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Abstract

We prove that 3-query linear locally correctable codes over the Reals of dimension d require
block length n > d2+λ for some fixed, positive λ > 0. Geometrically, this means that if n
vectors in Rd are such that each vector is spanned by a linear number of disjoint triples of
others, then it must be that n > d2+λ. This improves the known quadratic lower bounds
(e.g. [KdW04, Woo07]). While a modest improvement, we expect that the new techniques
introduced in this work will be useful for further progress on lower bounds of locally correctable
and decodable codes with more than 2 queries, possibly over other fields as well.

Our proof introduces several new ideas to existing lower bound techniques, several of which
work over every field. At a high level, our proof has two parts, clustering and random restriction.

The clustering step uses a powerful theorem of Barthe from convex geometry. It can be used
(after preprocessing our LCC to be balanced), to apply a basis change (and rescaling) of the
vectors, so that the resulting unit vectors become nearly isotropic. This together with the fact
that any LCC must have many ‘correlated’ pairs of points, lets us deduce that the vectors must
have a surprisingly strong geometric clustering, and hence also combinatorial clustering with
respect to the spanning triples.

In the restriction step, we devise a new variant of the dimension reduction technique used in
previous lower bounds, which is able to take advantage of the combinatorial clustering structure
above. The analysis of our random projection method reduces to a simple (weakly) random
graph process, and works over any field.
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1 Introduction

Locally-correctable codes (sometimes under different names of program self-correctors or random
self-reductions), abbreviated LCCs, have the property that each symbol of a corrupted codeword
can be recovered, with high probability, by randomly accessing only a few other symbols. LCCs
have played a key role in important developments within several (impressively) diverse areas of
theoretical computer science, which we briefly summarize below.

Blum and Kannan [BK95] introduced the idea of probabilistic, local correction for the purpose of
program checking. With the follow-up papers [BLR93] on linearity testing and [RS96] on low-degree
testing this sequence inaugurated the field of Property Testing and Sublinear Algorithms. The re-
alization of [Lip90, BF90], that Reed-Muller codes (namely low-degree multivariate polynomials)
are locally correctable, gave the first random self-reducibility examples of very hard functions like
the Permament, and this average-case to worst-case complexity reduction was useful for pseudo-
random generators [BFNW93]. It further lead (with many more ideas) to the celebrated sequence
of characterizations of the power of probabilistic proofs, IP = PSPACE by [LFKN92, Sha92],
MIP = PSPACE by [BFL90] and PCP = NP by [AS98, ALM+98]. Close cousins of LCCs,
Locally-Decodable Codes (LDCs)1, formally introduced in [KT00] but having their origins in these
earlier works, were key to Private Information Retrieval and other models of secure delegation of
computation (see e.g. [CKGS98]). Dvir [Dvi11] has shown the sufficiently strong lower bounds
on LCCs would yield explicit rigid matrices, which are related, via the work of [Val77] to circuit
complexity2. While this has not materialized yet, it motivated the invention of multiplicity codes
by [KSY11] which are new LCCs of high rate, and turn out to yield optimal list-decodable codes
as well [Kop12] . Finally, since the work of [DS06], LDCs and LCCs have played a role in under-
standing basic problems in Polynomial Identity Testing and established its connection to problems
in Incidence Geometry, e.g [KS09, BDWY11, DSW12].

The most important parameters of LCCs are the number of queries, q, made by the correcting
algorithm, and the block length n as a function of the message length (or dimension, for linear
codes) d, where we fix corruptions to some small fixed fraction, say 1%. For upper bounds, the
best constructions we have are still based on Reed-Muller codes3 which exist only over finite fields.
For q queries these require block length about exp(d1/(q−1)). Indeed most applications require the
block-length n to be polynomial in d and hence using these codes forces the number of queries to
be at least logarithmic. Finding better codes, and in particular constant query, polynomial block-
length LCCs, has been a major challenge, and this challenge naturally turns attention to the limits
of constant query LCCs and LDCs.

On the lower bound front, relatively little is known to rule out the feasibility of the challenge
above. We shall restrict ourselves to linear codes4 over some field F, namely when the set of
codewords is a subspace of Fn of dimension d, and denote q-LCCs such locally-correctable codes
with q queries. It is easy to see that 1-LCCs do not exist over any field. The first set of interesting
results came for 2-LCCs, and here strong lower bounds are known through a variety of techniques.

1In LDCs one needs to locally recover only d linearly independent coordinates (equivalently, the message) from
the corrupted codeword, rather than all n of them

2While work of [KSY11] shows that, over small finite fields, this approach could not give super linear circuit lower
bounds, the approach might still be valid over large fields.

3For the weaker LDCs there are far better constructions, based on the work of Yekhanin and Efremenko [Yek08,
Efr09, DGY11], but these are not known to be locally correctable.

4Some of the results below are known also for non-linear codes
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An exponential n > 2Ω(d) lower bound via isoperimetric/entropy methods for 2-LCCs over F2 follows
from the ones for the (weaker) LDCs [GKST06, KdW04, DS06] and is matched by the Hadamard
code whose generating matrix is composed of all binary vectors over F2. Strangely, while these
vectors provide an LDC over every field, they fail to be an LCC except in F2. This gap was first
explained in [BDWY11, DSW12] who showed that over the Real numbers (and indeed even finite
fields of very large characteristic), LCCs simply do not exist! For every error-rate δ the dimension
d for which such codes exist cannot exceed poly(1/δ). The proofs in [BDWY11, DSW12] use a
combination of geometric, analytic and linear-algebraic techniques, and give quantitative form to
known qualitative point-line incidence theorems. Tighter bounds of n > pΩ(d) over finite fields of
prime size p were proved in [BDSS11] using methods from arithmetic combinatorics, matching the
trivial construction of taking all vectors in (Fp)d.

For q ≥ 3 the known lower bounds are far weaker, and practically only one lower bound technique
is known: random restrictions of the given code which reduce the number of queries from q to 2
or 1, appealing to the lower bounds above. This technique was introduced for LDCs by Katz and
Trevisan [KT00], and trivially holds for (the stronger) LCCs as well. The best bounds known are
due to [KdW04, Woo07], which show that q-LDCs must satisfy n = Ω̃

(
d1+1/(dq/2e−1)

)
for every

q ≥ 3. So, in particular, the best lower bound for 3-LDCs (or LCCs) is the quadratic n = Ω̃(d2)
(for linear codes the Ω̃ was replaced by Ω in [Woo12]). This quadratic bound has established itself
as somewhat of a ‘barrier’ in that it can be obtained in several different ways and going beyond it
seems to require new ideas.

Our main result is breaking this quadratic barrier for 3-LCCs over the Real numbers. Namely,
we prove that for some fixed constant5 λ > 0 every linear 3-LCC over the Reals must satisfy
n = Ω(n2+λ), even when the error parameter δ is allowed to be polynomially small in n . To this
end, we introduce several new ideas and techniques, which we hope will lead to further progress.
Some of our ideas are general enough to work over any field, while others are specially tailored for
the Reals. We briefly discuss now the main sources for our improvement over the known quadratic
lower bound. A more detailed overview of the proof is given after the formal statement of the
theorem in the next section.

Clustering and restrictions

A linear 3-LCC over F may be viewed as a set V ⊂ Fd of n vectors (which form the generating
matrix of the code), together with n collections Mv, one for each v ∈ V . Each Mv is a matching of
δn disjoint triples from V , and each of the triples in Mv spans v. This structure is easy to deduce for
linear codes from the more traditional definition using a randomized decoder (cf. Definition 2.1).

We now informally describe a way to obtain a quadratic lower bound on n, which uses random
restrictions to reduce the dimension of the code. Pick a set A of size about

√
n of vectors from

V at random. Then, take a linear projection whose kernel is exactly the span of the vectors in
A and apply it to the elements of V . Notice that in expectation, for every v ∈ V , a pair of
points in A will be contained in some triple in Mv. Thus, after the projection, the 3rd point in
that triple will become the same as v (up to scaling). As this happens to every point, we expect
V to shrink by a factor of 2! Repeating this process logarithmically many times will shrink V
completely, revealing that its original dimension could not have been larger than

√
n log n, giving

a near quadratic relation n ≥ d2/ log d. We note that the proofs appearing in the literature are

5We did not make an attempt to optimize the constant λ, but the proof gives some λ > .001
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somewhat different then the one we just described. Indeed, there are several possible ways of using
a random restriction argument to get a quadratic bound (up to poly-logarithmic factors) for linear
3-LCCs. The argument above is new to this paper, and is indeed a simplified variant of our actual
proof, which improves its analysis over the Reals.

It is not hard to see that if the collection of triples in all of matchings Mv were chosen at
random, the analysis above could not be improved. But a random collection is far from being an
LCC. Indeed, in contrast to standard codes, which exist in abundance and a random subspace is
one with high probability, locally correctable (or decodable, or testable) codes are extremely rare
and structured. This raises the question of what other structural properties are imposed on the
matchings Mv in an LCC. In this paper we reveal a new such property, clustering, at least when the
underlying field is the Reals6. We conclude with a simplified description of this clustering property,
how it is obtained, and how it enables better analysis of the random restriction process.

A collection Mv of matchings of triples is said to be clustered if there are about
√
n subsets

S1, · · ·S√n of V , each of size about
√
n, such the every triple in every matching Mv has a pair

in one of these sets. Note that such a configuration is extremely far from random. Indeed, as
these sets have at most n3/2 pairs between them, many of the triples (of different matchings) share
pairs (a typical pair exists in about

√
n triples!). Note that this cluster structure is completely

combinatorially described.
Why should the triples in an 3-LCC admit such a clustering? The main observation is that, over

the Reals, a small linearly dependent subset, such as a 4-tuples composed of v and a triple from
Mv, must contain a pair which is significantly correlated (say, with inner product at least 1/4 for
said example). Thus, a 3-LCC must contain many correlated pairs. On the other hand, a powerful
result of Barthe from convex geometry allows us to deduce that, after a carefully chosen change of
basis, the vectors of our code are almost isotropic, namely point roughly equally in all directions in
space. This implies that most pairs are hardly correlated at all. These two seemingly contradicting
structures can exist only if the points in V are geometrically clustered: delicate analysis shows that
they can be partitioned into roughly

√
(n) small balls of small radius. The correlations then must

arise from triples containing a pair in one of the (geometric) clusters.
Why does clustering help? Lets return to the random restriction and projection argument

above, but lets pick now the set A as follows. First pick one of the clusters Si uniformly at random,
and inside it pick A at random of size about n1/4. The clustering ensures that this much smaller set
has a pair intersecting each of the matchings Mv in expectation (due to the fact that a typical pair
in a typical cluster participates in

√
n matchings). So a much smaller set A suffices to create the

same effect after projection, namely a shrinking of the set V by a factor of 2. Again a logarithmic
number of such restrictions is likely to shrink V completely, giving a dimension upper bound of
n1/4 log n, and yielding the lower bound n ≥ d4/ log d. We note again that this part works over any
field, as long as the triples are clustered.

‘Balanced’ codes: A recurring notion in our proof the that of an LCC in which no large subset
of the coordinates lies in a subspace of significantly lower dimension. One can think of such codes
as being ‘balanced’ in the sense that they cannot be ‘compressed’ (by projecting the large set of low
dimension to zero). Our proof contains a sequence of reductions, used to obtain certain conditions
that are used in the clustering and restriction steps. Each of these reductions can only be carried
out if the code is ‘balanced’ and this property is used in several different ways in the proof. If the

6The actual proof requires several extra conditions on the code, which can be obtained via a sequence of reductions.

