

A reduction of proof complexity to computational complexity for $AC^0[p]$ Frege systems

Jan Krajíček

Faculty of Mathematics and Physics Charles University in Prague

Abstract

We give a general reduction of lengths-of-proofs lower bounds for constant depth Frege systems in DeMorgan language augmented by a connective counting modulo a prime p (the so called $AC^0[p]$ Frege systems) to computational complexity lower bounds for search tasks involving search trees branching upon values of linear maps on the vector space of low degree polynomials over \mathbf{F}_p .

In 1988 Ajtai [2] proved that the unsatisfiable set $(\neg PHP_n)$ of propositional formulas

$$\bigvee_{j \in [n]} p_{ij} \text{ and } \neg p_{i_1j} \vee \neg p_{i_2j} \text{ and } \neg p_{ij_1} \vee \neg p_{ij_2}$$

for all $i \in [n+1] = \{1, \ldots, n+1\}$, all $i_1 \neq i_2 \in [n+1], j \in [n]$, and all $i \in [n+1], j_1 \neq j_2 \in [n]$ respectively, expressing the failure of the pigeonhole principle (PHP), has for no $d \geq 1$ a polynomial size refutation in a Frege proof system operating only with DeMorgan formulas of depth at most d. Subsequently Krajíček [18] established an exponential lower bound for these so called AC^0 Frege proof systems (for different formulas) and Krajíček, Pudlák and Woods [23] and Pitassi, Beame and Impagliazzo [26] improved independently (and announced jointly in [7]) Ajtai's bound for PHP to exponential.

All these papers employ some adaptation of the random restriction method that has been so successfully applied earlier in circuit complexity (cf. [1, 14, 31, 15]). Razborov [28] invented already in 1987 an elegant method, simplified and generalized by Smolensky [30], to prove lower bounds even for $AC^0[p]$ circuits, p a prime. Thus immediately after the lower bounds for AC^0 Frege systems were proved researchers attempted to adapt the Razborov-Smolensky method to proof complexity and to prove lower bounds also for $AC^0[p]$ Frege systems.

This turned out to be rather elusive and no lower bounds for the systems were proved, although some related results were obtained. Ajtai [3, 4, 5], Beame et.al.[6] and Buss et.al.[9] proved lower bounds for AC^0 Frege systems in DeMorgan language augmented by the so called modular counting principles as extra axioms (via degree lower bounds for the Nullstellensatz proof system in [6, 9]),

Razborov [29] proved n/2 degree lower for refutations of $(\neg PHP_n)$ in polynomial calculus PC of Clegg, Edmonds and Impagliazzo [12], and Krajíček [21] used methods of Ajtai [4, 5] to prove $\Omega(\log\log n)$ degree lower bound for PC proofs of the counting principles. Krajíček [20] proved an exponential lower bound for a subsystem of an $AC^0[p]$ Frege system that extends both constant depth Frege systems and polynomial calculus, Maciel and Pitassi [24] demonstrated a quasi-polynomial simulation of $AC^0[p]$ proof systems by a proof system operating with depth 3 threshold formula, Impagliazzo and Segerlind [17] proved that AC^0 Frege systems with counting axioms modulo a prime p do not polynomially simulate polynomial calculus over \mathbf{F}_p , and recently Buss, Kolodziejczyk and Zdanowski [10] proved that an $AC^0[p]$ Frege system of any fixed depth can be quasi-polynomially simulated by the depth 3 $AC^0[p]$ system. Also, Buss et.al.[9] showed that the $AC^0[p]$ Frege systems are polynomially equivalent to the Nullstellensatz proof system of Beame et.al.[6] augmented by the so called extension axioms formalizing in a sense the Razborov-Smolensky method.

In this paper we reduce the task to prove a lengths-of-proofs lower bound for $AC^0[p]$ Frege systems to the task to establish a computational hardness of a specific computational task. The task is a search task and it is solved by trees branching upon values of linear maps on the vector space of low degree polynomials over \mathbf{F}_p . The hardness statements to which lower bounds are reduced say that every tree of small depth and using small degree polynomials must make more than an exponentially small error.

Maciel and Pitassi [25] formulated such a reduction of proof complexity to computational complexity (and the implied conditional lower bound). However, in their construction they needed to redefine the proof systems (allowing arbitrary formulas and restricting only cut-formulas to $AC^0[p]$ formulas) and the hard examples whose short proofs yield a computational information are not $AC^0[p]$ formulas. In particular, their reduction does not seem to yield anything for the originally defined $AC^0[p]$ Frege systems (see Section 1).

The paper is organized as follows. In Section 1 we recall the definition of the proof systems. In Sections 2 - 5 we reduce the lower bounds to the task to show the existence of winning strategies for a certain game. This is reduced further in Section 6 to the task to show that search trees of small depth that branch upon values of linear maps on the vector space of low degree polynomials over \mathbf{F}_p cannot solve a certain specific computational task. The paper is concluded by a few remarks in Section 7.

More background on proof complexity can be found in [19] or [27], the problem (and a relevant background) to prove the lower bound for the systems is discussed in detail also in [22, Chpt.22].

1 $AC^0[p]$ Frege proof systems

We will work with a sequent calculus style proof system in a language with connectives \neg , unbounded arity \bigvee and unbounded arity connectives $MOD_{p,i}$

for p a prime and $i = 0, \ldots, p-1$. The intended meaning of the formula $MOD_{p,i}(y_1, \ldots, y_k)$ is that $\sum_i y_i \equiv i \pmod{p}$. The proof system has the usual structural rules (weakening, contraction and exchange), the cut rule, the left and the right \neg introduction rules and two introduction rules for \bigvee modified for the unbounded arity; the $\bigvee : left$ rule

$$\frac{\varphi_1, \Gamma \to \Delta \qquad \varphi_2, \Gamma \to \Delta \qquad \dots \qquad \varphi_t, \Gamma \to \Delta}{\bigvee_{i \le t} \varphi_i, \Gamma \to \Delta}$$

and the $\bigvee : right$ rule

$$\frac{\Gamma \to \Delta, \varphi_j}{\Gamma \to \Delta, \bigvee_{i < t} \varphi_i}$$

any $j \leq t$. There are no rules concerning the $MOD_{p,i}$ connectives but there are new \mathbf{MOD}_p -axioms (we follow [19, Sec.12.6]):

- $MOD_{p,0}(\emptyset)$
- $\neg MOD_{p,i}(\emptyset)$, for i = 1, ..., p-1
- $MOD_{p,i}(\Gamma, \phi) \equiv [(MOD_{p,i}(\Gamma) \land \neg \phi) \lor (MOD_{p,i-1}(\Gamma) \land \phi)]$ for $i = 0, \dots, p-1$, where i-1 means i-1 modulo p, and where Γ stands for a sequence (possibly empty) of formulas.

