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Abstract

Common information was introduced by Wyner [1975] as a measure of dependence of two
random variables. This measure has been recently resurrected as a lower bound on the loga-
rithm of the nonnegative rank of a nonnegative matrix in Jain et al. [2013], Braun and Pokutta
[2013]. Lower bounds on nonnegative rank have important applications to several areas such
as communication complexity and combinatorial optimization.

We begin a systematic study of common information extending the dual characterization
of Witsenhausen [1976]. Our main results are: (i) Common information is additive under ten-
soring of matrices. (ii) It characterizes the (logarithm of the) amortized nonnegative rank of
matrix, i.e., the minimal nonnegative rank under tensoring and small ℓџ perturbations. We pro-
vide quantitative bounds compared to an analogous asymptotic result by Wyner [1975]. (iii) We
deliver explicit witnesses from the dual problem for several matrices leading to explicit lower
bounds on common information, which are robust under ℓџ perturbations. This includes im-
proved lower bounds for perturbations of the all important unique disjointness partial matrix,
as well as new insights into its information-theoretic structure.
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1 Introduction
Nonnegative matrix factorizations play a crucial role in many disciplines of theoretical computer
science and discrete mathematics, including machine learning, communication complexity, and
combinatorial optimization. While for machine learning one is often interested in finding a factor-
ization, for communication complexity and combinatorial optimization it often suffices to study
the nonnegative rank, i.e., the minimal size of a nonnegative factorization. The nonnegative rank of a
nonnegative matrix 𝑀 is the smallest 𝑟 such that 𝑀 can be written as 𝑀 = ∑֩

օ=џ 𝑢օ𝑣⊺
օ for 𝑢օ, 𝑣օ ≥ 0.

In communication complexity, the logarithm of the nonnegative rank of 𝑀 provides a lower
bound on the deterministic communication complexity of 𝑀, which is polynomially tight by Lovász
[1990]. In combinatorial optimization, the nonnegative rank of the slack matrix of a polytope 𝑃
characterizes the linear extension complexity of 𝑃, that is the minimum number of facets of a larger
dimensional polytope 𝑄 that projects linearly to 𝑃.

Thus in both fields, it is of great interest to lower bound the nonnegative rank. Unfortunately,
lower bounding the nonnegative rank is both conceptually and computationally hard—in fact,
computing the nonnegative rank is known to be NP-hard by Vavasis [2009] (see Moitra [2012] for
recent positive results on computing the nonnegative rank).

Most existing lower bounds on the nonnegative rank argue only about the support of the matrix,
i.e., the zero/nonzero pattern of the matrix (for an interesting exception see the norm based bounds
in Fawzi and Parrilo [2012]). Notice that zeros provide a strong constraint on a nonnegative factor-
ization as if 𝑀(𝑥, 𝑦) = 0 then in every factor 𝑢𝑣⊺ either 𝑢(𝑥) = 0 or 𝑣(𝑦) = 0. The most commonly
used lower bound on the nonnegative rank is the rectangle covering bound, which also charac-
terizes nondeterministic communication complexity, a bound suggested in the landmark paper
of Yannakakis [1991] connecting nonnegative rank and extension complexity. Rectangle covering
arguments can show strong lower bounds in interesting cases, for example, for the unique disjoint-
ness partial matrix UDISJ with rows and columns labeled by 𝑛-bit strings where UDISJ(𝑥, 𝑦) = 1
if 𝑥 ∩ 𝑦 = ∅ and UDISJ(𝑥, 𝑦) = 0 if |𝑥 ∩ 𝑦| = 1 and UDISJ is undefined otherwise. Using ar-
guments from the randomized communication complexity lower bound of Razborov [1992], Wolf
[2003] showed lower lower bounds exponential in 𝑛 on the rectangle covering bound of UDISJ. This
bound, in turn, played a key role in the exponential lower bounds on the extension complexity of
the Traveling Salesman (TSP) polytope in Fiorini et al. [2012].

Support based bounds have obvious shortcomings: they completely ignore the actual values of
the nonzero entries. Thus they are useless for matrices with no zero entries. Exactly this case arises
when showing lower bounds on the extension complexity of a polytope that approximates a polytope
𝑃 (see Braun et al. [2012], Braverman and Moitra [2012]). Even for a matrix with zero entries,
support based bounds cannot say anything about the nonnegative rank under small perturbations.

It is often the case that optimization problems become easier when a discrete objective func-
tion is replaced by a continuous proxy function. This is the approach taken in the information-
theoretic framework for nonnegative rank lower bounds initiated by Braverman and Moitra [2012]
and further developed by Braun and Pokutta [2013]. We extend this framework to obtain a strong
information-theoretic tool to lower bound the nonnegative rank of matrices and partial matrices
(such as the UDISJ partial matrix). At the core of our techniques is the information-theoretic no-
tion of common information. Common information was introduced in Wyner [1975], and further
developed by Witsenhausen [1976] who provided a convex geometry approach to lower bound
the common information. Little has been written about the common information outside of these
early papers, but it turns out to be the correct notion to capture nonnegative matrix factorization
from an information-theoretic point of view. We take it out of the setting of (asymptotic) informa-
tion theory and turn it into a quantitative tool to lower bound the nonnegative rank of a matrix.
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Contribution
Our contribution is threefold: besides extending the dual approach, we apply it to derive not only
theoretical properties of common information, but also practical lower bounds with application to
concrete matrices.

Common information as amortized log nonnegative rank A relaxed notion, even if not captur-
ing a quantity exactly, can sometimes characterize it in an amortized fashion. Examples are
the fractional rectangle covering bound characterizing the amortized rectangle covering bound
(see Karchmer et al. [1995]) and information cost characterizing amortized communication (see
Braverman and Rao [2011]). We similarly prove that common information is the amortized log
nonnegative rank. An asymptotic, qualitative version was already included in Wyner [1975],
however, we also establish rate of convergence and provide actual approximations. We give an
explicit compression result in Theorem 4.1, stating roughly limℓ→∞˷ܨ→ա˷ܴ→ա

ϕЋͷ ҕύ+ ℓ˸ܩ˸ܵ֓
ℓ = ℂ [𝑀]

where 𝑀ܴ˷ܨ˷ℓ ≈ 𝑀⊗ℓ and the number of required copies ℓ to obtain an approximation with (total
relative) error at most 𝛿 and 𝜀 deviation from ℂ [𝑀] is roughly Ω  ϕЋͷӞ(֕֙/ܴ)

ܴӞℂ[֓]Ӟ  ⋅ ln(𝛿−џ). From
this we also obtain that common information is the limit superior of all measures lower bound-
ing the log nonnegative rank under natural conditions (see Corollary 4.2). Our proof is inspired
by a result of Jain et al. [2013] that bounds the nonnegative rank of an approximation of a single
matrix (i.e., in the nontensored setting) in terms of common information.

Lower bound of common information via dual programs We extend the framework in Witsen-
hausen [1976] to obtain strong lower bounds on common information not only of matrices but
also of partial matrices using witnesses (i.e., dual certificates). Dual witnesses are central to the
behavior of common information under various perturbations of the matrix, e.g., provide an ex-
plicit degree of continuity of common information (see Lemma 5.7) for full matrices. We give an
example that common information of partial matrices is not continuous in general.

New lower bounds for (U)DISJ As an example of the dual approach to partial matrices, we im-
prove lower bounds from Braun and Pokutta [2013] on the conditional common information of
the UDISJ partial matrix under perturbations (see Corollary 6.6), closing the gap between the
exact and the approximate case. Moreover, we obtain bounds under arbitrary perturbations
as long as the total variation is not too large. Finally, following Kaibel and Weltge [2013], we
provide a new lower bound on the conditional common information of UDISJ of 𝑛 log 3/2 (see
Theorem 6.2) under a non-direct sum disjointness conditional indicating that breaking direct
sums is necessary for obtaining the optimal estimation.

2 Preliminaries
We introduce the notation and review the information-theoretic background that will be used in
the sequel; see [Cover and Thomas, 2006, §2] for an in-depth treatment.

We use log 𝑥 for the base 2 logarithm and ln 𝑥 for the natural logarithm. We use the shorthand
[𝑛] ≔ {1, … , 𝑛}.

The entropy of a discrete probability distribution 𝑃 is roughly the expected number of bits
needed to encode 𝑃.

Definition 2.1 (Entropy). Let 𝑃 be a discrete probability distribution. The entropy of 𝑃 is

ℍ [𝑃] ≔ ྌ
ׁ

𝑃(𝑥) log 1
𝑃(𝑥) .
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If 𝑃 is a Bernoulli probability distribution over {0, 1} where 𝑝 = 𝑃(𝑥 = 1) and 1 − 𝑝 = 𝑃(𝑥 = 0)
we use the notational shorthand ౭ℍ ಪ𝑝ಫ ≔ −𝑝 log 𝑝 − (1 − 𝑝) log(1 − 𝑝) for the binary entropy of 𝑝.
Further, we will use ౭ℍ [𝑋 = 0 ∣ … ] to denote ౭ℍ [ℙ [𝑋 = 0 | … ]]. For estimating the entropy, the
following alternative forms of the well-known inequality ln 𝑥 ≤ 𝑥 − 1 will be useful:

log 𝑒𝑥 ≤ 𝑥 log 𝑒, ౭ℍ ಪ𝑝ಫ ≤ 𝑝 log(𝑒/𝑝).
The second one follows by substituting 𝑥 = 1/(1 − 𝑝).

Definition 2.2 (Conditional Entropy). The conditional entropy of 𝑃 conditioned on 𝑄 is

ℍ [𝑃 ල 𝑄] = 𝔼ׁ∼֣ ಪℍ [𝑃 ල 𝑄 = 𝑥]ಫ .
We are ready to define mutual information, the key quantity behind common information.

Definition 2.3 (Conditional Mutual Information). The conditional mutual information between 𝑃 and
𝑄 given 𝑅 is 𝕀 [𝑃; 𝑄 ල 𝑅] = ℍ [𝑃 | 𝑅] − ℍ [𝑃 ල 𝑄, 𝑅].

Note that mutual information is symmetric: 𝕀 [𝑃; 𝑄 ල 𝑅] = 𝕀 [𝑄; 𝑃 ල 𝑅].
2.1 Common information
In this section we will recall the basic properties of common information with a view towards
nonnegative factorizations. For 𝑀 ∈ ℝ֕×֙ a nonnegative matrix, its induced distribution on the
row/column joint random variable (𝐴, 𝐵) is defined by ℙಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ = ֓(ե˷թ)

[֚]∋׆˸[֖]∋ׂ∑ ֓(ׁ˷ׅ) for all
𝑎 ∈ [𝑚], 𝑏 ∈ [𝑛]. We call a discrete random variable Π a seed for 𝐴, 𝐵 (or 𝑀) if 𝐴, 𝐵 are independent
given Π. For Π coming from a factorization, that is 𝑀 = ڊ∋ߜ∑ 𝑀ߜ , this is the case if and only
if all the factors 𝑀ߜ have rank at most 1. Conversely, every seed with finite range comes from a
factorization.

Every nonnegative factorization 𝑀 = ڊ∋ߜ∑ 𝑀ߜ refines the distribution (𝐴, 𝐵) as

𝑞֓(𝑎, 𝑏, 𝜋) = ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏, Π = 𝜋ಫ ≔ 𝑀ߜ(𝑎, 𝑏)
∑ׁ˷ׅ 𝑀(𝑥, 𝑦) .

We shall use the shorthand 𝑞֓ for this distribution.

Definition 2.4 (Common information). Let 𝑀 be a nonnegative matrix and let 𝐴, 𝐵 be the row and
column variable in the induced distribution. Then the common information of 𝐴, 𝐵 (or 𝑀) is defined
as

ℂ [𝑀] = ℂ [𝐴, 𝐵] ≔ inf
ڊ seed for գ, է

𝕀 [𝐴, 𝐵; Π] = ℍ [𝐴, 𝐵] − 𝕎 [𝐴; 𝐵] ,

where 𝕎 [𝑀] = 𝕎 [𝐴; 𝐵] ≔ supڊ seed for գ, է ℍ [𝐴, 𝐵 ල Π] = supڊ seed for գ, է ℍ [𝐴 ල Π] + ℍ [𝐵 | Π] is
the private information of 𝐴, 𝐵 (or 𝑀).

Similarly to ℂ [𝑀], in the following we will also use the shorthand 𝕀 [𝑀; Π] for 𝕀 [𝐴, 𝐵; Π], and
ℍ [𝑀] for ℍ [𝐴, 𝐵]. We recall the following easy facts about common information (see e.g., Wyner
[1975], Witsenhausen [1976], Jain et al. [2013], Braun and Pokutta [2013]).

Fact 2.5. Let 𝑀 be a nonnegative matrix and let 𝐴, 𝐵 be the row and column variable in the induced
distribution. Then

1. General bounds: 𝕀 [𝐴; 𝐵] ≤ ℂ [𝐴, 𝐵] ≤ min {ℍ [𝐴] , ℍ [𝐵]}
2. Infimum achieved and Π has small domain: The infimum in the definition of common informa-

tion is achieved by a Π with |Π| ≤ 𝑚𝑛.

3. Bounds nonnegative rank: ℂ [𝑀] ≤ ℍ [Π] ≤ log rk+ 𝑀, where Π is realizer of the infimum.
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3 Comparison of common information with other bounds
In this section, we compare common information with the rectangle covering bound and also with
information cost, a similar quantity in communication complexity.

For a matrix 𝑀, let supp(𝑀) be the boolean matrix which is zero wherever 𝑀 is zero and one
wherever 𝑀 is nonzero. Yannakakis [1991] observed that the rectangle covering bound of the sup-
port of a matrix 𝑀 is a lower bound on the nonnegative rank of 𝑀, and this technique has been
the source of many nonnegative rank lower bounds. We now see that common information is in-
comparable with the logarithm of the rectangle covering bound, even for a boolean matrix, as the
following examples show. In fact, they show that common information is also incomparable with
the logarithm of the fractional rectangle bound, defined below.