3



code is not ‘balanced’ we can use an iterative argument that projects the large low-dimensional
subset to zero. We find this condition of being balanced a very natural one in the context of LCCs
(and other codes) and hope it could be useful as a conceptual tool in future works.

Organization: In Section 2 we state our results formally. Then, in Section 3 we provide a more
detailed and technical overview of the proof. The proof of the main theorem is given in Sectins 4
to 10. The organization of the different sections of the proof is given at the end of Section 3.

Acknowledgments We are grateful to Boaz Barak, Moritz Hardt and Amir Shpilka for their
contribution in early stages of this work. In particular, we thank Moritz Hardt for introducing us
to Barthe’s work.

2 Definitions and results

For a string y ∈ Fn, we define w(y) to be the number of nonzero entries in w. A q-matching M in
[n] is defined to be a set of disjoint unordered q-tuples (i.e. disjoint subsets of size q) of [n] .

Definition 2.1 (Linear q-LCC, decoder definition). A linear (q, δ)-LCC of dimension d over a field
F is a d dimensional linear subspace U ⊂ Fn such that there exists a randomized decoding procedure
D : Fn × [n] 7→ F with the following properties:

1. For all x ∈ U , for all i ∈ [n] and for all y ∈ Fn with w(y) ≤ δn we have that D (x+ y, i) = xi
with probability at least 3/4 (the probability is taken only over the internal randomness of D).

2. For every y ∈ Fn and i ∈ [n], the decoder D(y, i) reads at most q positions in y.

Definition 2.2 (Linear q-LCC, geometric definition). Let V = (v1, . . . , vn) ∈ (Fd)n be a list of n
vectors spanning Fd. We say that V is a linear (q, δ)-LCC in geometric form if for every v ∈ V
there exists a q-matching Mv in [n] of size ≥ δn such that for every q-tuple {j1, . . . , jq} ∈ Mv it
holds that v ∈ span{vj1 , . . . , vjq}.

It is well known that any linear (q, δ)-LCC (over any field) can be converted into the geometric
form given above by replacing δ with δ/q. The transformation is simple: take v1, . . . , vn ∈ Fd to be
the rows of the generating matrix of U . Clearly, this does not change the dimension of the code.

In our results we will assume that the error parameter δ is not too large. Specifically, we will
require that n ≥ (1/δ)ω(1). This condition can be replaced with n ≥ (1/δ)C for a sufficiently large
absolute constant C which can be calculated from the proof.

We now state our main result which bounds the dimension of 3 query LCC’s when the underlying
field is R.

Theorem 1 (Main Theorem). There exists an absolute constant λ > 0 such that if V = (v1, . . . , vn) ∈
(Rd)n is a linear (3, δ)-LCC and n ≥ (1/δ)ω(1), then

d = dim(V ) ≤ n1/2−λ
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3 Proof overview: ‘Cluster and Restrict’ paradigm

From a high level, our proof is divided into two conceptually distinct steps:

1. Clustering step: Show that the triples used in the matchings Mv, v ∈ V are ‘clustered’ in
some precise sense (described below).

2. Restriction step: Use the clustering to find a large subset of V that has low dimension. The
name of this step is due to the fact that it uses a random restriction argument (projecting a
random subset to zero).

Combining these two step (in Lemma 10.1) we get that V must have a large subset (of size
roughly Ω(n)) with low dimension (at most n1/2−λ). Using this to prove a global dimension bound
on V (as in Theorem 1) is done using a standard amplification lemma (Lemma 10.2) similar to that
in [BDWY11, BDSS11]. For simplicity, we will use big ‘O’ notation to hide constants depending
on δ (only for this overview).

We now describe each of these steps in more detail. The fact that V is a code over R is only
used in the clustering step. The restriction step works over any field, provided that the triples are
already clustered. A recurring theme in the proof is that we are always free to assume that V does
not have a large subset of low dimension. Another recurring operation is ‘mapping a subset U of
V to zero’. By this statement we mean: pick a linear map A whose kernel is span(U) and apply
it to all the elements of V . We will use the simple fact that, if dim(U) = r and dim(V ) = d then
dim(A(V )) is at least d− r, where A(V ) is the list of vectors A(v), v ∈ V .

3.1 Clustering Step:

The clustering step is given by Lemma 8.2 which we state now in an informal form. We will
elaborate below on the two conditions necessary in the lemma. Recall that V is associated with n
3-matchings Mv, v ∈ V used in the decoding.
Lemma 8.2. [Informal] Suppose V is a (3, δ)-LCC that satisfies the ‘well-spread’ condition
and the ‘low triple multiplicity’ condition and suppose that d > n1/2−λ. Then there are subsets
S1, . . . , Sm ⊂ V (not necessarily disjoint) so that

1. For each i ∈ [m], |Si| ≤ O(n1/2+λ).

2. Ω(n1/2−λ) ≤ m ≤ O(n1/2+λ).

3. Each triple in each matching Mv has two of its elements in one of the sets Si.

Before we explain the two conditions in the lemma of being ‘well-spread’ and having ‘low triple
multiplicity’, notice that the existence of sets S1, . . . , Sm as above is something that does not hold
for a ‘typical’ family of Ω(n2) triples. In fact, if the triples were chosen at random there would not
be such sets with probability close to one. Referring to the sets Si as ‘clusters’ is also justified by
the fact that they actually form clusters in Rd (i.e., they are all correlated with some fixed point).
This geometric fact, however, is not used anywhere in the proof– all we need is the combinatorial
structure. We now explain the two conditions on the code V mentioned in the lemma:

• Well-spread condition: The vectors v1, . . . , vn comprising V should be ‘well-spread’. Ob-
serve that WLOG by a suitable scaling to each vector, we can assume that the vectors

5



v1, . . . , vn are unit vectors, and we will make this assumption. Formally, we require that for
every unit vector w ∈ Rd we have

∑
i∈[n]〈vi, w〉2 ≤ O(n1/2+λ). This means, in particular, that

every small ball can contain at most O(n1/2+λ) vectors. Clearly, a general LCC V does not
have to satisfy this condition. For example, if V has a large subset that lies in low dimension,
such a statement cannot hold (using pigeon hole argument on the unit circle in low dimen-
sion). We are able, however, to reduce to this case using Lemma 6.1, which uses a powerful
result of Barthe (Lemma 5.1) that is developed in Section 5. Roughly speaking, Barthe’s
theorem can be used to show that, unless V has a large subset in low dimension, there is
an invertible linear map M on Rd so that, if we replace each vi with Mvi/‖Mvi‖, the well-
spread condition is satisfied. The proof of this result (part of which appear in Section 5) uses
tools from convex geometry. We derive a particularly convenient form of Barthe’s theorem
as Theorem 6.5 which might be of independent interest.

• Low triple-multiplicity condition: This condition requires that a single triple does not
appear in ‘too many’ (roughly nO(λ)) different matchings. In Section 7 we prove Lemma 7.2
which shows how to reduce to this case, assuming V does not have a large low dimensional
subset. The reduction uses the fact that if a single triple is used in too many matchings, then
projecting the elements in this triple to zero causes many other points to go to zero. If a
point v is mapped to zero as a result, and if v is used in many triples (say Ω(n)) all of these
triples ‘become’ pairs when v maps to zero. Using this observation, we show that we can
send a relatively small number of points to zero and construct a 2-query locally decodable
code (LDC) of relatively high dimension. We then apply the known bounds for 2-query LDCs
(these are variants of LCCs and described in Section 4) to get a contradiction. This reduction
is also field independent and does not use any properties of the real numbers.

The main observation leading to clustering is that we can assume, w.l.o.g that all triples
(i, j, k) ∈ Mv are so that the three vectors vi, vj , vk are almost orthogonal to v. This follows
directly from the ‘well spread’ condition by upper bounding the number of vectors correlating with
v and discarding the corresponding triples from Mv (for each v ∈ V ). Once we have this condition,
we observe that since v, vi, vj , vk are linearly dependent and, since v is not correlated with the other
three vectors, we must have that vi, vj , vk are close to being in a two dimensional plane (recall that
these are all unit vectors). This means that in each triple there must be two elements that are
correlated with each other! This is already a non trivial fact, in particular since we know (by the
well spread condition) that each point cannot be correlated with many other points.

Proceeding with a more careful analysis of the different types of triples that can arise, and using
some graph theoretic arguments, we arrive at the required clusters. In this step we use the bound
on the maximum triple multiplicity.

Note that the clustering lemma implies that there are many pairs in V ×V that appear in many
triples. This is due to the simple upper bound of n1.5+O(λ) on the total number of possible pairs in
all of the clusters S1, . . . , Sm and the fact that together they cover pairs from a quadratic number
of triples. This should be contrasted with the results of [BDWY11, DSW12] which prove strong
lower bounds for q-LCC’s (for any constant q) in which every pair is in a bounded number of triples
(these are called ‘design’ LCCs).
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3.2 Restriction Step:

The restriction step (given in Lemma 9.1) shows that if V satisfies the clustering condition (given
in Lemma 8.2) then it contains a large subset in low dimension. We now state a simplified form of
this lemma.
Lemma 9.1. [Informal] Let F be a field. Let V = (v1, . . . , vn) ∈ (Fd)n be a (3, δ)-LCC with
matchings Mv, v ∈ V . Suppose there exists sets S1, . . . , Sm ⊂ [n] as in Lemma 8.2, clustering the
triples in the matchings Mv. Then, there is a subset V ′ ⊂ V of size |V ′| ≥ (δ/2)n and dimension
at most n1/2−λ.

This step is called the ‘restriction step’ since it uses the ‘clusters’ S1, . . . , Sm found in the
clustering step to show (Lemma 9.2) that there is a small set U ⊂ V (of size roughly n1/4+7λ) such
that, projecting all elements of U to zero, reduces the dimension of V to at most n10λ. This will
imply a dimension bound of n1/4+7λ +n10λ on the initial dimension of V (the reason we do not get
a n1/4+7λ upper bound on the dimension of V is due to the clustering step).

The starting point for the proof of this lemma is the following simple observation: If v is spanned
by a triple (vi, vj , vk), then projecting two elements of that triple, say vi, vj , to zero makes the two
vectors v, vk proportional to each other (this uses the fact that v is not spanned by any proper
subset of the triple, and we can easily reduce to this case). Now, suppose that there are t triples
in the code that have at least two element in U . Then projecting U to zero makes makes t pairs
of vectors proportional to each other (as in the v, vk example). Consider the graph on vertex set
V in which we add an edge for each proportional pair v, vk obtained by sending a pair vi, vj ∈ U
in a triple (vi, vj , vk) ∈ Mv to zero. Since the property of being proportional to each other is an
equivalence relation on Rd, we can bound the dimension of V after projecting U to zero by the
number of connected components of the graph.

This leaves us with the task of finding a set U so that the resulting graph has at most n10λ

components. To find such a U we use a probabilistic argument. We will pick U at random according
to a particular distribution and then argue that the expected number of connected components is
small. To pick the random U we proceed in r ∼ n4λ steps as follows: In each step pick one of
the clusters Si at random and then pick a random subset of Si of size ∼ n1/4+3λ at random. The
union of these sets will be U . The upper bound on the expected number of components is derived
by considering the (expected) reduction in the number of connected components in each of the r
steps. Consider some connected component and let v be some vector in it. We can assume the
component is not too large, since the number of large components is trivially bounded (large being
close to n1−λ). Since each Mv is a matching, the random choice of the vectors in the i’th step will
(with good probability) add an edge to v with a neighbor that is not likely to land in the connected
component containing v. Hence, with good probability the connected component will ‘merge’ with
another component. Carefully analyzing this process gives us the required bound.