The depth of the formula is the maximal number of alternations of the connectives; in particular, formulas from $(\neg PHP_n)$ have depth 1 and 2 respectively. We have not included among the connectives the conjunction \wedge ; this is in order to decrease the number of cases one needs to consider in the constructions later on. Note that the need to express \wedge using \neg and \vee may increase the depth of AC^0 formulas comparing to how it is usually counted. But as we are aiming at lower bounds for all depths this is irrelevant.

We shall denote the proof system $LK(MOD_p)$ and its depth d subsystem (operating only with formulas of depth at most d) $LK_d(MOD_p)$. It is well-known that this system is polynomially equivalent to constant depth Frege systems (or to Tait style system as in [10]) and in the mutual simulation the depth increases only by a constant as the systems have the same language (cf.[19]). The size of a formula or of a proof is the total number of symbols in it.

2 From a proof to a game with formulas

In this section and in the next one we define certain games using the specific case of the PHP as an example. This is in order no to burden the presentation right at the beginning with a technical discussion of the form of formulas we allow. As it is shown in Section 6 this is without a loss of generality and, in fact, motivates the general formulation there.

Consider the following game G(d, n, t) played between two players, Prover and Liar. At every round Prover asks a question which Liar must answer. Allowed questions are:

- (P1) What is the truth-value of φ ?
- (P2) If Liar already gave a truth-value to $\varphi = \bigvee_{i \leq u} \varphi_i$, Prover can ask as follows:
 - (a) If Liar answered false then Prover can ask an extra question about the truth value of any one of φ_i , $j \leq u$.
 - (b) If Liar answered true then Prover can request that Liar witnesses his answer by giving a $j \leq u$ and stating that φ_j is true.

All formulas asked by Prover are built from the variables of $(\neg PHP_n)$, and must have the depth at most d and the size at most 2^t . The Liar's answers must obey the following rules:

- (L0) When asked about a formula he already gave a truth value to in an earlier round Liar must give the same answer.
- (L1) He must give φ and $\neg \varphi$ opposite truth values.
- (L2) If asked according to (P2a) about φ_j he must give value false. If asked according to (P2b) he must give value true also to some φ_j with $j \leq u$.
- (L3) If asked about any MOD_p -axiom he must say true.
- (L4) If asked about any formula from $(\neg PHP_n)$ he must say true.

The game runs for t rounds of questions and Liar wins if he can always answer while obeying the rules. Otherwise Prover wins.

Lemma 2.1 For any $d \ge 2$, $n \ge 1$ and $s \ge 1$. If there is a size s $LK_d(MOD_p)$ refutation of $(\neg PHP_n)$ then Prover has a winning strategy for game

$$G(d+O(1), n, O(\log s))$$
.

Proof:

It is well-known that LK-proofs (or Frege proofs) can be put into a form of balanced tree with only a polynomial increase in size and a constant increase in the depth (cf. [18, 19]). In particular, the hypothesis of the lemma implies that there is a size $s^{O(1)}$ refutation π of $(\neg PHP_n)$ in $LK_{d+O(1)}(MOD_p)$ that is in a form of tree whose depth is $O(\log s)$.

The Prover will attempt - by asking Liar suitable questions - to built a path of sequents Z_1, Z_2, \ldots in π such that

- Z_1 is the end-sequent of π , i.e. the empty sequent.
- Z_{i+1} is one of the hypothesis of the inference yielding Z_i .
- If Z_i is $\Gamma \to \Delta$ then Prover asked all formulas in Γ, Δ and Liar asserted that all formulas in Γ are true and all formulas in Δ are false.

Assume Z_1, \ldots, Z_i has been constructed. Next Prover's move depends on the type of inference yielding Z_i :

- Structural rules: Prover asks no questions and just takes for Z_{i+1} the hypothesis of the inference.
- Cut rule: Prover asks about the truth value of the cut formula, say φ , and if Liar asserts it to be true, Prover takes for Z_{i+1} the hypothesis of the inference having φ in the antecedent, otherwise it takes the hypothesis with φ in the succedent.
- A \neg introduction rule: if $\neg \varphi$ was the formula introduced, Prover asks φ and takes for Z_{i+1} the unique hypothesis of the inference.
- The $\bigvee : right$ introduction rule: if the principal formula was $\varphi = \bigvee_{i \leq u} \varphi_i$ and the minor formula φ_j Prover already asked φ in an earlier round and got answer false. He now asks φ_j and takes for Z_{i+1} the unique hypothesis of the inference.
- The \bigvee : left introduction rule: if the principal formula was $\varphi = \bigvee_{i \leq u} \varphi_i$ Prover already asked φ in an earlier round and got answer true. She now asks Liar to witness this answer by some φ_j and then takes for Z_{i+1} the hypothesis with the minor formula φ_j in the antecedent.

This process either causes Liar to loose or otherwise arrives at an initial sequent which Liar's answers claim to be false. But that contradicts rules (L1), (L3) or (L4).

q.e.d.

Shallow tree-like refutations of a set of axioms can be used as search trees finding an axiom false under a given assignment: the Liar answers the truth values determined by the assignment (see e.g. the use of such trees in [18, 19]). It was a simple but important insight of Buss and Pudlák [11] that when Liars are allowed not to follow an assignment but are only required to be logically consistent then the minimal length of Prover's winning strategy characterize the minimal depth of a tree-like refutation (a form of a statement opposite to the lemma also holds as pointed out in [11] in the context of unrestricted Frege systems).

