
Derandomizing Polynomial Identity over Finite Fields Implies

Super-Polynomial Circuit Lower Bounds for NEXP

Bin Fu
Department of Computer Science
University of Texas–Pan American

Edinburg, TX 78539, USA
bfu@utpa.edu

November 10, 2013

Abstract

We show that derandomizing polynomial identity testing over an arbitrary finite field implies
that NEXP does not have polynomial size boolean circuits. In other words, for any finite field
F (q) of size q, PITq ∈ NSUBEXP ⇒ NEXP ̸⊆ P/poly, where PITq is the polynomial identity
testing problem over F (q), and NSUBEXP is the nondeterministic subexpoential time class
of languages. Our result is in contract to Kabanets and Impagliazzo’s existing theorem that
derandomizing the polynomial identity testing in the integer ring Z implies that NEXP does have
polynomial size boolean circuits or permanent over Z does not have polynomial size arithmetic
circuits.

1. Introduction

The polynomial identity testing problem (PIT) is to test whether a polynomial computed by an
arithmetic circuit is identical to zero. PIT problem plays a significant role in the field of computa-
tional complexity. It is known that every polynomial computed by a polynomial size circuit can be
determined if it is identical to zero by a polynomial time randomized algorithm [20, 26].

The results of Impagliazzo and Widgerson [10] suggested that every randomized polynomial time
algorithm can be derandomized into a deterministic polynomial time algorithm. They proved that
P = BPP if E contains any problem that requires 2Ω(n) size boolean circuits. It has been a long
standing open problem in complexity theory to separate NEXP from BPP. Kabanets, Impagliazzo
and Wigderson showed that derandomizing Promise-BPP implies NEXP ̸⊆ P/poly [9]. Building
upon the work of Kabanets, Impagliazzo and Wigderson [9], Kabanets and Impagliazzo [11] proved
that to derandomize the polynomial identity testing problem in the integer ring, one must prove
that NEXP has no polynomial size boolean circuits or permanent has no polynomial size arithmetic
circuits. The proof of Kabanets and Impagliazzo’s theorem was simplified by Aaronson and Melke-
beek [1]. Many papers have been published toward the derandomization of the polynomial identity
problems (see for examples, [3, 4, 6, 11, 12, 14–21, 26]).

We have not found any existing result that shows derandomization of PIT over a finite field
implies NEXP ̸⊆ P/poly. It is essential to identify the connection between derandomizing PIT over
finite fields and complexity classes separation. In this paper, we study the implication of polynomial
identity problem over finite fields to separations in computational complexity theory. Our results
are derived without using permanent problem, and give a direct implication for complexity classes
separation via derandomization of PIT.

We show that for any finite field F , if PIT over F is in NSUBEXP, then NEXP ̸⊆ P/poly.
We also show that if PIT over a finite field F is in NP, then NTIME(nlogn) ̸⊆ PH ∩ P/poly. It

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 157 (2013)

implies that if there exists a polynomial time deterministic algorithm for polynomial identity testing
problem over any finite field F , then NTIME(nlogn) ̸⊆ BPP.

Our proof is different from Kabanets and Impagliazzo’s [11] work that is for PIT over Z. Their
methods involve permanent that is #P-hard [24], and Toda’s theorem PH ⊆ P#P [23]. Our method
works for the PIT over any finite fields, but it does not imply that derandomizing PIT over Z
separates NEXP from P/poly. Therefore, Kabanets and Impagliazzo’s [11] work and this paper are
complementary to each other to support the importance of derandomizing the polynomial identity
testing problem, and its implication to nonuniform lower bounds.

2. Notations

A boolean circuit is a circuit with AND (
∧
), OR (

∨
), and NEGATION (x̄) gates with fan-in at most

two, and no feedback. An arithmetic circuit is a circuit with +,− and ∗ gates over a finite field.
The size of a circuit C(.) is the number of gates and is denoted by |C(.)|.

The polynomial identity testing problem is to test if a polynomial computed by an arithmetic
circuit is identical to zero. We use PITq to represent the polynomial identity testing problem over
the field F (q) of size q. Let PITZ be the polynomial identity testing problem over the integers Z,
which is an integral ring.