3.3 Proof Organization

We begin with some general preliminaries and notations in Section 4. In Section 5 we describe
(and sketch the proof of) Barthe’s theorem which is used in Section 6 to reduce to the case that
the points in V are well-spread. In Section 7 we show how to reduce to the case that V has low
triple multiplicities. Section 8 contains the proof of the clustering step and Section 9 contains the
proof of the restriction step. Finally, in Section 10 we show how to put all the ingredients together
and prove Theorem 1.
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4 General Preliminaries

4.1 Choice of notation

Lists vs. multisets: The reason we are treating V as a list and not as a set is that V might have
repetitions. For instance u and v might be distinct elements in the list V , but might correspond to
the same vector in Fd. The repetition corresponds to the fact that there might be repeated columns
in the generator matix of the code, which may potentially make the property of local correction
easier to satisfy. Indeed in the recent lower bounds for 2-query LCCs [BDSS11, BDWY11], handling
the fact that there might be repetitions added significant complexity to the proofs of the lower
bounds. In the current paper too we deal with repetitions by treating V as a list. An equivalent
treatment would be to treat V as a multiset, and we make no distinction between these notions.
We think of a multiset as an ordered list of elements which might contain repeated elements. If A
is a multiset/list, we call B a subset of A if B is another multiset/list obtained by taking a subset
of A. We will say that B and C are disjoint subsets of A if they are both obtained from sub-lists
on disjoint subsets of the indices. When referring to the size of a multiset we will always count
the number of elements with multiplicities (unless we state explicitly that we are counting distinct
elements).

Although we defined a matching to be a set of tuples in [n], when we are dealing with a
specific list V = (v1, . . . , vn), we might identify a tuple (j1, . . . , jq) of a matching with the tuple
(vj1 , . . . , vjq), and we use these two notions interchangably. Moreover, a matching Mv denotes the
matching corresponding to a particular element v ∈ V , and if u and v are different elements of V ,
even if they correspond to the same vector in Fd, then Mu and Mv could be different matchings.

4.2 Basic operations on LCCs

For a list V ∈ (Rd)n we denote by span(V ) the subspace spanned by elements of V and by dim(V )
the dimension of this span.

The following simple claim shows that a sufficiently large subset of an LCC is also an LCC.

Claim 4.1. If V = (v1, . . . , vn) ∈ (Fd)n is a (3, δ)-LCC and U ⊂ V is of size |U | ≥ (1 − δ/2)n
then U is a (3, δ/2)-LCC of the same dimension as V . Moreover, if Mv, v ∈ V are any matchings
used in the decoding of V then we can take the matchings for the new code U to be subsets of the
old matchings.

Proof. Observe that in each matching Mv, there are at most (δ/2)n triples that contain an element
outside U . Thus, in U we could construct matchings of size (δ/2)n ≥ (δ/2)|U |. The claim about
the dimension follows from the fact that U contains triples spanning all of the elements of V (not
just those in U).

Another simple observation is that applying an invertible linear map to the elements of V
preserves the property of being an LCC.

Observation 4.2. If V = (v1, . . . , vn) ∈ (Rd)n is a (3, δ)-LCC then, for any invertible linear map

M : Rd 7→ Rd the list V̂ = (v̂1, . . . , v̂n) ∈ (Rd)n, with v̂j =
Mvj
‖Mvj‖ , is also a (3, δ)-LCC.
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4.3 Lower bounds for 2-query LDCs

One of the ingredients in the proof will be a strong (exponential) lower bound on the length of
linear 2-query Locally Decodable Codes (LDCs), which are weaker versions of LCCs. As with LCCs
there are two ways of defining LDCs.

Definition 4.3 (linear q-LDC, decoder definition). A linear (q, δ)-LDC over a field F is a linear
d-dimensional subspace U ⊂ Fn, and a set of d coordinates j1, j2, . . . jn ∈ [n] such that the projection
of U on to those d coordinates is full dimensional7, and such that there exists a randomized decoding
procedure D : Fn × [d] 7→ F with the following properties:

1. For all x ∈ U , for all i ∈ [d] and for all y ∈ Fn with w(y) ≤ δn we have that D (x+ y, i) = xji
with probability at least 3/4 (the probability is taken only over the internal randomness of D).

2. For every y ∈ Fn and i ∈ [d], the decoder D(y, i) reads at most q positions in y.

Let {e1, e2, . . . , ed} be the set of standard basis vectors in Rd.
As with LCCs, taking the rows of the generating matrix (and possibly applying an invertible

linear map that sends them to the eis) allows us to move to the geometric form. This might require
us to replace δ with δ/q.

Definition 4.4 (linear q-LDC, geometric definition). Let V = (v1, . . . , vn) ∈ (Fd)n be a list of n
vectors spanning Fd. We say that V is a linear (q, δ)-LDC in geometric form if for every i ∈ [d]
there exists a q-matching Mi in [n] of size ≥ δn such that for every q-tuple {vj1 , vj2 , . . . , vjq} ∈Mi

it holds that ei ∈ span{vj1 , vj2 , . . . , vjq}. We denote by d = dim(V ).

Theorem 4.5 (lower bounds for 2-LDC [DS06]). Let δ ∈ [0, 1], F be a field, and let V =
(v1, . . . , vn) ∈ (Fd)n be a linear (2, δ)-LDC in geometric form. Then

n ≥ 2
δd
16
−1.

4.4 Codes in regular form

In the restriction step, it is convenient for us to assume that for each triple (vi, vj , vk) ∈ Mv each
element of the triple is “used” in decoding to v. Indeed in Claim 4.7, we show how we can easily
reduce to this case provided that no large subset of V is contained in a low dimnesional space.
More precisely, for x, y, z ∈ Rd, let us denote by span∗{x, y, z} the set of all elements of the form
αx+ βy + γz with α, β, γ ∈ R, such that α, β, γ are all nonzero.

Definition 4.6. Let V = (v1, . . . , vn) ∈ (Fd)n be a (3, δ)-LCC with decoding matchings Mv, v ∈ V .
We say that V (with these matchings) is in regular form if, in each triple (x, y, z) ∈ Mv we have
that v ∈ span∗{x, y, z}.

,

Claim 4.7. Let V = (v1, . . . , vn) ∈ (Fd)n be a (3, δ)-LCC so that every subset U ⊂ V of size
|U | ≥ (δ/2)n has dimension at least ω((1/δ) log(n)). Then, there exists a (3, δ/4)-LCC V ′ ⊂ V of
size n′ ≥ (1− δ/2)n, and dimension d′ = d, that is in regular form. Moreover, given any matchings
Mv for the code V we can take the new (regular) matchings M ′v for V ′ to be sub-matchings of the
original ones.

7If the LDC was systematic, then the first d coordinates would suffice.
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Proof. Call a triple (x, y, z) ∈ Mv bad if there is a proper subset of it that spans v, i.e. v 6∈
span∗{x, y, z}. If there were (δ/2)n points v ∈ V , each with at least (δ/10)n bad triples in Mv, then
we could use these bad triples to construct a (2, δ/10)-LDC of size ≤ n decoding ω((1/δ) log(n))
linearly independant elements of V . This would give a contradiction using Theorem 4.5 and the
assumption on the dimension of any set of size (δ/2)n in V . Therefore, there are at most (δ/2)n
points v ∈ V with many (≥ (δ/10)n) bad triples. Throwing away this set, and removing all triples
containing them (as well as all bad triples from the other matchings) gives us the code V ′ a required
(as in Claim 4.1).

5 Barthe’s theorem

The main purpose of this section is to derive Lemma 5.1, a result of F. Barthe [Bar98] which,
given a set of points sufficiently close to being in general position, finds a linear transformation
that ‘moves’ these points so that their ‘directions’ point in a close to uniform way. More precisely,
for a set U = (u1, . . . , un) ∈ (Rd)n let B(U) be the set of all subsets of [n] of size d such that the
corresponding vectors of U form a basis of Rd. Suppose that there is a distribution µ supported
on B(U) such when sampling a random basis from µ, each element of U is chosen with some good
probability. Then there is an invertible linear transformation such that after normalizing, the new
points are “approximately isotropic”. This result is formalized in Lemma 5.1 which we state below:

Lemma 5.1. Let U = (u1, . . . , un) ∈ (Rd)n. Let S ⊆ [n], and suppose µ is a distribution supported
on B(U) such that for all j ∈ S

α ≤ Pr
I∼µ

[j ∈ I]

Then, there exists an invertible linear map M : Rd 7→ Rd so that, denoting ûj =
Muj
‖Muj‖ , we have

for all unit vectors w ∈ Rd ∑
j∈S
〈ûj , w〉2 ≤

2

α

Observe that if the vectors are in general position then the uniform distribution on distinct
d-tuples gives α = d/n, in which case we would get∑

j∈[n]

〈ûj , w〉2 ≤
2n

d
.

One can just assume the lemma above which follows in a straightforward way from from [Bar98],
and skip to the next section. However for completeness, we present a proof here. Before we give
the proof, we first set up some notation.

For a finite set S, a distribution supported on S is a function µ : S 7→ [0, 1] so that
∑

x∈S µ(x) =
1. For two vectors u, v ∈ Rd we denote by u ⊗ v the tensor product of u and v, namely the d × d
matrix with entries Aij = uivj . We denote by Id×d the d×d identity matrix. For u ∈ Rd we denote
by ‖u‖ the Euclidean (or `2) norm.

Definition 5.2 (B(U), K(U)). Let U = (u1, . . . , un) ∈ (Rd)n be a list of n points. Let I ⊆ [n]. We
denote by UI = (ui)i∈I the sub-list of U with indices in I. We denote by

B(U) = {I ⊂ [n] | UI is a basis of Rd}
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the set of index sets corresponding to sub-lists of U of length d which are linearly independent (and
so span Rd). For each I ⊂ [n] we let 1I ∈ Rn denote the indicator vector of the set I. Finally we
denote by K(U) ⊂ Rn the convex hull of the vectors 1I for all I ∈ B(U). We denote by K(U)o the
relative interior of K(U)8.

Claim 5.3 (Properties of K(U)). Let U = (u1, . . . , un) ∈ (Rd)n be a list of n points spanning Rd.
Let µ be a distribution supported on B(U). For each j ∈ [n], let γj ∈ [0, 1] be the probability that
j ∈ I, when I ⊂ [n] is sampled according to µ. Then γ = (γ1, . . . , γn) is in K(U).

Proof. The vector γ is easily seen to be equal to the convex combination∑
I∈B(U)

µ(I) · 1I .

Theorem 5.4 ([Bar98]). Let U = (u1, . . . , un) ∈ (Rd)n be a list of n points spanning Rd and let
γ = (γ1, . . . , γn) ∈ K(U)o. Then there exists a real invertible d × d matrix M such that, denoting

ûj =
Muj
‖Muj‖ , we have

n∑
j=1

γj · (ûj ⊗ ûj) = Id×d (1)

Proof. We will show how the proof follows from one of the propositions proved in [Bar98] (whose
proof we will not repeat here). The idea is to define a certain optimization problem parametrized
by γ and to show that the maximum is achieved for all γ ∈ K(U). Then, the matrix M will arise
from equating the gradient to zero at the maximum and solving the resulting equations.

