F , denoted by (f), is defined as
(f) ,

∑
P vP (f)P . It can be shown that this is indeed a divisor. Moreover, the degree of a

principal divisor is always 0. The pole divisor is defined by (f)∞ ,
∑

P :vP (f)<0 vP (f)P .
With every divisor D one can associate a vector space called the Riemann-Roch space,

denoted by L(D) , {f | (f) ≥ −D} ∪ {0}. The following relation between the degree of
a divisor D and the dimension of L(D) is of central importance in the theory of algebraic
function fields:

1 + deg(D)− g(F ) ≤ dim(L(D)) ≤ 1 + deg(D),

where g(F ) is independent of D and is an invariant of the function field F/Fq, called the
genus. Moreover, for any divisor D with deg(D) ≥ 2g(F ) − 1 it holds that dim(L(D)) =
1 + deg(D)− g(F ).

The Garcia-Stichtenoth tower

Let p be a prime power, and q = p2. The Garcia-Stichtenoth tower F = (F0, F1, F2, . . .) is

defined as follows. F0 = Fq(x0), and for all k > 0, Fk = Fk−1(xk), where xpk + xk =
xpk−1

1+xp−1
k−1

.

This tower was introduced and analyzed in [GS96]. Further analysis appears in [SAK+01]
and [GS07, Chapter 1, Sec 5.1]. The material presented here is based on these two latter
sources.

Let P∞ be the unique pole of x0 in F0 = Fq(x0). The place P∞ totally ramifies at all

levels, and P
(k)
∞ denotes the unique place above P∞ in Fk. The valuation associated with the

place P
(k)
∞ is denoted by v

(k)
∞ . It holds that deg(P

(k)
∞ ) = 1, thus, v

(k)
∞ (xk) = −1. Moreover,

v
(k)
∞ (xi) = −pk−i. The exact number of rational places in the Garcia-Stichtenoth tower is

known, and is given by the formula

N(Fk) =

{
(p− 1)pk+1 + 2p for odd p, k ≥ 2,
(p− 1)pk+1 + 2q for even p, k ≥ 2.

The genus of Fk, denoted by g(Fk), is about pk+1. An exact formula for the genus is given
by

g(Fk) =

{
(p(k+1)/2 − 1)2 for odd k,
(pk/2 − 1)(pk/2+1 − 1) for even k.

F is an asymptotically optimal tower as it achieves the Drinfeld-Vladut bound. In fact, for
all k, N(Fk)/g(Fk) ≥ p− 1.

3 Fooling Sums with Bounded Coefficients over Prime

Modulo

In this section we introduce and construct a pseudorandom object that we use for the con-
struction of our hitting set generators.
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Definition 3.1. A sequence of integers (a1, . . . , an) is called d-bounded if each ai ∈ [−d, d]
and there are at most d non-zero ai’s. Let n,m, d ∈ N. A sequence of random variables
(Z1, . . . , Zn) supported on {0, 1, . . . ,m − 1}n is called ε-biased for linear tests modulo m
with d-bounded coefficients, if for all non-zero d-bounded sequences (a1, . . . , an), it holds
that

Pr

[
n∑
i=1

aiZi = 0 (mod m)

]
≤ ε.

An explicit construction of ε-biased distribution (Z1, . . . , Zn) for linear tests modulo m with
unbounded coefficients (i.e., d = m) is implicit in the work of Alon and Mansour [AM95]
and Azar, Motwani and Naor [AMN98]. In particular, the bias obtained is ε = n/m and the
seed length used is O(logm). Influenced by ideas from [AM95] and [NN93], we obtain the
following.

Theorem 3.2. There exists an algorithm that given n, d, and a prime number m > 2d3

as inputs, outputs (Z1, . . . , Zn) which is 2d log(n)/m-biased for linear tests modulo m with
d-bounded coefficients. The algorithm uses logm random bits and outputs (Z1, . . . , Zn) in
time poly(n, d, logm).

In the proof of Theorem 3.2 we make use of BCH codes over non-binary alphabets. More
precisely, we are interested in their parity check matrices. More information can be found
in standard text books on coding theory, such as [Rot06] (see also Appendix B in [Bog05]).