3 Algebraic formulation of $(\neg PHP_n)$ and a game with polynomials

Let $\mathbf{F}_p[x_{ij} \mid i \in [n+1] \land j \in [n]]$ be the ring of polynomials over the finite field \mathbf{F}_p with p elements with the indicated variables. Denote by S_n the ring factored by the ideal generated by all polynomials $x_{ij}^2 - x_{ij}$. Elements of S_n are multi-linear polynomials. Let $S_{n,e}$ be the \mathbf{F}_p -vector space of elements of S_n of

degree at most e. We shall denote monomials x_a, \ldots where a, \ldots are unordered tuples of variable indices; the monomial is then the product of the corresponding variables.

Beame et al.[6] formulated (the negation of) PHP as the following $(\neg PHP_n)$ system of polynomial equations in S_n :

- $x_{i_1j} \cdot x_{i_2j} = 0$, for each $i_1 \neq i_2 \in [n+1]$ and $j \in [n]$.
- $x_{ij_1} \cdot x_{ij_2} = 0$, for each $i \in [n+1]$ and $j_1 \neq j_2 \in [n]$.
- $1 \sum_{i \in [n]} x_{ij} = 0$, for each $i \in [n+1]$.

The left-hand sides of these equations will be denoted $Q_{i_1,i_2;j}$, $Q_{i;j_1,j_2}$ and Q_i respectively.

The language of rings is a complete language for propositional logic and it is easy to imagine a modification of the G-game to such a language if the answers of Liar have to respect both the sum and the product. For example, questions analogous to (P2a) and (P2b) would be to give a non-zero value to any f_j if the product $\Pi_j f_j$ was given a non-zero value earlier, or to identify an f_j with the zero value if the product was given earlier value 0.

The game we are going to define allows only simple questions and requires that sums of two polynomials and products of two monomials are respected. We consider the multiplicativity condition for monomials rather than for polynomials as later we reduce to various search tasks associated with a violation of the multiplicativity and these appear to have a simpler combinatorial interpretation for monomials than for general polynomials. As is shown in Section 4 the two versions of the multiplicativity condition are essentially equivalent.

We shall define the following game H(e, n, r) played by two players Alice and Bob. Alice's role will be similar to that of Prover in the G-game and Bob's to that of Liar. In every round Alice may put to Bob a question of just one type:

(A) She asks Bob to give to a polynomial f from $S_{n,e}$ a value from \mathbf{F}_p .

Bob's answers must obey the following rules:

- (B0) If asked about a polynomial whose value he gave in an earlier round Bob must answer identically as before.
- (B1) He must give to each element $c \in \mathbf{F}_p$ the value c, and to each variable either 0 or 1.
- (B2) If he gave values to f, g and f + g, the values given to f and g must sum up to the value he gave to f + g.
- (B3) If he gave values to monomials x_a , x_b and $x_a \cdot x_b$, the product of the values given to x_a and x_b must equal to the value given to $x_a \cdot x_b$.
- (B4) He must give value 0 to all polynomials $Q_{i_1,i_2,j}$, $Q_{i;j_1,j_2}$ and Q_i .

The game runs for r rounds and Bob wins if he can answer all questions while obeying the rules. Otherwise Alice wins.

In principle Bob's strategy can be adaptive (i.e. his moves depend on the development of the game) or even may depend on Alice. Call a strategy of Bob **simple** if it is a function B assigning to elements of $S_{n,e}$ values in \mathbf{F}_p and Bob, when asked to evaluate f, answers B(f). We shall abuse the language occasionally and talk about a **simple Bob** rather than a simple strategy for Bob.

The reason to single out simple strategies is that we shall apply the Razborov - Smolensky approximation method in Section 5 in order to move from a G-game to an H-game, by approximating formulas by low degree polynomials with respect to (a set of) Bob's strategies. The approximation process (and hence a strategy for Alice constructed there) depends on the set of Bob's strategies we start with and to avoid circularity we restrict to sets containing only (but not necessarily all) simple strategies.

4 Five useful protocols for Alice

In this section we describe five simple protocols in which Alice leans more on the additivity and can force Bob to answer various more complicated questions, similar to that of (P2).

Protocol M_0 : Assume that Bob asserted that $\sum_{i \leq u} f_i \neq 0$. Alice wants to force Bob to assert that $f_j \neq 0$ for some $j \leq u$ (or to loose).

She splits the sum into halves and asks Bob to evaluate $\sum_{i \leq u/2} f_i$ and $\sum_{i \geq u/2} f_i$. As he already gave to $\sum_{i \leq u} f_i$ a non-zero value, by (B0) and (B2) - unless he quits - Bob must give to at least one of the half-sums a non-zero value. Continuing in a binary search fashion in $\log u$ rounds she forces Bob to assert that $f_j \neq 0$ for some $j \leq u$.

Protocol M_1 : Assume that Bob gave to some polynomials f, g and $f \cdot g$ values B(f), B(g) and $B(f \cdot g)$ respectively, and that $B(f) \cdot B(g) \neq B(f \cdot g)$. Alice wants to force Bob into a contradiction with the rules.

Alice writes polynomials f and g as \mathbf{F}_p -linear combinations of monomials: $f = \sum_{a \in A} c_a x_a$ and $g = \sum_{b \in B} d_b x_b$ with $c_a, d_b \in \mathbf{F}_p$ and x_a, x_b monomials. She splits A into two halves $A = A_0 \dot{\cup} A_1$, and asks Bob for the values of

$$(\sum_{a \in A_0} c_a x_a)$$
, $(\sum_{a \in A_0} c_a x_a) \cdot g$, $(\sum_{a \in A_1} c_a x_a)$, and $(\sum_{a \in A_1} c_a x_a) \cdot g$.