For a matrix 𝑀 ∈ {0, 1}֕×֙ its rectangle covering bound is, by definition, the minimum number
of 1-monochromatic combinatorial rectangles (i.e., submatrices with all entries being 1) needed to
cover the 1 entries of 𝑀. Let 𝐴 be a matrix with rows indexed by (𝑖, 𝑗) ∈ [𝑚] × [𝑛] and columns
indexed by 1-monochromatic rectangles of 𝑀 and let 𝑐 denote the number of columns of 𝑀. Then
the rectangle bound is the optimal value of the following integer optimization problem.

rc (𝑀) = min 𝟙џ˷խ 𝑥
𝐴𝑥 ≥ 𝟙֕֙˷џ
𝑥 ∈ {0, 1}խ

The fractional rectangle covering bound is obtained by relaxing this integer program to a linear
program.

frc (𝑀) = min 𝟙џ˷խ 𝑥
𝐴𝑥 ≥ 𝟙֕֙˷џ
𝑥 ≥ 0

Clearly frc (𝑀) ≤ rc (𝑀) and by Lovász [1975] it follows that rc (𝑀) = 𝑂(frc (𝑀) log(𝑚𝑛))
Lemma 3.1 ( log rc (⋅) ≱ ℂ [⋅], ℂ [⋅] ≱ log frc (⋅) and hence ℂ [⋅] ≱ log rc (⋅)). Let

𝑀 ≔ ഒ1 1
1 0ഓ , 𝑁 ≔ ⎛⎜⎜⎜

⎝

1 1 0
1 1 1
0 1 1

⎞⎟⎟⎟
⎠

.

Then for all 𝑛 ≥ 1 we have ℂ ಪ𝑀⊗֙ಫ = 2/3 ⋅ 𝑛 < log frc ತ𝑀⊗֙ಥ = 𝑛 and

ℂ ಪ𝑁⊗֙ಫ ≥ (log 7 − 1.79115)𝑛 ≈ 1.01621 ⋅ 𝑛 > 𝑛 ≥ log rc ತ𝑁⊗֙ಥ ≥ log frc ತ𝑁⊗֙ಥ .

Proof of Lemma 3.1. The matrix 𝑀 has both rectangle covering bound and fractional rectangle cov-
ering bound 2 as (1, 2), (2, 1) is a fooling set. Thus log frc (𝑀) = 1. Moreover, as shown in Karch-
mer et al. [1995], we have that frc (⋅) tensors, so we get 𝑛 ≥ log rc ತ𝑀⊗֙ಥ ≥ log frc ತ𝑀⊗֙ಥ = 𝑛. On
the other hand, ℂ [𝑀] = 2/3 by [Witsenhausen, 1976, Theorem 7], hence ℂ ಪ𝑀⊗֙ಫ = 2/3 ⋅ 𝑛 by
Lemma 5.5.

It remains to show the statement for 𝑁. Clearly rc (𝑁) = 2, hence log rc ತ𝑁⊗֙ಥ ≤ 𝑛. As
ℂ ಪ𝑁⊗֙ಫ = 𝑛ℂ [𝑁] by Lemma 5.5, it is enough to prove the lower bound on ℂ ಪ𝑁⊗֙ಫ for 𝑛 = 1.

We establish a lower bound on the common information of 𝑁 by means of (4). We consider

sup
֡˷֥≥ա

֡Ѡ=֥Ѡ=џ

ℍ ಪ𝑝ಫ + ℍ ಪ𝑞ಫ − 𝑞֯Λ𝑝 + Tr[Λ𝑁], (1)
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which is an upper bound on the private information for any Λ. We will use a Λ determined by
numerical optimization:

Λ ≔ ⎛⎜⎜⎜
⎝

1/2 0 ∞
0 2.7245 0
∞ 0 1/2

⎞⎟⎟⎟
⎠

.

To be precise, we put large negative values instead of ∞, and we consider the limit of (1), when
these values tend to ∞. Note that as 𝑝, 𝑞 are chosen from a compact set, the maximizers will have an
accumulation point ̃𝑝, ̃𝑞 with 0 entries in ̃𝑝 ̃𝑞֯ at the ∞ entries of Λ. Thus we obtain a lower bound

sup
֡˷֥≥ա

֡Ѡ=֥Ѡ=џ֡֊֥ֆ=ա if ∞=֊˸ֆق
ℍ ಪ𝑝ಫ + ℍ ಪ𝑞ಫ − 𝑞֯Λ𝑝 + Tr[Λ𝑁].

The matrix Λ has been chosen ensuring that

𝑓(𝑝, 𝑞) = ℍ ಪ𝑝ಫ + ℍ ಪ𝑞ಫ − 𝑞֯Λ𝑝 + Tr[Λ𝑁]

is piece-wise concave in 𝑝, 𝑞. The maximal value for (1) is 1.79115 realized by the rank-1 matrix

𝑝𝑞֯ ≔ ⎛⎜⎜⎜
⎝

0.622036
0.377964

0
⎞⎟⎟⎟
⎠

0.622036 0.377964 0 .

(Note that the above are not simply numerical approximations of 2/3 and 1/3 as they lead to a value
for (1) of 1.77229 whereas the factor above leads to 1.79115).

We analyze the concavity of the core function 𝑓 of (1). For simplicity, we use parameters for the
entries of Λ:

Λ = ⎛⎜⎜⎜
⎝

−𝑎 0 ∞
0 −𝑐 0
∞ 0 −𝑎

⎞⎟⎟⎟
⎠

,

i.e., 𝑎 = −1/2, 𝑐 = −2.7245. Let 𝑝 = [𝑝џ, 𝑝ӝ, 𝑝ӗ]֯ and 𝑞 = [𝑞џ, 𝑞ӝ, 𝑞ӗ]֯ , i.e., the 𝑝օ, 𝑞օ be the entries
of 𝑝 and 𝑞. The restriction that 𝑝𝑞֯ is 0 at the places where Λ has entry −∞ is now 𝑝џ𝑞ӗ = 0 and
𝑝ӗ𝑞џ = 0 leading to four cases: 𝑝џ = 𝑝ӗ = 0, 𝑝џ = 𝑞џ = 0, 𝑝ӗ = 𝑞ӗ = 0 and 𝑞џ = 𝑞ӗ = 0.

In the cases 𝑝џ = 𝑞џ = 0 and 𝑝ӗ = 𝑞ӗ = 0, the function 𝑓 is only a function of 𝑝ӝ and 𝑞ӝ, and has
form

𝑓(𝑝ӝ, 𝑞ӝ) = ౭ℍ ಪ𝑝ӝಫ + ౭ℍ ಪ𝑞ӝಫ + 𝑐𝑞ӝ𝑝ӝ + 𝑎(1 − 𝑝ӝ)(1 − 𝑞ӝ) + 𝑎 + 𝑐
7 .

The Jacobian and Hessian of 𝑓 for 0 < 𝑝ӝ, 𝑞ӝ < 1 is

𝐽(𝑓) = log  џ
֡Ӟ

− 1 − 𝑎 + (𝑐 + 𝑎)𝑞ӝ, log  џ
֥Ӟ

− 1 − 𝑎 + (𝑐 + 𝑎)𝑝ӝ ,

𝐻(𝑓) = ⎛⎜⎜
⎝

− ϕЋͷ յ
֡Ӟ(џ−֡Ӟ) 𝑐 + 𝑎
𝑐 + 𝑎 − ϕЋͷ յ

֥Ӟ(џ−֥Ӟ)

⎞⎟⎟
⎠

.

By Sylvester’s criterion, the Hessian is negative definite for |𝑐 + 𝑎| < 4 log 𝑒 (which holds for the
actual parameters) as the upper left entry is negative and the determinant is nonnegative:

det 𝐻(𝑓) = logӝ 𝑒
𝑝ӝ(1 − 𝑝ӝ) ⋅ 𝑞ӝ(1 − 𝑞ӝ) − (𝑐 + 𝑎)ӝ ≥ logӝ 𝑒

4 ⋅ 4 − (𝑐 + 𝑎)ӝ > 0.
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It follows that 𝑓 is strictly concave, and hence if it has a critical point in the interior of its domain,
then it is its unique maximum. Numerically solving 𝐽(𝑓) = 0 provides indeed a critical point in the
interior, namely, 𝑝ӝ = 𝑞ӝ ≈ 0.377964.

The remaining cases are 𝑝џ = 𝑝ӗ = 0 and 𝑞џ = 𝑞ӗ = 0. We consider only the second one, as the
first one is analogous. Now 𝑞 = [0, 1, 0]֯ is fixed, hence

𝑓(𝑝) = ౭ℍ ಪ𝑝џ, 𝑝ӝ, 𝑝ӗಫ + 𝑐𝑝ӝ + 𝑎 + 𝑐
7

subject to 𝑝џ + 𝑝ӝ + 𝑝ӗ = 1. Note that 𝑓 is a concave function, and as we will see, it has a (unique)
critical point in its interior, and hence it is its unique maximum.

We use Lagrange multipliers to find critical points, i.e., we look for the zeros of the Jacobian of

𝑓(𝑝) − (𝜆 − 1)(𝑝џ + 𝑝ӝ + 𝑝ӗ)

= 𝑝џ log 1
𝑝џ

+ 𝑝ӝ log 1
𝑝ӝ

+ 𝑝ӗ log 1
𝑝ӗ

+ 𝑐𝑝ӝ + 𝑎 + 𝑐
7 − (𝜆 − 1)(𝑝џ + 𝑝ӝ + 𝑝ӗ),

for which the equations are

log 1
𝑝џ

− 𝜆 = 0, log 1
𝑝ӝ

+ 𝑐 − 𝜆 = 0,

log 1
𝑝ӗ

− 𝜆 = 0.

This can be solved in 𝑝џ, 𝑝ӝ, 𝑝ӗ:

𝑝џ = 𝑝ӗ = ,ވ−2 𝑝ӝ = 2խ−ވ.

The value of 𝜆 is determined by the condition 𝑝џ + 𝑝ӝ + 𝑝ӗ = 1:

2 ⋅ ވ−2 + 2խ−ވ = 1,

which simplifies to

2џ−խ + 1 = ,խ−ވ2
𝜆 = log(2џ−խ + 1) + 𝑐 > 1.

In particular, 𝑝џ = 𝑝ӗ = ވ−2 lie strictly between 0 and 1/2, ensuring that 𝑝џ, 𝑝ӝ, 𝑝ӗ is an inner point
of the domain of 𝑓 . Hence the maximum value of 𝑓 is

max֡ 𝑓(𝑝) = 2 ⋅ 𝜆ވ−2 + 2խ−ވ(𝜆 − 𝑐) + 𝑐2խ−ވ + 𝑎 + 𝑐
7
= (2џ−խ + 1)2խ−ވെേേൈേേ

џ
𝜆 = log(2џ−խ + 1) + 𝑐 + 𝑎 + 𝑐

7 .

Summarizing, the overall maximum of 𝑓 is the maximum of the maxima of the cases, i.e.,
𝕎 [𝑁] ≤ max֡˷֥ 𝑓(𝑝, 𝑞) ≈ 1.79115.

Information cost (defined over Chakrabarti et al. [2001], Bar-Yossef et al. [2004], Barak et al.
[2010]) is an information-theoretic lower bound on communication complexity that has analogous
properties to common information—it also obeys a direct sum theorem Bar-Yossef et al. [2004],
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and characterizes amortized communication complexity Braverman and Rao [2011]. For a boolean
matrix 𝑀 and distribution 𝜇 on rows and columns of 𝑀, the (internal) information cost of a ran-
domized protocol Π is ICޔ(Π) = 𝕀 [Π; 𝐴 ල 𝐵] + 𝕀 [Π; 𝐵 ල 𝐴]. The information cost of 𝑀 with respect
to distribution 𝜇 and error 𝜖 is then the infimum over all protocols Π that compute 𝑀 with error
at most 𝜖 of ICޔ(Π). The information cost of 𝑀 with respect to any distribution is a lower bound
on the randomized communication complexity of 𝑀.

Note that, as a protocol with error 𝜖 for 𝑀 can be trivially transformed into a protocol with
error 𝜖 for the negation of 𝑀, the information cost of 𝑀 and 𝑀 = 𝟙 − 𝑀 are the same. We now
see with the example of set intersection, the negation of disjointness, that this is not true for the
common information.

Lemma 3.2 (Common information of set intersection and noninvarance under complements). Let
𝑀 be the 2֙-by-2֙ matrix where

𝑀(𝑥, 𝑦) =
⎧ഥ
⎨ഥ⎩

0 𝑥 ∩ 𝑦 = ∅
1 otherwise

.

Then ℂ [𝑀] = 𝑂(1), yet for 𝑀 = 𝟙ӝ֚˷ӝ֚ − 𝑀 we have ℂ ೖ𝑀 = ℂ ೀDISJ֙ು = 2𝑛/3.

Proof. The complement of set intersection 𝑀 = DISJ֙ = DISJ⊗֙
џ is the disjointness matrix. It fol-

lows that ℂ ೀDISJ֙ು = 2𝑛/3 as common information is additive under tensoring (Lemma 5.5) and
ℂ ೀDISJџು = 2/3 by Witsenhausen [1976].

We now establish an upper bound on the common information 𝑀, the set intersection matrix.
Note that the number of ones in 𝑀 is 𝑚 = 2ӝ֙ − 3֙ = (1 − (3/4)֙)2ӝ֙. 𝑀 has a covering of size 𝑛
by the rectangles 𝑅օ = {(𝑥, 𝑦) ∶ 𝑥օ = 𝑦օ = 1}. We use this covering to define a partition of the ones
of 𝑀 inductively as follows. Let 𝑆џ = 𝑅џ and 𝑆օ = {(𝑥, 𝑦) ∈ 𝑅օ ∶ (𝑥, 𝑦) ∉ 𝑅։, 𝑗 < 𝑖}. In general 𝑆օ
is not itself a rectangle, but can be partitioned into 3օ−џ many rectangles, each of relative area 4−օ.
Using this factorization, we can lower bound the private information by

𝕎 [𝑀] ≥ 2ӝ֙

𝑚
֙

ྌ
օ=џ

3օ−џ 1
4օ log 2ӝ֙

4օ

= 2 ⋅ 3֙−џ

𝑚
֙

ྌ
օ=џ

ഒ4
3ഓ

֙−օ
⋅ (𝑛 − 𝑖)

= 2 ⋅ 3֙−џ

𝑚 ⋅ (4/3) ⋅ ((𝑛 − 1)(4/3)֙ − 𝑛(4/3)֙−џ + 1)
(4/3 − 1)ӝ

= 2ӝ֙

𝑚 (2𝑛 − 8(1 − (3/4)֙)) = 2𝑛
1 − (3/4)֙ − 8

using the identity ∑֙
օ=џ(𝑛 − 𝑖)𝑥օ = 𝑥((𝑛 − 1)𝑥֙ − 𝑛𝑥֙−џ + 1)/(𝑥 − 1)ӝ.