Theorem 3.3. Let p be a prime number and let `, d ∈ N. Then, there exists an `d×p` matrix
A over Fp such that every d columns of A are linearly independent over Fp. Moreover, A
can be computed in time poly(d · p`).

With this we are ready to prove Theorem 3.2.

of Theorem 3.2. Let ε = 2d log (n)/m.

• Let D be the least prime number strictly larger than d. Note that D ≤ 2d. Let ` be
the least integer such that D` ≥ n. Consider the `D × D` matrix A over FD from
Theorem 3.3, and let B be the leftmost `D×n submatrix of A. Denote the ith column
of B by Bi, where we view it as a vector over the integers, Bi ∈ Z`D, with entries
between 0 and D − 1.

• Let f1, . . . , fεm be a basis for the [m, εm, (1− ε)m]m Reed Solomon code (e.g., fi(x) =
xi−1 for i = 1, . . . , εm). Define the sequence of random variables (Y1, . . . , Yεm), where
each Yi is supported on Fm, as follows. Pick r ∼ [m] uniformly at random, and let
Yi = fi(r). One can verify that `D ≤ εm and define Y = (Y1, . . . , Y`D) ∈ F`Dm .

We define the sequence of random variables (Z1, . . . , Zn) as follows. For i ∈ [n], Zi = 〈Bi, Y 〉,
where we consider the entries of Bi, Y (which are taken from Z and Fm respectively) as
elements of Fm, and perform addition and multiplication over Fm. In particular, each Zi is
supported on {0, 1, . . . ,m− 1}.
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Let (a1, . . . , an) be a non-zero d-bounded sequence. Consider the random variable X =
a1Z1+· · ·+anZn, where the sum is over Fm. Our goal is to show that Pr[X = 0 (mod m)] ≤
ε. By the definition of the Zi’s,

X = a1〈B1, Y 〉+ · · ·+ an〈Bn, Y 〉 = 〈a1B1 + · · ·+ anBn, Y 〉.

Since at most d < D of the ai’s are non-zero integers, and since each ai is in [−d, d], it follows
that at mostD of the ai’s are non-zero over FD. Thus, by the definition of B, a1B1+· · ·+anBn

is a non-zero vector in F`DD . Hence, C = (c1, . . . , c`D) = a1B1+ · · ·+anBn ∈ Z`D is a non-zero
vector over the integers. That is, for some j, cj =

∑
i ai(Bi)j 6= 0 as an integer. However,

|cj| ≤ d · d ·D ≤ 2d3 < m. This is because there are at most d summands with non-zero ai,
for each such summand |ai| ≤ d and |(Bi)j| ≤ D. Hence C (mod m) is a non-zero vector in
F`Dm .

Thus, X = 〈a1B1 + · · ·+ anBn, Y 〉 =
∑
cifi(r) is an element of Fm obtained by sampling

uniformly a random entry r of the non-zero codeword
∑
cifi of a Reed Solomon code with

relative distance 1− ε. In particular, Pr[X = 0 (mod m)] ≤ ε.
The randomness used by the algorithm is for sampling r ∼ [m] uniformly at random, and

so logm random bits are used. Computing D, the least prime number larger than d, can be
done deterministically in time poly(d). For computing the sequence (Z1, . . . , Zn) one needs
to compute the matrix B, which by Theorem 3.3, can be done in time poly(D`) = poly(n, d).
Also Y is a column of the Reed Solomon generating matrix. After fixing r, each entry of Y
can be computed by performing field operations over Fm, where m is a prime. In particular,
powering field elements of F×m up to power bounded above by poly(m). This can be done in
time polylog(m). Since there are O(d log n) entries in Y , the proof follows.

4 Hitting Set Generators for Relatively Small Fields

In this section we present our construction of a hitting set generator and states its proof of
correctness in Theorem 4.1. Together with Bogdanov’s reduction (Theorem 2.3) this readily
implies Theorem 1.1.

Theorem 4.1. For any s, d ∈ N, δ > 0 and n ∈ N, let p be the least prime power larger
than 4d

δ
+ 1 6, and set q = p2. Then, the algorithm in Figure 1 is a hitting set generator with

density 1 − δ for polynomials in Fq[y1, . . . , yn] with degree d and sparsity s. The number of
random bits used by the algorithm is 4 log(sd2/δ) + 2 log log n + O(1) and the running-time
is poly(s, n, d, 1/δ).