The basic knowledge of algebra can be found in standard algebra textbooks such as [8]. Every
finite field F (q) of size q has q = pk for some prime number p and integer k. For an element a in a
finite field F (q), its order is the least integer r ≥ 1 with ar = 1.

The permanent maps square matrices to values. Let A = (ai,j)n×n be an n × n matrix over
integers. Define permanent to be the function perm(A) =

∑
σ

∏n
i=1 ai,σ(i), where σ is over all

permutations of 1, 2, · · · , n.
Define N = {0, 1, 2, · · ·} to be the set of nonnegative integers. Let t(n) : N → N be a nonde-

creasing function. Define NTIME(t(n)) to be the class of languages accepted by nondeterministic
Turing machines in time O(t(n)). For a function f(n) : N → N , it is time constructible if given an
integer n, f(n) can be computed in O(f(n)) steps by a deterministic Turing machine. Theorem 1 is
a separation of nondeterministic complexity classes due to Zak[25].

Theorem 1 ([25]). If t1(.) and t2(.) are time-constructible nondecreasing functions from N to N ,
and t1(n+ 1) = o(t2(n)), then NTIME(t2(n)) is strictly contained in NTIME(t1(n)).

Assume that M(.) is an oracle Turing machine. A decision computation MA(x) returns either
0 or 1 when the input is x and oracle is A. For a class C of languages, we use NPC = NPT(C) to
represent the class of languages that can be reducible to the languages in C via polynomial time
nondeterministic Turing reductions. Define NEXP = ∪∞

c=1NTIME(2n
c

) and NP = ∪∞
c=1NTIME(nc).

Let PH be the class of polynomial time hierarchy [22] PH = ∪∞
i=1

∑P
i , where

∑P
1 = NP,

and
∑P

i+1 = NP
∑P

i for all i ≥ 1. Define the subexponential time nondeterministic class to be

NSUBEXP = ∩ϵ>0NTIME(2n
ϵ

). Define P/poly to be the class of languages that have nonuniform
polynomial size circuits. BPP, which stands for bounded-error probabilistic polynomial time, is the
class of decision problems solvable by a probabilistic Turing machine in polynomial time, with an
error probability of at most 1/3 for all instances.

An instance of 3SAT is a 3CNF that is a conjunction of clauses of at most three literals. For
example, (x1

∨
x2

∨
x3)

∧
(x1

∨
x2

∨
x3)

∧
(x1

∨
x4

∨
x5). A formula is said to be satisfiable if it can

be made true by assigning appropriate logical values (i.e. TRUE (1), FALSE(0)) to its variables.
The 3SAT is, given a 3CNF, to check whether it is satisfiable. It is well known that 3SAT is NP-
complete problem [5]. The number of variables of a 3SAT instance and its length is polynomially
related.

2

3. Our Results

Theorem 2 is the main theorem of this paper. It will be proved in Section 5. Theorem 2 is stated in
a format so that we have a self-contained proof. Some corollaries that involve some existing results
are stronger than the main theorem.

Theorem 2. Let t(n) and t′(n) be time constructible nondecreasing superpolynomial functions from
N to N with t′(n + 1) = o(t(n)). Let h(n) be an nondecreasing function from N to N such that
for every fixed c > 0, h(nc) + nc ≤ t′(n) for all large n. Let F (q) be a finite field of size q. If
PITq ∈ NTIME(h(n)), then NTIME(t(n)) ̸⊆ NPNP ∩ P/poly.

Using the main theorem, we have some corollaries. Their proofs need to combine Theorem 2
with some existing well known theorems in the computational complexity theory.

Corollary 3. Let t(n) and t′(n) be time constructible nondecreasing superpolynomial functions from
N to N with t′(n + 1) = o(t(n)). Let h(n) be a nondecreasing function from N to N such that for
every fixed c > 0, h(nc) + nc ≤ t′(n) for all large n. Let F (q) be a finite field of size q. If
PITq ∈ NTIME(h(n)), then NTIME(t(n)) ̸⊆ PH ∩ P/poly.

