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Abstract

Common information was introduced by Wyner [1975] as a measure of dependence of two
random variables. This measure has been recently resurrected as a lower bound on the loga-
rithm of the nonnegative rank of a nonnegative matrix in Jain et al. [2013], Braun and Pokutta
[2013]. Lower bounds on nonnegative rank have important applications to several areas such
as communication complexity and combinatorial optimization.

We begin a systematic study of common information extending the dual characterization
of Witsenhausen [1976]. Our main results are: (i) Common information is additive under ten-
soring of matrices. (ii) It characterizes the (logarithm of the) amortized nonnegative rank of a
matrix, i.e., the minimal nonnegative rank under tensoring and small `1 perturbations. We also
provide quantitative bounds generalizing previous asymptotic results byWyner [1975]. (iii) We
deliver explicit witnesses from the dual problem for several matrices leading to explicit lower
bounds on common information, which are robust under `1 perturbations. This includes im-
proved lower bounds for perturbations of the all important unique disjointness partial matrix,
as well as new insights into its information-theoretic structure.
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1 Introduction
Nonnegative matrix factorizations play a crucial role in many disciplines of theoretical computer
science and discrete mathematics, including machine learning, communication complexity, and
combinatorial optimization. While for machine learning one is often interested in finding a factor-
ization, for communication complexity and combinatorial optimization it often suffices to study
the nonnegative rank, i.e., the minimal size of a nonnegative factorization. The nonnegative rank of
a nonnegative matrix M is the smallest r such that M can be written as M = ∑r

i=1 uiv
ᵀ
i for ui, vi ≥ 0.

In communication complexity, the logarithm of the nonnegative rank of M provides a lower
boundon the deterministic communication complexity of M, which is polynomially tight byLovász
[1990]. In combinatorial optimization, the nonnegative rank of the slack matrix of a polytope P
characterizes the linear extension complexity of P, that is theminimumnumber of facets of a larger
dimensional polytope Q that projects linearly to P.

Thus in both fields, it is of great interest to lower bound the nonnegative rank. Unfortunately,
lower bounding the nonnegative rank is both conceptually and computationally hard—in fact,
computing the nonnegative rank is known to be NP-hard by Vavasis [2009] (see Moitra [2012] for
recent positive results on computing the nonnegative rank).

Most existing lower bounds on the nonnegative rank argue only about the support of the ma-
trix, i.e., the zero/nonzero pattern of the matrix (for an interesting exception see the norm based
bounds in Fawzi and Parrilo [2012]). Notice that zeros provide a strong constraint on a nonnegative
factorization as if M(x, y) = 0 then in every factor uvᵀ either u(x) = 0 or v(y) = 0. The most com-
monly used lower bound on the nonnegative rank is a support based method, the rectangle cover-
ing bound. The rectangle covering bound also characterizes the nondeterministic communication
complexity, and was introduced as a lower bound for nonnegative rank in the landmark paper
of Yannakakis [1991] connecting nonnegative rank and extension complexity. Rectangle covering
arguments can show strong lower bounds in interesting cases, for example, for the unique disjoint-
ness partial matrix UDISJ with rows and columns labeled by n-bit strings where UDISJ(x, y) = 1
if x ∩ y = ∅ and UDISJ(x, y) = 0 if |x ∩ y| = 1 and UDISJ is undefined otherwise. Using ar-
guments from the randomized communication complexity lower bound of Razborov [1992], Wolf
[2003] showed lower lower bounds exponential in n on the rectangle covering bound of UDISJ. This
bound, in turn, played a key role in the exponential lower bounds on the extension complexity of
the Traveling Salesman (TSP) polytope in Fiorini et al. [2012].

Support based bounds have obvious shortcomings: they completely ignore the actual values of
the nonzero entries. Thus they are useless for matrices with no zero entries. Exactly this case arises
when showing lower bounds on the extension complexity of a polytope that approximates a polytope
P (see Braun et al. [2012], Braverman and Moitra [2012]). Even for a matrix with zero entries,
support based bounds cannot say anything about the nonnegative rank under small perturbations.

It is often the case that optimization problems become easier when a discrete objective function
is replaced by a continuous proxy function. This is the approach taken in the information-theoretic
framework for nonnegative rank lower bounds initiated by Braverman and Moitra [2012] and fur-
ther developed by Braun and Pokutta [2013]. In these works, a nonnegative matrix M is viewed
(after suitable normalization, which does not change the nonnegative rank) as a joint probability
distribution on two random variables A, B. This viewpoint brings the use of information-theoretic
tools to bear on the nonnegative rank. We extend this framework to obtain a strong information-
theoretic tool to lower bound the nonnegative rank of matrices and partial matrices (such as the
UDISJ partial matrix). At the core of our techniques is the notion of common information. For the
joint distribution of two random variables A, B, represented as a matrix M, the common informa-
tion of M is the infimum of the mutual information between A, B and Π over all Π such that A, B
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are independent conditioned on Π

C [M] := C [A, B] := inf
Π:A⊥B|Π

I [A, B; Π] .

Common information was introduced in Wyner [1975], and further developed by Witsenhausen
[1976] who provided a convex geometry approach to lower bound the common information. Little
has been written about the common information outside of these early papers, but it turns out to
be the correct notion to capture nonnegative matrix factorization from an information-theoretic
point of view. We take it out of the setting of (asymptotic) information theory and turn it into a
quantitative tool to lower bound the nonnegative rank of a matrix.
Contribution
Our contribution is threefold: besides extending the dual approach, we apply it to derive not only
theoretical properties of common information, but also practical lower bounds with application to
concrete matrices.

Common information as amortized log nonnegative rank A relaxed notion, even if not captur-
ing a quantity exactly, can sometimes characterize it in an amortized fashion. Examples are
the fractional rectangle covering bound characterizing the amortized rectangle covering bound
(see Karchmer et al. [1995]) and information cost characterizing amortized communication (see
Braverman and Rao [2011]). We similarly prove that common information is the amortized log
nonnegative rank. An asymptotic, qualitative version was already included in Wyner [1975],
however, we also establish rate of convergence and provide actual approximations. We give an
explicit compression result in Theorem 4.1, stating roughly lim`→∞,δ→0,ε→0

log rk+ Mε,δ,`
` = C [M]

where Mε,δ,` ≈ M⊗` and the number of required copies ` to obtain an approximation with (total
relative) error at most δ and ε deviation from C [M] is roughly Ω

(
log2(mn/ε)

ε2C[M]2

)
· ln(δ−1). From this

we also obtain that common information is the limit superior of all measures lower bounding
the log nonnegative rank under natural conditions (see Corollary 4.2). Our proof is inspired by
a result of Jain et al. [2013] that bounds the nonnegative rank of an approximation of a single
matrix (i.e., in the nontensored setting) in terms of common information.

Lower bound of common information via dual programs We extend the framework in Witsen-
hausen [1976] to obtain strong lower bounds on common information not only of matrices but
also of partial matrices using witnesses (i.e., dual certificates). Dual witnesses are central to the
behavior of common information under various perturbations of the matrix, e.g., provide an ex-
plicit degree of continuity of common information (see Lemma 5.7) for full matrices. We give an
example that common information of partial matrices is not continuous in general.

New lower bounds for (U)DISJ As an example of the dual approach to partial matrices, we im-
prove lower bounds from Braun and Pokutta [2013] on the conditional common information of
the UDISJ partial matrix under perturbations (see Corollary 6.6), closing the gap between the
exact and the approximate case. Moreover, we obtain bounds under arbitrary perturbations
as long as the total variation is not too large. Finally, following Kaibel and Weltge [2013], we
provide a new lower bound on the conditional common information of UDISJ of n log 3/2 (see
Theorem 6.2) under a non-direct sum disjointness conditional indicating that breaking direct
sums is necessary for obtaining the optimal estimation.
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2 Preliminaries
We introduce the notation and review the information-theoretic background that will be used in
the sequel; see [Cover and Thomas, 2006, §2] for an in-depth treatment.

We use log x for the base 2 logarithm and ln x for the natural logarithm. We use the shorthand
[n] := {1, . . . , n}.

The entropy of a discrete probability distribution P is roughly the expected number of bits
needed to encode P.

Definition 2.1 (Entropy). Let P be a discrete probability distribution. The entropy of P is

H [P] := ∑
x

P(x) log
1

P(x)
.

If P is a Bernoulli probability distribution over {0, 1}where p = P(x = 1) and 1− p = P(x = 0)
we use the notational shorthand H̃ [p] := −p log p− (1− p) log(1− p) for the binary entropy of p.
Further, we will use H̃ [X = 0 | . . . ] to denote H̃ [P [X = 0 | . . . ]]. For estimating the entropy, the
following alternative forms of the well-known inequality ln x ≤ x− 1 will be useful:

log ex ≤ x log e, H̃ [p] ≤ p log(e/p).

The second one follows by substituting x = 1/(1− p).

Definition 2.2 (Conditional Entropy). The conditional entropy of P conditioned on Q is

H [P |Q] = Ex∼Q [H [P |Q = x]] .

We are ready to define mutual information, the key quantity behind common information.

Definition 2.3 (ConditionalMutual Information). The conditional mutual information between P and
Q given R is I [P; Q | R] = H [P | R]−H [P |Q, R].