We start be defining the optimization problem. For t ∈ Rn we define

X = X(t) =

n∑
j=1

etj · (uj ⊗ uj).

Notice that X(t) has a positive determinant for all t ∈ Rn, since U spans Rd. Let f : Rn×Rn 7→ R
be defined as

f(γ, t) = 〈γ, t〉 − ln det(X(t)).

The optimization problem is defined as

φ∗(γ) = sup
t∈Rn

f(γ, t).

We now state a claim from [Bar98] which give sufficient conditions for the supremum φ∗(γ) to be
realized.

Claim 5.5 (Rephrased from Proposition 6 in [Bar98]). If γ ∈ K(U)o then the supremum φ∗(γ) is
achieved. That is, there exists t∗ ∈ Rn such that f(γ, t∗) = φ∗(γ).

8The relative interior of a set is a subset of the points of the set that are not on the boundary of the set, relative
to the smallest subspace containing the set
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Let t∗ ∈ Rn be a maximizer given by the claim. We can now use the fact that the partial
derivatives ∂f(γ,t)

∂tj
all vanish at the point t∗. Recall that d

ds ln det(A) = tr
(
A−1 d

dsA
)

at all points

where A is invertible [Lax07, Ch. 9, Thm. 4]. Taking the derivative of f at t∗ then gives:

0 =
∂f(γ, t)

∂tj
(t∗) = γj − tr

(
X(t∗)−1et

∗
j (uj ⊗ uj)

)
.

Since X(t∗)−1 is positive definite, there exists a symmetric matrix M so that M2 = X(t∗)−1.
Plugging this into the last equation and using properties of the trace function, we get:

0 = γj − et
∗
j ‖Muj‖2.

This means that

M−2 = X(t∗) =
n∑
j=1

γj
‖Muj‖2

· (uj ⊗ uj) =

n∑
j=1

γj ·
(

uj
‖Muj‖

⊗ uj
‖Muj‖

)
.

Multiplying by M from both sides we get

Id×d =
n∑
j=1

γj ·
(

Muj
‖Muj‖

⊗ Muj
‖Muj‖

)
as was required.

Proof of Lemma 5.1. Let γ ∈ Rn be such that γj = PrI∼µ[j ∈ I] for all j ∈ [n]. By Claim 5.3,
γ ∈ K(U). This means we can find γ′ ∈ K(U)o of distance at most λ from γ for all λ > 0. Hence,
we can choose λ sufficiently small so that α/2 ≤ γ′j for all j ∈ S. Using Theorem 5.4 we get that
there exists an invertible M so that

Id×d =
n∑
j=1

γ′j(ûj ⊗ ûj).

Multiplying by the column vector w from the left and by the row vector wt from the right we get
that

1 = 〈w,w〉 =
n∑
j=1

γ′j〈ûj , w〉2 ≥ (α/2)
∑
j∈S
〈ûj , w〉2.

This completes the proof.

6 Reducing to the well-spread case

In this section we prove a lemma saying that, when analyzing an LCC V = (v1, . . . , vn) over R,
we can assume that the elements of V are unit vectors pointing in ‘well spread’ directions. The
precise form of ‘well spread’ is that given by Barthe’s theorem (Lemma 5.1). More formally, the
lemma will say that any list of vectors can be transformed into ‘well-spread’ list as long as it does
not contain a large low dimensional subset. We formalize this result in Theorem 6.5. Below we
state a lemma which basically follows as a corollary of the above theorem when the original list of
vectors is an LCC. We first state and prove this lemma.
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Lemma 6.1. Let V = (v1, . . . , vn) ∈ (Rd)n be a (3, δ)-LCC be so that any subset V ′ ⊂ V with
|V ′| ≥ (δ/4)n satisfies dim(V ′) > 4βd. Then, there exists a subset U = (u1, . . . , un′) ⊂ V that is
a (3, δ/2)-LCC with |U | = n′ ≥ (1 − δ/2)n, and an invertible linear map M : Rd 7→ Rd so that,

denoting ûj =
Muj
‖Muj‖ , we have for all unit vectors w ∈ Rd.∑

j∈[n′]

〈ûj , w〉2 ≤
n

βd
.

Recall that (Observation 4.2) applying an invertible linear map to the elements of an LCC V
preserves the property of being an LCC. Hence, if we are aiming to prove that a (3, δ)-LCC V has
a large low dimensional subset, we could use Lemma 6.1 to reduce to the case that the points of V
are ‘well-spread’.

We will prove Lemma 6.1 using Lemma 5.1. Recall that, Lemma 5.1 provides us with sufficient
conditions under which a linear map M as in the lemma exists. Namely, that there exists a
distribution µ on spanning d-tuples of V which hits each element in V with probability not too
small. We will show that, if this condition does not hold (that is, if such a µ does not exist), we can
find a large low dimensional subset V ′. The high level idea is to consider the greedy distribution
on d-tuples that is sampled as follows: iteratively pick a random unspanned element from V and
add it to the spanning set until we cover all of V . If this distribution gives low probabilities for
many elements of V then we show that it must be due to the fact that these elements lie in some
low dimensional subspace. The following definition will be crucial to this argument.

Definition 6.2 ((η, τ)-independent set). Let U = (u1, . . . , un) ∈ (Rd)n be a list of n points spanning
Rd. We say that U is (η, τ)-independent, if there exists a distribution µ supported on B(U), and a
set S ⊆ [n] with |S| ≥ (1− η)n such that for all j ∈ S

τ
d

n
≤ Pr

I∼µ
[uj ∈ I]

Since every I ∼ µ has exactly d elements, observe that for every distribution µ,

Ej [ Pr
I∼µ

[uj ∈ I]] = d/n.

Moreover, if the points were in “general position”, i.e. every d of the points were linearly inde-
pendent, then by taking the distribution µ to be the uniform distribution on d-tuples with distinct
elements, we would get a (0, 1)-independent set.

Lemma 6.3. Let U = (u1, . . . , un) ∈ (Rd)n. If U is not (η, τ)-independent, then there exists a
subspace W of dimension at most 2τd which contains at least ηn/2 elements of U .

Proof. Consider the following distribution µ supported on B(U) that is sampled as follows: For i
going from 1 to d, sample u′i uniformly at random from U \ span(u′1, u

′
2, . . . u

′
i−1). Since U is not

(η, τ)-independent, there exists a set T ⊂ [n], with |T | ≥ ηn, such that for all j ∈ T

τ
d

n
≥ Pr

I∼µ
[uj ∈ I].

For t ≥ 2τd, uniformly sample t linearly independent vectors u∗1, . . . , u
∗
t from U and let W be

the subspace they span. Observe that the distribution on u∗1, . . . , u
∗
t is the same as that obtained

by taking a sample from µ and keeping only the first t vectors in the list. Call this distribution
µ(t).
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Claim 6.4. For every vector u ∈ T , Pr[u ∈W ] ≥ 1/2.

Proof of Claim 6.4. Let u ∈ T . Let A be the event that u ∈ (U \W )∪{u∗1, . . . , u∗t }. Let p = Pr[A].
Observe that, as long as the vector u is not picked, the ith vector in the distribution µ(t) | A is
sampled uniformly at random from (U \ span(u, u∗1, u

∗
2, . . . u

∗
i−1)) ∪ u. Therefore,

Pr
I∼µ(t)|A

[u ∈ I] ≥ 1−
t∏
i=1

(1− 1/n− i+ 1) = t/n ≥ 2τd/n.

However,
Pr

I∼µ(t)|A
[u ∈ I] = Pr

I∼µ(t)
[u ∈ I]/Pr[A] ≤ Pr

I∼µ
[u ∈ I]/Pr[A] ≤ τd/nPr[A].

Thus
p = Pr[A] ≤ 1/2.

Hence it follows that Pr[u ∈W ] ≥ 1/2.

Now the lemma easily follows, since Claim 6.4 implies that the expected number of vectors in
T that lie in W is at least (1/2)|T | ≥ ηn/2. Thus there exists a fixed subspace W of dimension at
most 2τd which contains at least ηn/2 vectors of U .

Proof of Lemma 6.1. Applying Lemma 6.3 we get that V must be (δ/2, 2β)-independent. Other-
wise, V would contain a subset V ′ of size (δ/4)n and dimension at most 4βd (contradicting the
assumption in the lemma). Hence, there exists a distribution µ on B(U) and a set S ⊂ [n] with
|S| ≥ (1− δ/2)n such that for all j ∈ S

2β
d

n
≤ Pr

I∼µ
[j ∈ I].

Let U = VS = {vi | i ∈ S} = (u1, . . . , un′) with n′ = |S|. Lemma 5.1 now implies that there there

exists an invertible linear map M so that, denoting ûj =
Muj
‖Muj‖ , we have for all unit vectors w ∈ Rd∑

j∈S
〈ûj , w〉2 ≤

n

βd

Notice that U is a (3, δ/2)-LCC since the complement of U can intersect at most δn/2 triples from
each matching in V . This completes the proof of the lemma.

6.1 A convenient form of Barthe’s theorem

The proof of Lemma 6.1 actually gives a more general result (not mentioning LCCs) that might be
of independent interest.

Theorem 6.5. Let V = (v1, . . . , vn) ∈ (Rd)n with dim(V ) = d be so that any subset U ⊂ V of
size |U | ≥ αn has dim(U) ≥ βd. Then, there exists an invertible linear map M : Rd 7→ Rd and a
subset S ⊂ V of size |S| ≥ (1−2α)n so that, if we denote by v̂ = Mv

‖Mv‖ , we have for all unit vectors

w ∈ Rd ∑
v∈S
〈v̂, w〉2 ≤ 4n

βd
.
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Proof. The conditions on V and Lemma 6.3 imply that V is (2α, β/2)-independent. Then, using
Lemma 5.1, we get the map M and a set S as required.

7 Reduction to the low triple-multiplicity case

In this section we prove a lemma showing that, when analyzing a (3, δ)-LCC V over any field F, it
is enough to consider codes in which the matchings Mv, v ∈ V used in the decoding are such that
each triple appears in a small number of matchings (otherwise we can find a large low dimensional
subset).

Definition 7.1 (Triple multiplicity). We say that a (3, δ)-LCC V with matchings Mv, v ∈ V satisfy
triple multiplicity at most r if each triple in each Mv appears in at most r of the matchings.

Lemma 7.2. Let F be a field, n ≥ (1/δ)ω(1) and β > 0 a constant. Let V = (v1, . . . , vn) ∈ (Fd)n
be a (3, δ)-LCC with matchings Mv, v ∈ V . Suppose that any subset V ′ ⊂ V with |V ′| > (δ2/36)n
satisfies dim(V ′) > n1/2−β/4. Then, there exists a (3, δ/24)-LCC U ⊂ V with |U | ≥ (δ/4)n and
matchings M ′v, v ∈ U so that U (with the matchings M ′v) has triple multiplicity at most nβ and the
matchings M ′v are subsets of the corresponding matchings Mv.

Proof. We first reduce to the situation where every element participates in many triples. Unless
mentioned otherwise, we will count triples with multiplicity. Let 0 < γ = δ2/6 be a real number.
Iteratively delete vertices from V that participate in < γn triples (counted with multiplicity), and
the triples they participate in. Let B ⊆ V be be the subset of deleted elements, and let V ′ = V \B.
Since each deleted vertex only gets rid of γn triples, the total number of triples which include some
vertex of B is at most γn2. Thus each element in V ′ participates in at least γn triples, and at least
(δ − γ)n2 > (2δ/3)n2 of the triples in V are supported entirely in V ′. Call this set of triples T ′.