Proof. First note that the output (f1(P ), . . . , fn(P )) is well-defined as P 6= P
(k)
∞ and all

fi’s lie in the Riemann-Roch space of some multiple of P
(k)
∞ . Moreover, (f1(P ), . . . , fn(P ))

6The theorem holds for any prime power p that is larger than 4d
δ + 1. However, in order not to introduce

a dependency of p in the seed length (for simplicity sake), we consider the smallest p for which the theorem
holds.
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Hitting Set Generator for Relatively Small Fields

Input. n, s, d ∈ N, δ > 0 and the least prime power p such that p ≥ 4d/δ + 1.
We denote q = p2.

Output. A sample (Y1, . . . , Yn) ∈ Fnq such that for every non-zero polynomial
h ∈ Fq[y1, . . . , yn] with degree d and sparsity s, Pr[h(Y1, . . . , Yn) = 0] ≤ δ.

1. Find the smallest prime number m > 16s2d3 log (n)/δ, and let k be the lowest
level in the Garcia-Stichtenoth tower such that N(Fk) ≥ 6md/δ.

2. Sample (Z1, . . . , Zn) from a (4d log (n)/m)-biased distribution for linear tests
modulo m with 2d-bounded coefficients.

3. Let r be the smallest integer divisible by m, such that r ≥ 2g(Fk)− 1.

4. For each i ∈ [n], find fi ∈ L((r + Zi) · P (k)
∞ ) \ L((r + Zi − 1) · P (k)

∞ ).

5. Sample uniformly at random a rational place P 6= P
(k)
∞ of Fk.

6. Return (f1(P ), . . . , fn(P )).

Figure 1: A hitting set generator for relatively small fields.

is indeed in Fnq as P is a rational place. Note also that for each i ∈ [n], there exists

fi ∈ L((r + Zi) · P (k)
∞ ) \ L((r + Zi − 1) · P (k)

∞ ). This is because r ≥ 2g(Fk)− 1 (and Zi ≥ 0).
Consider a monomial yd11 · · · ydnn of degree at most d, that is,

∑n
i=1 di ≤ d. The algorithm

maps any variable yi to some function fi ∈ L((r + Zi) · P (k)
∞ ) \ L((r + Zi − 1) · P (k)

∞ ). This
induces a mapping of the monomial yd11 · · · ydnn to the function fd11 · · · fdnn . We note that the

latter function is in L(d(r +m) · P (k)
∞ ) as it has no poles outside P

(k)
∞ , and

v∞(fd11 · · · fdnn ) =
n∑
i=1

div∞(fi) = −
n∑
i=1

di(r + Zi) ≥ −
n∑
i=1

di(r +m) ≥ −d(r +m).

Consider now two monomials yd11 · · · ydnn , y
d′1
1 · · · y

d′n
n of degree at most d. The claim is that,

except for probability 4d log (n)/m, the two monomials are mapped to functions in Fk that
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have different valuations at P
(k)
∞ :

Pr
[
v∞
(
fd11 · · · fdnn

)
= v∞

(
f
d′1
1 · · · fd

′
n

n

)]
= Pr

[
n∑
i=1

di(r + Zi) =
n∑
i=1

d′i(r + Zi)

]

≤ Pr

[
n∑
i=1

di(r + Zi) =
n∑
i=1

d′i(r + Zi) (mod m)

]

= Pr

[
n∑
i=1

(di − d′i)Zi = 0 (mod m)

]
,

which is at most 4d log(n)/m. The third inequality follows since m divides r, and the last
inequality follows since (Z1, . . . , Zn) is sampled from a (4d log (n)/m)-biased distribution for
linear tests modulo m with 2d-bounded coefficients, and indeed, there are at most 2d indices
i such that di − d′i is not zero, and for such i, di − d′i ∈ [−d, d] ⊆ [−2d, 2d]. Moreover, note
that m > 2 · (2d)3, and thus the hypothesis of Theorem 3.2 does indeed hold.