Note that mutual information is symmetric: I [P; Q | R] = I [Q; P | R].
2.1 Common information
In this section we will recall the basic properties of common information with a view towards
nonnegative factorizations. For M ∈ Rm×n a nonnegative matrix, its induced distribution on the
row/column joint random variable (A, B) is defined by P [A = a, B = b] = M(a,b)

‖M‖1
. Here ‖M‖1 is

the `1 norm of M, the sum of the absolute values of the entries. We call a discrete random variable
Π a seed for A, B (or M) if A, B are independent given Π. Define the matrix Mπ as Mπ(a, b) =
P [A = a, B = b, Π = π] ‖M‖1. For Π coming from a factorization, that is M = ∑π∈Π Mπ, this is
the case if and only if all the factors Mπ have rank at most 1. Conversely, every seed with finite
range comes from a factorization.

As an example, consider a matrix M ∈ R2n×2n labeled by n-bit binary strings where M(x, y) is
equal to the parity of x⊕ y. If Π = 0 indicates the event that x has odd parity and y has even parity
and Π = 1 that x has even parity and y has odd parity, then the distribution Pr[Π = 0] = Pr[Π =
1] = 1/2 is a valid seed for M.

Every nonnegative factorization M = ∑π∈Π Mπ refines the distribution (A, B) as

qM(a, b, π) = P [A = a, B = b, Π = π] :=
Mπ(a, b)

∑x,y M(x, y)
.

We shall use the shorthand qM for this distribution.
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Definition 2.4 (Common information). Let M be a nonnegative matrix and let A, B be the row and
column variable in the induced distribution. Then the common information of A, B (or M) is defined
as

C [M] = C [A, B] := inf
Π seed for A, B

I [A, B; Π] = H [A, B]−W [A; B] ,

where W [M] = W [A; B] := supΠ seed for A, B H [A, B |Π] = supΠ seed for A, B H [A |Π] + H [B |Π]
is the private information of A, B (or M).

Similarly to C [M], in the following we will also use the shorthand I [M; Π] for I [A, B; Π], and
H [M] for H [A, B]. We recall the following easy facts about common information (see e.g., Wyner
[1975], Witsenhausen [1976], Jain et al. [2013], Braun and Pokutta [2013]).

Fact 2.5. Let M be a nonnegativematrix and let A, B be the row and column variable in the induced
distribution. Then

1. General bounds: I [A; B] ≤ C [A, B] ≤ min {H [A] , H [B]}

2. Infimum achieved and Π has small domain: The infimum in the definition of common informa-
tion is achieved by a Π with |Π| ≤ mn.

3. Bounds nonnegative rank: C [M] ≤H [Π] ≤ log rk+ M, where Π is realizer of the infimum.

3 Comparison of common information with other bounds
In this section, we compare common information with the rectangle covering bound and also with
information cost, a similar quantity in communication complexity.

For a matrix M, let supp(M) be the boolean matrix which is zero wherever M is zero and
one wherever M is nonzero. Yannakakis [1991] observed that the rectangle covering bound of the
support of a matrix M is a lower bound on the nonnegative rank of M, and this technique has
been the source of many nonnegative rank lower bounds. We now see that common information
is incomparable with the logarithm of the rectangle covering bound, even for a boolean matrix, as
the following examples show. In fact, they show that common information is also incomparable
with the logarithm of the fractional rectangle bound, defined below.

For amatrix M ∈ {0, 1}m×n its rectangle covering bound is, by definition, theminimumnumber of
1-monochromatic combinatorial rectangles (i.e., rank-one boolean matrices) needed to cover the 1
entries of M. Let A be a matrix with rows indexed by indices (i, j) ∈ [m]× [n] such that M(i, j) = 1
and columns indexed by 1-monochromatic rectangles of M. Let r, c denote respectively the number
of rows and columns of A. Then the rectangle bound is the optimal value of the following integer
optimization problem.

rc (M) = min 11,c x
Ax ≥ 1r,1

x ∈ {0, 1}c

The fractional rectangle covering bound is obtained by relaxing this integer program to a linear
program.

frc (M) = min 11,c x
Ax ≥ 1r,1

x ≥ 0

Clearly frc (M) ≤ rc (M) and by Lovász [1975] it follows that rc (M) = O(frc (M) log(mn))
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Lemma 3.1 ( log rc (·) � C [·], C [·] � log frc (·) and hence C [·] � log rc (·)). Let

M :=
(

1 1
1 0

)
, N :=

1 1 0
1 1 1
0 1 1

 .

Then for all n ≥ 1 we have C [M⊗n] = 2/3 · n < log frc (M⊗n) = n and

C
[
N⊗n] ≥ (log 7− 1.79115)n ≈ 1.01621 · n > n ≥ log rc

(
N⊗n) ≥ log frc

(
N⊗n) .

Proof of Lemma 3.1. Thematrix M has both rectangle covering bound and fractional rectangle cover-
ing bound 2 as (1, 2), (2, 1) is a fooling set. Thus log frc (M) = 1. Moreover, as shown in Karchmer
et al. [1995], we have that frc (·) tensors, so we get n ≥ log rc (M⊗n) ≥ log frc (M⊗n) = n. On
the other hand, C [M] = 2/3 by [Witsenhausen, 1976, Theorem 7], hence C [M⊗n] = 2/3 · n by
Lemma 5.5.

It remains to show the statement for N. Clearly rc (N) = 2, hence log rc (N⊗n) ≤ n. As
C [N⊗n] = nC [N] by Lemma 5.5, it is enough to prove the lower bound on C [N⊗n] for n = 1.

We establish a lower bound on the common information of N by means of (4). We consider

sup
p,q≥0

‖p‖1=‖q‖1=1

H [p] + H [q]− qTΛp + Tr[ΛN], (1)

which is an upper bound on the private information for any Λ. We will use a Λ determined by
numerical optimization:

Λ :=

1/2 0 ∞
0 2.7245 0
∞ 0 1/2

 .

To be precise, we put large values instead of ∞, andwe consider the limit of (1) as these values tend
to ∞. Note that as p, q are chosen from a compact set, the maximizers will have an accumulation
point p̃, q̃ with 0 entries in p̃q̃T at the ∞ entries of Λ. Thus we obtain a lower bound

sup
p,q≥0

‖p‖1=‖q‖1=1pjqi=0 if Λi,j=∞

H [p] + H [q]− qTΛp + Tr[ΛN].

The matrix Λ has been chosen ensuring that

f (p, q) = H [p] + H [q]− qTΛp + Tr[ΛN]

is piece-wise concave in p, q. The maximal value for (1) is 1.79115 realized by the rank-1 matrix

pqT :=

0.622036
0.377964

0

(0.622036 0.377964 0
)

.

(Note that the above are not simply numerical approximations of 2/3 and 1/3 as they lead to a
value for (1) of 1.77229 whereas the factor above leads to 1.79115).

We analyze the concavity of the core function f of (1). For simplicity, we use parameters for the
entries of Λ:

Λ =

−a 0 ∞
0 −c 0
∞ 0 −a

 ,
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i.e., a = −1/2, c = −2.7245. Let p = [p1, p2, p3]T and q = [q1, q2, q3]T, i.e., the pi, qi be the entries
of p and q. The restriction that pqT is 0 at the places where Λ has entry ∞ is now p1q3 = 0 and
p3q1 = 0 leading to four cases: p1 = p3 = 0, p1 = q1 = 0, p3 = q3 = 0 and q1 = q3 = 0.

In the cases p1 = q1 = 0 and p3 = q3 = 0, the function f is only a function of p2 and q2, and
has form

f (p2, q2) = H̃ [p2] + H̃ [q2] + cq2 p2 + a(1− p2)(1− q2) +
a + c

7
.

The Jacobian and Hessian of f for 0 < p2, q2 < 1 is

J( f ) =
(

log
(

1
p2
− 1
)
− a + (c + a)q2, log

(
1
q2
− 1
)
− a + (c + a)p2

)
,

H( f ) =

(
− log e

p2(1−p2)
c + a

c + a − log e
q2(1−q2)

)
.

By Sylvester’s criterion, the Hessian is negative definite for |c + a| < 4 log e (which holds for the
actual parameters) as the upper left entry is negative and the determinant is nonnegative:

det H( f ) =
log2 e

p2(1− p2) · q2(1− q2)
− (c + a)2 ≥ log2 e

4 · 4 − (c + a)2 > 0.

It follows that f is strictly concave, and hence if it has a critical point in the interior of its domain,
then it is its unique maximum. Numerically solving J( f ) = 0 provides indeed a critical point in
the interior, namely, p2 = q2 ≈ 0.377964.

The remaining cases are p1 = p3 = 0 and q1 = q3 = 0. We consider only the second one, as the
first one is analogous. Now q = [0, 1, 0]T is fixed, hence

f (p) = H̃ [p1, p2, p3] + cp2 +
a + c

7

subject to p1 + p2 + p3 = 1. Note that f is a concave function, and as we will see, it has a (unique)
critical point in its interior, and hence it is its unique maximum.

We use Lagrange multipliers to find critical points, i.e., we look for the zeros of the Jacobian of

f (p)− (λ− 1)(p1 + p2 + p3)

= p1 log
1
p1

+ p2 log
1
p2

+ p3 log
1
p3

+ cp2 +
a + c

7
− (λ− 1)(p1 + p2 + p3),

for which the equations are

log
1
p1
− λ = 0, log

1
p2

+ c− λ = 0,

log
1
p3
− λ = 0.

This can be solved in p1, p2, p3:

p1 = p3 = 2−λ, p2 = 2c−λ.

The value of λ is determined by the condition p1 + p2 + p3 = 1:

2 · 2−λ + 2c−λ = 1,
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which simplifies to

21−c + 1 = 2λ−c,

λ = log(21−c + 1) + c > 1.