Proof: Assume NTIME(t(n)) ⊆ PH ∩ P/poly. By Karp and Lipton’s thereom [13], we have

PH =
∑P

2 = NPNP. It follows from Corollary 3.

Corollary 4. If PITq ∈ NSUBEXP for a finite field F (q), then NEXP ̸⊆ P/poly.

Proof: Assume that PITq ∈ NSUBEXP and NEXP ⊆ P/poly. By Impagliazzo, Kabanets, and
Wigderson’s theorem [9], NEXP = PH. We have a contradiction by Theorem 2.

Corollary 5. If PITq ∈ NSUBEXP for a finite field F (q), then NEXP ̸= BPP.

Proof: Assume that PITq ∈ NSUBEXP and NEXP = BPP. It is well known that Adleman [2]

proved BPP ⊆ NPNP. We have a contradiction by Theorem 2.

Corollary 6. If PITq ∈ NP for a finite field F (q), then NTIME(nlogn) ̸⊆ BPP.

Proof: It is similar to the proof of Corollary 5.

4. Overview of Our Method

In this section, we give a brief review of our method. The main theorem will be proved by contradic-
tion. A special version of our main theorem is formulated as PIT2 ∈ NP ⇒ NEXP ̸⊆ NPNP∩P/poly.

Assume PIT2 ∈ NP and NEXP ⊆ NPNP ∩ P/poly. Let K be a complete language of the class
NEXP and let 3SAT be computed by a polynomial size circuit C(.). Our main technical contribution
is a method that transforms a boolean circuit C(.) into an arithmetic circuit A∗

C(.) over a finite field
F (q) such that C(.) decides 3SAT if and only if A∗

C(.) is identical to zero.
As the 3SAT problem is not arithmetically defined as permanent. If each instance of 3SAT is

encoded as a binary string that will be easy to decode, then there are some binary strings that do not
encode valid instances of 3SAT. In other words, a mapping from instances of 3SAT to binary strings
may not be both one-one and onto. We construct a special polynomial size arithmetic function G(Y)
that is zero if Y is not an instance of 3SAT, and nonzero otherwise. For an instance f(x1, x2, · · · , xn)
of 3SAT, it is satisfiable if and only if at least one of f(0, x2, · · · , xn) and f(1, x2, · · · , xn) is satisfiable.
This recursive relation is also converted into an arithmetic circuit A∗

C(.) as PIT problem to verify
whether C(.) decides 3SAT. The arithmetic circuit A∗

C(.) is expressed as H(f)G(f). The arithmetic
circuit H(f) is used to verify the recursive relationship of circuit C(.) for deciding 3SAT. As the

3

input of A∗
C(.) has many cases that do not encode any instance of 3SAT, the function G(.) has a

value zero to pass the identity testing among those cases.
We will show that K can be computed by M3SAT(.) for a polynomial time oracle Turing machine

M(.). A polynomial time nondeterministic computation will be derived to compute K. A circuit
C(.) will be guessed and is checked via converting to PIT2, which is verified again in a nondeter-
ministic polynomial time. Thus, we have K ∈ NP. This contradicts the well know nondeterministic
computational complexity hierarchy, which is stated in Theorem 1 and implies NEXP ̸= NP.

This approach lets us obtain lower bound for NEXP under the existence of the derandmoization
of PIT over an arbitrary finite field without using permanent that is #P hard. This paper has
almost self-contained proof for the main theorem. A reader is able to understand our main theorem
just by knowing Theorem 1 and that 3SAT is NP-complete [5], which can be found in a standard
textbook of theory of computation.

5. Proof of Main Theorem

In this section, we derive our main theorem. Some lemmas are provided to convert boolean circuits
into arithmetic circuits. It is divided into several subsections to prove the main theorem.

5.1. From Boolean Circuits to Arithmetic Circuits

In this section, we show how to transform boolean circuits into an arithmetic circuits.
For a finite field F (q), we have the following property that is often called “Fermat Little Theorem”

for the case that q is a prime number. Its proof can be found in a standard algebra textbook. For
completeness, its proof is included here.

Lemma 7. Let F (q) be a finite field. For any a ∈ F (q)− {0}, aq−1 = 1.