Thus we have

ℂ [𝑀] ≤ log 𝑚 − 2ӝ֙

𝑚 (2𝑛 − 8(1 − (3/4)֙)) = 2𝑛 + log ഒ1 − ഒ3
4ഓ

֙
ഓ − 2𝑛

1 − (3/4)֙ + 8 = 8 + 𝑜(1).

Another variant of information cost, known as external information cost has been defined in
the literature. This definition is directly analogous to the definition of common information: the
external information cost of a protocol Π with respect to a distribution 𝜇 ∼ (𝐴, 𝐵) is ICա

(Π)ޔ =
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𝕀 [𝐴, 𝐵; Π]. In the case of common information, however, this distinction is not important as for
a factorization the external and internal information cost of a factorization are equivalent up to a
constant.

Lemma 3.3 (External vs. internal common information). Let 𝑀 be a nonnegative matrix, (𝐴, 𝐵) ∼ 𝑀
and Π be a seed. Then

𝕀 [𝐴, 𝐵; Π] = 𝕀 [𝐴; Π ල 𝐵] + 𝕀 [𝐵; Π ල 𝐴] + 𝕀 [𝐴; 𝐵] ,

i.e., external information cost and internal information cost differ by 𝕀 [𝐴; 𝐵].
Proof. We consider

𝕀 [𝐴, 𝐵; Π] − 𝕀 [𝐴; Π ල 𝐵] − 𝕀 [𝐵; Π ල 𝐴] = 𝕀 [𝐵; Π] + 𝕀 [𝐴; Π ල 𝐵] − 𝕀 [𝐴; Π ල 𝐵] − 𝕀 [𝐵; Π ල 𝐴]
= 𝕀 [𝐵; Π] − 𝕀 [𝐵; Π ල 𝐴] = 𝕀 [𝐵; 𝐴] − 𝕀 [𝐵; 𝐴 ල Π]െേൈേ

=ա
= 𝕀 [𝐵; 𝐴] .

4 Common information as amortized log nonnegative rank
By Fact 2.5, the common information provides a lower bound on the logarithm of the nonnegative
rank. This bound, however, can be arbitrarily far from the logarithm of the nonnegative rank, as
can be seen in the next example.

Let 𝑀֙ ∈ ℝ֙×֙ be the diagonal matrix given by 𝑀֙(𝑖, 𝑖) ≔ 2օ/ ∑։∈[֙] 2։ and 𝑀֙(𝑖, 𝑗) = 0
whenever 𝑖 ≠ 𝑗. Clearly the nonnegative rank of 𝑀֙ is 𝑛, however, the factorization Π given by the
1 × 1 rectangles arising from the elements on the main diagonal shows ℂ ಪ𝑀֙ಫ ≤ ℍ [Π] = 𝑂(1).

We will now show, however, that common information does capture the amortized log nonnega-
tive rank, under small ℓџ perturbations. This result is inspired by a one-shot statement in [Jain et al.,
2013, Lemma 4.1], and the quantitative analysis is improved here for tensored matrices 𝑀⊗֙.

For this theorem the following formula for the conditional mutual information between 𝑃 and
𝑄 given 𝑅 will be useful:

𝕀 [𝑃; 𝑄 ල 𝑅] = 𝔼ׁ∼֟˷ׅ∼֣˷∼֧ ബlog 𝑞(𝑥 ∣ 𝑦, 𝑧)
𝑞(𝑥 ∣ 𝑧) ഭ ,

where 𝑞(𝑥 ∣ 𝑦, 𝑧) ≔ ℙ ಪ𝑃 = 𝑥 ල 𝑄 = 𝑦, 𝑅 = 𝑧ಫ is a probability vector and similarly for 𝑞(𝑥 ∣ 𝑧).
We will also use the cyclic property of mutual information:

𝕀 [𝑃; 𝑄] − 𝕀 [𝑃; 𝑄 ල 𝑅] = 𝕀 [𝑄; 𝑅] − 𝕀 [𝑄; 𝑅 ල 𝑃] .

Theorem 4.1 (Common information = amortized log nonnegative rank). Let 𝑀 ∈ ℝ֕×֙
+ be a ma-

trix with 𝑤 ≔ ∑օ։ 𝑀օ։ and 𝑘 = ℂ [𝑀]. Then for any 𝜀 > 0 and 𝛿 ∈ (0, 1), for every multiplier
ℓ ≥ max{Ω(logӝ(𝑚𝑛/𝜀)/𝜀ӝ𝑘ӝ) ⋅ ln(𝛿−џ), Ω(𝛿/𝜀)} there exists a nonnegative matrix 𝑀ܴ˷ܨ˷ℓ ∈ ℝ֕ℓ×֙ℓ

+
with

1. log rk+(𝑀ܴ˷ܨ˷ℓ)/ℓ ≤ (1 + 𝜀)ℂ [𝑀] + 𝑂(𝛿ӗ ln 𝛿−џ)/ℓ,

2. ළ𝑀⊗ℓ − 𝑀ܴ˷ܨ˷ℓළџ ≤ 𝛿𝑤ℓ.

In particular, we have

lim
ℓ→∞˷ܨ→ա˷ܴ→ա

log rk+ 𝑀ܴ˷ܨ˷ℓ
ℓ = ℂ [𝑀]
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Proof. Without loss of generality we may assume 𝑤 = 1, which allows us to identify matrices
with probably distribution of row-column pairs. In particular, let 𝑞ա be the probability distribution
associated with 𝑀, and let (𝐴ա, 𝐵ա) ∼ 𝑞ա be its random row-column pair. Let Πա be a seed of 𝐴ա, 𝐵ա
realizing 𝑘 = ℂ [𝑀] = 𝕀 ಪ𝐴ա, 𝐵ա; Πաಫ, with size 𝑟 ≤ 𝑚𝑛 which exists by Fact 2.5.

For a distribution 𝑝 of a random variable 𝑋, let 𝑝⊗ℓ denote the distribution of ℓ independent
copies of 𝑋, which is consistent with the notion of tensoring the associated matrix for 𝑝. In partic-
ular, the distribution of 𝑀⊗ℓ is 𝑞⊗ℓ

ա . We shall approximate the distributions 𝑞ա and 𝑞⊗ℓ
ա with better

behaving distributions 𝑞џ, 𝑞ӝ, … and the same subscripts and superscripts will be used for the ran-
dom variables, e.g., 𝐴џ, 𝐵џ, Πџ will have distribution 𝑞џ. The first goal of the approximation is to
bound the ratios log 𝑞ա(𝑎, 𝑏|𝜋)/𝑞ա(𝑎, 𝑏) appearing in the common information to allow us later to
argue via concentration.

For a lower bound, we define 𝑞џ by keeping the seed Πџ ≔ Πա, and modifying only the distribu-
tion of 𝐴ա, 𝐵ա conditioned on Πա to obtain 𝐴џ, 𝐵џ. The aim is to have 𝑞џ(𝑎|𝜋), 𝑞џ(𝑏|𝜋) ≥ 𝛽 for a small
positive parameter 𝛽 chosen later. Therefore we introduce coins 𝐶գ, 𝐶է ∈ {0, 1} independently of
Πџ = Πա, 𝐴ա, and 𝐵ա with

ℙ ಪ𝐶գ = 1ಫ = 𝛽𝑚, ℙ ಪ𝐶է = 1ಫ = 𝛽𝑛.

If 𝐶գ = 1 then we choose 𝐴џ uniformly in the range of 𝐴ա independently of Πա, 𝐴ա, 𝐵ա. If 𝐶գ = 0
then we choose 𝐴џ = 𝐴ա. We define 𝐵џ similarly using 𝐶է and 𝐵ա. Obviously, 𝐴џ and 𝐵џ are
conditionally independent given Πա. In other words, the conditional probabilities are

𝑞џ(𝑎|𝜋) ≔ (1 − 𝛽𝑚)𝑞ա(𝑎|𝜋) + 𝛽, 𝑞џ(𝑏|𝜋) ≔ (1 − 𝛽𝑛)𝑞ա(𝑏|𝜋) + 𝛽.

In particular,
𝑞џ(𝑎, 𝑏|𝜋) = 𝑞џ(𝑎|𝜋) ⋅ 𝑞џ(𝑏|𝜋) ≥ 𝛽ӝ.

For the mutual information we deduce the following bound

𝕀 ಪ𝐴џ, 𝐵џ; Πџಫ ≤ 𝕀 ಪ𝐴џ, 𝐵џ; Πџ ල 𝐶գ, 𝐶էಫ
= ℙ ಪ𝐶գ = 0, 𝐶է = 0ಫ 𝕀 ಪ𝐴ա, 𝐵ա; Πաಫ + ℙ ಪ𝐶գ = 1, 𝐶է = 0ಫ 𝕀 ಪ𝐵ա; Πաಫ
+ ℙ ಪ𝐶գ = 0, 𝐶է = 1ಫ 𝕀 ಪ𝐴ա; Πաಫ ≤ 𝕀 ಪ𝐴ա, 𝐵ա; Πաಫ = 𝑘.

The first inequality holds because 𝐶գ, 𝐶է are independent of Πџ by construction using the cyclic
property of 𝕀 ಪ𝐴џ, 𝐵џ; Πџ ල 𝐶գ, 𝐶էಫ − 𝕀 ಪ𝐴џ, 𝐵џ; Πџಫ. The equality is a special case of the law of total
expectation, e.g., given 𝐶գ = 𝐶է = 0 the distribution of 𝐴џ, 𝐵џ, Πџ is that of 𝐴ա, 𝐵ա, Πա. And given
𝐶գ = 1, 𝐶է = 0 the distribution is that of 𝐵ա, Πա and an independent uniform random variable.
The second inequality follows by upper bounding all mutual information terms by 𝕀 ಪ𝐴ա, 𝐵ա; Πաಫ.

We estimate the total variation of 𝑞⊗ℓ
ա and 𝑞⊗ℓ

џ . We start by comparing the conditional distri-
butions of 𝑞ա and 𝑞џ, using that for distributions 𝑝џ, 𝑝ӝ we have 𝑝џ − 𝑝ӝџ = 2 maxֿ event(𝑝џ(𝑋) −
𝑝ӝ(𝑋)), and the maximizer can be explicitly given:

ྌ
ե

|𝑞џ(𝑎|𝜋) − 𝑞ա(𝑎|𝜋)| = 2 ྌ
ե ∶ ֥Ѡ(ե|ߜ)>֥բ(ե|ߜ)

(𝑞џ(𝑎|𝜋) − 𝑞ա(𝑎|𝜋))

= 2 ྌ
ե ∶ ֥Ѡ(ե|ߜ)>֥բ(ե|ߜ)

𝛽(1 − 𝑚𝑞ա(𝑎|𝜋)) ≤ 2𝛽(𝑚 − 1),

ྌ
թ

|𝑞џ(𝑏|𝜋) − 𝑞ա(𝑏|𝜋)| ≤ 2𝛽(𝑛 − 1).
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Combining the estimates on rows and columns:

𝑞џ(⋅|𝜋) − 𝑞ա(⋅|𝜋)џ ≤ 2𝛽(𝑚 + 𝑛 − 2),
which remains valid by removing the conditioning on 𝜋 via taking expectation:

𝑞џ − 𝑞աџ ≤ 2𝛽(𝑚 + 𝑛 − 2).

We can now estimate the total variation of 𝑞⊗ℓ
ա and 𝑞⊗ℓ

џ via

𝑞⊗ℓ
џ − 𝑞⊗ℓ

ա џ ≤
ℓ

ྌ
։=џ

ී𝑞⊗։
џ ⊗ 𝑞⊗(ℓ−։)

ա − 𝑞⊗։−џ
џ ⊗ 𝑞⊗(ℓ−։+џ)

ա ී
џ

≤ 2ℓ𝛽(𝑚 + 𝑛 − 2).

Let 𝑞 denote the conditional distribution 𝑞џ given 𝑞џ(Πџ) ≥ 𝛽. In particular, 𝑞(𝑎, 𝑏|𝜋) = 𝑞џ(𝑎, 𝑏|𝜋)
for all 𝑎, 𝑏, 𝜋. As there are 𝑟 possible values of Πџ we have

ℙ ಪ𝑞џ(Πџ) < 𝛽ಫ ≤ 𝑟𝛽,

and hence, we estimate similarly as before:

𝑞 − 𝑞џџ ≤ 2 ℙ ಪ𝑞џ(Πџ) < 𝛽ಫ ≤ 2𝑟𝛽, 𝑞⊗ℓ − 𝑞⊗ℓ
џ џ ≤ 2ℓ𝑟𝛽.

As a result, we now have a distribution 𝑞 close to 𝑞ա such that whenever 𝑞џ(𝜋) ≥ 𝛽:

𝑞(𝑎, 𝑏|𝜋)
𝑞(𝑎, 𝑏) ≥ 𝑞џ(𝑎, 𝑏|𝜋) ≥ 𝛽ӝ, 𝑞(𝑎, 𝑏|𝜋)

𝑞(𝑎, 𝑏) ≤ 1
𝑞(𝜋) ≤ 1

𝑞џ(𝜋) ≤ 1
𝛽. (2)

We check that the mutual information of 𝑞 remains close to the common information of 𝑞ա. Let
𝜒(𝑋) denote the indicator of event 𝑋.

𝔼 ബlog 𝑞(𝐴, 𝐵|Π)
𝑞(𝐴, 𝐵) ഭ = 𝕀 [𝐴, 𝐵; Π] = 𝕀 ಪ𝐴џ, 𝐵џ; Πџ ල 𝑞џ(Πџ) ≥ 𝛽ಫ

≤ 𝕀 ಪ𝐴џ, 𝐵џ; Πџ ල 𝜒(𝑞џ(Πџ) ≥ 𝛽)ಫ
ℙ ಪ𝑞џ(Πџ) ≥ 𝛽ಫ = 𝕀 ಪ𝐴џ, 𝐵џ; Πџಫ − 𝕀 ಪ𝐴џ, 𝐵џ; 𝜒(𝑞џ(Πџ) ≥ 𝛽)ಫ

ℙ ಪ𝑞џ(Πџ) ≥ 𝛽ಫ ≤ 𝑘
1 − 𝑟𝛽,

where the first inequality follows from the law of total expectation, and the following equality
follows with the cyclic property of 𝕀 [𝑃; 𝑄] − 𝕀 [𝑃; 𝑄 ල 𝑅].