In particular, p1 = p3 = 2−λ lie strictly between 0 and 1/2, ensuring that p1, p2, p3 is an inner point
of the domain of f . Hence the maximum value of f is

max
p

f (p) = 2 · 2−λλ + 2c−λ(λ− c) + c2c−λ +
a + c

7

= (21−c + 1)2c−λ︸ ︷︷ ︸
1

λ = log(21−c + 1) + c +
a + c

7
.

Summarizing, the overall maximum of f is the maximum of the maxima of the cases, i.e.,
W [N] ≤ maxp,q f (p, q) ≈ 1.79115.

Information cost (defined byChakrabarti et al. [2001], Bar-Yossef et al. [2004], Barak et al. [2010])
is an information-theoretic lower bound on communication complexity that has analogous prop-
erties to common information—it also obeys a direct sum theorem [Bar-Yossef et al., 2004], and
characterizes amortized communication complexity [Braverman and Rao, 2011]. For a boolean
matrix M and distribution µ on rows and columns of M, the (internal) information cost of a ran-
domized protocol Π is ICµ(Π) = I [Π; A | B] + I [Π; B | A]. The information cost of M with respect
to distribution µ and error ε is then the infimum over all protocols Π that compute M with error
at most ε of ICµ(Π). The information cost of M with respect to any distribution is a lower bound
on the randomized communication complexity of M.

Note that, as a protocol with error ε for M can be trivially transformed into a protocol with
error ε for the negation of M, the information cost of M and M = 1− M are the same. We now
see with the example of set intersection, the negation of disjointness, that this is not true for the
common information.

Lemma 3.2 (Common information of set intersection and noninvarance under complements). Let
M be the 2n-by-2n matrix where

M(x, y) =

{
0 x ∩ y = ∅
1 otherwise

.

Then C [M] = O(1), yet for M = 12n,2n −M we have C
[
M
]
= C [DISJn] = 2n/3.

Proof. The complement of set intersection M = DISJn = DISJ⊗n
1 is the disjointness matrix. It

follows that C [DISJn] = 2n/3 as common information is additive under tensoring (Lemma 5.5)
and C [DISJ1] = 2/3 by Witsenhausen [1976].

We now establish an upper bound on the common information M, the set intersection matrix.
Note that the number of ones in M is m = 22n − 3n = (1− (3/4)n)22n. M has a covering of size n
by the rectangles Ri = {(x, y) : xi = yi = 1}. We use this covering to define a partition of the ones
of M inductively as follows. Let S1 = R1 and Si = {(x, y) ∈ Ri : (x, y) /∈ Rj, j < i}. In general Si

is not itself a rectangle, but can be partitioned into 3i−1 many rectangles, each of relative area 4−i.
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Using this factorization, we can lower bound the private information by

W [M] ≥ 22n

m

n

∑
i=1

3i−1 1
4i log

22n

4i

=
2 · 3n−1

m

n

∑
i=1

(
4
3

)n−i

· (n− i)

=
2 · 3n−1

m
· (4/3) · ((n− 1)(4/3)n − n(4/3)n−1 + 1)

(4/3− 1)2

=
22n

m
(2n− 8(1− (3/4)n)) =

2n
1− (3/4)n − 8

using the identity ∑n
i=1(n− i)xi = x((n− 1)xn − nxn−1 + 1)/(x− 1)2.

Thus we have

C [M] ≤ log m− 22n

m
(2n− 8(1− (3/4)n)) = 2n + log

(
1−

(
3
4

)n)
− 2n

1− (3/4)n + 8 = 8 + o(1).

Another variant of information cost, known as external information cost has been defined in
the literature. This definition is directly analogous to the definition of common information: the
external information cost of a protocol Π with respect to a distribution µ ∼ (A, B) is IC0

µ(Π) =
I [A, B; Π]. In the case of common information, however, this distinction is not important as for
a factorization the external and internal information cost of a factorization are equivalent up to a
constant.

Lemma 3.3 (External vs. internal common information). Let M be a nonnegative matrix, (A, B) ∼ M
and Π be a seed. Then

I [A, B; Π] = I [A; Π | B] + I [B; Π | A] + I [A; B] ,

i.e., external information cost and internal information cost differ by I [A; B].

Proof. We consider

I [A, B; Π]− I [A; Π | B]− I [B; Π | A] = I [B; Π] + I [A; Π | B]− I [A; Π | B]− I [B; Π | A]

= I [B; Π]− I [B; Π | A] = I [B; A]− I [B; A |Π]︸ ︷︷ ︸
=0

= I [B; A] .

4 Common information as amortized log nonnegative rank
By Fact 2.5, the common information provides a lower bound on the logarithm of the nonnegative
rank. This bound, however, can be arbitrarily far from the logarithm of the nonnegative rank, as
can be seen in the next example.

Let Mn ∈ Rn×n be the diagonal matrix given by Mn(i, i) := 2i/ ∑j∈[n] 2j and Mn(i, j) = 0
whenever i 6= j. Clearly the nonnegative rank of Mn is n, however, the factorization Π given by the
1× 1 rectangles arising from the elements on the main diagonal shows C [Mn] ≤H [Π] = O(1).
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We will now show, however, that common information does capture the amortized log nonnega-
tive rank, under small `1 perturbations. This result is inspired by a one-shot statement in [Jain et al.,
2013, Lemma 4.1], and the quantitative analysis is improved here for tensored matrices M⊗n.

For this theorem the following formula for the conditional mutual information between P and
Q given R will be useful:

I [P; Q | R] = Ex∼P,y∼Q,z∼R

[
log

q(x | y, z)
q(x | z)

]
,

where q(x | y, z) := P [P = x |Q = y, R = z] is a probability vector and similarly for q(x | z).
We will also use the cyclic property of mutual information:

I [P; Q]− I [P; Q | R] = I [Q; R]− I [Q; R | P] .

Theorem 4.1 (Common information = amortized log nonnegative rank). Let M ∈ Rm×n
+ be a ma-

trix with w := ∑ij Mij and k = C [M]. Then for any ε > 0 and δ ∈ (0, 1), for every multiplier
` ≥ max{Ω(log2(mn/ε)/ε2k2) · ln(δ−1), Ω(δ/ε)} there exists a nonnegative matrix Mε,δ,` ∈ Rm`×n`

+

with

1. log rk+(Mε,δ,`)/` ≤ (1 + ε)C [M] + O(δ3 ln δ−1)/`,

2.
∥∥M⊗` −Mε,δ,`

∥∥
1 ≤ δw`.

In particular, we have

lim
`→∞,δ→0,ε→0

log rk+ Mε,δ,`

`
= C [M]

Proof. Without loss of generality we may assume w = 1, which allows us to identify matrices with
probability distribution of row-column pairs. In particular, let q0 be the probability distribution
associated with M, and let (A0, B0) ∼ q0 be its random row-column pair. Let Π0 be a seed of A0, B0
realizing k = C [M] = I [A0, B0; Π0], with size r ≤ mn which exists by Fact 2.5.

For a distribution p of a random variable X, let p⊗` denote the distribution of ` independent
copies of X, which is consistent with the notion of tensoring the associated matrix for p. In partic-
ular, the distribution of M⊗` is q⊗`0 . We shall approximate the distributions q0 and q⊗`0 with better
behaving distributions q1, q2, . . . and the same subscripts and superscripts will be used for the ran-
dom variables, e.g., A1, B1, Π1 will have distribution q1. The first goal of the approximation is to
bound the ratios log q0(a, b|π)/q0(a, b) appearing in the common information to allow us later to
argue via concentration.

For a lower bound, we define q1 by keeping the seed Π1 := Π0, and modifying only the distri-
bution of A0, B0 conditioned on Π0 to obtain A1, B1. The aim is to have q1(a|π), q1(b|π) ≥ β for
a small positive parameter β chosen later. Therefore we introduce coins CA, CB ∈ {0, 1} indepen-
dently of Π1 = Π0, A0, and B0 with

P [CA = 1] = βm, P [CB = 1] = βn.

If CA = 1 then we choose A1 uniformly in the range of A0 independently of Π0, A0, B0. If CA = 0
then we choose A1 = A0. We define B1 similarly using CB and B0. Obviously, A1 and B1 are
conditionally independent given Π0. In other words, the conditional probabilities are

q1(a|π) := (1− βm)q0(a|π) + β, q1(b|π) := (1− βn)q0(b|π) + β.

9



In particular,
q1(a, b|π) = q1(a|π) · q1(b|π) ≥ β2.

For the mutual information we deduce the following bound

I [A1, B1; Π1] ≤ I [A1, B1; Π1 |CA, CB]

= P [CA = 0, CB = 0] I [A0, B0; Π0] + P [CA = 1, CB = 0] I [B0; Π0]

+ P [CA = 0, CB = 1] I [A0; Π0] ≤ I [A0, B0; Π0] = k.

The first inequality holds because CA, CB are independent of Π1 by construction using the cyclic
property of I [A1, B1; Π1 |CA, CB]− I [A1, B1; Π1]. The equality is a special case of the law of total
expectation, e.g., given CA = CB = 0 the distribution of A1, B1, Π1 is that of A0, B0, Π0. And given
CA = 1, CB = 0 the distribution is that of B0, Π0 and an independent uniform random variable.
The second inequality follows by upper bounding all mutual information terms by I [A0, B0; Π0].

We estimate the total variation of q⊗`0 and q⊗`1 . We start by comparing the conditional distribu-
tions of q0 and q1, using that for distributions p1, p2 we have ‖p1 − p2‖1 = 2 maxX event(p1(X) −
p2(X)), and the maximizer can be explicitly given:

∑
a
|q1(a|π)− q0(a|π)| = 2 ∑

a : q1(a|π)>q0(a|π)

(q1(a|π)− q0(a|π))

= 2 ∑
a : q1(a|π)>q0(a|π)

β(1−mq0(a|π)) ≤ 2β(m− 1),

∑
b
|q1(b|π)− q0(b|π)| ≤ 2β(n− 1).