Proof: Assume that F is a finite field. Let [a] = {a, a2, a3, · · · , } be the set of elements in F (q)
generated by a. ([a], .) forms a subgroup of F (q)∗ = F (q) − {0}, where “.” is the multiplication
operation over field F (q). Therefore, the order r of a is the size of [a]. Therefore, r is a divisor of
q − 1. So, ar = aq−1 = 1.

We give Lemma 9 to convert an instance of 3SAT into a binary string. We give Definition 8 to
normalize the input of an instance of 3SAT.

Definition 8. Assume that an instance C1

∧
C2

∧
· · ·

∧
Cm of 3SAT of n variables and satisfies

the conditions below:

1. each Ci has at most three literals,

2. no variable appears in two literals of the same clause,

3. all clauses have a different set of literals, and

4. its n variables are x1, x2, · · · , xn that are indexed from 1 to n

We have the following definitions:

• Define El(xi) = (i, 1) and El(xi) = (i, 0).

• Define Ec((yi
∨
yj

∨
yk))) = (El(yi), El(yj), El(yk)) for each clause (yi

∨
yj

∨
yk).

• Define the normalized representation of C1

∧
C2

∧
· · ·

∧
Cm of 3SAT to be (Ec(C1), Ec(C2), · · · , Ec(Cm)).

• The logical value TRUE (1) is treated as special instance of 3SAT, and we define its normalized
representation to be (1).

4

• The logical value FALSE (0) is treated as special instance of 3SAT, and we define its normalized
representation to be (0).

Lemma 9. Assume an instance f of 3SAT is a normalized representation as Definition 8.

i. There is a polynomial time encoding method E(.) such that given an instance f of at most n
variables of 3SAT, E(n, f) is a 0,1-string of length 8n4.

ii. There is a polynomial time decoding method D(.) such that given a 0,1-string s = E(n, f) for
some instance f with at most n variables of 3SAT, D(s) = f .

iii. There is a polynomial time algorithm H(.) such that H(1n) generates a polynomial size boolean
circuit Vn(.) such that given a 0,1-string s of length 8n4, Vn(s) = 1 if s = E(n, f) for some
instance of at most n variables of 3SAT, and 0 otherwise.

Proof: We prove the three statements below:
Statement i: Given a normalized representation an instance of 3SAT, just replace each symbol

with ASCI table to transfer it into a binary string. Append 10k for some k so that the total length
is exactly equal to 8n4. Each 3CNF instance has at most 24

(
n
3

)
< 4n3 different clauses. 8n4 binary

bits are enough to encode any 3CNF instance of at most n variables.
Statement ii: It is straight forward to decode the binary string into an instance of 3SAT by

using the ASCI table.
Statement iii: With a polynomial time, we can check if a binary string is a binary string to

encode an valid instance of a 3SAT. It can be converted into a polynomial size boolean circuit.

Definition 10. Let C(x1, x2, · · · , xn) : {0, 1}n → {0, 1} be a boolean circuit, and A(y1, y2, · · · , yn) :
F (q)n → F (q) be an arithmetic circuit over a finite field F (q). We say C(.) and A(.) are equivalent
if for any a1, a2, · · · , an ∈ {0, 1}, C(a1, a2, · · · , an) = 0 ⇔ A(a1, a2, · · · , an) = 0 in the field F (q); and
C(a1, a2, · · · , an) = 1 ⇔ A(a1, a2, · · · , an) = 1 in the field F (q).

The following Lemma 11 shows how a boolean circuit is converted into an equivalent arithmetic
circuit with a similar size.

Lemma 11. For any boolean circuit C(.), then there is an equivalent arithmetic circuit AC(.) over
a field F (q) such that |AC(.)| = O(|C(.)|). Furthermore, AC(.) can be constructed from C(.) in a
polynomial time of |C(.)|.

Proof: We just show how to simulate the three AND, OR, and NOT gates in a boolean circuit
with arithmetic operations. The arithmetic circuit is constructed by simulating the boolean circuit
C(.) gate by gate. For an AND operation a

∧
b, it can be converted into product a · b over F (q).