From now on we will only work with 𝑞 and 𝑞ӗ ≔ 𝑞⊗ℓ. In order to ease notation we introduce
independent copies 𝑍џ, … , 𝑍ℓ of the pair (𝐴, 𝐵) (we no longer need to handle the components of
the pair separately), and independent copies 𝑊џ, … , 𝑊ℓ of Π, so that the 𝑍օ, 𝑊օ are mutually inde-
pendent copies of (𝐴, 𝐵), Π. Let 𝑍 = (𝑍џ, … , 𝑍ℓ), 𝑊 = (𝑊џ, … , 𝑊ℓ) denote the collection of the 𝑍օ
and 𝑊օ, respectively.

In a first step we show that the encoding length of the ratios of the tensored distribution strongly
concentrates around the common information via Hoeffding’s inequality. Note that 𝛽ӝ ≤ ֥(ׇֆ |ֻֆ)

֥(ׇֆ)
≤

џ
ܐ by (2) as 𝑞џ(𝑊օ) ≥ 𝛽 holds almost surely because 𝑊օ ∼ 𝑞. Observe that

ℙ ബlog 𝑞ӗ(𝑍|𝑊)
𝑞ӗ(𝑍) > (1 + 𝜀)𝑘ℓഭ = ℙ ⎡⎢

⎣
1
ℓ

ℓ
ྌ
օ=џ

log 𝑞(𝑍օ|𝑊օ)
𝑞(𝑍օ)

> (1 + 𝜀)𝑘⎤⎥
⎦

≤ ℙ ⎡⎢
⎣

1
ℓ

ℓ
ྌ
օ=џ

log 𝑞(𝑍օ|𝑊օ)
𝑞(𝑍օ)

− 𝔼 ⎡⎢
⎣

1
ℓ

ℓ
ྌ
օ=џ

log 𝑞(𝑍օ|𝑊օ)
𝑞(𝑍օ)

⎤⎥
⎦

> (1 + 𝜀)𝑘 − 𝑘
1 − 𝑟𝛽

⎤⎥
⎦
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Note that (1 + 𝜀)𝑘 − 𝑘/(1 − 𝑟𝛽) = (𝜀 − 𝑟𝛽/(1 − 𝑟𝛽))𝑘. We apply Hoeffding’s inequality, so that the
following inequality chain holds:

ℙ ബlog 𝑞ӗ(𝑍|𝑊)
𝑞ӗ(𝑍) > (1 + 𝜀)𝑘ℓഭ ≤ ℙ ⎡⎢

⎣
1
ℓ

ℓ
ྌ
օ=џ

log 𝑞(𝑍օ|𝑊օ)
𝑞(𝑍օ)

− 𝔼 ⎡⎢
⎣

1
ℓ

ℓ
ྌ
օ=џ

log 𝑞(𝑍օ|𝑊օ)
𝑞(𝑍օ)

⎤⎥
⎦

> ഒ𝜀 − 𝑟𝛽
1 − 𝑟𝛽ഓ 𝑘⎤⎥

⎦

≤ exp ⎛⎜
⎝

− 2ℓ𝑘ӝ

9 logӝ 1/𝛽
ഒ𝜀 − 𝑟𝛽

1 − 𝑟𝛽ഓ
ӝ
⎞⎟
⎠

≕ 𝛿џ.

Therefore with high probability the conditional distribution does not deviate much from the
unconditional one, i.e., the set

𝐺џ ≔ ಾ(𝑧, 𝑤) ∈ [𝑚ℓ𝑛ℓ] × [𝑟ℓ] හ 𝑞ӗ(𝑧|𝑤) ≤ 2(џ+ܴ)֍ℓ𝑞ӗ(𝑧)ಿ

has high probability
𝑞ӗ(𝐺џ) ≥ 1 − 𝛿џ.

We are ready to introduce the matrix 𝑀ܴ˷ܨ˷ℓ by means of the associated distribution. We sample
𝜏 independent copies 𝑊џ, … , 𝑊࠰ of 𝑊 according to the distribution 𝑞ӗ; in particular several of the
𝑊օ may coincide. Let 𝐽 ∈ [𝜏] be chosen uniformly, and ౭𝑊 ≔ 𝑊և will be the seed for the random
row and column. We define the conditional distribution of ౙ𝑍|𝑊և = 𝑤 to coincide with 𝑍|𝑊 = 𝑤.
This uniquely defines the distribution of ౙ𝑍, ౭𝑊, and we let 𝑀ܴ˷ܨ˷ℓ be the matrix of ౙ𝑍 given 𝑊џ, … , 𝑊࠰ :

𝑀ܴ˷ܨ˷ℓ(𝑧) = ౭𝑞ӗ(𝑧) =
∑օ∈[࠰] 𝑞ӗ(𝑧|𝑤օ)

𝜏 .

Thus 𝑀ܴ˷ܨ˷ℓ is a random matrix with rk+ 𝑀ܴ˷ܨ˷ℓ ≤ 𝜏. We show that with high probability, it is close
to 𝑀⊗ℓ, i.e.,

𝔼 ೖළ𝑀⊗ℓ − 𝑀ܴ˷ܨ˷ℓළџ ≤ 𝛿.
We will need the set

𝐺ӝ ≔
⎧ഥ
⎨ഥ⎩

𝑧 ∶ ྌ
ֽ ∶ ջѠ∋(ֽ˷)

𝑞ӗ(𝑧, 𝑤) ≥ 𝛿ӝ𝑞ӗ(𝑧)
⎫ഩ
⎬ഩ⎭

,

that contains all row-columns pairs that are within a 𝛿ӝ-ratio, with 𝛿ӝ chosen later. We approximate
𝑞ӗ by a measure 𝑞ͳ defined via

𝑞ͳ(𝑧, 𝑤) ≔
⎧ഥ
⎨ഥ⎩

𝑞ӗ(𝑧, 𝑤) if (𝑧, 𝑤) ∈ 𝐺џ and 𝑧 ∈ 𝐺ӝ,
0 otherwise.

Note that 𝑞ͳ need not be a probability distribution, however it is close to 𝑞ӗ:

𝑞ӗ − 𝑞ͳџ = ྌ
ֽ˷

|𝑞ͳ(𝑧, 𝑤) − 𝑞ӗ(𝑧, 𝑤)| = ྌ
ջѠ∌(ֽ˷)

𝑞ӗ(𝑧, 𝑤) + ྌ
ջѠ∋(ֽ˷)

ջӞ∌

𝑞ӗ(𝑧, 𝑤)

≤ 1 − 𝑞ӗ(𝐺џ) + ྌ
ջӞ∌

𝛿ӝ ⋅ 𝑞ӗ(𝑧) = 1 − 𝑞ӗ(𝐺џ) + 𝛿ӝ(1 − 𝑞ӗ(𝐺ӝ)) ≤ 𝛿џ + 𝛿ӝ. (3)

We define 𝑞ͳ(𝑧|𝑤) ≔ 𝑞ͳ(𝑧, 𝑤)/𝑞ӗ(𝑤) and 𝑞ͳ(𝑧) ≔ ∑ֽ 𝑞ͳ(𝑧, 𝑤) = ∑ֽ 𝑞ӗ(𝑤)𝑞ͳ(𝑧|𝑤). As an ap-
proximation for ౭𝑞ӗ, we use

౭𝑞ͳ(𝑧) ≔
∑օ∈[࠰] 𝑞ͳ(𝑧|𝑤օ)

𝜏 .
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Therefore 𝔼 ಪ𝑞ͳ(𝑧|𝑤օ)ಫֽֆ∼ֻ = 𝑞ͳ(𝑧). Moreover, for (𝑧, 𝑤) ∈ 𝐺џ and 𝑧 ∈ 𝐺ӝ, we have by definition
of the sets

𝑞ͳ(𝑧|𝑤) = 𝑞ӗ(𝑧|𝑤)
≥ջѠ∋(ֽ˷) 2(џ+ܴ)֍ℓ𝑞ӗ(𝑧)

≥ջӞ∋ 2(џ+ܴ)֍ℓ

𝛿ӝ
𝑞ͳ(𝑧),

and 𝑞ͳ(𝑧|𝑤) ≤ ӝ(Ѡ+ܵ)֎ℓ
Ӟܨ

𝑞ͳ(𝑧) trivially holds if (𝑧, 𝑤) ∉ 𝐺џ or 𝑧 ∉ 𝐺ӝ.
With the bounds on the ratios, we will now invoke Chernoff’s bound to estimate the error aris-

ing from the sample set ನ𝑤օ ල 𝑖 ∈ [𝜏]. Whenever 𝑞ͳ(𝑧) ≠ 0, we have

ℙֽֆ∼ֻ ಪල౭𝑞ͳ(𝑧) − 𝑞ͳ(𝑧)ල > 𝛿ӝ𝑞ͳ(𝑧)ಫ = ℙֽֆ∼ֻ ⎡⎢
⎣

∑օ∈[࠰] 𝑞ͳ(𝑧|𝑤օ)

𝜏 − 𝑞ͳ(𝑧)
> 𝛿ӝ𝑞ͳ(𝑧)⎤⎥

⎦
≤ 2 exp ⎛⎜

⎝
− 𝛿ӗ

ӝ𝜏
3 ⋅ 2(џ+ܴ)֍ℓ

⎞⎟
⎠

≕ 𝛿ͳ.

Therefore

𝔼 ಪල౭𝑞ͳ(𝑧) − 𝑞ͳ(𝑧)ලಫ ≤ ℙ ಪල౭𝑞ͳ(𝑧) − 𝑞ͳ(𝑧)ල ≤ 𝛿ӝ𝑞ͳ(𝑧)ಫ ⋅ 𝛿ӝ𝑞ͳ(𝑧)
+ ℙ ಪල౭𝑞ͳ(𝑧) − 𝑞ͳ(𝑧)ල > 𝛿ӝ𝑞ͳ(𝑧)ಫ (౭𝑞ͳ(𝑧) + 𝑞ͳ(𝑧))

= 𝛿ӝ𝑞ͳ(𝑧) + ℙ ಪල౭𝑞ͳ(𝑧) − 𝑞ͳ(𝑧)ල > 𝛿ӝ𝑞ͳ(𝑧)ಫ (౭𝑞ͳ(𝑧) + (1 − 𝛿ӝ)𝑞ͳ(𝑧))
≤ 𝛿ӝ𝑞ͳ(𝑧) + (౭𝑞ͳ(𝑧) + (1 − 𝛿ӝ)𝑞ͳ(𝑧))𝛿ͳ.

This obviously holds for 𝑞ͳ(𝑧) = 0 as well. Summing up for all 𝑧 we obtain

𝔼 ೀ౭𝑞ͳ − 𝑞ͳџು ≤ 𝛿ӝ + (2 − 𝛿ӝ)𝛿ͳ < 𝛿ӝ + 2𝛿ͳ.

We can easily estimate the distance between the approximations ౭𝑞ӗ and ౭𝑞ͳ:

𝔼 ೀ౭𝑞ӗ − ౭𝑞ͳџು = 𝔼ֽֆ
⎡⎢
⎣
෧෦෦
∑օ∈[࠰] 𝑞ӗ(⋅|𝑤օ)

𝜏 −
∑օ∈[࠰] 𝑞ͳ(⋅|𝑤օ)

𝜏
෧෦෦џ

⎤⎥
⎦

≤ ྌ
օ∈[࠰]

𝔼ֽֆ ೀ𝑞ӗ(⋅|𝑤օ) − 𝑞ͳ(⋅|𝑤օ)џು
𝜏 = 𝑞ӗ − 𝑞ͳџ

(3)
≤ 𝛿џ + 𝛿ӝ.

Finally, the total variation of 𝑞ӗ and ౭𝑞ӗ can be bounded:

𝔼 ೀ𝑞ӗ − ౭𝑞ӗџು ≤ 𝔼 ೀ𝑞ӗ − 𝑞ͳџು + 𝔼 ೀ𝑞ͳ − ౭𝑞ͳџು + 𝔼 ೀ౭𝑞ͳ − ౭𝑞ӗџು ≤ 2𝛿џ + 3𝛿ӝ + 2𝛿ͳ.

At last, we combine the various bounds above to bound the distance of 𝑀⊗ℓ and 𝑀ܴ˷ܨ˷ℓ:

𝔼 ೖළ𝑀⊗ℓ − 𝑀ܴ˷ܨ˷ℓළџ = 𝔼 ೬𝑞⊗ℓ
ա − ౭𝑞ӗџ೭ ≤ 𝑞⊗ℓ

ա − 𝑞⊗ℓ
џ џ + 𝑞⊗ℓ

џ − 𝑞ӗџ + 𝔼 ೀ𝑞ӗ − ౭𝑞ӗџು
≤ 2ℓ𝛽(𝑚 + 𝑛 + 𝑟 − 2) + 2𝛿џ + 3𝛿ӝ + 2𝛿ͳ.

Now we choose the free parameters 𝛽, 𝛿ӝ to make this bound smaller than 𝛿, in particular,

ℓ𝛽(𝑚 + 𝑛 + 𝑟 − 2) = 𝛿
8, 𝛿ӝ = 𝛿

12,

𝛿џ ≤ 𝛿
8, 𝛿ͳ = 2 exp ⎛⎜

⎝
− 𝛿ӗ

ӝ𝜏
3 ⋅ 2(џ+ܴ)֍ℓ

⎞⎟
⎠

≤ 𝛿
8.
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The last inequality holds provided

𝜏 ≥ 5184 ⋅ 2(џ+ܴ)֍ℓ

𝛿ӗ ln ഒ16
𝛿 ഓ .

To ease the estimation of 𝛿џ, we require 𝜀 − 𝑟𝛽/(1 − 𝑟𝛽) ≥ 𝜀/2, i.e., 𝛽 ≤ 𝜀/𝑟(2 + 𝜀), which means

ℓ ≥ 𝛿𝑟(2 + 𝜀)
8(𝑚 + 𝑛 + 𝑟 − 2)𝜀 .