Combining the estimates on rows and columns:

‖q1(·|π)− q0(·|π)‖1 ≤ 2β(m + n− 2),

which remains valid by removing the conditioning on π via taking expectation:

‖q1 − q0‖1 ≤ 2β(m + n− 2).

We can now estimate the total variation of q⊗`0 and q⊗`1 via∥∥∥q⊗`1 − q⊗`0

∥∥∥
1
≤

`

∑
j=1

∥∥∥q⊗j
1 ⊗ q⊗(`−j)

0 − q⊗j−1
1 ⊗ q⊗(`−j+1)

0

∥∥∥
1
≤ 2`β(m + n− 2).

Let q denote the conditional distribution q1 given q1(Π1) ≥ β. In particular, q(a, b|π) =
q1(a, b|π) for all a, b, π. As there are r possible values of Π1 we have

P [q1(Π1) < β] ≤ rβ,

and hence, we estimate similarly as before:

‖q− q1‖1 ≤ 2 P [q1(Π1) < β] ≤ 2rβ,
∥∥∥q⊗` − q⊗`1

∥∥∥
1
≤ 2`rβ.

As a result, we now have a distribution q close to q0 such that whenever q1(π) ≥ β:

q(a, b|π)

q(a, b)
≥ q1(a, b|π) ≥ β2,

q(a, b|π)

q(a, b)
≤ 1

q(π)
≤ 1

q1(π)
≤ 1

β
. (2)
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We check that the mutual information of q remains close to the common information of q0. Let
χ(X) denote the indicator of event X.

E

[
log

q(A, B|Π)

q(A, B)

]
= I [A, B; Π] = I [A1, B1; Π1 | q1(Π1) ≥ β]

≤ I [A1, B1; Π1 | χ(q1(Π1) ≥ β)]

P [q1(Π1) ≥ β]
=

I [A1, B1; Π1]− I [A1, B1; χ(q1(Π1) ≥ β)]

P [q1(Π1) ≥ β]
≤ k

1− rβ
,

where the first inequality follows from the law of total expectation, and the following equality
follows with the cyclic property of I [P; Q]− I [P; Q | R].

From now on we will only work with q and q3 := q⊗`. In order to ease notation we introduce
independent copies Z1, . . . , Z` of the pair (A, B) (we no longer need to handle the components
of the pair separately), and independent copies W1, . . . , W` of Π, so that the Zi, Wi are mutually
independent copies of (A, B), Π. Let Z = (Z1, . . . , Z`), W = (W1, . . . , W`) denote the collection of
the Zi and Wi, respectively.

In a first stepwe show that the encoding length of the ratios of the tensored distribution strongly
concentrates around the common information viaHoeffding’s inequality. Note that β2 ≤ q(Zi |Wi)

q(Zi)
≤

1
β by (2) as q1(Wi) ≥ β holds almost surely because Wi ∼ q. Observe that

P

[
log

q3(Z|W)

q3(Z)
> (1 + ε)k`

]
= P

[
1
`

`

∑
i=1

log
q(Zi|Wi)

q(Zi)
> (1 + ε)k

]

≤P

[
1
`

`

∑
i=1

log
q(Zi|Wi)

q(Zi)
−E

[
1
`

`

∑
i=1

log
q(Zi|Wi)

q(Zi)

]
> (1 + ε)k− k

1− rβ

]
Note that (1+ ε)k− k/(1− rβ) = (ε− rβ/(1− rβ))k. We apply Hoeffding’s inequality, so that the
following inequality chain holds:

P

[
log

q3(Z|W)

q3(Z)
> (1 + ε)k`

]
≤ P

[
1
`

`

∑
i=1

log
q(Zi|Wi)

q(Zi)
−E

[
1
`

`

∑
i=1

log
q(Zi|Wi)

q(Zi)

]
>

(
ε− rβ

1− rβ

)
k

]

≤ exp

(
− 2`k2

9 log2 1/β

(
ε− rβ

1− rβ

)2
)

=: δ1.

Therefore with high probability the conditional distribution does not deviate much from the
unconditional one, i.e., the set

G1 :=
{
(z, w) ∈ [m`n`]× [r`]

∣∣∣ q3(z|w) ≤ 2(1+ε)k`q3(z)
}

has large measure
q3(G1) ≥ 1− δ1.

We are ready to introduce the matrix Mε,δ,` by means of the associated distribution. We sample
τ independent copies W1, . . . , Wτ of W according to the distribution q3; in particular several of the
Wi may coincide. Let J ∈ [τ] be chosen uniformly, and W̃ := WJ will be the seed for the random row
and column. We define the conditional distribution of Z̃|WJ = w to coincide with Z|W = w. This
uniquely defines the distribution of Z̃, W̃, and we let Mε,δ,` be the matrix of Z̃ given W1, . . . , Wτ:

Mε,δ,`(z) = q̃3(z) =
∑i∈[τ] q3(z|wi)

τ
.
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Thus Mε,δ,` is a random matrix with rk+ Mε,δ,` ≤ τ. We show that with high probability, it is close
to M⊗`, i.e.,

E
[∥∥∥M⊗` −Mε,δ,`

∥∥∥
1

]
≤ δ.

We will need the set

G2 :=

{
z : ∑

w : (z,w)∈G1

q3(z, w) ≥ δ2q3(z)

}
,

that contains all row-columns pairs that are within a δ2-ratio, with δ2 chosen later. We approximate
q3 by a measure q4 defined via

q4(z, w) :=

{
q3(z, w) if (z, w) ∈ G1 and z ∈ G2,
0 otherwise.

Note that q4 need not be a probability distribution, however it is close to q3:

‖q3 − q4‖1 = ∑
z,w
|q4(z, w)− q3(z, w)| = ∑

(z,w)/∈G1

q3(z, w) + ∑
(z,w)∈G1

z/∈G2

q3(z, w)

≤ 1− q3(G1) + ∑
z/∈G2

δ2 · q3(z) = 1− q3(G1) + δ2(1− q3(G2)) ≤ δ1 + δ2. (3)

We define q4(z|w) := q4(z, w)/q3(w) and q4(z) := ∑w q4(z, w) = ∑w q3(w)q4(z|w). As an
approximation for q̃3, we use

q̃4(z) :=
∑i∈[τ] q4(z|wi)

τ
.

Therefore E [q4(z|wi)]wi∼W = q4(z). Moreover, for (z, w) ∈ G1 and z ∈ G2, we have by definition
of the sets

q4(z|w) = q3(z|w)
(z,w)∈G1
≤ 2(1+ε)k`q3(z)

z∈G2
≤ 2(1+ε)k`

δ2
q4(z),

and q4(z|w) ≤ 2(1+ε)k`

δ2
q4(z) trivially holds if (z, w) /∈ G1 or z /∈ G2.

With the bounds on the ratios, we will now invoke Chernoff’s bound to estimate the error aris-
ing from the sample set {wi | i ∈ [τ]}. Whenever q4(z) 6= 0, we have

Pwi∼W [|q̃4(z)− q4(z)| > δ2q4(z)] = Pwi∼W

[∣∣∣∣∣∑i∈[τ] q4(z|wi)

τ
− q4(z)

∣∣∣∣∣ > δ2q4(z)

]

≤ 2 exp
(
− δ3

2τ

3 · 2(1+ε)k`

)
=: δ4.

Therefore

E [|q̃4(z)− q4(z)|] ≤ P [|q̃4(z)− q4(z)| ≤ δ2q4(z)] · δ2q4(z)
+ P [|q̃4(z)− q4(z)| > δ2q4(z)] (q̃4(z) + q4(z))

= δ2q4(z) + P [|q̃4(z)− q4(z)| > δ2q4(z)] (q̃4(z) + (1− δ2)q4(z))
≤ δ2q4(z) + (q̃4(z) + (1− δ2)q4(z))δ4.
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This obviously holds for q4(z) = 0 as well. Summing up for all z we obtain

E [‖q̃4 − q4‖1] ≤ δ2 + (2− δ2)δ4 < δ2 + 2δ4.

We can easily estimate the distance between the approximations q̃3 and q̃4:

E [‖q̃3 − q̃4‖1] = Ewi

[∥∥∥∥∥∑i∈[τ] q3(·|wi)

τ
−

∑i∈[τ] q4(·|wi)

τ

∥∥∥∥∥
1

]

≤ ∑
i∈[τ]

Ewi [‖q3(·|wi)− q4(·|wi)‖1]

τ
= ‖q3 − q4‖1

(3)
≤ δ1 + δ2.

Finally, the total variation of q3 and q̃3 can be bounded:

E [‖q3 − q̃3‖1] ≤ E [‖q3 − q4‖1] + E [‖q4 − q̃4‖1] + E [‖q̃4 − q̃3‖1] ≤ 2δ1 + 3δ2 + 2δ4.

At last, we combine the various bounds above to bound the distance of M⊗` and Mε,δ,`:

E
[∥∥∥M⊗` −Mε,δ,`

∥∥∥
1

]
= E

[∥∥∥q⊗`0 − q̃3

∥∥∥
1

]
≤
∥∥∥q⊗`0 − q⊗`1

∥∥∥
1
+
∥∥∥q⊗`1 − q3

∥∥∥
1
+ E [‖q3 − q̃3‖1]

≤ 2`β(m + n + r− 2) + 2δ1 + 3δ2 + 2δ4.