Consider a polynomial h ∈ Fq[y1, . . . , yn] with degree d and sparsity s. By the union
bound, the probability that there exist two monomials of h that are mapped to functions
with the same valuation at P

(k)
∞ is at most

(
s
2

)
· 4d log (n)/m, which is at most δ/8 by the

choice of m. Hence, except for probability δ/8, the polynomial h is mapped to a non-zero

function f ∈ L(d(r+m)·P (k)
∞ ), as functions with different valuations are linearly independent.

We now restrict ourselves to the event where f 6= 0 and show that PrP [f(P ) = 0] ≤
(7/8) · δ, where P 6= P

(k)
∞ is a rational place of Fk sampled uniformly at random. This

will conclude the proof for the algorithm’s correctness. Assume there are z rational places
P1, . . . , Pz such that f(Pi) = 0 for all i ∈ [z]. LetD be the divisor d(r+m)P

(k)
∞ −(P1+· · ·+Pz).

Since f(Pi) = 0 for all i ∈ [z], f ∈ L(D). Since f 6= 0, it follows that dim(L(D)) > 0 and so
deg(D) ≥ 0. However, deg(D) = d(r +m)− z, which implies z ≤ d(r +m). Thus,

Pr
P

[f(P ) = 0 | f 6= 0] =
z

N(Fk)
≤ d(r +m)

N(Fk)
≤ 2d(g(Fk) +m)

N(Fk)
≤ 2d

p− 1
+

3

8
· δ ≤ 7

8
· δ,

where we used the fact that r ≤ 2g(Fk)+m, the choice ofm, p and the fact thatN(Fk)/g(Fk) ≥
p− 1 for all k.

We now upper bound the number of random bits used. The algorithm performs two
random steps. First there is the sampling of (Z1, . . . , Zn), which by Theorem 3.2, requires
logm random bits. Secondly, we sample a rational place uniformly out of N(Fk) places. We
chose k to be the least integer such that N(Fk) ≥ 6md/δ and so N(Fk−1) < 6md/δ. Since
N(Fk) ≤ p ·N(Fk−1), the number of random bits used is at most log(6mdp/δ). The assertion
regarding the number of random bits used readily follows.

We turn to analyze the running-time of the algorithm. Computing the prime num-
ber m can be carried out (deterministically) in time poly(m). By Theorem 3.2, sampling

(Z1, . . . , Zn) can be done in time poly(n, d, logm). In order to find fi ∈ L((r + Zi) · P (k)
∞ ) \

L((r+Zi−1) ·P (k)
∞ ), one can find a basis for L((r+Zi) ·P (k)

∞ ), in time poly(r) [SAK+01], and

find in this basis an element that has valuation r + Zi at P
(k)
∞ , also in time poly(r). Since
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r ≤ 2g(Fk) +m = O(md/δ), this can be carried out in time poly(m). The last two steps of
the algorithm can clearly be carried out in time poly(n, logm). The total running-time is
therefore poly(s, n, d, 1/δ).

By examining the arguments above, one can see that the bottleneck in the running time
is determined by finding the prime number m ∼ s2/δ, and finding a function f with a given
valuation. These are the only steps that cost us the poly(s/δ) in the running time. It turns
out that finding m can be done in time polylog(m) probabilistically (see Section 5.2), and we
chose to present the simpler naive algorithm for finding a prime above, which runs in time
poly(m), for simplicity. Finding a function f with a given valuation is the real bottleneck in
the running time. In Section 5 we bypass this problem, however, our solution costs us in the
field size. Clearly, if Conjecture 1.4 holds, then finding f can be done in time polylog(s/δ),
and the algorithm described above runs in time poly(n, d, log (1/δ)).

5 The More Efficient Hitting Set Generator

The More Efficient Hitting Set Generator

Input. n, s, d ∈ N, a prime power p and δ > 0 such that p = Ω
(
d·log (ds log (n)/δ)

δ·log log s

)
.

We denote q = p2.

Output. A sample (Y1, . . . , Yn) ∈ Fnq such that for every non-zero polynomial
h ∈ Fq[y1, . . . , yn] of degree d and sparsity s, Pr[h(Y1, . . . , Yn) = 0] ≤ δ.