Claim 7.3. |V ′| > 2δn.

Proof. This is because there must be some v ∈ V with at least (2δ/3)n triples in its matching that
still survive in T ′ – if this was not the case, we would have |T ′| < (2δ/3)n2. Since the triples in the
matching corresponding to v are disjoint, |V ′| ≥ 2δn.

Let B′ ⊂ V ′ be the subset of points in V ′ which have less than δn/2 of the triples in their
matching supported in V ′. Let V ′′ = V ′ \B′.

Claim 7.4. |V ′′| ≥ δn, and V ′′ is a (3, (δ/6)(n/|V ′′|))-LCC.

Proof. There can be at most δn/3 elements in V ′ such that δn/2 triples in their matchings include
an element from B – if there were more than that, then the total number of triples including a
element from B would be greater than δn/3 · δn/2 ≥ δ2n2/6 ≥ γn2, which is not possible. Thus, at
least |V ′| − δn/3 of the elements in V ′ have a matching of size at least δn/2 decoding them, lying
wholly within V ′. Thus |B′| ≤ δn/3. Hence |V ′′| ≥ |V ′| − |B′| ≥ |V ′| − δn/3 > δn. Moreover, for
each v ∈ V ′′, it has a matching of size at least δn/2− |B′| ≥ δn/6 supported in V ′′. Thus V ′′ is a
(3, (δ/6)(n/|V ′′|))-LCC. Let T ′′ be the union of all the triples in the LCC V ′′.

We will call a triple in T ′′ a high multiplicity triple if it has multiplicity at least nβ in T ′′

(otherwise we will call it a low multiplicity triple).
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Claim 7.5. At least (1 − δ/24)|V ′′| of the elements in V ′′ have a matching of size (δ/12)|V ′′| of
low multiplicity triples decoding them.

Proof. Suppose the claim does not hold. That is, at least (δ/24)|V ′′| of the elements in V ′′ have at
least half of their matchings (in T ′′) composed of high multiplicity triples.

We now delete all the triples of low multiplicity from T ′′. Since there are at least (δ2/288)|V ′′|2
triples (counting multiplicity) of multiplicity at least nβ in the LCC V ′′, by averaging, there exists
v ∈ V ′′ that participates in at least (δ2/288)|V ′′| triples (counted with multiplicity), and each of
the triples has multiplicity at least nβ. Observe that since all these triples contain v, no two triples
are part of a matching corresponding to the same element.

By greedily choosing distinct triples containing v of highest multiplicity, one can pick a set T ∗

of distinct triples of size at most n1/2−β/2 such that together they span at least n1/2+β/2 distinct
elements of V ′′ (since n1/2+β/2 ≤ (δ2/288)|V ′′|, and each triple of multiplicity nβ spans at least nβ

distinct elements, and distinct triples sharing an element must span distinct elements).
Let L be a linear transformation of co-rank at most 3n1/2−β/2 which maps each element partic-

ipating in a triple of T ∗ to 0. Since all the elements spanned by the triples of T ∗ also get mapped
to 0, at least n1/2+β/2 elements of V ′′ get mapped to 0 under L. Let this set be V ∗. Recall that
each element of V ′ (and hence of V ∗) participates in γn triples which together decode γn distinct
elements of V .

Let S ⊂ V be the subset of all elements whose matching contains at least (γ/6)n1/2+β/2 triples
that each contain some element from V ∗. Since the total number of triples containing some element
from V ∗ is at least |V ∗| · γn/3, by a simple counting argument we get that |S| ≥ (γ/6)n.

Claim 7.6. dim(S) ≤ 2n1/2−β/3 < n1/2−β/4.

Proof. If possible let dim(S) > 2n1/2−β/3, then dim(L(S)) > 2n1/2−β/3 − 3n1/2−β/2 > n1/2−β/3.
Moreover, since L sends V ∗ to 0, all triples containing some element of V ∗ now have at most 2
nonzero elements, and thus the triples can be replaced by pairs. Thus L(V ) is a (2, (γ/6)n−1/2+β/2)-
LDC of size n, decoding to linearly independent vectors spanning at least n1/2−β/3 dimensions.
Using Theorem 4.5 (lower bound for 2-query LDCs) we get that

n ≥ 2
γ/6nβ/6

16
−1.

Since n ≥ (1/δ)ω(1), γ = poly(δ) and β = Ω(1), this is a contradiction (for large enough n).

Thus, the set S has size at least (γ/6)n = δ2n/36 and dimension at most n1/2−β/4, contradicting
the assumption in Lemma 7.2. This completes the proof of Claim 7.5

Applying Claim 7.5, we see that one can delete all triples of multiplicity greater than nβ and
delete at most δ|V ′′|/24 elements to get a subset U such that each element of U has a matching of
δ|U |/24 triples decoding to it where the triples are supported in U . Thus U is a (3, δ/24)-LCC with
|U | ≥ δn/4, and with all triples of multiplicity at most nβ. This completes the proof of Lemma 7.2.
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8 LCCs over R can be clustered

In this section we prove the ‘clustering step’ described in the introduction.

Definition 8.1 (Clustering). Let S1, . . . , Sm ⊂ [n]. We say that a triple τ ∈
(

[n]
3

)
is clustered by

the family of sets S1, . . . , Sm if there exists i ∈ [m] so that |τ ∩Si| ≥ 2. If M is a multiset of triples,
we say that M is clustered by S1, . . . , Sm if every triple in M is clustered.

We prove the clustering result as a sequence of three lemmas. First we state the final clustering
lemma that will be used later in the proof of our main result.

Lemma 8.2 (Final clustering). Let n > (1/δ)ω(1) and let β > 0 be a constant. Let V =
(v1, . . . , vn) ∈ (Rd)n be a (3, δ)-LCC so that every subset U ⊂ V of size |U | ≥ (δ2/288)n has
dimension at least max{8δ6d, n1/2−β/4}. Then, there exists a (3, δ̂)-LCC V̂ = (v̂1, . . . , v̂n̂) ⊂ V of
dimension d̂ ≤ d, size n̂ ≥ (δ/10)n and δ̂ ≥ δ2/4 and sets S1, . . . , Sm ⊂ [n̂] so that

1. |Si| ≤ O(n̂/δ̂6d̂) for all i ∈ [m].

2. Ω(δ̂19d̂3/n̂1+2β) ≤ m ≤ O(n̂1+2β/δ̂10d̂).

3. If M̂v̂, v̂ ∈ V̂ are the matchings used to decode V̂ , then every triple in each M̂v̂ is clustered by
S1, . . . , Sm.

We will prove this lemma using the following lemma, which adds conditions on the given code.

Lemma 8.3 (Intermediate Clustering). Let n ≥ (1/δ)ω(1) and β > 0 a constant. Let V =
(v1, . . . , vn) ∈ (Rd)n be a (3, δ)-LCC with triple multiplicity at most nβ and so that for each unit
vector w ∈ Rd

n∑
j=1

〈vj , w〉2 ≤
n

δ6d
.

Let t = n
δ6d

and suppose that d > 108·200
δ8

. Then, there exist m subsets S1, . . . , Sm ⊂ V such that

1. |Si| ≤ O(t) for all i ∈ [m].

2. Ω(δn2−β/t3) ≤ m ≤ O(t · nβ/δ4).

3. If M = ∪v∈VMv is the multiset of all triples in all matchings used to decode V , then there
are at most δ2n2/100 triples in M that are not clustered by S1, . . . , Sm

To prove the intermediate clustering lemma we first prove a basic clustering lemma.

Lemma 8.4 (Basic Clustering). Let n, t, β, δ and V ∈ (Rd)n be as in Lemma 8.3 and let M be the
multiset of triples obtained by taking the union of all Mv, v ∈ V . Let M̄ ⊂ M be of size at least
δ2n2/100 and suppose that d > 108·200

δ8
. Then there exists a subset S ⊂ V with |S| ≤ O(t) and a

subset T ⊂ M̄ with |T | ≥ Ω(δ4n2−β/t) such that each triple in T contains at least two elements
from S.

The proofs of the two clustering lemmas (Basic Clustering and Intermediate Clustering), are
given below after some preliminaries. First, we show how they are used to prove Lemma 8.2.
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Proof of Lemma 8.2. At a high level, the proof follows by first applying Lemma 6.1 to get the ‘well
spread’ condition on the points in a large sub-LCC V ′ of V . Then, we use Lemma 7.2 on V ′ to get
a subcode V ′′ with low triple multiplicity (this does not ruin the ‘well spread’ condition by much).
Finally, we apply Lemma 8.3 on V ′′ to get clustering for almost all triples. The only reason why
one of these steps could fail is if we found a large low dimensional subset in V (which will contradict
our assumptions). A final refinement step, using Claim 4.1 shows the existence of a subcode V̂ as
required. The details follow.

Reducing to the well-spread case: We apply Lemma 6.1 on V , with β = 2δ6, to obtain a
subset V ′ of size n′ ≥ (1− δ/2)n so that V ′ is a (3, δ′ = δ/2)-LCC and so that for each unit vector
w ∈ Rd we have ∑

v′∈V ′
〈v′, w〉2 ≤ n

2δ6d
.

If we cannot apply Lemma 6.1, it means that there is a subset U in V of size |U | ≥ (δ/4)n and
dimension at most 8δ6d, which would contradict our assumptions.

Reducing to low triple multiplicity: We now apply Lemma 7.2 on the LCC V ′ to get a
(3, δ/48)-LCC V ′′ ⊂ V ′ of size n′′ ≥ (δ/8)n and with triple multiplicity at most (n′)β ≤ (n′′)2β. If we
cannot apply the lemma, it means that there is a subset U ⊂ V ′ of size |U | ≥ (δ′2/36)n′ ≥ (δ2/288)n
and dimension dim(U) ≤ (n′)1/2−β/4 ≤ n1/2−β/4, which would contradict our assumptions. Let
d′′ = dim(V ′′) and δ′′ = δ2/2. We can think of V ′′ as a (3, δ′′)-LCC over Rd′′ in which the ‘well
spread condition’ above can be written as∑

v′′∈V ′′
〈v′′, w〉2 ≤ n

2δ6d
≤ n′′

δ′′6d′′
,

for all unit vectors w ∈ Rd′′ (we took δ′′ = δ2/2 to compensate for the drop in n′′ in the above
inequality). Notice that moving from Rd to Rd′′ is not a problem since we can orthogonally project
all vectors on the span of V ′′ and maintain all inner products with all unit vectors.

Clustering: We can now apply Lemma 8.3 on V ′′ to find sets S1, . . . , Sm that cluster all but
(δ′′2/100)n′′2 of the triples in the decoding matchings of V ′′. With |Si| ≤ O(n′′/δ′′6d′′) for all
i ∈ [m] and (using t = n′′/δ′′6d′′)

Ω(δ′′19d′′3/n′′1+2β) ≤ m ≤ O(n′′1+2β/δ′′10 · d′′).

If we cannot apply the lemma it means that d′′ ≤ (1/δ′′)O(1), which would contradict our assump-
tions on V (since it would have a subset V ′′ of size n′′ ≥ (δ/8)n and dimension (1/δ)O(1) < n1/4).