Now we choose the free parameters β, δ2 to make this bound smaller than δ, in particular,

`β(m + n + r− 2) =
δ

8
, δ2 =

δ

12
,

δ1 ≤
δ

8
, δ4 = 2 exp

(
− δ3

2τ

3 · 2(1+ε)k`

)
≤ δ

8
.

The last inequality holds provided

τ ≥ 5184 · 2(1+ε)k`

δ3 ln
(

16
δ

)
.

To ease the estimation of δ1, we require ε− rβ/(1− rβ) ≥ ε/2, i.e., β ≤ ε/r(2+ ε), whichmeans

` ≥ δr(2 + ε)

8(m + n + r− 2)ε
.

Thus

δ1 = exp

(
− 2`k2

9 log2 1/β

(
ε− rβ

1− rβ

)2
)
≤ exp

(
− `ε2k2

18 log2(r(2 + ε)/ε)

)
≤ δ/8

if
` ≥ 18 log2(r(2 + ε)/ε)

ε2k2 ln(8/δ).

As a corollary, we obtain that common information is the best bound in a natural class.
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Corollary 4.2 (Common information as limit superior). Let X be a real-valued function with domain
the set of nonnegative matrices, satisfying the following continuity condition: For every nonnegative matrix
M and ε > 0, there is a constant c > 0 such that for every positive integer n and nonnegative matrix N

X(N) ≥ X(M⊗n)− nε− nc
∥∥N −M⊗n∥∥

1 .

If for all nonnegative matrices M we have X(M) ≤ log rk+ M then

lim sup
n→∞

X(M⊗n)

n
≤ C [M] .

If additionally for all nonnegative matrices M we have C [M] ≤ X(M), then limn→∞
X(M⊗n)

n = C [M].

Proof. Let M be a nonnegative matrix and ε > 0 fixed. Let c be the constant depending on M and ε
from the continuity condition. By Theorem 4.1 for every large enough nonnegative integer n there
is an approximation M̃ of M satisfying log rk+ M̃ ≤ n(1 + ε)C [M] and

∥∥∥M⊗n − M̃
∥∥∥

1
≤ ε/c.

X(M⊗n) ≤ X(M̃) + nε + nc
∥∥∥M⊗n − M̃

∥∥∥
1
≤ log rk+ M̃ + 2nε ≤ (1 + ε)nC [M] + 2nε,

i.e.,
X(M⊗n)

n
≤ C [M] + (2 + C [M])ε.

It follows that
lim sup

n→∞

X(M⊗n)

n
≤ inf

ε>0
(C [M] + (2 + C [M])ε) = C [M]

as claimed.

Remark 4.3. Lemma 5.7 together with Proposition 5.6 shows that common information satisfies the
conditions for X.

5 A dual approach to common information
In this section we extend the dual characterization of common information from [Witsenhausen,
1976, §4], and use it to establish continuity and additivity under tensoring. As UDISJ—the main
example we consider—is only a partial matrix, we also generalize common information to partial
matrices, and extend the characterization to obtain lower bounds.
5.1 Common information of partial matrices
We first extend the lower bound in [Witsenhausen, 1976, Theorem 2] from full matrices to partial
ones. The obtained lower bounds may no longer be tight due to inherent discontinuity of common
information of partial matrices, as exhibited in Example 5.4.

Definition 5.1. The common information (private information) of a partial matrix M is the infimum
(supremum) of common information (private information) over all its nonnegative extensions

C [M] := inf
M̃⊇M

C
[

M̃
∣∣∣ Z
]

and W [M] := sup
M̃⊇M

W
[

M̃
∣∣∣ Z
]

.

where Z is the event of being in the domain of definition of M.

Clearly C [M] = H [M]−W [M], where H [M] is the entropy of M restricted to its domain. We
are ready to formulate the lower bound on common information.

14



Proposition 5.2 (Common information via rank-1 factors). Let M be a partial nonnegative m × n
matrix. Then its common information is lower bounded by

C [M] ≥ sup
Λ∈RZ

inf
p,q≥0

‖p‖1=‖q‖1=1

H [M]−H [p, q | Z] + qTΛp
∑a,b∈Z paqb

− Tr
[

Λ
M
‖M‖1

]
, (4)

where Z is the event of being in the domain of M. Similarly, the private information W [M] is upper bounded
by

W [M] ≤ inf
Λ∈Rn×m

max
p,q≥0

‖p‖1=‖q‖1=1

H [p, q | Z]− qTΛp
∑a,b∈Z paqb

+ Tr
[

Λ
M
‖M‖1

]
. (5)

If M is a full matrix, then equality holds for both quantities above.

Proof. Equality in the case of full matrices is [Witsenhausen, 1976, Theorem 2]. The proof of the
inequality follows by a direct calculation. Without loss of generality, we assume ‖M‖1 = 1. Let
Λ ∈ RZ and

α := inf
p,q≥0

‖p‖1=‖q‖1=1

H [M]−H [p, q | Z] + qTΛp
∑a,b∈Z paqb

− Tr[ΛM].

Furthermore, let M̃ = ∑i λi piqT
i be an extension of M with a rank-1 factorization coming from a

seed Π. We need to show that I
[

M̃; Π
∣∣∣ Z
]
≥ α; note that H

[
M̃
∣∣∣ Z
]
= H [M].

Thereforewe restrict the factorization to the domain of M, omit factorswhich are 0 on thewhole
domain, and rescale the entries to be probability distributions possibly changing the coefficients
λi: M = ∑i µi(piqT

i | Z). In particular, by summing up all the entries, we obtain ∑i µi = 1. Now an
easy calculation establishes the claim:

I
[

M̃; Π
∣∣∣ Z
]
= H

[
M̃
∣∣∣ Z
]
−H

[
M̃
∣∣∣ Z, Π

]
= H [M]−∑

i
µiH [pi, qi | Z]

= ∑
i

µi (H [M]−H [pi, qi | Z]) ≥∑
i

µi

(
α + Tr[Λ(M− (piqT

i | Z))]
)
= α

as ∑i µi(Tr[Λ(M− (piqT
i | Z))] = 0. This proves the lower bound on C [M]. The upper bound on

W [M] follows via W [M] = H [M]−C [M].

Note that (4) and (5) are invariant under additive shifts of Λ of the form Λ+ ρ · 1, but not under
rescalings.

The supremum in (4) cannot be replaced by maximum even for full matrices. We see this in the
next example with the 2× 2 DISJ matrix.

Example 5.3 (Common information of DISJ via (4)). We consider the matrix D :=
(

a b
c 0

)
where

a + b + c = 1. The common information for this matrix has been established to be C [D] = (b +
c) log(b + c)− b log b − c log c = H [D] − H̃ [a] in Witsenhausen [1976]. We will now show that
C [D] can only be reached in the limit and for every single instance of Λ we have that

inf
p,q≥0

‖p‖1=‖q‖1=1

H [D]−H [p]−H [q] + qTΛp− Tr[ΛD] < H [D]− H̃ [a] ,

or equivalently K := supp,q H [p]−H [q] + qTΛp− Tr[ΛD] > H̃ [a]. Here and below we drop the
conditions on p, q for readability.
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First let us show that W [D] ≤ H̃ [a] cannot be obtained via a single supporting hyperplane,
i.e., K > H̃ [a]. Recall that

H̃ [p] + H̃ [q] ≤ K− qTΛp + Tr(ΛD)

for all 0 ≤ p, q ≤ 1. We examine this for the pairs p, q where the bound is supposed to be tight, i.e.,
for the pairs appearing in the best factorization: ([a, b + c], [1, 0]) and ([1, 0], [a, b + c]). Actually,
we also consider nearby pairs p = [a, b + c] and q = [1− x, x] for which we obtain

H̃ [a]+ H̃ [x] ≤ K− aΛ11− (b+ c)Λ21 +[a(Λ11−Λ12)+ (b+ c)(Λ21−Λ22)]x+ aΛ11 + bΛ12 + cΛ21

for all 0 ≤ x ≤ 1, therefore

H̃ [a] < K− aΛ11 − (b + c)Λ21 + aΛ11 + bΛ12 + cΛ21 = K + b(Λ12 −Λ21).

Thus K > H̃ [a] if Λ12 ≤ Λ21. A similar argument applies when Λ21 ≤ Λ12 finishing the proof of
K > H̃ [a].

We will now show that for an arbitrary ε > 0 there exists Λ so that

sup
p,q

qTΛp + H̃ [p] + H̃ [q]− Tr(ΛD) ≤ H̃ [a] + ε

if 0 < a < 1/2. Actually, we will choose a Λ of the form

Λ =

[
−H̃′ [a] 0

0 −C

]
where C > 0 is a large constant to be chosen later. Observe that Tr(ΛD) = −H̃′ [a] a. Let us
introduce the shorthand

ψ(p, q) := H̃ [p] + H̃ [q]− H̃′ [a] pq− C(1− p)(1− q) + aH̃′ [a] .

Let us choose 0 < δ < 1/2 such that H̃′ [a] δ + H̃ [δ] ≤ ε and let C = (2 + H̃′ [a] a)/δ2. First
suppose that both p, q ≤ 1− δ. In this case ψ(p, q) ≤ 2− Cδ2 + H̃′ [a] a ≤ 0 and the claim holds.
Now consider the case that at least one of p, q is at least 1− δ. As Λ is symmetric we may suppose
without loss of generality that q ≥ 1− δ. Then we can upper bound ψ(p, q) as follows, using the
concavity of entropy

ψ(p, q) ≤ H̃ [a] + H̃′ [a] (p− a) + H̃ [δ]− H̃′ [a] (p− δ) + aH̃′ [a]

= H̃ [a] + H̃ [δ] + H̃′ [a] δ ≤ H̃ [a] + ε

as claimed.
Wewill see later in Lemma 5.7 that common information is a continuous quantity for fullmatri-

ces, with a proof based on the tightness of the dual characterization. The next example, however,
shows that common information of partial matrices can be discontinuous, ruling out the tightness
of the lower bound for partial matrices in general.
Example 5.4 (Discontinuity of common information of a partial matrix). Despite continuity for full
matrices, common information is not continuous for partial matrices, as the following examples
shows:

C

[(
ε 1
1 ∗

)]
=

{
0, ε > 0,
1, ε = 0.