Thus

𝛿џ = exp ⎛⎜
⎝

− 2ℓ𝑘ӝ

9 logӝ 1/𝛽
ഒ𝜀 − 𝑟𝛽

1 − 𝑟𝛽ഓ
ӝ
⎞⎟
⎠

≤ exp ⎛⎜
⎝

− ℓ𝜀ӝ𝑘ӝ

18 logӝ(𝑟(2 + 𝜀)/𝜀)
⎞⎟
⎠

≤ 𝛿/8

if

ℓ ≥ 18 logӝ(𝑟(2 + 𝜀)/𝜀)
𝜀ӝ𝑘ӝ ln(8/𝛿).

As a corollary, we obtain that common information is the best bound in a natural class.

Corollary 4.2 (Common information as limit superior). Let 𝑋 be a real-valued function with domain
the set of nonnegative matrices, satisfying the following continuity condition: For every nonnegative matrix
𝑀 and 𝜀 > 0, there is a constant 𝑐 > 0 such that for every positive integer 𝑛 and nonnegative matrix 𝑁

𝑋(𝑁) ≥ 𝑋(𝑀⊗֙) − 𝑛𝜀 − 𝑛𝑐 𝑁 − 𝑀⊗֙џ .

If for all nonnegative matrices 𝑀 we have 𝑋(𝑀) ≤ log rk+ 𝑀 then

lim sup
֙→∞

𝑋(𝑀⊗֙)
𝑛 ≤ ℂ [𝑀] .

If additionally for all nonnegative matrices 𝑀 we have ℂ [𝑀] ≤ 𝑋(𝑀), then lim֙→∞
ֿ(֓⊗֚)

֙ = ℂ [𝑀].

Proof. Let 𝑀 be a nonnegative matrix and 𝜀 > 0 fixed. Let 𝑐 be the constant depending on 𝑀 and 𝜀
from the continuity condition. By Theorem 4.1 for every large enough nonnegative integer 𝑛 there
is an approximation ౭𝑀 of 𝑀 satisfying log rk+ ౭𝑀 ≤ 𝑛(1 + 𝜀)ℂ [𝑀] and 𝑀⊗֙ − ౭𝑀џ ≤ 𝜀/𝑐.

𝑋(𝑀⊗֙) ≤ 𝑋(౭𝑀) + 𝑛𝜀 + 𝑛𝑐 𝑀⊗֙ − ౭𝑀џ ≤ log rk+ ౭𝑀 + 2𝑛𝜀 ≤ (1 + 𝜀)𝑛ℂ [𝑀] + 2𝑛𝜀,

i.e.,
𝑋(𝑀⊗֙)

𝑛 ≤ ℂ [𝑀] + (2 + ℂ [𝑀])𝜀.

It follows that
lim sup

֙→∞

𝑋(𝑀⊗֙)
𝑛 ≤ inf

ܴ>ա
(ℂ [𝑀] + (2 + ℂ [𝑀])𝜀) = ℂ [𝑀]

as claimed.

Remark 4.3. Lemma 5.7 together with Proposition 5.6 shows that common information satisfies the
conditions for 𝑋.
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5 A dual approach to common information
In this section we extend the dual characterization of common information from [Witsenhausen,
1976, §4], and use it to establish continuity and additivity under tensoring. As UDISJ, the main
example we consider is only a partial matrix, we also generalize common information to partial
matrices, and extend the characterization to obtain lower bounds.
5.1 Common information of partial matrices
We first extend the lower bound in [Witsenhausen, 1976, Theorem 2] from full matrices to partial
ones. The obtained lower bounds may no longer be tight due to inherent discontinuity of common
information of partial matrices, as exhibited in Example 5.4.
Definition 5.1. The common information (private information) of a partial matrix 𝑀 is the infimum
(supremum) of common information (private information) over all its nonnegative extensions

ℂ [𝑀] ≔ inf
౷֓⊇֓

ℂ ೀ౭𝑀  𝑍ು and 𝕎 [𝑀] ≔ sup
౷֓⊇֓

𝕎 ೀ౭𝑀  𝑍ು .

where 𝑍 is the event of being in the domain of definition of 𝑀.
Clearly ℂ [𝑀] = ℍ [𝑀] − 𝕎 [𝑀], where ℍ [𝑀] is the entropy of 𝑀 restricted to its domain.

We are ready to formulate the lower bound on common information.
Proposition 5.2 (Common information via rank-1 factors). Let 𝑀 be a partial nonnegative 𝑚×𝑛 matrix.
Then its common information is lower bounded by

ℂ [𝑀] ≥ sup
ℝ∋ق

inf
֡˷֥≥ա

֡Ѡ=֥Ѡ=џ
ℍ [𝑀] − ℍ ಪ𝑝, 𝑞 ල 𝑍ಫ + 𝑞֯Λ𝑝

∑ե˷թ∈ׇ 𝑝ե𝑞թ
− Tr ബΛ 𝑀

‖𝑀‖џ
ഭ , (4)

where 𝑍 is the event of being in the domain of 𝑀. Similarly, the private information 𝕎 [𝑀] is upper bounded
by

𝕎 [𝑀] ≤ inf
֖×ℝ֚∋ق max

֡˷֥≥ա
֡Ѡ=֥Ѡ=џ

ℍ ಪ𝑝, 𝑞 ල 𝑍ಫ − 𝑞֯Λ𝑝
∑ե˷թ∈ׇ 𝑝ե𝑞թ

+ Tr ബΛ 𝑀
‖𝑀‖џ

ഭ . (5)

If 𝑀 is a full matrix, then equality holds for both quantities above.

Proof. Equality in the case of full matrices is [Witsenhausen, 1976, Theorem 2]. The proof of the
inequality follows by a direct calculation. Without loss of generality, we assume ‖𝑀‖џ = 1. Let
Λ ∈ ℝׇ and

𝛼 ≔ inf
֡˷֥≥ա

֡Ѡ=֥Ѡ=џ
ℍ [𝑀] − ℍ ಪ𝑝, 𝑞 ල 𝑍ಫ + 𝑞֯Λ𝑝

∑ե˷թ∈ׇ 𝑝ե𝑞թ
− Tr[Λ𝑀].

Furthermore, let ౭𝑀 = ∑օ 𝜆օ𝑝օ𝑞֯
օ be an extension of 𝑀 with a rank-1 factorization coming from a

seed Π. We need to show that 𝕀 ೀ౭𝑀; Π  𝑍ು ≥ 𝛼; note that ℍ ೀ౭𝑀  𝑍ು = ℍ [𝑀].
Therefore we restrict the factorization to the domain of 𝑀, omit factors which are 0 on the whole

domain, and rescale the entries to be probability distributions possibly changing the coefficients
𝜆օ: 𝑀 = ∑օ 𝜇օ(𝑝օ𝑞֯

օ ∣ 𝑍). In particular, by summing up all the entries, we obtain ∑օ 𝜇օ = 1. Now an
easy calculation establishes the claim:

𝕀 ೀ౭𝑀; Π  𝑍ು = ℍ ೀ౭𝑀  𝑍ು − ℍ ೀ౭𝑀  𝑍, Πು = ℍ [𝑀 | 𝑍] − ྌ
օ

𝜇օℍ ಪ𝑝օ, 𝑞օ ල 𝑍ಫ

= ྌ
օ

𝜇օ ತℍ [𝑀] − ℍ ಪ𝑝օ, 𝑞օ ල 𝑍ಫಥ ≥ ྌ
օ

𝜇օ 𝛼 + Tr[Λ(𝑀 − (𝑝օ𝑞֯
օ ∣ 𝑍))] = 𝛼

14



as ∑օ 𝜇օ(Tr[Λ(𝑀 − (𝑝օ𝑞֯
օ ∣ 𝑍))] = 0. This proves the lower bound on ℂ [𝑀]. The upper bound on

𝕎 [𝑀] follows via 𝕎 [𝑀] = ℍ [𝑀] − ℂ [𝑀].

Note that (4) and (5) are invariant under additive shifts of Λ of the form Λ + 𝜌 ⋅ 𝟙, but not under
rescalings.

The supremum in (4) cannot be replaced by maximum even for full matrices. We see this in the
next example with the 2 × 2 DISJ matrix.

Example 5.3 (Common information of DISJ via (4)). We consider the matrix 𝐷 ≔  ե թ
խ ա  where

𝑎 + 𝑏 + 𝑐 = 1. The common information for this matrix has been established to be ℂ [𝐷] = (𝑏 +
𝑐) log(𝑏 + 𝑐) − 𝑏 log 𝑏 − 𝑐 log 𝑐 = ℍ [𝐷] − ౭ℍ [𝑎] in Witsenhausen [1976]. We will now show that
ℂ [𝐷] can only be reached in the limit and for every single instance of Λ we have that

inf
֡˷֥≥ա

֡Ѡ=֥Ѡ=џ
ℍ [𝐷] − ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 − Tr[Λ𝐷] < ℍ [𝐷] − ౭ℍ [𝑎] ,

or equivalently 𝐾 ≔ sup֡˷֥ ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 − Tr[Λ𝐷] > ౭ℍ [𝑎]. Here and below we drop the
conditions on 𝑝, 𝑞 for readability.

First let us show that 𝕎 [𝐷] ≤ ౭ℍ [𝑎] cannot be obtained via a single supporting hyperplane,
i.e., 𝐾 > ౭ℍ [𝑎]. Recall that

౭ℍ ಪ𝑝ಫ + ౭ℍ ಪ𝑞ಫ ≤ 𝐾 − 𝑞֯Λ𝑝 + Tr(Λ𝐷)

for all 0 ≤ 𝑝, 𝑞 ≤ 1. We examine this for the pairs 𝑝, 𝑞 where the bound is supposed to be tight, i.e.,
for the pairs appearing in the best factorization: ([𝑎, 𝑏 + 𝑐], [1, 0]) and ([1, 0], [𝑎, 𝑏 + 𝑐]). Actually,
we also consider nearby pairs 𝑝 = [𝑎, 𝑏 + 𝑐] and 𝑞 = [1 − 𝑥, 𝑥] for which we obtain

౭ℍ [𝑎] + ౭ℍ [𝑥] ≤ 𝐾 − 𝑎Λџџ − (𝑏 + 𝑐)Λӝџ + [𝑎(Λџџ − Λџӝ) + (𝑏 + 𝑐)(Λӝџ − Λӝӝ)]𝑥 + 𝑎Λџџ + 𝑏Λџӝ + 𝑐Λӝџ

for all 0 ≤ 𝑥 ≤ 1, therefore

౭ℍ [𝑎] < 𝐾 − 𝑎Λџџ − (𝑏 + 𝑐)Λӝџ + 𝑎Λџџ + 𝑏Λџӝ + 𝑐Λӝџ = 𝐾 + 𝑏(Λџӝ − Λӝџ).

Thus 𝐾 > ౭ℍ [𝑎] if Λџӝ ≤ Λӝџ. A similar argument applies when Λӝџ ≤ Λџӝ finishing the proof of
𝐾 > ౭ℍ [𝑎].

We will now show that for an arbitrary 𝜀 > 0 there exists Λ so that

sup
֡˷֥

𝑞֯Λ𝑝 + ౭ℍ ಪ𝑝ಫ + ౭ℍ ಪ𝑞ಫ − Tr(Λ𝐷) ≤ ౭ℍ [𝑎] + 𝜀

if 0 < 𝑎 < 1/2. Actually, we will choose a Λ of the form

Λ = ബ−౭ℍໞ [𝑎] 0
0 −𝐶ഭ

where 𝐶 > 0 is a large constant to be chosen later. Observe that Tr(Λ𝐷) = −౭ℍໞ [𝑎] 𝑎. Let us
introduce the shorthand

𝜓(𝑝, 𝑞) ≔ ౭ℍ ಪ𝑝ಫ + ౭ℍ ಪ𝑞ಫ − ౭ℍໞ [𝑎] 𝑝𝑞 − 𝐶(1 − 𝑝)(1 − 𝑞) + 𝑎౭ℍໞ [𝑎] .

Let us choose 0 < 𝛿 < 1/2 such that ౭ℍໞ [𝑎] 𝛿 + ౭ℍ [𝛿] ≤ 𝜀 and let 𝐶 = (2 + ౭ℍໞ [𝑎] 𝑎)/𝛿ӝ. First
suppose that both 𝑝, 𝑞 ≤ 1 − 𝛿. In this case 𝜓(𝑝, 𝑞) ≤ 2 − 𝐶𝛿ӝ + ౭ℍໞ [𝑎] 𝑎 ≤ 0 and the claim holds.
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Now consider the case that at least one of 𝑝, 𝑞 is at least 1 − 𝛿. As Λ is symmetric we may suppose
without loss of generality that 𝑞 ≥ 1 − 𝛿. Then we can upper bound 𝜓(𝑝, 𝑞) as follows, using the
concavity of entropy

𝜓(𝑝, 𝑞) ≤ ౭ℍ [𝑎] + ౭ℍໞ [𝑎] (𝑝 − 𝑎) + ౭ℍ [𝛿] − ౭ℍໞ [𝑎] (𝑝 − 𝛿) + 𝑎౭ℍໞ [𝑎]
= ౭ℍ [𝑎] + ౭ℍ [𝛿] + ౭ℍໞ [𝑎] 𝛿 ≤ ౭ℍ [𝑎] + 𝜀

as claimed.

We will see later in Lemma 5.7 that common information is a continuous quantity for full matri-
ces, with a proof based on the tightness of the dual characterization. The next example, however,
shows that common information of partial matrices can be discontinuous, ruling out the tightness
of the lower bound for partial matrices in general.

Example 5.4 (Discontinuity of common information of a partial matrix). Despite continuity for full
matrices, common information is not continuous for partial matrices, as the following examples
shows:

ℂ ബഒ𝜀 1
1 ∗ഓഭ =

⎧ഥ
⎨ഥ⎩

0, 𝜀 > 0,
1, 𝜀 = 0.

Here ∗ denotes an undefined nonnegative entry. Note that for 𝜀 > 0 the matrix has a rank-1 exten-
sion, while for 𝜀 = 0 no factor can have both its entries in the antidiagonal non-zero, i.e., it must
reveal the exact entry of 𝑀 =  ա џ

џ ∗ . Therefore ℂ [𝑀] = ℍ [𝑀 | 𝑍] = 1.