For an OR operation a
∨
b, it can be converted into 1− (1− a)(1− b). For an NOT operation ¬a,

it is converted into 1− a. Since each gate in C(.) is transformed into O(1) gates in AC(.), we have
|AC(.)| = O(|C(.)|). It is easy to see that the total time to construct AC(.) is a polynomial time of
|C(.)|.

Definition 12. Let f be a normalized representation of an instance of 3SAT. Define E(f) to be
the normalized binary encoding of f , where E(.) is as defined in Lemma 9. Define onen = E(n, (1))
and zeron = E(n, (0)) for the normalized binary representation of true and false respectively, where
E(.) is given in Lemma 9.

Lemma 13. Let F (q) be a fixed finite field. Then there is a polynomial time algorithm that given
an unary integer 1n, it generates an arithmetic circuit Gn(x1, x2, · · · , xm) with m = 8n4 such that

5

i. Gn(x1, x2, · · · , xm) = 0 if at least one of x1, x2, · · · , xm is not in {0, 1};

ii. Gn(x1, x2, · · · , xm) = 0 if x1x2 · · ·xm is not a normalized binary encoding of an instance of
3SAT with at most n variables; and

iii. Gn(x1, x2, · · · , xm) ̸= 0 if x1x2 · · ·xm is a normalized binary encoding of an instance of
3SAT with at most n variables.

Proof: By Lemma 9, we let Vn(f) be a boolean circuit such that Vn(f) ̸= 0 if and only if f is a
normalized binary encoding of an instance of 3SAT. Let AV (.) be the arithmetic circuit defined by
Lemma 11.

Define R(x) = 1 − (x(x − 1))q−1. It is easy to see that R(x) ̸= 0 if and only if x ∈ {0, 1} by
Lemma 7.

Finally, we define Gn(x1, x2, · · · , xm) = R(x1)R(x2) · · ·R(xm)AVn(x1, x2, · · · , xm). It is easy to
see that Gn(.) satisfies expected properties.

Lemma 14. Assume that each input instance of 3SAT is a normalized binary encoding (see Def-
inition 12. Then there is a polynomial time algorithm such that given 1n, it generates nO(1) size
arithmetic circuits Sn,0(.), and Sn,1(.) such that the following are satisfied:

i. Sn,0(f) generates a normalized binary encoding for g(0, x2, · · · , xk) if f is a normalized binary
encoding of a 3SAT instance g(x1, x2, · · · , xk) with 0 ≤ k ≤ n;

ii. Sn,1(f) generates a normalized binary encoding for g(1, x2, · · · , xk) if f is a normalized binary
encoding of a 3SAT instance g(x1, x2, · · · , xk) with 0 ≤ k ≤ n; and

iii. Sn,i(f) = f for i ∈ {0, 1} and f ∈ {zerok, onek} with 0 ≤ k ≤ n.

Proof: It is easy to see that there is a polynomial time algorithm to generate the formulas
g(0, x2, · · · , xk), g(1, x2, · · · , xk) with 0 ≤ k ≤ n. Thus, we can get a boolean circuits to generate
them. By Lemma 11, we can get the equivalent arithmetic circuits to generate them respectively.

5.2. From Arithmetic Circuits to PIT

In this section, we show how to convert the arithmetic expressions developed in the last section and
a circuit for 3SAT into a PIT problem.

The following Lemma 15 shows how to use the PIT problem over a finite field to check if a boolean
circuit decides 3SAT. It transform a boolean circuit into an arithmetic circuit in a polynomial number
of steps.

Lemma 15. Let F (q) be a fixed finite field. Then there is a polynomail time algorithm such that
given a circuit Cn(.), it generates another arithmetic circuit A∗

Cn
(.) over a finite field F (q) such that

Cn(.) decides instances for 3SAT with at most n variables if and only if A∗
Cn

(.) is identical to zero.

Proof: We assume that all instances of 3SAT with at most n variables have normalized binary
encoding of length 8n4 as input for Cn(.). Let Sn,0(.) and Sn,1(.) be defined as in Lemma 14.
Let ACn(.) be the arithmetic circuit that is equivalent to Cn(f) by Lemma 11. Let onen be the
normalized binary encoding of logical constant TRUE (1), and let zeron be the normalized binary
encoding of logical constant FALSE (0) (see Definition 12). Let y0, y1, y2 be new variables that do
not appear in ACn(.). We have the arithmetic circuit

H(f, y0, y1, y2) = y0(ACn(onen)− 1) + y1ACn(zeron) +

y2(ACn(f)− (1− (1−ACn(Sn,0(f)))(1−ACn(Sn,1(f)))).