Here ∗ denotes an undefined nonnegative entry. Note that for ε > 0 the matrix has a rank-1 exten-
sion, while for ε = 0 no factor can have both its entries in the antidiagonal non-zero, i.e., it must
reveal the exact entry of M =

(
0 1
1 ∗
)
. Therefore C [M] = H [M | Z] = 1.
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5.2 Continuity and tensoring for common information
The dual characterization of common information has several applications. We first see how the
supporting hyperplanes of the information set naturally tensor, leading to a simplified form of the
dual formulation for amatrixwhich is a tensor product. Thenwe see how the dual characterization
implies that common information is robust under small `1 perturbations.

We prove that common information is additive under tensoring of matrices. The core of the
proof is a direct sumproperty ofmutual information (see [Cover andThomas, 2006, Theorem2.5.2]):
for arbitrary random variables A, B, C

I [A1, A2; B] = I [A1; B] + I [A2; B | A1] .

In particular, I [A1, A2; B] ≥ I [A1; B] + I [A2; B] if A1 and A2 are independent.

Lemma 5.5 (Common information and tensoring). Let M, N be arbitrary nonnegative matrices. Then
C [M⊗ N] = C [M] + C [N]. In particular C [M⊗n] = nC [M] for all n ∈N.

Proof. First we identify the distribution induced by M⊗ N. Let (AM, BM) ∼ M and (AN , BN) ∼ N
be independent pairs of random variables with distribution induced by M and N, respectively.
Then the distribution of (AM, AN ; BM, BN) is induced by M⊗ N.

Now let Π be a seed for M⊗ N. We have

I [M⊗ N; Π] = I [AM, BM, AN , BN ; Π] ≥ I [AM, BM; Π] + I [AN , BN ; Π] = I [M; Π] + I [N; Π] ,

where the latter inequality follows from thedirect sumproperty and the independence of (AM, BM)
and (AN , BN). It suffices to observe that Π is a seed both for (AM, BM) and (AN , BN) so that when
taking the infimum over all seeds Π for M⊗ N we have

C [M⊗ N] = inf
Π seed for (AM , AN), (BM , BN)

I [M⊗ N; Π]

≥ inf
Π seed for (AM , AN), (BM , BN)

(I [M; Π] + I [N; Π])

≥ inf
Π seed for AM , BM

I [M; Π] + inf
Π seed for AN , BN

I [N; Π] = C [M] + C [N] .

We will now show that the inequality is tight. For this let ΠM be any seed for M and ΠN be
any seed for N with ΠM and ΠN being conditionally independent given AM, AN , BM, BN . Clearly,
ΠM, ΠN is a seed for M⊗ N. By the chain rule we have

I [AM, BM, AN , BN ; ΠM, ΠN ] = I [AM, BM; ΠM, ΠN ] + I [AN , BN ; ΠM, ΠN | AM, BM]

We further have, (again using the chain rule)

I [AM, BM; ΠM, ΠN ] = I [AM, BM; ΠN ]︸ ︷︷ ︸
=0, by independence

+ I [AM, BM; ΠM |ΠN ]︸ ︷︷ ︸
=I[AM ,BM ;ΠM ]

and similarly

I [AN , BN ; ΠM, ΠN | AM, BM] = I [AN , BN ; ΠM | AM, BM]︸ ︷︷ ︸
=0

+ I [AN , BN ; ΠN | AM, BM, ΠM]︸ ︷︷ ︸
=I[AN ,BN ;ΠN ]

,

so that

I [AM, BM, AN , BN ; ΠM, ΠN ] = I [AM, BM; ΠM] + I [AN , BN ; ΠN ] .
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Taking the infimum over all seeds ΠM for M and ΠN for N we obtain

C [M⊗ N] = inf
Π seed for (AM , AN), (BM , BN)

I [AM, BM, AN , BN ; Π]

≤ inf
ΠM seed for AM , BM
ΠN seed for AM , BM

I [AM, BM, AN , BN ; ΠM, ΠN ]

= inf
ΠM seed for AM , BM

I [AM, BM; ΠM] + inf
ΠN seed for AM , BM

I [AN , BN ; ΠN ]

= C [M] + C [N] .

As an application of Lemma 5.5, in the dual formulation for a tensor product M1 ⊗ · · · ⊗Mn,
we can restrict the parameter Λ in the minimax formula (4) from Proposition 5.2 to be a tensor sum
of matrices corresponding to the components Mi. The tensor sum Λ1 ⊕Λ2 of matrices is defined
as the tensor product but with addition of matrix entries instead of multiplication.
Proposition 5.6. Let Mi ∈ R

mi×ni
+ be nonnegative matrices with i ∈ [`]. Then

C [M1 ⊗ · · · ⊗M`] = sup
Λi∈Rni×mi :i=1,...,`

inf
p,q≥0

‖p‖1=‖q‖1=1

(
H [M]−H [p]−H [q] + qTΛp− Tr[ΛM]

)
, (6)

where Λ := Λ1 ⊕ · · · ⊕Λ`.

Proof. Adding up (4) from Proposition 5.2 for M1, . . . , M` together with Lemma 5.5 provides

C [M1 ⊗ · · · ⊗M`] = C [M1] + · · ·+ C [M`]

=
`

∑
i=1

sup
Λi∈Rni×mi

inf
pi ,qi≥0

‖pi‖1=‖qi‖1=1

H [Mi]−H [pi]−H [qi] + qT
i Λi pi − Tr[Λi Mi]

= sup
Λi∈Rni×mi :i=1,...,`

inf
pi ,qi≥0

‖pi‖1=‖qi‖1=1
i=1,...,`

`

∑
i=1

(
H [Mi]−H [pi]−H [qi] + qT

i Λi pi − Tr[Λi Mi]
)

.

Note that the last formula is obtained from the right-hand side of (6) by restricting p and q to
product distributions p = p1 × · · · × p` and q = q1 × · · · × q`.

To finish the proof, we show that the minimum of the inner formula is not enlarged by allow-
ing arbitrary distributions p and q. Indeed, the following computation establishes that the inner
formula decreases by replacing p and q with the products p1 × · · · × p` and q1 × · · · × q` of their
marginal distribution (omitting terms not depending on p and q):

−H [p]−H [q] + qTΛp = −H [p]−H [q] +
`

∑
i=1

qT
i Λi pi ≥

`

∑
i=1

(
−H [pi]−H [qi] + qT

i Λi pi

)
.

We now show that the common information of close by matrices cannot discontinuously in-
crease.
Lemma 5.7 (Continuity of common information). Let N, M ∈ Rm×n

+ be nonnegative matrices with
‖M‖1 = ‖N‖1 = 1 and let ε > 0. Then

C [M] ≤ C [N] + ‖M− N‖1 log
‖M− N‖1

mn
+ ‖Λ‖∞ ‖M− N‖1 + ε,

where Λ is an ε-realizer of the common information of M, i.e., for all p, q ≥ 0

C [M]− ε ≤H [M]−H [p]−H [q] + qTΛp− Tr[ΛM].
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Proof. The statement followsdirectly from the characterization of the common information in Propo-
sition 5.2:

C [N] ≥ min
p,q

H [N]−H [p]−H [q] + qTΛp− Tr[ΛN]

≥ C [M]− ε + H [N]−H [M] + Tr Λ(M− N)

≥ C [M]− ε− ‖M− N‖1 log
‖M− N‖1

mn
− ‖Λ‖∞ ‖M− N‖1 .

6 Consequences for (U)DISJ
Wewill nowuse the dual approach to derive lower bounds on theDISJ aswell as theUDISJ (partial)
matrices under any type of small perturbation.

As a start, we will establish a stronger lower bound on the common information of the UDISJ
(partial) matrix than in Braun and Pokutta [2013]. This improvement is based on the result from
Kaibel andWeltge [2013] that every combinatorial rectangle with no uniquely intersecting pairs of
subsets can have at most 2n disjoint pairs of subsets. We give an alternative proof of this fact using
a compression argument.

Lemma 6.1 (Recoding disjoint sets). Let A, B ∈ {0, 1}n be two independent random strings satisfying
P [|A ∩ B| = 1] = 0. Let S = {(a, b) ∈ {0, 1}n | a ∩ b = ∅ ∧P [A = a, B = b] > 0}. Then

1. there exists a nonsingular binary code for S (depending on the distribution of A, B) of length n, i.e.,
we can encode each of the elements in S with at most n bits. In particular, |S| ≤ 2n.

2. H [A, B | A ∩ B = ∅] ≤ n.

Proof.

Encoding step: We encode the pair a, b. We choose C1, . . . , Cn ∈ {0, 1} inductively. Suppose that
Cj with j < i has been chosen. For readability let

pi := Pa∼A

[
ai = 1

∣∣∣ aj=0 for j<i with Cj=0
aj=Aj for j>i

]
and qi := Pb∼B

[
bi = 1

∣∣∣ bj=0 for j<i with Cj=1
bj=Bj for j>i

]
.