Unless Bob violates the linearity rule (B2) his answers must satisfy

$$B(\sum_{a \in A_i} c_a x_a) \cdot B(g) \neq B((\sum_{a \in A_i} c_a x_a) \cdot g)$$

for either i=0 or i=1. Continuing in the binary search fashion Alice forces Bob to assert

$$B(c_a x_a) \cdot B(g) \neq B(c_a x_a \cdot g)$$

for some monomial x_a . Using (B1) and (B2) she forces

$$B(c_a x_a) = c_a B(x_a)$$
 and $B(c_a x_a g) = c_a B(x_a g)$

and hence

$$B(x_a) \cdot B(g) \neq B(x_a \cdot g)$$
.

The number of variables is $n^{O(1)}$ and so the number of monomials of degree at most e is $n^{O(e)}$. Hence all this process requires as most $O(e \log n)$ rounds of Alice's questions.

Now she analogously forces Bob to assert

$$B(x_a) \cdot B(x_b) \neq B(x_a \cdot x_b)$$

for some monomial x_b occurring in g, violating thus (B3).

Protocol M_2 : Assume that Bob asserted that $\Pi_{i \leq k} f_i \neq 0$ and let $j \leq k$ be arbitrary. Alice wants to force Bob to assert that $f_j \neq 0$ (or to loose).

She asks Bob to state the value of f_j and if Bob says $f_j \neq 0$ she stops. Otherwise the triple f_j , g and f_jg for $g := \prod_{i \leq k, i \neq j} f_i$ satisfies the hypothesis of protocol M_1 and Alice can win in $O(e \log n)$ rounds.

Protocol M_3 : Assume that Bob asserted that $\Pi_{i \leq k} f_i = 0$. Alice wants to force Bob to assert that $f_j = 0$ for some $j \leq k$ (or to loose).

We shall describe the protocol by induction on k. Alice asks first for the value of f_k . If Bob states that $f_k = 0$ she stops. If he states that $f_k \neq 0$ she asks him for the value of $\prod_{i < k} f_i$. If Bob says that $\prod_{i < k} f_i = 0$, Alice has - by the induction hypothesis - a way how to solve the task.

If he says that $\Pi_{i < k} f_i \neq 0$ Alice forces him into contradiction using protocol M_1 . We may assume that all polynomials f_i are non-constant and thus the induction process takes at most $k \leq e$ steps.

Note that again Alice needed at most $2e + O(e \log n) = O(et)$ rounds in total.

Protocol M_4 : Let $g = f^{p-1}$ and assume that Bob gave to g a value different from both 0, 1. Alice wants to force Bob into a contradiction.

She asks Bob for the value of f and assume Bob states $f = c \in \mathbf{F}_p$. If c = 0 Alice uses protocol M_2 to force a contradiction. If $c \neq 0$ Alice asks Bob for values of $f^2, f^3, \ldots, f^{p-1}$ and unless Bob returns values $c^2, c^3, \ldots, c^{p-1}$ she forces him into a contradiction by protocol M_1 . But Bob cannot keep up these answers because if he gave to g now the value $c^{p-1} = 1$ he would violate rule (B0).

5 From Prover to Alice and from Bob to Liar

In this section we employ the Razborov - Smolensky method to show that the existence of many simple winning strategies for Bob yield a winning strategy for Liar¹.

Lemma 5.1 Let $d \ge 2$, $n \ge 1$ and $t \ge \log n$ be arbitrary and take parameters e, r

$$e := ((t^2 + 2t)p)^d$$
 and $r := O(et^4)$.

Let $\Omega_{e,n,r}$ be a non-empty set of simple strategies for Bob in game H(e,n,r). Let P be any strategy for Prover in game G(d,n,t).

Then there exists a strategy A for Alice in H(e, n, r) such that if

$$Prob_{B \in \Omega_{e,n,r}}[B \text{ wins over } A \text{ in } H(e,n,r)] > 2^{-t}$$
 (1)

then there exists a Liar's strategy L winning over P in G(d, n, t).

Proof:

Let P and $\Omega_{e,n,r}$ be given. Let F be the smallest set of formulas closed under subformulas and containing all possible P's questions according to rule (P1) in all plays of the game G(d,n,t) against all possible Liars. The number of such (P1) questions is at most 2^{t^2} and each has size at most 2^t and so also at most 2^t subformulas. Thus the depth of all formulas in F is at most d and their total number is bounded by 2^{t^2+t} .

We shall use the Razborov - Smolensky method to assign to all formulas $\varphi \in F$ a polynomial $\hat{\varphi} \in S_{n,e}$. However, we shall approximate with respect to Bob's strategies from $\Omega_{e,n,r}$ rather than with respect to all assignments to variables as it is usual.

Fix parameter $\ell := t^2 + 2t$. Put $\hat{x}_e := x_e$, $(\neg \varphi) := 1 - \hat{\varphi}$ and for $\varphi = MOD_{p,i}(\varphi_1, \dots, \varphi_k)$ define

$$\hat{\varphi} := 1 - ((\sum_{j \le i} \hat{\varphi}_j) - i)^{p-1}.$$

For the remaining case $\varphi = \bigvee_{i \in [u]} \varphi_i$ assume that all polynomials $\hat{\varphi}_i$ were already defined. Pick ℓ subsets $J_1, \ldots, J_{\ell} \subseteq [u]$, independently and uniformly at random (we shall fix them in a moment), and define polynomial

$$p_{\varphi}(y_1, \dots, y_u) := 1 - \prod_{j \le \ell} (1 - (\sum_{i \in J_j} y_i)^{p-1})$$

and using p_{φ} put

$$\hat{\varphi} := p_{\varphi}(\hat{\varphi}_1, \dots, \hat{\varphi}_u) . \tag{2}$$

 $^{^1\}mathrm{We}$ could have by passed the G-game and the explicit use of the Razborov - Smolensky method by employing the characterization of the size of $AC^0[p]$ Frege proofs in terms of degree of proofs in the so called Extended Null stellensatz of [9]. We prefer here a self-contained presentation.

The following claim is easily verified by induction on the depth of φ , using the protocols from Section 4.

Claim 1: Let $\varphi \in F$ and assume that Bob asserted that $\hat{\varphi} = c \in \mathbf{F}_p$ for some $c \neq 0, 1$. Then Alice can force Bob into a contradiction in $O(e \log n)$ rounds.