6

Let Gn(.) be the arithmetic circuit defined by Lemma 13. Define A∗
Cn

(f, y0, y1, y2) =
H(f, y0, y1, y2)Gn(f).

Assume that circuit Cn(.) decides 3SAT for all instance of at most n variables, and takes the
normalized binary encoding of length 8n4 as input. For each normalized binary encoding f of an
instance of 3SAT, we have H(f, y0, y1, y2) = 0. This is because recursive relation for each decider
of 3SAT. If f is not a normalized binary encoding of a valid instance of 3SAT, we have Gn(f) = 0.
Therefore, A∗

Cn
is identical to zero.

Assume that A∗
Cn

is identical to zero. We need to verify that Cn(.) is a circuit for 3SAT. For
each valid instance f with at most n variables of 3SAT, we have Gn(f) ̸= 0 by Lemma 13. Thus,
H(f, y0, y1, y2) = 0. It confirms the Cn(.) satisfies the recursive relation for a 3SAT decider. For
each instance g(x1, · · · , xn) with n variables for 3SAT, let a1, · · · , ak ∈ {0, 1} be an assignment
for its first k variables with 0 ≤ k ≤ n. We can still find a normalized binary encoding fk for
g(a1, · · · , ak, xk+1, · · · , xn) and fk has length 8n4. Since Gn(fk) ̸= 0 and H(fk, y0, y1, y2) = 0, Cn(.)
satisfies the recursive relation for a 3SAT decider at the cases g(a1, · · · , ak, xk+1, · · · , xn) for all
0 ≤ k ≤ n..

We have that Cn(.) is a circuit for 3SAT if and only if A∗
Cn

(f, y0, y1, y2) is zero since it verifies if

the circuit Cn(.) satisfies the recursion for 3SAT instance satisfiability.

5.3. From Derandomization to Separations

In this section, we show that derandomizing PIT over a finite field implies separation of computa-
tional complexity classes. The proof of main theorem is given here.
Proof: [Theorem 2] Assume NTIME(t(n)) ⊆ NPNP ∩ P/poly. Let K be an arbitrary language
of NTIME(t(n)) under polynomial time many-one reduction. Let M3SAT(.) be a polynomial time
nondeterministic Turing machine to accept K, and runs in a polynomial time p(n) that is nonde-
creasing function from N to N . Let N(.) be an O(h(n)) time nondeterministic Turing machine that
decides PITq. We have the following nondeterministic algorithm for K.

Nondeterministic Algorithm for K
Input x of length n,

1. Guess a circuit Cp(n)(.) for deciding the instances of variables at most p(n) for 3SAT;

2. Generate an arithmetic circuit A∗
Cp(n)

(.) PITq problem to verify Cp(n)(.) by Lemma 15;

3. Run N(A∗
Cp(n)

(.)) nondeterministically to decide if A∗
Cp(n)

(.) is identical to zero;

4. Nondeterministically select a path P ∗ in M3SAT(x);

5. If step 3 is successful, use A∗
Cp(n)

(.) to answer all the queries to 3SAT in path P ∗;

6. Output yes, if P ∗ accepts;

End of Algorithm

Since M(.) runs in polynomial time p(n), the instance of queries made by M(.) has at most
p(n) variables. Since NTIME(t(n)) ∈ P/poly implies 3SAT∈ P/poly, there is a polynomial size
boolean circuit Cp(n)(.) to decide 3SAT for all instances with at most p(n) variables. Let q1(n) be
a polynomial with |Cp(n)(.)| ≤ q1(n). We have an arithmetic circuits A∗

Cp(n)
(.) that is equivalent

with Cp(n)(.) by Lemma 11. We also have |A∗
Cp(n)

(.)| ≤ q2(n) for some polynomial q2(n). Step 3

in the algorithm takes O(h(q2(n))) nondeterministic steps. For some constant c > 0, the entire
computation is in O(h(nc) + nc) = O(t′(n)) nondeterministic steps.