1. Find some prime number m ∈ [16d3s2 log (n)/δ, 32d3s2 log (n)/δ] with failure
probability bounded by δ/2. Let k be the least integer such that pk ≥ 2m
and Fk the kth function field in Garcia-Stichtenoth tower.

2. Sample (Z1, . . . , Zn) from a (4d log (n)/m)-biased distribution for linear tests
modulo m with 2d-bounded coefficients.

3. Let r be the least integer divisible by m such that r > k · pk+1 − pk−1
p−1 − p

k.

4. For each i ∈ [n], find fi ∈ L((r + Zi) · P (k)
∞ ) \ L((r + Zi − 1) · P (k)

∞ ).

5. Sample uniformly at random a rational place P 6= P
(k)
∞ of Fk.

6. Return (f1(P ), . . . , fn(P )).

Figure 2: The more efficient hitting set generator.

In this section we prove the following theorem.
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Theorem 5.1. Let p be a prime power, and let q = p2. For any s, d ∈ N, δ > 0 and n ∈ N,
such that

p = Ω

(
d · log (ds log (n)/δ)

δ · log log s

)
,

the following holds. The algorithm in Figure 2 is a hitting set generator with density 1−δ for
polynomials in Fq[y1, . . . , yn] with degree d and sparsity s. The number of random bits used by
the algorithm is 8 log(sd2/δ)+3 log log n+O(1) and the running-time is poly(n, d, log (s/δ)).

Theorem 1.2 readily follows by Theorem 5.1 and Bogdanov’s reduction (Theorem 2.3). To
prove Theorem 5.1, we prove two things:

• One can efficiently find elements fi ∈ L((r+Zi) ·P (k)
∞ ) \L((r+Zi− 1) ·P (k)

∞ ) for many
i’s. This follows from Theorem 1.5 whose proof is given in Section 5.1.

• One can find appropriate primes efficiently using a randomized algorithm. This is
stated in Lemma 5.3. This fact is known [pol09], and we give it an alternative proof
in Section 5.2, with slightly improved randomness complexity.

We then complete the proof of Theorem 5.1 in Section 5.3.

5.1 Proof of Theorem 1.5

Let Fk be the kth level in the Garcia-Stichtenoth tower over Fq. For 0 ≤ i ≤ k, define
πi =

∏i
j=0 (xp−1j + 1), and let

ui,e =

{
xei , if 0 ≤ e < p− 1;
xei + 1, if e = p− 1.

In [PST98] (see their Lemma 3.4, ii), it is shown that each function in

{πi−1 · ui,e | 0 ≤ i ≤ k , 0 ≤ e ≤ p− 1}

has poles only at P
(k)
∞ in Fk. Moreover (see Table I in [SAK+01]), v

(k)
∞ (πi) = −(pk+1 − pk−i)

and v
(k)
∞ (xi) = −pk−i. Thus, v

(k)
∞ (ui,e) = −e · pk−i. Given that, we conclude the following

lemma, which readily implies Theorem 1.5.

Lemma 5.2. For every integer k ≥ 1 the following holds. Let 0 ≤ a ≤ pk−1 be some integer
that is written as a0 + a1 · p+ a2 · p2 + · · ·+ ak−1 · pk−1 in base p (namely, 0 ≤ ai ≤ p− 1 for
i = 0, 1, . . . , k − 1). Define the function

fa =
k∏
i=1

πk−i · uk−i+1,p−1−ai−1
.

Then, in Fk, fa has poles only at P
(k)
∞ , and

− v(k)∞ (fa) = k · pk+1 − pk − 1

p− 1
− a. (2)
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Moreover, given p, k and 0 ≤ a ≤ pk − 1, the function fa can be computed and evaluated on
a given place in time polylog(pk).

Proof. First note that by the above discussion, the only poles fa has in Fk is at P
(k)
∞ . For

fixed 1 ≤ i ≤ k,

−v(k)∞ (πk−i · uk−i+1,p−1−ai−1
) = pk+1 − pi + (p− 1− ai−1) · pi−1

= pk+1 − pi−1 − ai−1 · pi−1.