Refinement: To complete the proof, observe that, there are at least (1− δ′′/10)n′′ points in V ′′

that have at least half of their matchings clustered by S1, . . . , Sm. Hence, we can use Claim 4.1
to find a (3, δ̂)-LCC V̂ ⊂ V ′′ of size n̂ ≥ (1 − δ′′/10)n′′ ≥ (δ/10)n with δ̂ ≥ δ′′/2 ≥ δ2/4 so that
the sets S1, . . . , Sm (restricted to indices in V̂ ) cluster all the triples in the matchings of V̂ . Notice
that, since d̂ = d′′, δ̂ = θ(δ′′) and n̂ = θ(n′′), the bounds on the sizes of the sets Si and on m
still hold (the difference in constants will be swallowed by the big ‘O’). This completes the proof
of Lemma 8.2.
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8.1 Preliminaries for the proofs of the clustering lemmas

We denote by ‖v‖ the `2 norm of a vector v. Notice that for two unit vectors u and v, ‖u− v‖2 =
2− 2〈u, v〉. We denote the correlation between two unit vector v, u as |〈v, u〉|.

Let V be as in Lemma 8.3 with matchings Mv, v ∈ V . The conditions of Lemma 8.3 (which we
will assume to hold for the rest of this section) tell us that for all unit vectors u ∈ Rd we have

n∑
j=1

〈vj , u〉2 ≤
n

δ6d
= t (2)

This gives the following useful claim:

Claim 8.5. For every unit vector u ∈ Rd we have

|{v ∈ V | |〈v, u〉| ≥ α}| ≤ t/α2.

We can also bound the number of points in V that correlate with a given plane:

Claim 8.6. Let P ⊂ Rd be a two dimensional subspace. We have

|{v ∈ V | |〈v, u〉| ≥ α for some unit vector u ∈ P}| ≤ (80/α3) · t

Proof. Let K = |{v ∈ V | |〈v, u〉| ≥ α for some unit vector u ∈ P}|. For each such v ∈ V let
u(v) ∈ P be a unit vector with |〈v, u(v)〉| ≥ α. Now, cover the unit circle in P with at most 20/α
balls9 of radius at most α/2. By a pigeon hole argument, one of these balls must contain at least
αK/20 of the points u(v). Now, the center of this ball must have correlation at least α/2 with all
the αK/20 corresponding v’s. Applying Claim 8.5 we get that K ≤ (80/α3)t.

For every unit vector u ∈ Rd, let

Cor(u) = {v ∈ V | |〈u, v〉| ≥ 1/104}.

For every v ∈ V , let M∗v ⊆Mv be defined as

M∗v = {(vi, vj , vk) ∈Mv | vi, vj , vk ∈ V \ Cor(v)}

be the subset of the triples decoding v where each vector in each triple has low correlation with v.
Intuitively, such triples must be close to a two dimensional plane and hence ‘almost’ dependent.

The following is an immediate corollary of Claim 8.5.

Claim 8.7. For every v ∈ V , |M∗v | ≥ |Mv| − 108t ≥ δn− 108t.

Let M∗ be the (multiset) union of all triples in M∗v for all v ∈ V . By Claim 8.7, M∗ has size at
least δn2 − 108tn.

The following proposition bounds the number of triples in M∗ containing a fixed pair of vertices.

Proposition 8.8. For all i 6= j ∈ [n], there are at most O(tnβ) triples (counting multiplicities) in
M∗ containing the pair (vi, vj).

9We consider balls in Rd
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Proof. We will show a bound of O(t) on the number of distinct triples containing (vi, vj). The
O(tnβ) bound will then follow by our assumption on the maximum multiplicity of triples in M
(and so also in M∗).

Let P = span{vi, vj}. Consider a triple (vi, vj , vk) containing vi, vj and suppose this triple
belongs to some matching M∗v . Let Π = span{vk, v} and observe that both planes P and Π (both
are indeed planes since the property of the LCC being regular implies the distinctness of the
points in a triple and the point they are used to decode to) are contained in the three dimensional
subspace span{vi, vj , vk}. Therefore, they must intersect in some unit vector w ∈ P ∩Π. Now, since
|〈vk, v〉| ≤ 10−4, a simple calculation shows that w must have correlation at least 1/10 with either
vk or v (since w belongs to their span and they are close to being orthogonal). To summarize,
we have shown that in every triple (vi, vj , vk) ∈ Mv, one of the vectors v, vk has correlation at
least 1/10 with the plane P . Now, the union of {v, vk} as we go over all distinct triples containing
{vi, vj} is at most O(t) by Claim 8.6. If the total number of distinct triples is r, then at least r/2
of the v’s will correlate with P or r/2 of the vk’s will correlate with P . In either case we see that
r/2 = O(t), and hence r = O(t).

Definition 8.9 (Triple types). We split the triples appearing in M∗ into two Types.

• A triple (vi, vj , vk) ∈ M∗ is defined to be of Type A if there exists a pair of vertices in the
triple, say (vi, vj), such that |〈vi, vj〉| ≥ 9/10.

• A triple (vi, vj , vk) ∈ M∗ is defined to be of Type B if |〈vi, vj〉| < 9/10, |〈vj , vk〉| < 9/10 and
|〈vi, vk〉| < 9/10

When we refer to a triple as Type A or B we will implicitly assume that this triple is in M∗.
We first state and prove three simple propositions that will be useful in the proof of the basic

clustering lemma. Below, we will sometimes refer to the elements of V as ‘vertices’.

Proposition 8.10. Let (vi, vj , vk) be a triple of Type B then either |〈vi, vj〉| ≥ 1/100 or |〈vi, vk〉| ≥
1/100.

Proof. Suppose in contradiction that 〈vi, vj〉 < 1/100 and 〈vi, vk〉 < 1/100.
Suppose the triple decodes to the vector u and by an appropriate orthogonal change of basis

(which does not change distances or inner products), let us assume that the vectors all lie in the 3
dimensional space spanned by the unit vectors e1, e2 and e3. We can also assume that u = e1, vi is
a linear combination of e1 and e2, and vj and vk are linear combinations of e1, e2 and e3.

Since the vectors in the triple are uncorrelated to u, their inner product with e1 has absolute
value at most 1/104. Since vi is a unit vector, 〈vi, e1〉2 + 〈vi, e2〉2 = 1 and hence |〈vi, e2〉| >
|〈vi, e2〉|2 ≥ 1− 1/108.

Also since |〈vi, vj〉| < 1/100 and |〈vi, vk〉| < 1/100, |〈vj , e2〉| < 1/100 × 108/(108 − 1) < 2/100.
Similarly |〈vk, e2〉| < 2/100. Also since vj is a unit vector, 〈vj , e1〉2 + 〈vj , e2〉2 + 〈vj , e3〉2 = 1 and
hence 〈vj , e3〉2 ≥ 1 − 1/108 − 4/104, implying that |〈vj , e3〉| ≥

√
99/100. Similarly |〈vk, e3〉| ≥√

99/100. Hence |〈vk, vj〉| ≥ 99/100, contradicting the property of being Type B.

Proposition 8.11. Suppose T is a set of m distinct triples of Type B, each sharing the pair (vi, vj).
Let S be the set of size m containing all the vertices of the triples in T except vi and vj. Then there
is a ball of radius at most 5/104 containing at least m/105 points of S.
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Proof. We will first show that every point of S is close to the subspace through vi and vj , and then
apply a pigeon hole argument.

Let vk ∈ S. Then (vi, vj , vk) is a triple of Type B, and in particular the triple is in M∗u for some
vertex u.

By an appropriate orthogonal change of basis (which does not change distances or inner prod-
ucts), we can assume that the vectors all lie in the 3 dimensional space spanned by the unit vectors
e1, e2 and e3. We can also assume that vi = e1, vj is a linear combination of e1 and e2, and u and
vk are linear combinations of e1, e2 and e3.

Since we have a triple of Type B, |〈vi, vj〉| < 9/10. Thus |〈vj , e1〉| < 9/10. Since 〈vj , e1〉2 +
〈vj , e2〉2 = 1, this implies that |〈vj , e2〉| > 2/5. Also since |〈u, vi〉| < 1/104 and |〈u, vj〉| <
1/104, thus |〈u, e1〉| < 1/104 and |〈u, e2〉| < 5/2 × |〈u, vj〉| < 5/2 × 1/104. Hence |〈u, e3〉| =√

1− |〈u, e1〉|2 − |〈u, e2〉|2 ≥ 1 − 1/107. Since |〈u, vk〉| < 1/104, we get that |〈vk, e3〉| ≤ 1/104 ×
107/(107− 1) ≤ 2/104. Notice that |〈vk, e3〉| is precisely the distance of vk to the subspace spanned
by vi and vj .

Now consider the unit circle C in the subspace spanned by e1 and e2. We will show that each
element of S is at distance at most 4/104 from C. To see this, observe that for vk ∈ S, the projection
v̄k of vk onto the subspace spanned by e1 and e2 is of length at least 1 − 2/104 (by the triangle
inequality). Thus v̄k is at distance at most 2/104 from C and also at distance at most 2/104 from
vk. Thus again by the triangle inequality, the distance between vk and C is at most 4/104. Now
cover C with 105 2-dimensional discs of radius 1/104. Clearly this can be done. Thus each element
vk in S is at distance at most 5/104 from the center of one of these discs. Thus for one of these
discs, there are m/105 points of S that are at distance at most 5/104 from the center of the disc.

Proposition 8.12. Let G be a edge-weighted k-regular hypergraph on n vertices with k ≥ 2. Define
the degree of a vertex to be the sum of the weights of all hyperedges containing it. Suppose the
average degree of a vertex in G is D. Then, there exists a vertex induced subgraph G′ of G in which
every vertex has degree at least D.

Proof. To obtain G′ we iteratively delete vertices whose degree in G is less than D. Observe that,
after each deletion, the average degree in the hypergraph strictly increases. Thus the process must
terminate when all vertices have degree at least D.

8.2 Basic clustering: Proof of Lemma 8.4

We first show that having many triples of the same type implies that we can find a small set of
vertices such that many of the triples intersect the set in at least two of their elements. This will
be the main step in the proof of Lemma 8.4 which is given below. Recall that we have an upper
bound of nβ on the multiplicity of each triple in M∗.

Lemma 8.13. Suppose there is a subset T of γn2 triples (counting multiplicities) in M∗ of the
same type (either Type A or B), then there is a set S ⊆ V such that |S| = O(t), and at least
Ω(γ2n2−β/t) triples in T intersect S in at least two of their elements.

Proof. We separate into two cases according to the type of the triples in T . In both cases, we will
first refine to the situation where every vertex is incident to many (γn) triples. In both cases we
will find a cluster of nearby vertices V ∗, and let S be some kind of neighborhood of V ∗ ∗ such that
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every triple which intersects V ∗ will also intersect S in two elements. Since V ∗ will be incident to
many triples, we will conclude that many triples intersect S in two elements. Moreoever we will
ensure that every vertex in S will have some constant correlation with some fixed carefully chosen
vertex w. Since every element in S correlates with vertex w, Claim 8.5 implies that S cannot be
too large. In the case of Type A triples, the argument is fairly straightforward, whereas in the case
of Type B triples the argument is more delicate.
Case 1: T has triples of Type A.