7

The nondeterministic algorithm above shows that K is in NTIME(t′(n)). Since K is an arbitrary
language in NTIME(t(n)), we have NTIME(t(n)) ⊆ NTIME(t′(n)). This contradicts the well known
hierarchy theorem (see Theorem 1) for nondeterministic computation classes.

6. Generalization to Bounded Depth Circuits

In this section, we consider the problem for the PIT with bounded depth arithmetic circuits, and
its connection to the super-polynomial lower bounds of bounded depth boolean circuits. It is an
open problem to prove NEXP ̸⊆ NC1/poly, where NC1/poly is the class of languages that have
polynomial size O(log n)-bounded depth boolean circuits.

Definition 16. Let d(n) be a function from N to N . Let F (q) be a finite field of size q. Define
PITq(d(n)) to be the polynomial identity testing problem that decides if a polynomial computed by
an arithmetic circuit of depth at most d(n) is identical to zero over field F (q).

Definition 17. Let d(n) be a function from N to N . A d(n)-bounded depth boolean circuits is
the class of boolean circuits that consists of AND, OR, and NOT gates with unbounded fan-in for
AND and OR gates. Define Depth(d(n))-PC to be the class of languages that have polynomial size
d(n)-bounded depth boolean circuits.

Theorem 18. Let t(n) and t′(n) be time constructible nondecreasing superpolynomial functions
from N to N with t′(n + 1) = o(t(n)). Let h(n) be a nondecreasing function from N to N such
that for every fixed c > 0, h(nc) + nc ≤ t′(n) for all large n. Let F (q) be a finite field of size q.
Let d(n) be a function from N to N with d(n) ≥ log n. If PITq(O(d(n)) ∈ NTIME(h(n)), then

NTIME(t(n)) ̸⊆ NPNP∩ Depth(d(n))-PC.

Proof: [Sketch] The proof is similar to that of Theorem 2. We need to have a similar lemma
like Lemma 11 to show that a bounded depth k boolean circuit has an equivalent bounded depth
O(k) arithmetic circuit. With d(n) ≥ logn, we also have a lemma similar to Lemma 15 such that
a bounded d(n) depth boolean circuit for 3SAT can be converted into a PITq(O(d(n))) problem to
verify it. This is because Sn,0(.) and Sn,1(.) have polynomial size O(log n)-depth boolean circuits.

Corollary 19. Let t(n) and t′(n) be time constructible nondecreasing superpolynomial functions
from N to N with t′(n + 1) = o(t(n)). Let h(n) be an nondecreasing function from N to N such
that for every fixed c > 0, h(nc) + nc ≤ t′(n) for all large n. Let d(n) be a function from N to
N with d(n) ≥ log n. Let F (q) be a finite field of size q. If PITq(O(d(n))) ∈ NTIME(h(n)), then
NTIME(t(n)) ̸⊆ PH∩ Depth(O(d(n)))-PC.

Proof: Assume NTIME(t(n)) ⊆ PH∩Depth(O(d(n)))-PC. By Karp and Lipton’s thereom [13],

we have PH =
∑P

2 = NPNP. It follows from Theorem 18.

Corollary 20. If PITq(O(log n)) ∈ NSUBEXP for a finite field F (q), then NEXP ̸⊆ NC1/poly.

Proof: Assume that PITq ∈ NSUBEXP and NEXP ⊆ NC1/poly =Depth(O(log n))-PC. By
Impagliazzo, Kabanets, and Wigderson’s theorem [9], NEXP = PH. We have a contradiction by
Theorem 18.

8

7. Conclusions

The result developed in this shows that derandomizing the PIT in any finite field implies NEXP does
not have nonuniform polynomial size circuits. It gives right motivation to study the derandomization
of PIT in finite fields that the computational complexity community has spent much efforts. We
hope that the results in this paper brings a tool to achieve the separation of NEXP from BPP via
derandomizing PITp for a prime number p such as 2. Since there exists an oracle to collapse NEXP
to BPP by Heller [7], separating NEXP from BPP requires a new way to go through the barrier of
relativization.