Equation (2) then follows by taking the sum, over i = 1, . . . , k, of the right hand side in the
equation above. The assertion regarding the running-time for computing fa is trivial.

5.2 Finding a Prime in an Interval using Random Bits

The algorithm in Figure 2 involves finding a prime number m larger than Ω(s2), for the
construction of the small-bias sequence that fools linear tests modulo m. Since we are
willing to run only for polylog(s) time, we cannot settle for known deterministic algorithms.
However, we do have few random bits at our disposal, and it is known how to find m
as above with success probability 1 − δ using O(log(s/δ)) random bits [pol09]. We give
an alternative proof for this known fact in Lemma 5.3 below. Also, we slightly improve
upon the randomness complexity of known techniques 7 (one uses the Nisan-Zuckerman
pseudorandom generator [NZ96], and the other is based on an analysis of the moments of
the indicator random variable for being a prime number in a given interval, via sieve theory).

Lemma 5.3 (Finding a prime in an interval). There exists a randomized algorithm that
given m and δ > 0 as inputs, outputs a prime number p ∈ [m, 2m] with probability at least
1− δ. The running-time of the algorithm is polylog(m) · log (1/δ) and the number of random
bits used by the algorithm is 0.525 · logm+ (2 + o(1)) · log(1/δ) +O(1).

Proof. It is well-known that in the range [m, 2m] there are Ω(m/ logm) prime numbers.
However, better results are known. Define Γ(m) = m0.525. Baker et al. [BHP01] showed that
for large enough m, in the interval [m,m + Γ(m)], at least 9/(100 · logm) fraction of the
numbers are primes. 8

Testing whether a given integer x is a prime can be done deterministically in time
polylog(x) [AKS04]. Thus, a first attempt to find a prime number in the interval [m,m +
Γ(m)] would simply be to sample uniformly x ∼ [m,m+ Γ(m)] and test whether x is prime.
Finding a prime in one iteration succeed with probability Ω(1/ logm). Thus, repeating this
process for O(log (m) · log (1/δ)) iterations reduces the failure probability to δ. Since we use
log Γ(m) random bits per iteration, the total number of random bits used by this algorithm

7We have not been able to find a formal proof for known techniques in the literature, and specifically we
do not know of an exact assertion regarding the number of random bits used, but doing some calculation, it
seems our method does better in terms of randomness complexity.

8In fact, the main theorem of Baker et al. [BHP01] only states the existence of a prime in [m,m+ Γ(m)].
Nevertheless, they actually proved the stronger claim we need.
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is O(log2 (m) · log (1/δ)). Furthermore, the running-time is polylog(m) · log (1/δ) as we can
test the primality of each sample, deterministically, in time polylog(m).

One can reduce the number of random bits by using a hitter. Slightly deviating from
the standard notation for our own needs, a hitter for density µ and error parameter δ is a
randomized algorithm that gets as inputs m, k, δ, µ, and outputs a (random) set H ⊆ [m,m+
k] with the following property. For every set B ⊆ [m,m + k] with density |B|/(k + 1) ≥ µ,
it holds that PrH [H ∩B = ∅] ≤ δ. The maximum size of H that the hitter outputs is called
the sample complexity of the hitter.

In [Gol97], Corollary C.5, a hitter with sample complexity O(log (1/δ)/µ) is presented.
The number of random bits used by this hitter is log k + (2 + o(1)) · log (1/δ). By plugging
k = Γ(m) and µ = Ω(1/ logm) we get the desired parameters.

5.3 Proof of Theorem 5.1

Proof. As in the proof of Theorem 4.1, we note that the output (f1(P ), . . . , fn(P )) is well-
defined and is contained in Fnq . Moreover, since pk ≥ 2m and r is the least integer divisible by

m such that r > k ·pk+1− pk−1
p−1 −p

k, there are at least m integers in the range [r, kpk+1− pk−1
p−1 ].

This is necessary as the algorithm needs to find a function with a given valuation v at P
(k)
∞ ,

for v’s in {r, r + 1, . . . , r + m − 1}. Doing so efficiently we only know how to do inside the

interval [kpk+1 − pk−1
p−1 − p

k + 1, kpk+1 − pk−1
p−1 ].