Consider the following weighted graph H on vertex set V in which the edges are all pairs vi, vj
with |〈vi, vj〉| ≥ 9/10 and the weight of an edge (vi, vj) is the number of triples in T , counting
multiplicities, that contain this pair (we can discard edges of weight zero). We define the degree of
a vertex deg(v) as the sum of weights over all edges of H that contain v. Since (1/2)

∑
v deg(v) ≥ |T |

we have that the average degree in H is at least D = 2|T |/n ≥ 2γn.
Let H ′ be a vertex induced subgraph of H in which every vertex has degree at least D (such

a subgraph exists by Proposition 8.12). Let w be any vertex in H ′ and observe that, by Propo-
sition 8.8, w must have at least r = Ω(γn1−β/t) distinct neighbors u1, . . . , ur (since the maximal
weight of an edge is O(tnβ)). Let V ∗ = {u1, . . . , ur}. We define the set S to contain these vertices
u1, . . . , ur ∈ V ∗ as well as all of their neighbors.

First, we argue that S cannot be too large. To see this, observe that, if (vi, vj) is an edge in
H then vj must have `2 distance at most 1/

√
5 from either vi or −vi. Thus, since all vertices in S

are at (graph) distance ≤ 2 from w, we have that they are all contained in the union of two balls
of radius 2/

√
5 around w and around −w. This means that all points in S must have correlation

at least 4/6 with w. Using Claim 8.5 we get that |S| ≤ O(t).
To see that there are many triples with two elements in S observe that the sum over all weights

of edges touching u1, . . . , ur is at least r · γn ≥ Ω(γ2n2−β/t) (using the fact that H ′ has high
minimum degree). Since every triple is counted at most 3 times in this sum we conclude that there
are at least Ω(γ2n2−β/t) triples with a pair in S.
Case 2: T has triples of Type B.

Consider the following 3-regular weighted hypergraph G: The set of vertices of G is the set V .
For each triple (vi, vj , vk) ∈ T we have a hyper-edge in G with weight equal to the multiplicity of
that triple in T . By Proposition 8.12, there is a subgraph G′ of G such that every vertex of G′ is
incident to at least γn triples (counting weights) lying within G′.

Pick any vertex v ∈ G′. Let Cv be the multiset {v′ ∈ V | |〈v, v′〉| > 1/100}. By Claim 8.5,
|Cv| < t · 104. Also, by Proposition 8.10, every triple containing v has another vertex v′ such that
|〈v, v′〉| > 1/100. Thus by a simple averaging argument, it must be that for some v′ ∈ Cv, the
pair (v, v′) participates in at least γn

|Cv | triples (counting multiplicities). Using the bound on triple

multiplicity, we get that there is a set T ∗ of at least γn
|Cv |nβ distinct triples containing v and v′. Thus

|T ∗| ≥ γn
|Cv |nβ ≥

γn1−β

104·t and, by Proposition 8.11, at least |T ∗|/105 vertices (of G’) lie in a ball of

radius 5/104. Call this set of vertices V ∗. Thus what we have so far is a set V ∗ of vertices of G′ all

lying in a ball of radius 5/104, where |V ∗| ≥ γn1−β

109·t .
Recall that every point vk in V ∗ is incident to at least γn triples lying within G′, and, by

Proposition 8.10, for each of the triples there exists a vertex v′k distinct from vk in that triple such
that |〈vk, v′k〉| > 1/100.

Let S = {u ∈ V | ∃w ∈ V ∗s.t.|〈u,w〉| > 1/100} be the set of all vertices that have correlation
at least 1/100 with some vertex of V ∗. Fix w ∈ V ∗. Then for any u ∈ S, by definition of S,
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there exists w′ ∈ V ∗ such that 〈u,w′〉 > 1/100. Also, since radius of V ∗ is at most 5/104, hence
‖w − w′‖ ≤ 1/103. Together, these imply that |〈u,w〉| > 1/103. Since this holds for all u ∈ S (and
for the same fixed w), by Claim 8.5 we get that |S| < 106t.

Moreover observe that each triple that intersects V ∗ must intersect S in two elements. Since
each tripe in V ∗ is incident to at least γn triples, and each triple is counted at most 3 times, thus

there must be at least Ω(γn× γn1−β

109·t ) = Ω(γ2n2−β/t) triples with a pair in S.

Proof of Lemma 8.4. Since d > 200·108

δ8
we have that

t =
n

δ6d
<

δ2n

200 · 108
.

Thus, by Claim 8.7 we have that for each v ∈ V

|Mv \M∗v | ≤ 108t ≤ δ2n/200.

So, the set M̄∗ = M̄ ∩M∗ must have size at least |M̄ | − δ2n2/200 ≥ δ2n2/200 triples. At least half
of these triples are of the same type (A or B) and so we can apply Lemma 8.13 with γ = δ2/400 to
get the required sets S and triples T .

8.3 Intermediate clustering: Proof of Lemma 8.3

We prove Lemma 8.3 by iteratively applying Lemma 8.4 until we have gathered ‘enough’ clustered
triples, where we call a triple ‘clustered’ if it has intersection size at least 2 with one of the sets Si.

We start with M̄ = M , which is initially of size |M̄ | ≥ δn2 ≥ δ2n2/100. Applying Lemma 8.4 we
get sets T1 ⊂M and S1 ⊂ V with |S1| ≤ O(t) and so that all triples in T1 are clustered. We now let
M̄ = M \ T1 and continue in this manner to generate S2, S3, . . . , Sm and (disjoint) T2, T3, . . . , Tm,
removing the triples in the Ti’s from M̄ as we proceed, until there are at most δ2n2/100 triples in
M that are not clustered.

This only leaves the task of bounding the number of iterations, m. The upper bound follows
from the fact that the sets Ti are disjoint, each of size at least Ω(δ4n2−β/t) and that |M | ≤ δn2.
The lower bound follows from the observation that, by Proposition 8.8, each Ti can have size at
most |Si|2 · O(t · nβ) = O(nβt3). Since the union of the Ti’s contains at least Ω(|M |) ≥ Ω(δn2)
triples we get that m ≥ Ω(δn2−β/t3). This completes the proof of Lemma 8.3.

9 Clustering implies low dimension

The main result of this section is the following lemma giving a dimension upper bound for LCCs
in which the triples are ‘clustered’. Notice that this lemma works over any field F.

Lemma 9.1 (Clustering implies low dimension). Let F be a field, 0 < λ < 1/50, 0 < β < λ/2 and
suppose n > (1/δ)ω(1). Let V = (v1, . . . , vn) ∈ (Fd)n be a (3, δ)-LCC with matchings Mv, v ∈ V .
Suppose there exists sets S1, . . . , Sm ⊂ [n] with

1. |Si| ≤ O(n/δ6d) for all i ∈ [m].

2. Ω(δ19d3/n1+β) ≤ m ≤ O(n1+β/δ10d).

3. Every triple in each Mv is clustered by S1, . . . , Sm.
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Then, there is a subset V ′ ⊂ V of size |V ′| ≥ (δ/2)n and dimension at most n1/2−λ.

This lemma will be an easy corollary of the following lemma, which shows that there is a small
subset in V so that, when projecting this set to zero, the dimension of V drops by a lot.

Lemma 9.2 (Restriction lemma). Let n, β, λ, V and S1, . . . , Sm satisfy the conditions of Lemma 9.1.
Assume further that the matchings Mv are in regular form (no ‘2-query’ triples). If d > n1/2−λ

then there exists a subset U ⊂ V with
|U | ≤ n1/4+7λ

such that, if L : Fd 7→ Fd is any linear map with U ⊂ ker(L) then L(V ) = {L(v) | v ∈ V } is
contained in a subspace of dimension at most n10λ

We prove the Restriction lemma (Lemma 9.2) below, following the short proof of Lemma 9.1
from Lemma 9.2.

Proof of Lemma 9.1. Using Claim 4.7 we can reduce to the case that the code V and the matchings
Mv are in regular form (that is, there are no ‘2-query’ triples). Indeed, replacing V with the code
given in Claim 4.7 leaves us with a new code (with n and δ the same up to a constant) satisfying
the same clustering requirements (using the same sets S1, . . . , Sm) and with the same dimension.
If we cannot apply Claim 4.7 it is because there is a subset U ⊂ V of size (δ/2)n and dimension at
most O((1/δ) log(n)) < n1/2−λ, in which case the proof is done.

Next, Suppose in contradiction that d > n1/2−λ (otherwise we let V ′ = V ). Apply Lemma 9.2
to get a subset U ⊂ V with |U | ≤ n1/4+7λ, such that, if we send U to zero by a linear map, the
dimension of span{V } goes down to at most n10λ. The existence of such a U implies that

d = dim(V ) ≤ |U |+ n10λ ≤ n1/4+7λ + n10λ

which gives a contradiction if λ < 1/50. .

9.1 Proof of Lemma 9.2

Using the assumptions d > n1/2−λ we get that for each i ∈ [m],

|Si| = O(δ−6n1/2+λ)

and the number of sets, m, is between

Ω(δ19n1/2−3λ−β) ≤ m ≤ O(δ−10n1/2+λ+β).

For each v ∈ V we know that all δn triples in Mv contain two elements in one of the sets
S1, . . . , Sm. Let Pv denote the set of all these pairs. That is, for each Si, add to Pv all the pairs in
Si that are contained in a triple from Mv. We fix some arbitrary way to associate each pair in Pv
with a single set Si (if this pair is in more than one set Si just pick one arbitrarily).

The properties of the sets Pv, v ∈ V are summarized in the following claim.

Claim 9.3. Each Pv is a matching of at least δn pairs, each pair (u,w) ∈ Pv is associated with a
unique Si such that u,w ∈ Si and there exists a triple in Mv containing both u and w.
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The distribution µ: We denote by neg(n) any function of n that is asymptotically upper
bounded by exp(−nα) for some constant α > 0. We use the notation A ∼ µ to mean ‘the random
variable A is sampled according to the distribution µ’.

We now define a distribution µ on subsets of V . To pick a set A ∼ µ we first pick an index
i ∈ [m] uniformly at random and then pick A ⊂ Si to contain each element of Si independently with
probability n−1/4+λ. If Si happens to be empty, we let A be the empty set. It will be convenient
to treat µ also as a distribution on pairs of the form (A, i) with A ⊂ V and i ∈ [m] so, we will
sometimes write (A, i) ∼ µ to denote that i is the random index chosen in the sampling process of
A and, other times just write A ∼ µ.

Claim 9.4. Let A ∼ µ then
Pr[|A| ≥ n1/4+3λ] ≤ neg(n).

Proof. Conditioning on the choice of the set Si, the expectation of |A| is at most |Si| · n−1/4+λ ≤
O(δ6n1/4+2λ) < n1/4+3λ/100. Thus, by a Chernoff bound, the probability that the size of A exceeds
n1/4+3λ is at most neg(n). Taking a union bound over the m possible choices of Si the probability
is still neg(n).

Observation 9.5. We can define a new distribution µ′ that samples A according to µ until it gets
a set A of size at most n1/4+3λ. By the claim, the statistical distance between µ and µ′ is at most
neg(n). Hence, as long as we can tolerate a neg(n) error in our probabilities, we can switch between
µ and µ′ as needed.

The functions fA,i(v): For each set A ⊂ Si we define a partial function fA,i : V 7→ V . The
value fA,i(v) is defined as follows: Consider the pairs in Pv that are associated with Si. If one of
these pairs is contained in A then fA,i(v) is defined to be the third element of the triple of Mv

associated with that pair. More formally, if there is a pair u,w ∈ Si so that a triple (u,w, z) is
in Mv then we define fA,i(v) = z. If there is more than one such pair, we pick one arbitrarily, for
instance the first one in some fixed order. If there is no such pair, we let fA,i(v) = ⊥ (undefined).