Another interesting open problem is if derandomizing PIT over Z implies NEXP ̸⊆ P/poly (In
other words, PITZ ∈ NSUBEXP ⇒ NEXP ̸⊆ P/poly?). Our technology fails on integers Z. We
cannot obtain a similar result as Lemma 13 over the ring Z of integers.

Acknowledegments: The author is grateful to Bohan Fan, Cynthia Fu, and Feng Li for their
proofreading and suggestions for an earlier version of this paper. This research is supported in part
by NSF Early Career Award CCF-0845376.

References

[1] S. Aaronson and D. van Melkebeek. A note on circuit lower bounds from derandomization,
electronic colloquium on computational complexity. Technical Report TR10-105, 2010.

[2] L. Adleman. Two theorems on random polynomial time. In Proceedings of the 19th Annual
IEEE Symposium on Foundations of Computer Science, pages 75–83, 1978.

[3] M. Agrawal and S. Biswas. Primality and identity testing via chinese remaindering. J. ACM,
50:429–433, 2003.

[4] Z.-Z. Chen and M.-Y. Kao. Reducing randomness via irrational numbers. SIAM Journal on
Computing, 29:1568–1576, 2000.

[5] S. A. Cook. The complexity of theorem-proving procedures. In STOC, pages 151–158, 1971.

[6] Z. Dvir and A. Shpilka. Locally decodable codes with two queries and polynomial identity
testing for depth 3 circuits. SIAM J. Comput., 3:14041434, 2007.

[7] H. Heller. On relativized exponential and probabilistic complexity classes. Inf. & Comp.,
71:231–243, 1986.

[8] T. Hungerford. Algebra. Springer-Verlag, 1974.

[9] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: Exponential
time vs. probabilistic polynomial time. JCSS, 55(1):672–694, 2002.

[10] R. Impagliazzo and A. Wigderson. P=BPP unless E has subexponential circuits: Derandomiz-
ing the XOR lemma. In Proceedings of the 29th STOC, pages 220–229, 1997.

[11] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[12] Z. S. Karnin and A. Shpilka:. Black box polynomial identity testing of depth-3 arithmetic
circuits with bounded top fan-in. Electronic Colloquium on Computational Complexity, TR07-
042, 2007.

[13] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pages
302–309, 1980.

9

[14] N. Kayal and N. Saxena. Polynomial identity testing for depth 3 circuits. computational com-
plexity. Computational Complexity, 16:115138, 2007.

[15] A. Klivans and D. Spielman. Randomness efficient identity testing. In Proceedings of the 33rd
Symposium on Theory of Computing, pages 216–223, 2001.

[16] D. Lewin and S. P. Vadhan. Checking polynomial identities over any field: Towards a de-
randomization? In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of
Computing, pages 438–447, 1998.

[17] R. J. Lipton and N. Vishnoi. Deterministic identity testing for multivariate polynomials. In
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
756–760, 2003.

[18] R. Raz and A. Shpilka. Deterministic polynomial identity testing in non-commutative models.
Computational Complexity, 14:119, 2005.

[19] N. Saxena. Diagonal circuit identity testing and lower bound. In Proceedings of the International
Colloquium on Automata, Languages and Programming, Lecture Notes in Computer Science
5125, page 6071, 2008.

[20] J. T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J. ACM,
27:701–717, 1980.

[21] A. Shpilka and I. Volkovich. Read-once polynomial identity testing. In Proceedings of the 40th
Annual ACM Symposium on Theory of Computing, pages 507–516, 2008.

[22] L. J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3:1–22, 1977.

[23] S. Toda. PP is as hard as the polynomial-time hierarchy. SICOMP, 20(5):865–877, 1991.

[24] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8:189–201, 1979.

[25] S. Zak. A turing machine hierarchy. Theoretical Computer Science, 26:327333, 1983.

[26] R. Zippel. Probabilistic algorithms for sparse polynomials. In ISSAC’79: Proc. Int’l Symposium
on symbolic and algebraic computation, Lecture notes in computer science, pages 216 – 226,
1979.

10

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