5.2 Continuity and tensoring for common information
The dual characterization of common information has several applications. We first see how the
supporting hyperplanes of the information set naturally tensor, leading to a simplified form of the
dual formulation for a matrix which is a tensor product. Then we see how the dual characterization
implies that common information is robust under small ℓџ perturbations.

We prove that common information is additive under tensoring of matrices. The core of the
proof is a direct sum property of mutual information (see [Cover and Thomas, 2006, Theorem 2.5.2]):
for arbitrary random variables 𝐴, 𝐵, 𝐶

𝕀 ಪ𝐴џ, 𝐴ӝ; 𝐵ಫ = 𝕀 ಪ𝐴џ; 𝐵ಫ + 𝕀 ಪ𝐴ӝ; 𝐵 ල 𝐴џಫ .

In particular, 𝕀 ಪ𝐴џ, 𝐴ӝ; 𝐵ಫ ≥ 𝕀 ಪ𝐴џ; 𝐵ಫ + 𝕀 ಪ𝐴ӝ; 𝐵ಫ if 𝐴џ and 𝐴ӝ are independent.

Lemma 5.5 (Common information and tensoring). Let 𝑀, 𝑁 be arbitrary nonnegative matrices. Then
ℂ [𝑀 ⊗ 𝑁] = ℂ [𝑀] + ℂ [𝑁]. In particular ℂ ಪ𝑀⊗֙ಫ = 𝑛ℂ [𝑀] for all 𝑛 ∈ ℕ.

Proof. First we identify the distribution induced by 𝑀 ⊗ 𝑁. Let (𝐴֓, 𝐵֓) ∼ 𝑀 and (𝐴֗ , 𝐵֗) ∼ 𝑁
be independent pairs of random variables with distribution induced by 𝑀 and 𝑁, respectively.
Then the distribution of (𝐴֓, 𝐴֗ ; 𝐵֓, 𝐵֗) is induced by 𝑀 ⊗ 𝑁.

Now let Π be a seed for 𝑀 ⊗ 𝑁. We have

𝕀 [𝑀 ⊗ 𝑁; Π] = 𝕀 ಪ𝐴֓, 𝐵֓, 𝐴֗ , 𝐵֗ ; Πಫ ≥ 𝕀 ಪ𝐴֓, 𝐵֓; Πಫ + 𝕀 ಪ𝐴֗ , 𝐵֗ ; Πಫ = 𝕀 [𝑀; Π] + 𝕀 [𝑁; Π] ,

where the latter inequality follows from the direct sum property and the independence of (𝐴֓, 𝐵֓)
and (𝐴֗ , 𝐵֗). It suffices to observe that Π is a seed both for (𝐴֓, 𝐵֓) and (𝐴֗ , 𝐵֗) so that when
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taking the infimum over all seeds Π for 𝑀 ⊗ 𝑁 we have

ℂ [𝑀 ⊗ 𝑁] = inf
ڊ seed for (գ֔˷ գ֘), (է֔˷ է֘)

𝕀 [𝑀 ⊗ 𝑁; Π]

≥ inf
ڊ seed for (գ֔˷ գ֘), (է֔˷ է֘)

(𝕀 [𝑀; Π] + 𝕀 [𝑁; Π])

≥ inf
ڊ seed for գ֔, է֔

𝕀 [𝑀; Π] + inf
ڊ seed for գ֘ , է֘

𝕀 [𝑁; Π] = ℂ [𝑀] + ℂ [𝑁] .

We will now show that the inequality is tight. For this let Π֓ be any seed for 𝑀 and Π֗ be
any seed for 𝑁 with Π֓ and Π֗ being conditionally independent given 𝐴֓, 𝐴֗ , 𝐵֓, 𝐵֗ . Clearly,
Π֓, Π֗ is a seed for 𝑀 ⊗ 𝑁. By the chain rule we have

𝕀 ಪ𝐴֓, 𝐵֓, 𝐴֗ , 𝐵֗ ; Π֓, Π֗ಫ = 𝕀 ಪ𝐴֓, 𝐵֓; Π֓, Π֗ಫ + 𝕀 ಪ𝐴֗ , 𝐵֗ ; Π֓, Π֗ ල 𝐴֓, 𝐵֓ಫ

We further have, (again using the chain rule)

𝕀 ಪ𝐴֓, 𝐵֓; Π֓, Π֗ಫ = 𝕀 ಪ𝐴֓, 𝐵֓; Π֗ಫെേേേൈേേേ
=ա, by independence

+ 𝕀 ಪ𝐴֓, 𝐵֓; Π֓ ල Π֗ಫെേേേേൈേേേേ
=𝕀ಪգ֔˷է֔һ֔ڊಫ

and similarly

𝕀 ಪ𝐴֗ , 𝐵֗ ; Π֓, Π֗ ල 𝐴֓, 𝐵֓ಫ = 𝕀 ಪ𝐴֗ , 𝐵֗ ; Π֓ ල 𝐴֓, 𝐵֓ಫെേേേേേൈേേേേേ
=ա

+ 𝕀 ಪ𝐴֗ , 𝐵֗ ; Π֗ ල 𝐴֓, 𝐵֓, Π֓ಫെേേേേേേൈേേേേേേ
=𝕀ಪգ֘ ˷է֘ һ֘ڊಫ

,

so that

𝕀 ಪ𝐴֓, 𝐵֓, 𝐴֗ , 𝐵֗ ; Π֓, Π֗ಫ = 𝕀 ಪ𝐴֓, 𝐵֓; Π֓ಫ + 𝕀 ಪ𝐴֗ , 𝐵֗ ; Π֗ಫ .

Taking the infimum over all seeds Π֓ for 𝑀 and Π֗ for 𝑁 we obtain

ℂ [𝑀 ⊗ 𝑁] = inf
ڊ seed for (գ֔˷ գ֘), (է֔˷ է֘)

𝕀 ಪ𝐴֓, 𝐵֓, 𝐴֗ , 𝐵֗ ; Πಫ

≤ inf
֔ڊ seed for գ֔, է֔
֘ڊ seed for գ֔, է֔

𝕀 ಪ𝐴֓, 𝐵֓, 𝐴֗ , 𝐵֗ ; Π֓, Π֗ಫ

= inf
֔ڊ seed for գ֔, է֔

𝕀 ಪ𝐴֓, 𝐵֓; Π֓ಫ + inf
֘ڊ seed for գ֔, է֔

𝕀 ಪ𝐴֗ , 𝐵֗ ; Π֗ಫ

= ℂ [𝑀] + ℂ [𝑁] .

As an application of Lemma 5.5, in the dual formulation for a tensor product 𝑀џ ⊗ ⋯ ⊗ 𝑀֙, we
can restrict the parameter Λ in the minimax formula (4) from Proposition 5.2 to be a tensor sum of
matrices corresponding to the components 𝑀օ.

Proposition 5.6. Let 𝑀օ ∈ ℝ֕ֆ×֙ֆ+ be nonnegative matrices with 𝑖 ∈ [ℓ]. Then

ℂ ಪ𝑀џ ⊗ ⋯ ⊗ 𝑀ℓಫ = sup
ֆ∈ℝ֚ֆ×֖ֆق ∶օ=џ˷…˷ℓ

inf
֡˷֥≥ա

֡Ѡ=֥Ѡ=џ
ℍ [𝑀] − ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 − Tr[Λ𝑀] , (6)

where Λ ∶= Λџ ⊕ ⋯ ⊕ Λℓ.
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Proof. Adding up (4) from Proposition 5.2 for 𝑀џ, … , 𝑀ℓ together with Lemma 5.5 provides

ℂ ಪ𝑀џ ⊗ ⋯ ⊗ 𝑀ℓಫ = ℂ ಪ𝑀џಫ + ⋯ + ℂ ಪ𝑀ℓಫ

=
ℓ

ྌ
օ=џ

sup
ֆ∈ℝ֚ֆ×֖ֆق

inf
֡ֆ˷֥ֆ≥ա

֡ֆѠ=֥ֆѠ=џ
ℍ ಪ𝑀օಫ − ℍ ಪ𝑝օಫ − ℍ ಪ𝑞օಫ + 𝑞֯

օ Λօ𝑝օ − Tr[Λօ𝑀օ]

= sup
ֆ∈ℝ֚ֆ×֖ֆق ∶օ=џ˷…˷ℓ

inf
֡ֆ˷֥ֆ≥ա

֡ֆѠ=֥ֆѠ=џ
օ=џ˷…˷ℓ

ℓ
ྌ
օ=џ

ℍ ಪ𝑀օಫ − ℍ ಪ𝑝օಫ − ℍ ಪ𝑞օಫ + 𝑞֯
օ Λօ𝑝օ − Tr[Λօ𝑀օ] .

Note that the last formula is obtained from the right-hand side of (6) by restricting 𝑝 and 𝑞 to
product distributions 𝑝 = 𝑝џ × ⋯ × 𝑝ℓ and 𝑞 = 𝑞џ × ⋯ × 𝑞ℓ.

To finish the proof, we show that the minimum of the inner formula is not enlarged by allowing
arbitrary distributions 𝑝 and 𝑞. Indeed, the following computation establishes that the inner for-
mula decreases by replacing 𝑝 and 𝑞 with the products 𝑝џ × ⋯ × 𝑝ℓ and 𝑞џ × ⋯ × 𝑞ℓ of their marginal
distribution (omitting terms not depending on 𝑝 and 𝑞):

−ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 = −ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ +
ℓ

ྌ
օ=џ

𝑞֯
օ Λօ𝑝օ ≥

ℓ
ྌ
օ=џ

−ℍ ಪ𝑝օಫ − ℍ ಪ𝑞օಫ + 𝑞֯
օ Λօ𝑝օ .

We now show that the common information of close by matrices cannot discontinuously in-
crease.

Lemma 5.7 (Continuity of common information). Let 𝑁, 𝑀 ∈ ℝ֕×֙
+ be nonnegative matrices with

‖𝑀‖џ = ‖𝑁‖џ = 1 and let 𝜀 > 0. Then

ℂ [𝑀] ≤ ℂ [𝑁] + ‖𝑀 − 𝑁‖џ log ‖𝑀 − 𝑁‖џ
𝑚𝑛 + Λ∞ ‖𝑀 − 𝑁‖џ + 𝜀,

where Λ is an 𝜀-realizer of the common information of 𝑀, i.e., for all 𝑝, 𝑞 ≥ 0
ℂ [𝑀] − 𝜀 ≤ ℍ [𝑀] − ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 − Tr[Λ𝑀].

Proof. The statement follows directly from the characterization of the common information in
Proposition 5.2:

ℂ [𝑁] ≥ min֡˷֥ ℍ [𝑁] − ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 − Tr[Λ𝑁]

≥ ℂ [𝑀] − 𝜀 + ℍ [𝑁] − ℍ [𝑀] + Tr Λ(𝑀 − 𝑁)

≥ ℂ [𝑀] − 𝜀 − ‖𝑀 − 𝑁‖џ log ‖𝑀 − 𝑁‖џ
𝑚𝑛 − Λ∞ ‖𝑀 − 𝑁‖џ .

6 Consequences for (U)DISJ
We will now use the dual approach to derive lower bounds on the DISJ as well as the UDISJ (partial)
matrices under any type of small perturbation.

As a start, we will establish a stronger lower bound on the common information of the UDISJ
(partial) matrix than in Braun and Pokutta [2013]. This improvement is based on the result from
Kaibel and Weltge [2013] that every combinatorial rectangle with no uniquely intersecting pairs of
subsets can have at most 2֙ disjoint pairs of subsets. We give an alternative proof of this fact using
a compression argument.
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Lemma 6.1 (Recoding disjoint sets). Let 𝐴, 𝐵 ∈ {0, 1}֙ be two independent random strings satisfying
ℙ ಪල𝐴 ∩ 𝐵ල = 1ಫ = 0. Let 𝑆 = ಾ(𝑎, 𝑏) ∈ {0, 1}֙ ∣ 𝑎 ∩ 𝑏 = ∅ ∧ ℙ ಪ𝐴 = 𝑎, 𝐵 = 𝑏ಫ > 0ಿ. Then

1. there exists a nonsingular binary code for 𝑆 (depending on the distribution of 𝐴, 𝐵) of length 𝑛, i.e.,
we can encode each of the elements in 𝑆 with at most 𝑛 bits. In particular, ල𝑆ල ≤ 2֙.

2. ℍ ೀ𝐴, 𝐵 හ 𝐴 ∩ 𝐵 = ∅ು ≤ 𝑛.

Proof.

E : We encode the pair 𝑎, 𝑏. We choose 𝐶џ, … , 𝐶֙ ∈ {0, 1} inductively. Suppose that 𝐶։
with 𝑗 < 𝑖 has been chosen. For readability let

𝑝օ ≔ ℙե∼գ ೬𝑎օ = 1ි ե֊=ա for ։<օ with ի֊=ա
ե֊=գ֊ for ։>օ ೭ and 𝑞օ ≔ ℙթ∼է ೬𝑏օ = 1ි թ֊=ա for ։<օ with ի֊=џ

թ֊=է֊ for ։>օ ೭ .

Note that 𝑝օ is a function of 𝐶џ, … , 𝐶օ−џ and 𝐴օ+џ, … , 𝐴֙; similarly for 𝑞օ. By independence
and ℙ ಪල𝐴 ∩ 𝐵ල = 1ಫ = 0 we have 𝑝օ𝑞օ = 0.

If 𝑝օ = 0, 𝐶օ ≔
⎧ഥ
⎨ഥ⎩

1 if 𝐵օ = 0
0 if 𝐵օ = 1;

if 𝑞օ = 0, 𝐶օ ≔
⎧ഥ
⎨ഥ⎩

0 if 𝐴օ = 0
1 if 𝐴օ = 1.

If both 𝑝օ = 𝑞օ = 0, then choose the 𝐶օ arbitrarily.

D : We will now show that we can exactly decode 𝐴, 𝐵 from 𝐶. This will in particular
imply that ල𝑆ල ≤ 2֙ and hence ℍ ೀ𝐴, 𝐵 හ 𝐴 ∩ 𝐵 = ∅ು = ℍ ೀ𝐶 හ 𝐴 ∩ 𝐵 = ∅ು ≤ 𝑛. We inductively
decode 𝐴, 𝐵 from 𝐶, however in reverse direction. Suppose that (𝐴֙, 𝐵֙), … , (𝐴օ+џ, 𝐵օ+џ) have
been decoded. We decode

𝐴օ ≔
⎧ഥ
⎨ഥ⎩

0, if 𝐶օ = 0 or 𝑝օ = 0
1, otherwise.