Let $b_i \in \{0,1\}$ be the truth-value of the statement $B(\hat{\varphi}_i) \neq 0$. For $B \in \Omega_{e,n,r}$ we have that

$$\bigvee_{i \in [u]} b_i = p_{\varphi}(b_1, \dots, b_u) \tag{3}$$

with probability at least $1-2^{-\ell}$ (taken over the choices of sets J). Hence we can select specific sets J_1, \ldots, J_ℓ such that (3) holds for all but $2^{-\ell} \cdot |\Omega_{e,n,r}|$ simple Bobs from $\Omega_{e,n,r}$. The polynomial $\hat{\varphi}$ in (2) is assumed to have this property.

Define in this way the polynomial $\hat{\varphi}$ for all (at most 2^{t^2+t}) formulas $\varphi \in F$ by induction on the depth $1, 2, \ldots, d$. Each is of degree at most $(\ell(p-1))^d \leq ((t^2+2t)p)^d = e$ and it holds that:

Claim 2: There is a subset $Err \subseteq \Omega_{e,n,r}$ such that $|Err| \leq 2^{-t} |\Omega_{e,n,r}|$ and such that (3) holds for all disjunctions $\varphi \in F$ and all $B \in \Omega_{e,n,r} \setminus Err$.

Now we define, using the given strategy P for Prover, a specific strategy A for Alice in H(e, n, r). We transcript P into A a question by question; each question of P may be replaced by a series of questions of Alice.

If P asks according to (P1) what is the value of φ , Alice simply asks for the value of $\hat{\varphi}$. Let $\varphi = \bigvee_{i \in [u]} \varphi_i$ and assume that P asks according to (P2); there are two cases to consider:

- (a) φ got value false and P asks for the value of one disjunct φ_j ,
- (b) φ got value true and P asks for a witness φ_j .

Assume for the case (a) that Bob asserted in an earlier round that $\hat{\varphi} = 0$. Alice uses protocol M_2 repeatedly to force Bob to assert

$$1 - (\sum_{i \in J_n} \hat{\varphi}_i)^{p-1} \neq 0$$

for all $v \leq \ell$. Then for each v she uses protocol M_4 to force Bob to say that

$$\left(\sum_{i \in J_n} \hat{\varphi}_i\right)^{p-1} = 0$$

and further protocol M_3 to assert that

$$\sum_{i \in J_n} \hat{\varphi}_i = 0 . (4)$$

This needs $O(\ell e \log n) = O(t^2 e \log n) = O(et^3)$ rounds.

But if Bob uses a strategy $B \in \Omega_{e,n,r} \setminus Err$ that gives to some $\hat{\varphi}_j$ for some $j \in [u]$ value 1, the definition of Err guarantees that one of the equations in (4) is false for B (i.e. when φ_i 's are evaluated by B). Thus B would get to a contradiction with the additivity via protocol M_0 in t rounds, as 2^t bounds the size of the sums (4).

Assume for the case (b) that Bob answered earlier that $\hat{\varphi}=1$ and hence also that

$$\Pi_{j \le \ell} (1 - (\sum_{i \in J_j} \hat{\varphi}_i)^{p-1}) = 0.$$

Alice uses protocols M_3 and M_4 to force Bob to state that $\sum_{i \in J_v} \hat{\varphi}_i = 1$ for some $v \leq \ell$. This uses $O(e \log n) = O(et)$ rounds. Then she uses protocols M_0 and M_4 to force Bob to say that $\hat{\varphi}_j = 1$ for some $j \in J_v$. The number of formulas φ_i is bounded by the size of φ , i.e. by 2^t , and so this uses at most t rounds in protocol M_0 , i.e. still O(et) in total.

This describes the strategy A.

Assume that the probability inequality (1) from the hypothesis of the lemma holds. This, together with Claim 2, implies that there is at least one $B \in \Omega_{e,n,r} \setminus Err$ winning over the particular Alice's strategy A.

Use B to define a strategy L for Liar in the original game G(d, n, t) simply by giving to φ the truth value $B(\hat{\varphi})$ when asked a (P1) type question, and giving a witness φ_i constructed in the case (b) above when asked a (P2b) type question.

From the construction of A (and rules for Bob) it follows that L satisfies the rules for Liar. In particular, by (B4) all polynomials from the $(\neg PHP_n)$ -system get 0 by B and so all axioms of $(\neg PHP_n)$ get by L value true.

Note that one question of P is transcribed into at most $O(et^3)$ Alice's questions. Hence in every play of the H-game transcribing a play of the G-game there are in total at most $r = O(et^4)$ rounds.

q.e.d.

6 A general reduction to a search problem

The reduction of the lengths-of-proofs problem to a question about the H-games in Sections 2 - 5 is not specific to $(\neg PHP_n)$ and works in a fairly general situation that we shall describe now. Then we reduce the proof complexity problem further to a question about the computational complexity of a certain task involving computations with search trees.

The only specific thing in the $(\neg PHP_n)$ case is the transcription of the axioms of $(\neg PHP_n)$ into the $(\neg PHP_n)$ polynomial system in Section 3. This is not a mere mechanical translation from DeMorgan language into the language of rings (in that the axioms $\bigvee_{j \in [n]} p_{ij}$ would translate into polynomials of degree about n and not into degree 1 polynomials Q_i). In order to avoid inevitable technicalities when trying to define suitable translations from a general set of axioms to a

polynomial system we simply take as our starting point an unsolvable system of polynomial equations of a constant degree. The truth value of an equation $f(x_1, \ldots, x_m) = 0$ for Boolean variables x_i , f a degree O(1) polynomial over \mathbf{F}_p , can be defined by a depth 2, size $m^{O(1)}$ $AC^0[p]$ formula². The polynomial system can thus be also thought of as an unsatisfiable set of $AC^0[p]$ formulas and we can speak about its $LK_d(MOD_p)$ refutations.