Consider a monomial yd11 · · · ydnn of degree at most d. The algorithm maps every variable

yi to some function fi ∈ L((r + Zi) · P (k)
∞ ) \ L((r + Zi − 1) · P (k)

∞ ). This induces a mapping
of the monomial yd11 · · · ydnn to the function fd11 · · · fdnn . We note that the latter function is in

L(dkpk+1 · P (k)
∞ ) as it has no poles outside P

(k)
∞ , and

v∞(fd11 · · · fdnn ) =
n∑
i=1

div∞(fi) ≥ −
n∑
i=1

dikp
k+1 ≥ −dkpk+1.

Consider now two monomials yd11 · · · ydnn , y
d′1
1 · · · y

d′n
n of degree at most d. The claim is that,

except with probability 4d log (n)/m, the two monomials are mapped to functions in Fk that

have different valuations at P
(k)
∞ . Thus, as in the proof of Theorem 4.1, the probability that

two distinct monomials of a polynomial h ∈ Fq[y1, . . . , yn] with degree d and sparsity s will
be mapped to functions with the same valuation is at most

(
s
2

)
· 4d logn

m
, which is at most δ/8

by the choice of m. We thus conclude that except with probability δ/8, the polynomial h is

mapped to a non-zero function f ∈ L(dkpk+1 · P (k)
∞ ).

We now restrict ourselves to the event where f 6= 0. As before it is enough to show
that PrP [f(P ) = 0] ≤ δ/4, where P 6= P

(k)
∞ is a rational place of Fk sampled uniformly at

random. This will conclude the proof for the algorithm’s correctness. By the same argument
used in the proof of Theorem 4.1, since 0 6= f ∈ L(dkpk+1 · P (k)

∞ ), it follows that

Pr
P

[f(P ) = 0 | f 6= 0] =
dkpk+1

N(Fk)
<

dk

p− 1
≤ δ

4
,
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where the second inequality follows as N(Fk) > (p− 1)pk+1. The last inequality follows, for
large enough n, by our choice of p and since k is chosen such that pk−1 < 2m.

We now upper bound the number of random bits used. The algorithm performs three
random steps. First, by Lemma 5.3, finding the prime number m, with failure probability at
most δ/2, can be done using 0.525 · logm+(2+o(1)) · log (2/δ)+O(1) random bits. Secondly,
by Theorem 3.2, sampling (Z1, . . . , Zn) requires logm random bits. Third, the number of
rational places N(Fk) is bounded above by pk+2 < 2p3m and so sampling a rational place
costs logm+ log(2p3) random bits. It can be easily verified that the assertion regarding the
number of random bits used holds.

We now analyze the running-time of the algorithm. By Lemma 5.3, computing m can be
done in time polylog(m/δ). By Theorem 3.2, sampling (Z1, . . . , Zn) can be carried out
in poly(n, d, logm) time. By Lemma 5.2, finding a function fi with a given valuation
can be done in time polylog(m). Finally, sampling a place and evaluating the computed
function on it, can be done in time polylog(m) as well. Thus, the total running-time is
poly(n, d, log (m/δ)) = poly(n, d, log (s/δ))
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seed length
minimum
field size

remarks

optimal d log n 2

[LVW93] 2O(
√
n) 2 any constant degree

[Bog05] d4 log n d10 log2 n

[Bog05] c2d8n6/(c−2) cd6
Each output element de-
pends on c inputs.

[BV10] log n 2 d = 2, 3

[BV10]+[GT08] d log n+ f(d) d+ 1 f(d)� exp(d)

[BV10]+[KL08] d log n+ f(d) 2 f(d)� exp(d)

[Lov08] 2O(d) log n 2

[Vio09b] d log n+ d2d 2

[Lu12] (d4/c) · log n d6+c For any c > 0

[Lu12] (special case) d4 · log(d) · log(n) d6

[GX13] d4 · log n d6

Theorem 1.1 d4 · log n d12
Running time nO(d4), but
nO(1) assuming Conjec-
ture 1.4.

Theorem 1.2 d4 log n d20 log2−o(1) n

Table 1: Explicit constructions of pseudorandom generators for low degree polynomials.
For simplicity, we consider constant bias.
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