𝐵օ ≔
⎧ഥ
⎨ഥ⎩

1, if 𝐶օ = 1 or 𝑞օ = 0
0, otherwise.

It remains to show that the decoding is exact. Observe that ℙ ಪ𝐴օ = 1 ∧ 𝑝օ = 0ಫ = 0 and
therefore the decoding is exact if 𝑝օ = 0. If 𝑝օ ≠ 0, then 𝑞օ = 0 and 𝐶օ = 𝐴օ by definition of 𝐶օ.
Similarly 𝐵օ is decoded correctly.

Theorem 6.2 (Lower bound on common information of UDISJ). Let 𝑀 be the UDISJ (partial) matrix
of strings of length 𝑛. Then

ℂ [𝑀] ≥ 𝑛 log 3/2 ≈ 0.585 ⋅ 𝑛.

Proof. Let Π be a seed of an extension ౭𝑀 of 𝑀. Given an arbitrary Π = 𝜋, the variables 𝐴, 𝐵
become independent, and hence the set of pairs (𝑎, 𝑏) with non-zero probability is a rectangle.
Obviously, there is no (𝑎, 𝑏) with ල𝑎 ∩ 𝑏ල = 1 and non-zero probability. By Kaibel and Weltge
[2013], every rectangle for UDISJ contains at most 2֙ pairs (𝑎, 𝑏) with 𝑎, 𝑏 being disjoint, hence
ℍ ೀ౭𝑀  𝐴 ∩ 𝐵 = ∅, Π = 𝜋ು ≤ 𝑛. Taking expectation, ℍ ೀ౭𝑀  𝐴 ∩ 𝐵 = ∅, Πು ≤ 𝑛, i.e.,

ℂ ೀ౭𝑀  𝐴 ∩ 𝐵 = ∅ು = ℍ ೀ౭𝑀  𝐴 ∩ 𝐵 = ∅ು − ℂ ೀ౭𝑀  𝐴 ∩ 𝐵 = ∅, Πು ≥ 𝑛 log 3 − 𝑛 = 𝑛 log 3/2.
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6.1 Approximate direct sum lower bound
We revisit approaches from Braverman and Moitra [2012], Braun and Pokutta [2013] to obtain a
tight lower bound on the conditional common information of approximate UDISJ. We use the same
conditional as in several previous works including Bar-Yossef et al. [2004], Braverman and Moitra
[2012], Braun and Pokutta [2013]. This conditional is a variant of the disjointness 𝐴∩𝐵 = ∅ with the
remarkable feature that it preserves the independence of 𝐴 and 𝐵 under any seed. As demonstrated
by Theorem 6.2, breaking independence can lead to improved lower bounds, however it is not clear
how to handle the perturbed case using this conditional.

Let 𝐶 = (𝐶џ, … , 𝐶֙) be 𝑛 fair coins with sides labelled with 𝒜 and ℬ . The coins are independent
of 𝐴, 𝐵 and any seed Π. We define 𝐷 = (𝐷џ, … , 𝐷֙) via

𝐷օ ≔
⎧ഥ
⎨ഥ⎩

𝐴օ if 𝐶օ = 𝒜 ,
𝐵օ if 𝐶օ = ℬ .

The exact condition is the event 𝐷 = 0 together with the random variable 𝐶.
We shall use 𝐷−օ and 𝐶−օ to denote the collections (𝐷։ ∶ 𝑗 ≠ 𝑖) and (𝐶։ ∶ 𝑗 ≠ 𝑖), respectively.

Theorem 6.3. Let 𝑀 be a nonnegative square matrix with rows and columns indexed by subsets of [𝑛].
Then for all 0 < 𝜀 < (2/5) log 3/2 ≈ 0.234

𝕎 [𝑀 ල 𝐷 = 0, 𝐶] ≤ (1 − 𝛼 + 𝜀)𝑛 − 𝑠(𝛼 − 𝜀) + 𝑡(𝛽 − 𝜀 + 2 log 𝜀)
𝑟 , (7)

where

𝑟 ≔ ྌ
ե˷թ⊆[֙]
ե∩թ=∅

2−|ե|−ලթල𝑀(𝑎, 𝑏), 𝑡 ≔ ྌ
ե˷թ⊆[֙]
ලե∩թල=џ

2−|ե|−ලթල+ӝ𝑀(𝑎, 𝑏), 𝑠 ≔ ྌ
ե˷թ⊆[֙]
ե∩թ=∅

(|𝑎| + ල𝑏ල)2−|ե|−ලթල𝑀(𝑎, 𝑏),

𝛼 ≔ 1 − log 3
2 ≈ 0.208, 𝛽 ≔ 6 − 3 log 3 − 2 log(5 ln 2) ≈ −2.341.

In particular,

𝕎 [𝑀 ල 𝐷 = 0, 𝐶] ≤ (1 − 𝛼)𝑛 − 𝑠𝛼 + 𝑡(𝛾 + 2 log(𝑡/(𝑡 + 𝑟𝑛 + 𝑠)))
𝑟 , (8)

where 𝛾 ≔ 𝛽 + 2 log(2𝑒−џ log 𝑒) ≈ −2.169 provided 𝑡/(𝑡 + 𝑟𝑛 + 𝑠) < ϕЋͷ ӗ/ӝ
ͯ ϕϳ ӝ ≈ 0.169.

As the upper bound is invariant under scalings of 𝑀, the parameters 𝑟, 𝑢, 𝑡 are not normalized.

Example 6.4. For the modified partial UDISJ matrix 𝑀

𝑀(𝑎, 𝑏) ≔
⎧ഥ
⎨ഥ⎩

1, 𝑎 ∩ 𝑏 = ∅
𝛿, ල𝑎 ∩ 𝑏ල = 1

we have 𝑟 = 2֙, 𝑡 = 𝛿𝑟𝑛, 𝑠 = 𝑟𝑛/2 leading to the lower bound

ℂ [𝑀 ල 𝐷 = 0, 𝐶] ≥ ഒ3
2𝛼 + 𝛿 ഒ𝛾 − 2 log ഒ1 + 2

𝛿 ഓഓഓ 𝑛

for 𝛿 < 3/(2( ͯ ϕϳ ӝ
ϕЋͷ(ӗ/ӝ) − 1)) ≈ 0.305. The lower bound is exact for 𝛿 = 0 and the above formula is a

continuous extension. It complements the lower bound (1−𝛿)𝑛/8 for all 0 < 𝛿 < 1 from [Braun and
Pokutta, 2013, Theorem 4.1]; see also Braverman and Moitra [2012] for a slightly weaker bound.
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The core of the proof is a bound on the conditional private information which arises from a
fusion of Braverman and Moitra [2012] and Braun and Pokutta [2013]. We reuse the form which
appeared as part of the advantage estimation in Braverman and Moitra [2012]:

Lemma 6.5. For all 0 ≤ 𝑝, 𝑞 ≤ 1, 0 < 𝜀 < (2/5) log 3/2 ≈ 0.234 and 𝛼 ≔ 1 − ϕЋͷ ӗ
ӝ we have

𝑝౭ℍ ಪ𝑞ಫ + 𝑞౭ℍ ಪ𝑝ಫ ≤ 𝑝 + 𝑞 − 2(𝛼 − 𝜀) + 2(𝛽 − 𝛼 − 2 log 𝜀)(1 − 𝑝)(1 − 𝑞). (9)

Proof. For convenience, first we prove a reparametrized version of the bound: let 𝛿 ≔ 2−ܴͯ/ӝ, there-
fore 𝜀 = −(2/5) log 𝛿, 2/3 ≤ 𝛿 < 1 and ౭ℍໞ [𝛿] ≤ −1. We claim

𝑝(1 − ౭ℍ ಪ𝑞ಫ) + 𝑞(1 − ౭ℍ ಪ𝑝ಫ) ≥ 2𝛼 + 4
5 log 𝛿 − ഒ8

3 − 5౭ℍ ബ1
3ഭ − 4౭ℍໞ [𝛿]ഓ (1 − 𝑝)(1 − 𝑞). (10)

We start with the case 𝑞 ≤ 4/5, where the main estimation arises from. As the binary entropy
function is convex, we can estimate its value by its gradient:

౭ℍ ಪ𝑝ಫ ≤ ౭ℍ [𝛿] + ౭ℍໞ [𝛿] (𝑝 − 𝛿),

౭ℍ ಪ𝑞ಫ ≤ ౭ℍ ബ1
3ഭ + ౭ℍໞ ബ1

3ഭ ഒ𝑞 − 1
3ഓ = ౭ℍ ബ1

3ഭ + 𝑞 − 1
3,

leading to

𝑝(1 − ౭ℍ ಪ𝑞ಫ) + 𝑞(1 − ౭ℍ ಪ𝑝ಫ) ≥ 𝑝 ഒ1 − ౭ℍ ബ1
3ഭ − 𝑞 + 1

3ഓ + 𝑞(1 − ౭ℍ [𝛿] − ౭ℍໞ [𝛿] (𝑝 − 𝛿))

= 4
3 − ౭ℍ ബ1

3ഭ
െേൈേ

=ӝ܄

−𝑞 ⎛⎜⎜⎜
⎝

౭ℍ [𝛿] + ౭ℍໞ [𝛿] (1 − 𝛿)െേേേേൈേേേേ
− ϕЋͷ ܨ

⎞⎟⎟⎟
⎠

+
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1
3 − ౭ℍ ബ1

3ഭ − ౭ℍໞ [𝛿]
െേേേേൈേേേേ

≥ͳ/ӗ−౭ℍ[џ/ӗ]>ա

+(1 + ౭ℍໞ [𝛿])(1 − 𝑞)
⎞⎟⎟⎟⎟⎟⎟⎟
⎠

(𝑝 − 1)

≥ 2𝛼 + 4
5 log 𝛿 − ഒ8

3 − 5౭ℍ ബ1
3ഭ − 4౭ℍໞ [𝛿]ഓ (1 − 𝑝)(1 − 𝑞),

where the last inequality uses 5(1 − 𝑞) ≥ 1. This finishes the case 𝑞 ≤ 4/5. The case 𝑝 ≤ 4/5
is analogous and therefore omitted. The remaining case is 𝑝, 𝑞 ≥ 4/5, where a simple estimation
suffices:

𝑝(1 − ౭ℍ ಪ𝑞ಫ) + 𝑞(1 − ౭ℍ ಪ𝑝ಫ) ≥ 2 ⋅ 4
5 ⋅ ഒ1 − ౭ℍ ബ4

5ഭഓ > 2𝛼

> 2𝛼 − 4
5 ౭ℍ [𝛿] + ౭ℍໞ [𝛿] (1 − 𝛿) − (1 − 𝑝)(1 − 𝑞) ഒ8

3 − 5౭ℍ ബ1
3ഭ − 4౭ℍໞ [𝛿]ഓ .

Note that ͅ
ӗ − 5౭ℍ ೖџ

ӗ − 4౭ℍໞ [𝛿] ≥ ͅ
ӗ − 5౭ℍ ೖџ

ӗ + 4 > 0.
Finally, we bring (10) into the form (9). This is fairly straightforward, the only estimation needed

is the coefficient of (1 − 𝑝)(1 − 𝑞):

8
3 − 5౭ℍ ബ1

3ഭ − 4౭ℍໞ [𝛿] = 8
3 − 5౭ℍ ബ1

3ഭ − 4 log(2ܴͯ/ӝ − 1) < 8
3 − 5౭ℍ ബ1

3ഭ − 4 log ഒ5𝜀 ln 2
2 ഓ

= 10 − 5 log 3 − 4 log(5 ln 2) − 4 log 𝜀 = 2(𝛽 − 𝛼 − 2 log 𝜀).

We are now ready to prove the bound for approximations of UDISJ.
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Proof of Theorem 6.3. The second inequality follows from the first one by substituting the optimal
value 𝜀 ≔ 2(𝑡/(𝑡 + 𝑟𝑛 + 𝑠)) log 𝑒. Therefore we prove only the first inequality.

First we express 𝑟, 𝑠, 𝑡 as probabilities. Without loss of generality, we may assume ∑ե˷թ 𝑀(𝑎, 𝑏) =
1, leading to 𝑟 = ℙ [𝐷 = 0] and 𝑡 = ∑֙

օ=џ ℙ ಪ𝐷−օ = 0, 𝐴օ = 1, 𝐵օ = 1ಫ. Instead of 𝑠 it will be more
convenient to use 𝑢 ≔ ∑֙

օ=џ ℙ ಪ𝐷−օ = 0ಫ = 𝑡 + 𝑟𝑛 + 𝑠.
We start with the case 𝑛 = 1, and make the identifications 𝐷 = 𝐷џ, 𝐶 = 𝐶џ, 𝐴 = 𝐴џ, 𝐵 =

𝐵џ for simplicity. Hence the parameters are 𝑟 = ℙ[𝐷 = 0] = ℙ[գ=ա]+ℙ[է=ա]
ӝ , 𝑢 = 1, and 𝑡 =

ℙ [𝐴 = 1, 𝐵 = 1]. Let Π be a seed, then Lemma 6.5 applies to upper bound the conditional entropy.
We shall use the suggestive notation 𝑝(𝜋) ≔ ℙ [𝐴 = 0 ල Π = 𝜋] and 𝑞(𝜋) ≔ ℙ [𝐵 = 0 | Π = 𝜋].

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] = ℙ ಪ𝐶 = 𝒜 ල 𝐷 = 0ಫ ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = 𝒜, Πಫ
+ ℙ ಪ𝐶 = ℬ ල 𝐷 = 0ಫ ℍ ಪ𝐴, 𝐵 ල 𝐷 = 0, 𝐶 = ℬ, Πಫ

= ℙ [𝐴 = 0]
2 ℙ [𝐷 = 0]ℍ [𝐵 ල 𝐴 = 0, Π] + ℙ [𝐵 = 0]

2 ℙ [𝐷 = 0]ℍ [𝐴 ල 𝐵 = 0, Π]

= 𝔼ڊ∽ߜ ೀ𝑝(𝜋)౭ℍ ಪ𝑞(𝜋)ಫ + 𝑞(𝜋)౭ℍ ಪ𝑝(𝜋)ಫು
2 ℙ [𝐷 = 0]

≤ 𝔼ڊ∽ߜ ಪ𝑝(𝜋) + 𝑞(𝜋) − 2(𝛼 − 𝜀) + 2(𝛽 − 𝛼 − 2 log 𝜀)(1 − 𝑝(𝜋))(1 − 𝑞(𝜋))ಫ
2 ℙ [𝐷 = 0]

= ℙ [𝐴 = 0] + ℙ [𝐵 = 0] − 2(𝛼 − 𝜀) + 2(𝛽 − 𝛼 − 2 log 𝜀) ℙ [𝐴 = 1, 𝐵 = 1]
2 ℙ [𝐷 = 0]

= 1 − 𝛼 − 𝜀 + 𝑡(𝛽 − 𝛼 − 2 log 𝜀)
𝑟 .