We shall now consider the following general set-up. For n = 1, 2, ... let \mathcal{F}_n be a sequence of sets of polynomials over \mathbf{F}_p in variables $Var(\mathcal{F}_n)$. We shall assume that:

- 1. polynomials in sets \mathcal{F}_n have O(1) degree,
- 2. the size of both \mathcal{F}_n and $Var(\mathcal{F}_n)$ is $n^{O(1)}$,
- 3. the polynomial system

$$f = 0$$
, for $f \in \mathcal{F}_n$

contains equations $x^2 - x = 0$ for all $x \in Var(\mathcal{F}_n)$ and is unsolvable in \mathbf{F}_p .

Let $S_{n,e}^{\mathcal{F}}$ be the \mathbf{F}_p - vector space of multi-linear polynomials in variables of \mathcal{F}_n and of degree at most e.

We want to replace games and strategies considered in previous sections by a more direct computational model, namely that of search tress. In order to do that we shall restrict further the class of simple Bobs. The first restriction is that we shall consider only linear Bobs, i.e. maps $B: S_{n,e}^{\mathcal{F}} \to \mathbf{F}_p$ that are linear (and, in particular, B(0) = 0 and B(1) = 1). This seems as a sensible decision being around vector spaces.

The restriction to linear Bobs implies, however, immediately a more stringent restriction. Assume that for some $f \in \mathcal{F}_n$ and $g \in S_{n,e}^{\mathcal{F}}$ such that $gf \in S_{n,e}^{\mathcal{F}}$ it holds that $B(gf) \neq 0$. By linearity also $B(x_bf) \neq 0$ for some monomial x_b in g. But then taking w random sums

$$\sum_{x_a \in I} x_a f$$

for random sets I of monomials x_a (such that $deg(x_a f) \leq e$) Alice will find with probability at least $1 - 2^{-w}$ a sum given a non-zero value by Bob, and she can use it to find a suitable monomial x_b by binary search; this process takes $w + O(e \log n)$ rounds in total. This can be subsequently brought into a contradiction with rule (B4) using protocol M_1 . In other words, without a loss of generality, once restricting to linear Bobs we may demand that all multiples in $S_{n,e}^{\mathcal{F}}$ of a polynomial from \mathcal{F}_n get value 0.

This class of maps has been actually already considered in the context of the Nullstellensatz proof system.

²Instead of assuming degree O(1) it would suffice to assume that f is an \mathbf{F}_p -linear combination of polynomially many monomials.

Definition 6.1 (Beame et.al.[6]) An \mathcal{F}_n -design (tacitly over \mathbf{F}_p) of degree e is a linear map $D: S_{n,e}^{\mathcal{F}} \to \mathbf{F}_p$ such that

$$D(qf) = 0$$

for all $f \in \mathcal{F}_n$ and g such that $deg(gf) \leq e$.

It is known that an \mathcal{F}_n -designs of degree e exists iff there is no degree e Null-stellensatz refutation of \mathcal{F}_n (cf. [6] for the only-if direction and Buss [8] for the if direction).

We also need to incorporate the part of the rule (B1) stipulating that variables get values 0 or 1; we shall call designs with this property **Boolean**. In accordance with the earlier habit we shall call strategies for Bob that are (Boolean) designs simply (**Boolean**) design Bobs.

Define an $S_{n,e}^{\mathcal{F}}$ - search tree T to be a p-ary tree whose inner nodes (non-leaves) are labelled by polynomials from $S_{n,e}^{\mathcal{F}}$, the p edges leaving a node labelled by g are labelled by $g = 0, g = 1, \ldots, g = p - 1$, and leaves are labelled by elements of a set X.

Any function $B: S_{n,e}^{\mathcal{F}} \to \mathbf{F}_p$ determines a path $P_T(B)$ in T consisting of edges labelled by g = B(g) and thus it also determines an element of X: the label of the unique leaf on $P_T(B)$. Hence T defines a function assigning to any map $B: S_{n,e}^{\mathcal{F}} \to \mathbf{F}_p$ an element of X to be denoted T(B).

map $B: S_{n,e}^{\mathcal{F}} \to \mathbf{F}_p$ an element of X to be denoted T(B). Let $Pair_{n,e}^{\mathcal{F}}$ be the set of pairs (x_a, x_b) of monomials over $Var(\mathcal{F}_n)$ of total degree at most e. We say that $(x_a, x_b) \in Pair_{n,e}^{\mathcal{F}}$ is an **error pair for** B if $B(x_a)B(x_b) \neq B(x_a \cdot x_b)$.

The reductions of Sections 2 - 5 now give the following statement. In it we replace degree e by (bigger) r in order to avoid the need to define here the relation between them implicit in Lemma 5.1.

Theorem 6.2 Let $r = r(n) \ge (\log n)^{\omega(1)}$ be a function and let \mathcal{F}_n be sets of polynomials obeying the restrictions 1., 2. and 3. listed above.

Then for every $d \geq 2$ there are $\epsilon_d > 0$ and $n_d \geq 1$ such that for an arbitrary non-empty set $\Omega_{\mathcal{F}_n,r}$ of degree r Boolean \mathcal{F}_n -designs the following implication (I) holds for all $n \geq n_d$:

(I) If for every $S_{n,r}^{\mathcal{F}}$ - search tree T of depth r and with leaves labelled by elements of $Pair_{n,r}^{\mathcal{F}}$ it holds that

$$Prob_{B \in \Omega_{\mathcal{F}_n,r}}[T(B) \text{ is not an error pair for } B] > 2^{-r^{\epsilon_d}}$$
 (5)

then $LK_d(MOD_p)$ does not refute the set of formulas f = 0, $f \in \mathcal{F}_n$, by a proof of size less than $2^{\Omega(r^{\epsilon_d})}$.

In particular, if even

$$Prob_{B \in \Omega_{\mathcal{F}_n,r}}[T(B) \text{ is not an error pair for } B] > 2^{-r^{o(1)}}$$
 (6)

then no $LK_d(MOD_p)$ for any $d \geq 2$ does refute the set of formulas f = 0, $f \in \mathcal{F}_n$, by a proof of size $2^{r^{o(1)}}$.

Proof:

Assume that $LK_d(MOD_p)$ does refute the set of formulas f = 0, $f \in \mathcal{F}_n$, by a proof of size s = s(n). By Lemma 2.1 Prover has a winning strategy P for game G(d+c,n,t), where $t = t(n) = O(\log s)$ and c is an absolute constant.