Note that pi is a function of C1, . . . , Ci−1 and Ai+1, . . . , An; similarly for qi. By independence
and P [|A ∩ B| = 1] = 0 we have piqi = 0.

If pi = 0, Ci :=

{
1 if Bi = 0
0 if Bi = 1;

if qi = 0, Ci :=

{
0 if Ai = 0
1 if Ai = 1.

If both pi = qi = 0, then choose the Ci arbitrarily.

Decoding step: We will now show that we can exactly decode A, B from C. This will in particular
imply that |S| ≤ 2n and henceH [A, B | A ∩ B = ∅] = H [C | A ∩ B = ∅] ≤ n. We inductively
decode A, B from C, however in reverse direction. Suppose that (An, Bn), . . . , (Ai+1, Bi+1)
have been decoded. We decode

Ai :=

{
0, if Ci = 0 or pi = 0
1, otherwise.

Bi :=

{
1, if Ci = 1 or qi = 0
0, otherwise.

It remains to show that the decoding is exact. Observe that P [Ai = 1∧ pi = 0] = 0 and
therefore the decoding is exact if pi = 0. If pi 6= 0, then qi = 0 and Ci = Ai by definition of
Ci. Similarly Bi is decoded correctly.
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Theorem 6.2 (Lower bound on common information of UDISJ). Let M be the UDISJ (partial) matrix
of strings of length n. Then

C [M] ≥ n log 3/2 ≈ 0.585 · n.

Proof. Let Π be a seed of an extension M̃ of M. Given an arbitrary Π = π, the variables A, B
become independent, and hence the set of pairs (a, b) with non-zero probability is a rectangle.
Obviously, there is no (a, b) with |a ∩ b| = 1 and non-zero probability, thus in the computation of
the common information of M̃ we may restrict the domain to A ∩ B = ∅. By Kaibel and Weltge
[2013], every rectangle for UDISJ contains at most 2n pairs (a, b) with a, b being disjoint, hence
H
[

M̃
∣∣∣ A ∩ B = ∅, Π = π

]
≤ n. Taking expectation, H

[
M̃
∣∣∣ A ∩ B = ∅, Π

]
≤ n, i.e.,

C
[

M̃
∣∣∣ A ∩ B = ∅

]
= H

[
M̃
∣∣∣ A ∩ B = ∅

]
−H

[
M̃
∣∣∣ A ∩ B = ∅, Π

]
≥ n log 3− n = n log 3/2.

6.1 Approximate direct sum lower bound
We revisit approaches from Braverman and Moitra [2012], Braun and Pokutta [2013] to obtain a
tight lower bound on the conditional common information of approximate UDISJ.We use the same
conditional as in several previous works including Bar-Yossef et al. [2004], Braverman and Moitra
[2012], Braun and Pokutta [2013]. This conditional is a variant of the disjointness A∩ B = ∅ of the
input sets A, Bwith the remarkable feature that it preserves the independence of A and B under any
seed. As demonstrated by Theorem 6.2, the weaker conditional A ∩ B = ∅ can lead to improved
lower bounds, however it is not clear how to handle the perturbed case with this conditional.

LetC = (C1, . . . , Cn) be n fair coinswith sides labelledwithA andB. The coins are independent
of A, B and any seed Π. We define D = (D1, . . . , Dn) via

Di :=

{
Ai if Ci = A,
Bi if Ci = B.

The exact condition is the event D = 0 together with the random variable C.
We shall use D−i and C−i to denote the collections (Dj : j 6= i) and (Cj : j 6= i), respectively.

Theorem 6.3. Let M be a nonnegative square matrix with rows and columns indexed by subsets of [n].
Then for all 0 < ε < (2/5) log 3/2 ≈ 0.234

W [M |D = 0, C] ≤ (1− α + ε)n− s(α− ε) + t(β− ε + 2 log ε)

r
, (7)

where

r := ∑
a,b⊆[n]
a∩b=∅

2−|a|−|b|M(a, b), t := ∑
a,b⊆[n]
|a∩b|=1

2−|a|−|b|+2M(a, b), s := ∑
a,b⊆[n]
a∩b=∅

(|a|+ |b|)2−|a|−|b|M(a, b),

α := 1− log 3
2
≈ 0.208, β := 6− 3 log 3− 2 log(5 ln 2) ≈ −2.341.

In particular,

W [M |D = 0, C] ≤ (1− α)n− sα + t(γ + 2 log(t/(t + rn + s)))
r

, (8)

where γ := β + 2 log(2e−1 log e) ≈ −2.169 provided t/(t + rn + s) < log 3/2
5 ln 2 ≈ 0.169.
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As the upper bound is invariant under scalings of M, the parameters r, u, t are not normalized.

Example 6.4. For the modified partial UDISJ matrix M

M(a, b) :=

{
1, a ∩ b = ∅
δ, |a ∩ b| = 1

we have r = 2n, t = δrn, s = rn/2 leading to the lower bound

C [M |D = 0, C] ≥
(

3
2

α + δ

(
γ− 2 log

(
1 +

2
δ

)))
n

for δ < 3/(2( 5 ln 2
log(3/2) − 1)) ≈ 0.305. The lower bound is exact for δ = 0 and the above formula is a

continuous extension. It complements the lower bound (1− δ)n/8 for all 0 < δ < 1 from [Braun
and Pokutta, 2013, Theorem 4.1]; see also Braverman andMoitra [2012] for a slightlyweaker bound.

The core of the proof is a bound on the conditional private information which arises from a
fusion of Braverman and Moitra [2012] and Braun and Pokutta [2013]. We reuse the form which
appeared as part of the advantage estimation in Braverman and Moitra [2012]:

Lemma 6.5. For all 0 ≤ p, q ≤ 1, 0 < ε < (2/5) log 3/2 ≈ 0.234 and α := 1− log 3
2 we have

pH̃ [q] + qH̃ [p] ≤ p + q− 2(α− ε) + 2(β− α− 2 log ε)(1− p)(1− q). (9)

Proof. For convenience, first we prove a reparametrized version of the bound: let δ := 2−5ε/2,
therefore ε = −(2/5) log δ, 2/3 ≤ δ < 1 and H̃′ [δ] ≤ −1. We claim

p(1− H̃ [q]) + q(1− H̃ [p]) ≥ 2α +
4
5

log δ−
(

8
3
− 5H̃

[
1
3

]
− 4H̃′ [δ]

)
(1− p)(1− q). (10)

We start with the case q ≤ 4/5, where the main estimation arises from. As the binary entropy
function is concave, we can estimate its value by its gradient:

H̃ [p] ≤ H̃ [δ] + H̃′ [δ] (p− δ),

H̃ [q] ≤ H̃

[
1
3

]
+ H̃′

[
1
3

] (
q− 1

3

)
= H̃

[
1
3

]
+ q− 1

3
,

leading to

p(1− H̃ [q]) + q(1− H̃ [p]) ≥ p
(

1− H̃

[
1
3

]
− q +

1
3

)
+ q(1− H̃ [δ]− H̃′ [δ] (p− δ))

=
4
3
− H̃

[
1
3

]
︸ ︷︷ ︸

=2α

−q

H̃ [δ] + H̃′ [δ] (1− δ)︸ ︷︷ ︸
− log δ

+

1
3
− H̃

[
1
3

]
− H̃′ [δ]︸ ︷︷ ︸

≥4/3−H̃[1/3]>0

+(1 + H̃′ [δ])(1− q)

 (p− 1)

≥ 2α +
4
5

log δ−
(

8
3
− 5H̃

[
1
3

]
− 4H̃′ [δ]

)
(1− p)(1− q),
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where the last inequality uses 5(1− q) ≥ 1. This finishes the case q ≤ 4/5. The case p ≤ 4/5
is analogous and therefore omitted. The remaining case is p, q ≥ 4/5, where a simple estimation
suffices:

p(1− H̃ [q]) + q(1− H̃ [p]) ≥ 2 · 4
5
·
(

1− H̃

[
4
5

])
> 2α

> 2α− 4
5

(
H̃ [δ] + H̃′ [δ] (1− δ)

)
− (1− p)(1− q)

(
8
3
− 5H̃

[
1
3

]
− 4H̃′ [δ]

)
.

Note that 8
3 − 5H̃

[ 1
3

]
− 4H̃′ [δ] ≥ 8

3 − 5H̃
[ 1

3

]
+ 4 > 0.

Finally, we bring (10) into the form (9). This is fairly straightforward, the only estimation needed
is the coefficient of (1− p)(1− q):

8
3
− 5H̃

[
1
3

]
− 4H̃′ [δ] =

8
3
− 5H̃

[
1
3

]
− 4 log(25ε/2 − 1) <

8
3
− 5H̃

[
1
3

]
− 4 log

(
5ε ln 2

2

)
= 10− 5 log 3− 4 log(5 ln 2)− 4 log ε = 2(β− α− 2 log ε).

We are now ready to prove the bound for approximations of UDISJ.

Proof of Theorem 6.3. The second inequality follows from the first one by substituting the optimal
value ε := 2(t/(t + rn + s)) log e. Therefore we prove only the first inequality.

First we express r, s, t as probabilities. Without loss of generality, wemay assume ∑a,b M(a, b) =
1, leading to r = P [D = 0] and t = ∑n

i=1 P [D−i = 0, Ai = 1, Bi = 1]. Instead of s it will be more
convenient to use u := ∑n

i=1 P [D−i = 0] = t + rn + s.
We start with the case n = 1, and make the identifications D = D1, C = C1, A = A1, B =

B1 for simplicity. Hence the parameters are r = P [D = 0] = P[A=0]+P[B=0]
2 , u = 1, and t =

P [A = 1, B = 1]. Let Π be a seed, then Lemma 6.5 applies to upper bound the conditional entropy.
We shall use the suggestive notation p(π) := P [A = 0 |Π = π] and q(π) := P [B = 0 |Π = π].