We now turn to the case of general 𝑛. To simplify formulas, we introduce shorthand notations:

𝑢օ ≔ ℙ ಪ𝐷−օ = 0ಫ , 𝑡օ ≔ ℙ ಪ𝐷−օ = 0, 𝐴օ = 1, 𝐵օ = 1ಫ ,

leading to 𝑢 = ∑֙
օ=џ 𝑢օ and 𝑡 = ∑֙

օ=џ 𝑡օ.
For any 1 ≤ 𝑖 ≤ 𝑛 we apply the 𝑛 = 1 case to 𝐴օ, 𝐵օ with distribution conditioned on 𝐷−օ = 0,

and use the seed Π, 𝐶−օ. In (8) we need to replace 𝑟, 𝑡 by 𝑟/𝑢օ, 𝑡օ/𝑢օ, respectively:

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ ≤ 1 − 𝛼 − 𝜀 + (𝑡օ/𝑢օ)(𝛽 − 𝛼 − 2 log 𝜀)
𝑟/𝑢օ

= 1 − 𝑢օ(𝛼 − 𝜀) + 𝑡օ(𝛽 − 𝛼 − 2 log 𝜀)
𝑟 .

We sum up these inequalities to obtain as claimed:

ℍ [𝐴, 𝐵 ල 𝐷 = 0, 𝐶, Π] ≤
֙

ྌ
օ=џ

ℍ ಪ𝐴օ, 𝐵օ ල 𝐷 = 0, 𝐶, Πಫ

≤ 𝑛 −
֙

ྌ
օ=џ

𝑢օ(𝛼 − 𝜀) + 𝑡օ(𝛽 − 𝛼 − 2 log 𝜀)
𝑟 = 𝑛 − 𝑢(𝛼 − 𝜀) + 𝑡(𝛽 − 𝛼 − 2 log 𝜀)

𝑟

= (1 − 𝛼 + 𝜀)𝑛 − 𝑠(𝛼 − 𝜀) + 𝑡(𝛽 − 𝜀 + 2 log 𝜀)
𝑟 .

It is interesting to note that the conditional common information under 𝐷 = 0, 𝐶 is not maxi-
mized by  џ/ӗ џ/ӗ

џ/ӗ ա  as in the unconditional case, but by  ӝ/ͅ ӗ/ͅ
ӗ/ͅ ա .
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6.2 Lower bound for perturbed UDISJ matrices
We use Theorem 6.3 to lower bound the common information of perturbed UDISJ matrices in terms
of the size of the perturbation. For measuring the size of perturbation, a natural choice is the ℓџ-
norm of the conditional distribution 𝑀 ∣ 𝐷 = 0, where a disjoint pair of subsets 𝑎, 𝑏 have probability
proportional to 2−|ե|−ලթල𝑀(𝑎, 𝑏), however, this considers only disjoint 𝑎, 𝑏. Therefore we also use an
analogous norm for ල𝑎 ∩ 𝑏ල = 1. (Note that we do not condition on 𝐶 rather we condition 𝑀 on the
event 𝐷 = 0.) All in all, we introduce the norms

‖𝑀‖∅ ≔ ྌ
ե˷թ∶ե∩թ=∅

2−|ե|−ලթල|𝑀(𝑎, 𝑏)|, ‖𝑀‖{·} ≔ 1
𝑛 ྌ

ե˷թ∶ලե∩թල=џ
2−|ե|−ලթල|𝑀(𝑎, 𝑏)|

for all (not necessarily nonnegative) matrices 𝑀. The purpose of the division by 𝑛 in ‖𝑀‖{·} is to
scale it to the same range as ‖𝑀‖∅, e.g., 𝟙∅ = 2֙ and 𝟙{·} = 2֙−ӗ.

We put the matrix in subscript for the expressions 𝑟, 𝑠, 𝑡 in Theorem 6.3. Obviously,

|𝑡֓ − 𝑡֗ | ≤ 4𝑛‖𝑀 − 𝑁‖{·}, |𝑠֓ − 𝑠֗ | ≤ 𝑛‖𝑀 − 𝑁‖∅.

We are ready to formulate our lower bound for perturbed partial UDISJ matrices:

Corollary 6.6. Let 𝑀 be the unique disjointness matrix and 𝑁 be a partial matrix defined on the same
domain with 𝑟֓ = 𝑟֗ = 1 and ‖𝑁 − 𝑀‖∅ < 1/4 and ‖𝑁 − 𝑀‖{·} < (4 ⋅ ((8 log 𝑒)/𝛼 − 4))−џ ≈ 0.005.
Then

ℂ [𝑁 ල 𝐷 = 0, 𝐶] ≥ ഒ6 − 3 log 3
4 − 𝑎‖𝑁 − 𝑀‖∅ − 𝑏‖𝑁 − 𝑀‖{·} + 8‖𝑁 − 𝑀‖{·} log‖𝑁 − 𝑀‖{·}ഓ 𝑛

+ ‖𝑁 − 𝑀‖∅ log‖𝑁 − 𝑀‖∅

where 𝑎 = 1 + ϕЋͷ ӗ
ӝ ≈ 1.792 and 𝑏 = 8 log ೦ ͳ⋅ܨ+џ/ӝ

ͅյ−Ѡ ϕЋͷ յ೧ − 4𝛽 ≈ −14.909..

Proof of Corollary 6.6. We apply Theorem 6.3. Note that (7) holds with equality for 𝑀 with 𝜀 = 0
and 𝑡֓ = 0. For 𝑁 we shall use a 𝜀 > 0 specified later.

ℂ [𝑀 ල 𝐷 = 0, 𝐶] = ℍ [𝑀 ල 𝐷 = 0, 𝐶] − (1 − 𝛼)𝑛 + 𝑠֓𝛼 + 𝑡֓𝛽,
ℂ [𝑁 ල 𝐷 = 0, 𝐶] ≥ ℍ [𝑁 ල 𝐷 = 0, 𝐶] − (1 − 𝛼 + 𝜀)𝑛 + 𝑠֗(𝛼 − 𝜀) + 𝑡֗(𝛽 − 𝜀 + 2 log 𝜀).

We estimate the difference of entropies via [Cover and Thomas, 2006, Theorem 17.3.3] using that
𝑟֓ = 𝑟֗ = 1:

|ℍ [𝑀 ල 𝐷 = 0, 𝐶] − ℍ [𝑁 ල 𝐷 = 0, 𝐶]| ≤ −‖𝑁 − 𝑀‖∅ log ‖𝑁 − 𝑀‖∅
3֙ .

Therefore

ℂ [𝑁 ල 𝐷 = 0, 𝐶] − ℂ [𝑀 ල 𝐷 = 0, 𝐶] ≥ ℍ [𝑁 ල 𝐷 = 0, 𝐶] − ℍ [𝑀 ල 𝐷 = 0, 𝐶] + (𝑠֗ − 𝑠֓)(𝛼 − 𝜀)
+ (𝑡֗ − 𝑡֓)(𝛽 − 𝜀 + 2 log 𝜀) − 𝑠֓𝜀 − 𝑡֓(𝜀 − 2 log 𝜀)

≥ ‖𝑁 − 𝑀‖∅ log ‖𝑁 − 𝑀‖∅
3֙ − (𝛼 − 𝜀)𝑛‖𝑁 − 𝑀‖∅

+ 4𝑛(𝛽 − 𝜀 + 2 log 𝜀)‖𝑁 − 𝑀‖{·} − 𝜀𝑛
2 .
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We choose 𝜀 to maximize this quantity:

𝜀 ≔ 8 log 𝑒
4 + џ/ӝ−‖֗−֓‖∅

‖֗−֓‖{·}

.

The upper bounds ‖𝑁 − 𝑀‖∅ < 1/4 and ‖𝑁 − 𝑀‖∅ < (4 ⋅ ((8 log 𝑒)/𝛼 − 4))−џ ≕ 𝛿 on the norms in
the hypothesis ensure 𝜀 < 𝛼 < (2/5) log(3/2) required for Theorem 6.3 and the above estimation.
Also note that

𝜀 =
8‖𝑁 − 𝑀‖{·} log 𝑒

4‖𝑁 − 𝑀‖{·} + 1/2 − ‖𝑁 − 𝑀‖∅
>

8‖𝑁 − 𝑀‖{·} log 𝑒
4 ⋅ 𝛿 + 1/2 = 2−(թ+ͳܐ)/ͅ𝑒‖𝑁 − 𝑀‖{·}.

We plug the value of 𝜀 into the estimation on ℂ [𝐵 ල 𝐷 = 0, 𝐶]:

ℂ [𝑁 ල 𝐷 = 0, 𝐶] − ℂ [𝑀 ල 𝐷 = 0, 𝐶]
≥ −(𝛼 + log 3)‖𝑁 − 𝑀‖∅ + 4𝛽‖𝑁 − 𝑀‖{·} + 8‖𝑁 − 𝑀‖{·} log 𝜀

𝑒  𝑛
+ ‖𝑁 − 𝑀‖∅ log‖𝑁 − 𝑀‖∅

> −(𝛼 + log 3)‖𝑁 − 𝑀‖∅ + 4𝛽‖𝑁 − 𝑀‖{·} + 8‖𝑁 − 𝑀‖{·} log 2−(թ+ͳܐ)/ͅ‖𝑁 − 𝑀‖{·} 𝑛
+ ‖𝑁 − 𝑀‖∅ log‖𝑁 − 𝑀‖∅

= −𝑎‖𝑁 − 𝑀‖∅ − 𝑏‖𝑁 − 𝑀‖{·} + 8‖𝑁 − 𝑀‖{·} log‖𝑁 − 𝑀‖{·} 𝑛
+ ‖𝑁 − 𝑀‖∅ log‖𝑁 − 𝑀‖∅.

6.3 Lower bound for perturbed DISJ matrices
Similar to Section 6.2, we will now use Lemma 5.7 in order to lower bound the common information
of unstructured perturbations of the DISJ matrix.

Lemma 6.7. Let 𝑀֙ ∈ ℝӝ֚×ӝ֚
+ be the 𝑛-dimensional DISJ matrix. Then there exists a constant 1 > 𝐶 > 0

so that for any nonnegative matrix 𝑁 ∈ ℝӝ֚×ӝ֚
+ with ී𝑀֙ − ӗ֚

‖֗‖Ѡ
𝑁ී

џ
≤ 𝐶 ⋅ 3֙ we have ℂ [𝑁] = Ω(𝑛).

Proof. Pick 𝜀 > 0 small enough and consider 𝑀џ. By Example 5.3 we know that the for any 𝜀 > 0,
there exists Λџ, so that ℂ ಪ𝑀џಫ − 𝜀 ≤ ℍ ಪ𝑀џಫ − ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λџ𝑝 − Tr[Λ𝑀џ]. Let the largest
absolute entry in Λџ be 𝐾. By Proposition 5.6, this Λџ can be extended to a Λ for 𝑀֙, so that

ℂ ಪ𝑀֙ಫ − 𝜀𝑛 ≤ ℍ ಪ𝑀֙ಫ − ℍ ಪ𝑝ಫ − ℍ ಪ𝑞ಫ + 𝑞֯Λ𝑝 − Tr[Λ𝑀֙],

where the largest absolute entry of Λ is bounded by 𝑛𝐾. By Lemma 5.7 we have

ℂ ಪ𝑀֙ಫ ≤ ℂ [𝑁] − 𝐿 log 𝐿
4֙ + 𝐾𝑛𝐿 + 𝜀𝑛,

where 𝐿 ≔ ළ𝑀֙/ 𝑀֙џ − 𝑁/ ‖𝑁‖џළџ. The above can be rewritten as

ℂ [𝑁] − 𝐿 log 𝐿
4֙ + 𝐾𝑛𝐿 + 𝜀𝑛 = ℂ [𝑁] + 𝐿 log 4֙

𝐿 + 𝐾𝑛𝐿 + 𝜀𝑛

= ℂ [𝑁] + 2𝐿𝑛 − 𝐿 log 𝐿 + 𝐾𝑛𝐿 + 𝜀𝑛 = ℂ [𝑁] + 𝐿𝑛(2 − 1
𝑛 log 𝐿 + 𝐾) + 𝜀𝑛

≤ ℂ [𝑁] + 𝐿𝑛(2 + 𝐾) + 𝜀𝑛.
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Let ӝ
ӗ − 𝜀 > 𝛿 > 0 and put 𝐿 ≔ ӝ/ӗ−ܴ−ܨ

ӝ+ . Using the fact that ℂ ಪ𝑀֙ಫ = ӝ
ӗ𝑛 we obtain

2
3𝑛 ≤ ℂ [𝑁] + 𝐿𝑛(2 + 𝐾) + 𝜀𝑛 = ℂ [𝑁] + ഒ2

3 − 𝛿ഓ 𝑛,

so that 𝛿𝑛 ≤ ℂ [𝑁] follows. The result follows by observing that 𝑀֙џ = 3֙.

We immediately obtain the following corollary

Corollary 6.8. Let 𝑀֙ ∈ ℝӝ֚×ӝ֚
+ be the 𝑛-dimensional DISJ matrix. Then there exists a constant 1 >

𝐶 > 0 so that for any deformation 𝑁 of 𝑀֙ such that ‖𝑁‖џ = 𝑀֙џ and 𝑀֙ − 𝑁џ ≤ 𝐶 ⋅ 3֙ we have
ℂ [𝑁] = Ω(𝑛).

In particular we can exchange up to 𝐶/2 entries 1 by 0 and vice versa and the resulting matrix
will have linear common information and hence an exponential nonnegative rank.
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