Take the strategy A constructed from P for Alice for game H(e, n, r) in Lemma 5.1 and assume that parameters e, r and t satisfy the inequalities as there: i.e. $e \le r = c_d t^{2(d+c)+4}$ where c_d is a constant that depends on d (it is less than $(2p)^d$).

The strategy A defines an $S_{n,r}^{\mathcal{F}}$ - search tree T of depth r and with leaves labelled by elements of $Pair_{n,r}^{\mathcal{F}}$ in a natural way: a path in T corresponds to possible answers of a Boolean design Bob and the path stops as soon as a violation of rule (B3) occurs (no other rule can be broken by a Boolean design Bob). The monomials that violate (B3) are the label of the resulting leaf (if a violation does not occur we use any pair).

violation does not occur we use any pair). Take $\epsilon_d := \frac{1}{2(d+c)+5}$ and note that for some n_d it holds that $r(n)^{\epsilon_d} < t(n)$, i.e. also

$$2^{-r(n)^{\epsilon_d}} > 2^{-t(n)}$$

for $n \geq n_d$. Assume that $\Omega_{\mathcal{F}_n,r}$ is a set of Boolean design Bobs for which the inequality (5) holds. Then also the inequality (1) from Lemma 5.1 holds and thus by that lemma there is a strategy L for Liar that wins over P in the original G-game. That is a contradiction and thus:

$$s > 2^{\Omega(r(n)^{\delta_d})} > 2^{\Omega(r(n)^{\epsilon_d})}$$

where $\delta_d := \frac{1}{2(d+c)+4}$.

q.e.d.

By protocol M_1 from Section 4 we could ask equally in Theorem 6.2 that the trees attempt to find an error pair of polynomials rather than monomials. In fact, two other problems are equal in the same sense. In order to formulate a precise statement let us call two search problems **equivalent** if whenever one can be solved by an $S_{n,e}^{\mathcal{F}}$ - search tree of depth r with the probability of failing at most $2^{-r^{\Omega(1)}}$ (w.r.t. to fixed $\Omega_{\mathcal{F}_{n},r}$) then the other one can solved by an $S_{n,e}^{\mathcal{F}}$ - search tree of depth $r^{1+o(1)}$ and with the probability of failing also at most $2^{-r^{\Omega(1)}}$.

Lemma 6.3 Assume $r \ge e \ge \log(n)^{\omega(1)}$. The following two tasks are equivalent in the above sense to the task to find an error pair:

- (1) Find a monomial x_a of degree at most e such that $B(x_a)$ is not equal to the product of values B gives to variables in x_a .
- (2) Find a variable x_i such that there exists a monomial x_a of degree less than e for which $B(x_i) \cdot B(x_a) \neq B(x_i x_a)$.

Proof:

Assume an $S_{n,e}^{\mathcal{F}}$ - search tree of depth r finds an error pair, say (x_a, x_b) , with the probability of failing at most $2^{-r^{\Omega(1)}}$. Asking about B-values of all (at most e) variables occurring in either x_a or in x_b solves task (1) with one of monomials x_a or x_b or $x_a \cdot x_b$ as the witness. The probability of failing does not increase, the degree of the tree is the same and the depth increases at most by e, i.e. is at most 2r.

Having a solution $x_a = \prod_{i \leq k} x_i$ for task (1) find the minimal $\ell \leq k$ such that $\prod_{i \leq \ell} x_i$ is also a solution to (1). Then x_ℓ solves (2) as witnessed by $\prod_{i < \ell} x_i$. Again, this does not change the degree or the failure probability and the depth of the tree increases by at most e.

Finally, assume x_i solves (2). Find a monomial x_a witnessing this as follows. If $B(x_i) = 0$ then ask for values of r sums

$$\sum_{x_a \in J} x_i x_a$$

for random sets J of degree < e monomials x_a not containing x_i . With probability of failing at most 2^{-r} one of them will be non-zero and then we find such x_a with $B(x_ix_a) \neq 0$ by binary search. This does not increase the degree, increases the probability of the failure of the tree by the additive factor 2^{-r} (i.e. it is still $2^{-r^{\Omega(1)}}$) and increases the depth by $r + O(e \log n) = O(r \log n) = r^{1+o(1)}$.

If $B(x_i) = 1$ proceed analogously but search for a monomial x_a such that $B(x_a) - B(x_i x_a) \neq 0$.

q.e.d.

Let us remark that Razborov's analysis [29] of the vector space of polynomials with a low degree Nullstellensatz proof (equivalently, a polynomial calculus proof) from $(\neg PHP_n)$ implies a complete description of all $(\neg PHP_n)$ -designs of degree up to n/2. In particular, such designs do exist.

7 Concluding remarks

To conclude let me remark that the reduction originated in the model-theoretic framework of [22], as a specialization of a more general construction. I have opted for this presentation free of model theory in order to make the argument more available. However, a relation of the construction to a more general approach to a reduction of proof complexity lower bounds to computational complexity ones from [22] is lost. The interested reader can find the approach outlined in general terms in the Introduction to [22] and for the specific case of $AC^0[p]$ Frege systems in [22, Chpt.22]. In particular, assuming the hardness hypothesis (6) for some set $\Omega_{n,r}$ of ($\neg PHP_n$) - Boolean designs the model described there works with only one - but key - modification: the sample space does not consists of a set of partial one-to-one maps but it is $\Omega_{n,r}$.

Acknowledgements.

I thank S. Müller (Tokyo), P. Pudlák (Prague) and N. Thapen (Prague) for comments and discussions.