H [A, B |D = 0, C, Π] = P [C = A |D = 0]H [A, B |D = 0, C = A, Π]

+ P [C = B |D = 0]H [A, B |D = 0, C = B, Π]

=
P [A = 0]

2 P [D = 0]
H [B | A = 0, Π] +

P [B = 0]
2 P [D = 0]

H [A | B = 0, Π]

=
Eπ∼Π

[
p(π)H̃ [q(π)] + q(π)H̃ [p(π)]

]
2 P [D = 0]

≤ Eπ∼Π [p(π) + q(π)− 2(α− ε) + 2(β− α− 2 log ε)(1− p(π))(1− q(π))]

2 P [D = 0]

=
P [A = 0] + P [B = 0]− 2(α− ε) + 2(β− α− 2 log ε)P [A = 1, B = 1]

2 P [D = 0]

= 1− α− ε + t(β− α− 2 log ε)

r
.

We now turn to the case of general n. To simplify formulas, we introduce shorthand notations:

ui := P [D−i = 0] , ti := P [D−i = 0, Ai = 1, Bi = 1] ,

leading to u = ∑n
i=1 ui and t = ∑n

i=1 ti.
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For any 1 ≤ i ≤ n we apply the n = 1 case to Ai, Bi with distribution conditioned on D−i = 0,
and use the seed Π, C−i. In (8) we need to replace r, t by r/ui, ti/ui, respectively:

H [Ai, Bi |D = 0, C, Π] ≤ 1− α− ε + (ti/ui)(β− α− 2 log ε)

r/ui
= 1− ui(α− ε) + ti(β− α− 2 log ε)

r
.

We sum up these inequalities to obtain as claimed:

H [A, B |D = 0, C, Π] ≤
n

∑
i=1

H [Ai, Bi |D = 0, C, Π]

≤ n−
n

∑
i=1

ui(α− ε) + ti(β− α− 2 log ε)

r
= n− u(α− ε) + t(β− α− 2 log ε)

r

= (1− α + ε)n− s(α− ε) + t(β− ε + 2 log ε)

r
.

It is interesting to note that the conditional common information under D = 0, C is not maxi-
mized by

(
1/3 1/3
1/3 0

)
as in the unconditional case, but by

(
2/8 3/8
3/8 0

)
.

6.2 Lower bound for perturbed UDISJ matrices
Weuse Theorem 6.3 to lower bound the common information of perturbedUDISJmatrices in terms
of the size of the perturbation. For measuring the size of perturbation, a natural choice is the
`1-norm of the conditional distribution M | D = 0, where a disjoint pair of subsets a, b have
probability proportional to 2−|a|−|b|M(a, b), however, this considers only disjoint a, b. Therefore
we also use an analogous norm for |a ∩ b| = 1. (Note that we do not condition on C rather we
condition M on the event D = 0.) All in all, we introduce the norms

‖M‖∅ := ∑
a,b:a∩b=∅

2−|a|−|b||M(a, b)|, ‖M‖{·} :=
1
n ∑

a,b:|a∩b|=1
2−|a|−|b||M(a, b)|

for all (not necessarily nonnegative) matrices M. The purpose of the division by n in ‖M‖{·} is to
scale it to the same range as ‖M‖∅, e.g., ‖1‖∅ = 2n and ‖1‖{·} = 2n−3.

We put the matrix in subscript for the expressions r, s, t in Theorem 6.3. Obviously,

|tM − tN | ≤ 4n‖M− N‖{·}, |sM − sN | ≤ n‖M− N‖∅.

We are ready to formulate our lower bound for perturbed partial UDISJ matrices:

Corollary 6.6. Let M be the unique disjointness matrix and N be a partial matrix defined on the same
domainwith rM = rN = 1 and ‖N −M‖∅ < 1/4 and ‖N −M‖{·} < (4 · ((8 log e)/α− 4))−1 ≈ 0.005.
Then

C [N |D = 0, C] ≥
(

6− 3 log 3
4

− a‖N −M‖∅ − b‖N −M‖{·} + 8‖N −M‖{·} log‖N −M‖{·}
)

n

+ ‖N −M‖∅ log‖N −M‖∅

where a = 1 + log 3
2 ≈ 1.792 and b = 8 log

(
4·δ+1/2
8e−1 log e

)
− 4β ≈ −14.909..
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Proof of Corollary 6.6. We apply Theorem 6.3. Note that (7) holds with equality for M with ε = 0
and tM = 0. For N we shall use a ε > 0 specified later.

C [M |D = 0, C] = H [M |D = 0, C]− (1− α)n + sMα + tMβ,
C [N |D = 0, C] ≥H [N |D = 0, C]− (1− α + ε)n + sN(α− ε) + tN(β− ε + 2 log ε).

We estimate the difference of entropies via [Cover and Thomas, 2006, Theorem 17.3.3] using that
rM = rN = 1:

|H [M |D = 0, C]−H [N |D = 0, C]| ≤ −‖N −M‖∅ log
‖N −M‖∅

3n .

Therefore

C [N |D = 0, C]−C [M |D = 0, C] ≥ H [N |D = 0, C]−H [M |D = 0, C] + (sN − sM)(α− ε)

+ (tN − tM)(β− ε + 2 log ε)− sMε− tM(ε− 2 log ε)

≥ ‖N −M‖∅ log
‖N −M‖∅

3n − (α− ε)n‖N −M‖∅

+ 4n(β− ε + 2 log ε)‖N −M‖{·} −
εn
2

.

We choose ε to maximize this quantity:

ε :=
8 log e

4 + 1/2−‖N−M‖∅
‖N−M‖{·}

.

The upper bounds ‖N −M‖∅ < 1/4 and ‖N −M‖∅ < (4 · ((8 log e)/α− 4))−1 =: δ on the norms
in the hypothesis ensure ε < α < (2/5) log(3/2) required for Theorem 6.3 and the above estima-
tion. Also note that

ε =
8‖N −M‖{·} log e

4‖N −M‖{·} + 1/2− ‖N −M‖∅
>

8‖N −M‖{·} log e

4 · δ + 1/2
= 2−(b+4β)/8e‖N −M‖{·}.

We plug the value of ε into the estimation on C [B |D = 0, C]:

C [N |D = 0, C]−C [M |D = 0, C]

≥
(
−(α + log 3)‖N −M‖∅ + 4β‖N −M‖{·} + 8‖N −M‖{·} log

( ε

e

))
n

+ ‖N −M‖∅ log‖N −M‖∅

>
(
−(α + log 3)‖N −M‖∅ + 4β‖N −M‖{·} + 8‖N −M‖{·} log 2−(b+4β)/8‖N −M‖{·}

)
n

+ ‖N −M‖∅ log‖N −M‖∅

=
(
−a‖N −M‖∅ − b‖N −M‖{·} + 8‖N −M‖{·} log‖N −M‖{·}

)
n

+ ‖N −M‖∅ log‖N −M‖∅.
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6.3 Lower bound for perturbed DISJ matrices
Similar to Section 6.2, wewill nowuse Lemma 5.7 in order to lower bound the common information
of unstructured perturbations of the DISJ matrix.

Lemma 6.7. Let Mn ∈ R2n×2n

+ be the n-dimensional DISJ matrix. Then there exists a constant 1 > C > 0

so that for any nonnegative matrix N ∈ R2n×2n

+ with
∥∥∥Mn − 3n

‖N‖1
N
∥∥∥

1
≤ C · 3n we have C [N] = Ω(n).

Proof. Pick ε > 0 small enough and consider M1. By Example 5.3 we know that the for any ε > 0,
there exists Λ1, so that C [M1]− ε ≤ H [M1]−H [p]−H [q] + qTΛ1 p− Tr[ΛM1]. Let the largest
absolute entry in Λ1 be K. By Proposition 5.6, this Λ1 can be extended to a Λ for Mn, so that

C [Mn]− εn ≤H [Mn]−H [p]−H [q] + qTΛp− Tr[ΛMn],

where the largest absolute entry of Λ is bounded by nK. By Lemma 5.7 we have

C [Mn] ≤ C [N]− L log
L
4n + KnL + εn,

where L := ‖Mn/ ‖Mn‖1 − N/ ‖N‖1‖1. The above can be rewritten as

C [N]− L log
L
4n + KnL + εn = C [N] + L log

4n

L
+ KnL + εn

= C [N] + 2Ln− L log L + KnL + εn = C [N] + Ln(2− 1
n

log L + K) + εn

≤ C [N] + Ln(2 + K) + εn.

Let 2
3 − ε > δ > 0 and put L := 2/3−ε−δ

2+K . Using the fact that C [Mn] =
2
3 n we obtain

2
3

n ≤ C [N] + Ln(2 + K) + εn = C [N] +

(
2
3
− δ

)
n,

so that δn ≤ C [N] follows. The result follows by observing that ‖Mn‖1 = 3n.

We immediately obtain the following corollary

Corollary 6.8. Let Mn ∈ R2n×2n

+ be the n-dimensional DISJ matrix. Then there exists a constant 1 >
C > 0 so that for any deformation N of Mn such that ‖N‖1 = ‖Mn‖1 and ‖Mn − N‖1 ≤ C · 3n we have
C [N] = Ω(n).

In particular we can exchange up to C/2 entries 1 by 0 and vice versa and the resulting matrix
will have linear common information and hence an exponential nonnegative rank.
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