References

- [1] M. Ajtai, Σ_1^1 formulae on finite structures, Annals of Pure and Applied Logic, **24**, (1983), pp.1-48.
- [2] M. Ajtai, The complexity of the pigeonhole principle, in: *Proc. IEEE 29th Annual Symp. on Foundation of Computer Science*, (1988), pp. 346-355.
- [3] M. Ajtai, Parity and the pigeonhole principle, in: Feasible Mathematics, eds. S. R. Buss and P. J. Scott, Birkhauser, (1990), pp.1-24.
- [4] M. Ajtai, The independence of the modulo p counting principles, in: Proceedings of the 26th Annual ACM Symposium on Theory of Computing, (1994), pp.402-411. ACM Press.
- [5] M. Ajtai, Symmetric Systems of Linear Equations modulo p, in: Electronic Colloquium on Computational Complexity (ECCC), TR94-015, (1994).
- [6] P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, and P. Pudlák: Lower bounds on Hilbert's Nullstellensatz and propositional proofs, *Proceedings of the London Mathematical Society*, (3) 73, (1996), pp.1-26.
- [7] P. Beame, R. Impagliazzo, J. Krajíček, T. Pitassi, P. Pudlák, and A. Woods: Exponential lower bounds for the pigeonhole principle, in: *Annual ACM Symp. on Theory of Computing*, (1992), pp.200-220.
- [8] S. R. Buss, Lower Bounds on Nullstellensatz Proofs via Designs, in: Proof Complexity and Feasible Arithmetics, eds. S. R. Buss and P. Beame, American Mathematical Society, Providence, RI, (1998), pp. 59-71.
- [9] S. R. Buss, R. Impagliazzo, J. Krajíček, P. Pudlák, A. A. Razborov, and J. Sgall: Proof complexity in algebraic systems and bounded depth Frege systems with modular counting, *Computational Complexity*, 6(3), (1996/1997), pp.256-298.
- [10] S. R. Buss, L. A. Kolodziejczyk, and K. Zdanowski: Collapsing modular counting in bounded arithmetic and constant depth propositional proofs, preprint, (2013).
- [11] S. R. Buss and P. Pudlák, How to lie without being (easily) convicted and the lengths of proofs in propositional calculus, in Computer Science Logic'94, Pacholski and Tiuryn eds., Springer-Verlag, LNCS 933, (1995), pp.151-162.

- [12] M. Clegg, J. Edmonds, and R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in: Proc. 28th Annual ACM Symp. on Theory of Computing, (1996), pp. 174-183. ACM Press.
- [13] S. A. Cook, and Reckhow, The relative efficiency of propositional proof systems, *J. Symbolic Logic*, **44(1)**, (1979), pp.36-50.
- [14] M. Furst, J. B. Saxe, and M. Sipser, M. Parity, circuits and the polynomial-time hierarchy, *Math. Systems Theory*, (1984), **17**: 13–27.
- [15] J. Hastad, Almost optimal lower bounds for small depth circuits. in: Randomness and Computation, ed. S.Micali, Ser.Adv.Comp.Res., 5, (1989), pp.143-170. JAI Pres.
- [16] R. Impagliazzo, P. Pudlak, and J. Sgall, Lower bounds for the polynomial calculus and the Groebner basis algorithm, *Comput. Complexity*, 8(2), (1999), pp.127-144.
- [17] R. Impagliazzo and N. Segerlind, Counting axioms do not polynomially simulate counting gates, in: *Proc. IEEE 42nd Annual Symp. on Foundation of Computer Science*, (2001), pp. 200-209.
- [18] J. Krajíček, Lower bounds to the size of constant-depth propositional proofs, *Journal of Symbolic Logic*, **59(1)**, (1994), pp.73-86.
- [19] J. Krajíček, Bounded arithmetic, propositional logic, and complexity theory, Encyclopedia of Mathematics and Its Applications, Vol. 60, Cambridge University Press, (1995).
- [20] J. Krajíček, Lower bounds for a proof system with an exponential speedup over constant-depth Frege systems and over polynomial calculus, in: Eds. I.Prívara, P. Růžička, 22nd Inter. Symp. *Mathematical Foundations* of Computer Science (Bratislava, August '97), Lecture Notes in Computer Science 1295, Springer-Verlag, (1997), pp.85-90.
- [21] J. Krajíček, On the degree of ideal membership proofs from uniform families of polynomials over a finite field, *Illinois J. of Mathematics*, **45(1)**, (2001), pp.41-73.
- [22] J. Krajíček, Forcing with random variables and proof complexity, London Mathematical Society Lecture Note Series, No. **382**, Cambridge University Press, (2011).
- [23] J. Krajíček, P. Pudlák, and A. Woods, An Exponential Lower Bound to the Size of Bounded Depth Frege Proofs of the Pigeonhole principle", *Random Structures and Algorithms*, **7(1)**, (1995), pp.15-39.

- [24] A. Maciel and T. Pitassi, Towards lower bounds for bounded-depth Frege proofs with modular connectives, in: Proof Complexity and Feasible Arithmetics, P. Beame and S. Buss, eds., DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 39, pp. 195-227, American Mathematical Society, (1998).
- [25] A. Maciel and T. Pitassi, A Conditional Lower Bound for a System of Constant-Depth Proofs with Modular Connectives, in: Proc. of the 21st Annual IEEE Symposium on Logic in Computer Science (LICS 06), IEEE Computer Society Press, (August 2006).
- [26] T. Pitassi, P. Beame, and R. Impagliazzo, Exponential lower bounds for the pigeonhole principle, *Computational complexity*, **3**, (1993), pp.97-308.
- [27] P. Pudlák, The lengths of proofs, in: Handbook of Proof Theory, S.R. Buss ed., Elsevier, (1998), pp.547-637.
- [28] A. A. Razborov, Lower bounds on the size of bounded depth networks over a complete basis with logical addition, *Matem. Zametki*, **41(4)**, (1987), 598-607.
- [29] A. A. Razborov, Lower Bounds for the Polynomial Calculus, *Computational Complexity*, **7(4)**, (1998), pp.291-324.
- [30] R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in: *Proc. 19th Ann. ACM Symp. on Th. of Computing*, (1987), pp. 77-82.
- [31] A. Yao, Separating the polynomial-time hierarchy by oracles, in: *Proc. 26th Ann. IEEE Symp. on Found. of Comp. Sci.*, (1985), pp. 1-10.

Mailing address:

Department of Algebra Faculty of Mathematics and Physics Charles University Sokolovská 83, Prague 8, CZ - 186 75 The Czech Republic krajicek@karlin.mff.cuni.cz