We use the notation x ∼ y, with x, y ∈ Fd, to denote that x is a constant multiple of y and y
is a constant multiple of x. That is, either they are both zero, or they are both non zero multiples
of each other. Notice that the relation ∼ is an equivalence relation.

Claim 9.6. Let i ∈ [m], A ⊂ Si and let fA,i be define as above. If L : Fd 7→ Fd is any linear map
sending A to zero, then L(v) ∼ L(fA,i(v)) for all v for which fA,i(v) 6= ⊥

Proof. If fA,i(v) 6= ⊥ then there is a triple (x, y, z) ∈ Mv with x, y ∈ A and fA,i(v) = z. Since
v ∈ span{x, y, z} we get that L(v) ∈ span{L(x),L(y),L(z)} = span{L(fA,i(v))}. Similarly, since we
are assuming that v is not in the span of x, y (since the matchings Mv are in regular form), z is in
the span of v, x, y and so L(z) ∈ span{L(v)}.

Probability bounds: The following three claims give bounds on certain probabilities involving
the functions fA,i, when (A, i) ∼ µ′.

Claim 9.7. Let (A, i) ∼ µ′ and let v ∈ V . Then, Pr[fA,i(v) 6= ⊥] ≥ Ω(δ17n−3λ)
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Proof. By Observation 9.5, it is enough to analyze the probability for the distribution µ. Fixing
v ∈ V we call a set Si heavy if it contains at least n1/2−2λ pairs from Pv (recall Claim 9.3). Since
we are choosing each element of Si with probability n−1/4+λ, the probability to ‘miss’ a single pair
from Pv is exactly (1− n−1/2+2λ). If Si is heavy, then the probability that A contains at least one
of the pairs in Pv is at least (using the fact that Pv is a matching):

Pr

[
Pv ∩

(
A

2

)
6= ∅
]
≥ 1−

(
1− n−1/2+2λ

)n1/2−2λ

≥ 1/2. (3)

We now bound from below the probability that Si is heavy. Recall that |Pv| ≥ δn and that
m ≤ O(δ−10n1/2+λ+β). Let mh +m` = m so that mh is the number of heavy sets Si. Since each Si
can contain at most |Si|/2 = O(δ−6n1/2+λ) disjoint pairs, we have that

δn ≤ m` · n1/2−2λ +mh ·O(δ−6n1/2+λ)

≤ O(δ−10n1−λ+β) +mh ·O(δ−6n1/2+λ).

This implies (since β < λ/2) that
mh ≥ Ω(δ7n1/2−λ).

Therefore,

mh

m
≥ Ω

(
δ7n1/2−λ

δ−10n1/2+λ+β

)
= Ω(δ17n−3λ).

Combining the above two bounds, we get that the probability of picking a heavy cluster and
then picking some pair in Pv is at least Ω(δ17n−3λ).

Claim 9.8. Let (A, i) ∼ µ′. Then, for all v, z ∈ V ,

Pr[fA,i(v) = z] ≤ O(δ−19n−1+6λ)

Proof. By Observation 9.5, it is enough to analyze the probability for the distribution µ. Suppose
z appears in a triple (u,w, z) ∈Mv that is associated with Sî for some î ∈ [m] (if there is no such î
then the probability in question is equal to zero). By our definition of the functions fA,i, it is only
possible for fA,i(v) = z to hold if i = î and both u and w are chosen to be in the set A ⊂ Sî. The

probability to pick i = î is 1/m ≤ O(δ−19n−1/2+3λ+β). Now, conditioned on picking this event,
the probability of picking both u and w to be in A is n−1/2+2λ. Multiplying, and using the bound
β < λ/2, we get the required bound.

Claim 9.9. Let (A, i) ∼ µ′ and let B ⊂ V be a set with |B| ≤ n1−10λ. Then, for every v ∈ V ,

Pr[fA,i(v) 6= ⊥ ∧ fA,i(v) 6∈ B] ≥ Ω(δ17n−3λ).

Proof. Let p = Pr[fA,i(v) 6= ⊥ ∧ fA,i(v) 6∈ B]. Then, by Claims 9.7 and 9.8, we have

1− p = Pr[fA,i(v) = ⊥ ∨ fA,i(v) ∈ B]

≤ Pr[fA,i(v) = ⊥] + Pr[fA,i(v) ∈ B]

≤ 1− Ω(δ17n−3λ) + |B| ·O(δ−19n−1+6λ)

≤ 1− Ω(δ17n−3λ) +O(δ−19n−4λ).

Rearranging, and using the fact that n ≥ (1/δ)ω(1), we get that p ≥ Ω(δ17n−3λ).

26



The set U : To define the set U required in Lemma 9.2, we proceed as follows. Let r be an
integer to be determined later, and pick r sets A1, . . . , Ar ⊂ V and r indices i1, . . . , ir ∈ [m] so
that each (Aj , ij) is sampled independently according to the distribution µ′. Let U =

⋃r
j=1Aj . Let

f1 = fA1,i1 , . . . , fr = fAr,ir be the corresponding (partial) functions on V . Our goal is to show that,
with probability greater than zero, setting U to zero by a linear map, reduces the dimension of V
to n10λ.

We begin by defining a sequence of undirected graphs H0, H1, . . . ,Hr on vertex set V which will
depend on the choice of the sets A1, . . . , Ar. The first graph H0 is the empty graph (containing no
edges). We define Hj inductively by adding to Hj−1 all edges of the form (v, fj(v)) over all v ∈ V .
For j = 1 . . . r, let kj denote the number of connected components of Hj .

Claim 9.10. If L : Fd 7→ Fd is any linear map sending U to zero, then span{L(V )} has dimension
at most kr.

Proof. This is an easy corollary of Claim 9.6. If L(U) = 0 then, for every edge (x, y) in Hr, we
have L(x) ∼ L(y). Since the relation ∼ is transitive, each connected component is contained in a
one dimensional subspace after applying L.

Let k′j denote the number of connected components of Hj of size at most n1−10λ. Call these
the ‘small’ components of Hj . The next claim bounds the expectation of k′j .

Claim 9.11. Let 1 ≤ j ≤ r. Then,

E[k′j ] ≤ k′j−1(1− Ω(δ17n−3λ)).

Proof. Let s = k′j−1 and let K1, . . . ,Ks be the small components of Hj−1. Pick representatives
ui ∈ Ki in each of the components. For each i = 1 . . . s, let Xi be an indicator variable so that
Xi = 1 if fj(ui) ∈ V \Ki (that is, fj(ui) is defined and does not belong to Ki) and Xi = 0 otherwise
(if either fj(ui) = ⊥ or if it is defined but in Ki). By Claim 9.9, we have that

E[Xi] = Pr[Xi = 1] ≥ Ω(δ17n−3λ).

Since having an edge (ui, fj(ui)) going from ui to some vertex outside Ki ‘merges’ Ki with
another component, we have that

k′j ≤ s−
1

2

s∑
i=1

Xi.

Taking expectations, and using the above bound on the expectations of the Xi’s, we get

E[k′j ] ≤ s(1− Ω(δ17n−3λ))

as was required.

Thus, for each j = 1, 2, . . . , r there is a choice of a set Aj ⊂ Sij such that Hj has at most
k′j−1(1 − Ω(δ17n−3λ))) small components. Taking r = n4λ, we get that there is a choice of U for
which Hr does not have any small components. Since the number of large components is at most
n10λ, we get:

Claim 9.12. There is a choice of U for which Hr has at most n10λ connected components.
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To conclude, we observe that, since we are using the modified distribution µ′, we have

|U | ≤ r · n1/4+3λ ≤ n1/4+7λ

and, using Claim 9.10, we have that, setting U to zero by a linear map, reduces the dimension of
V to at most n10λ. This completes the proof of Lemma 9.2.

10 Putting it all together - Proof of Theorem 1

We will first prove that any (3, δ)-LCC over R contains a large subset of small dimension. Later
we will iterate this to get a global dimension bound.

Lemma 10.1. Suppose n > (1/δ)ω(1) and let 0 < λ < 1/50. Let V = (v1, . . . , vn) ∈ (Rd)n be a
(3, δ)-LCC. Then, there exists a subset U ⊂ V of size at least

|U | ≥ (δ3/300)n

and dimension at most
dim(U) ≤ max{8δ6d, n1/2−λ/16}.

Proof. We will prove the lemma by first applying Lemma 8.2 to show that V has a large sub-LCC
V ′ in which the triples cluster. Then, we will apply Lemma 9.1 to show that V ′ has a large low
dimensional sub list. The details follow.

Set β1 = λ/4 and apply Lemma 8.2 with β = β1. To apply the lemma we require that V
does not contain a subset U of size (δ2/288)n and dimension at most max{8δ6d, n1/2−β1/4} =
max{8δ6d, n1/2−λ/16}. If this is the case, than our proof is done and there is no need to continue.

Having applied Lemma 8.2, we obtain a (3, δ′)-LCC V ′ ⊂ V with n′ = |V ′| ≥ (δ/10)n, d′ =
dim(V ′) ≤ d, δ′ ≥ δ2/4 and sets S1, . . . , Sm which cluster all the triples in the matchingsMv′ , v

′ ∈ V ′
used to decode V ′ so that

|Si| ≤ O(n′/δ′6d′)

and
Ω(δ′19d′3/n′1+2β1) ≤ m ≤ O(n′1+2β1/δ′10d′).

We now apply Lemma 9.1 with β = 2β1 < λ/2 and the same λ to conclude that there exist a subset
V ′′ ⊂ V ′ of size

n′′ = |V ′′| ≥ (δ′/2)n′ ≥ (δ2/8)(δ/10)n ≥ (δ3/80)n

and dimension
dim(V ′′) ≤ n′′1/2−λ ≤ max{8δ6d, n1/2−λ/16},

as was required.

We now prove an amplification lemma which uses Lemma 10.1 iteratively. For this lemma we will
use the following convenient notations: If S ⊂ V is a subset of V , we denote by spanV (S) ⊂ V the
subset of elements of V that are spanned by elements of S (we think of all these as lists/multisets).

Lemma 10.2 (Amplification lemma). Suppose n > (1/δ)ω(1) and let 0 < λ < 1/50. Let V =
(v1, . . . , vn) ∈ (Rd)n be a linear (3, δ)-LCC. Suppose S ⊂ V is such that spanV (S) = S and S 6= V .
Then there is a set S ⊆ S′ ⊆ V with spanV (S′) = S′ such that

28



1. Either S′ = V or |S′| ≥ |S|+ (δ4/400)n.

2. dim(S′) ≤ dim(S) + max{δ6d, n1/2−λ/16}.

We defer the proof of the lemma to the end of this section and proceed with the proof of
Theorem 1.

Proof of Theorem 1. Let V = (v1, . . . , vn) ∈ (Rd)n be a linear (3, δ)-LCC. We will prove the theorem
with λ = 1/1000 We now apply Lemma 10.2 with λ1 = 1/51 iteratively. Start with S1 = ∅ and
apply Lemma 10.2 repeatedly to obtain sets S2, S3, . . . , such that for all i,

|Si| ≥ |Si−1|+ (δ4/400)n

and
dim(Si) ≤ dim(Si−1) + max{δ6d, n1/2−λ1/16}.

Since the size of Si cannot grow beyond n, the process will terminate after at most m = b400/δ4c
steps, yielding Sm = V . We then get that

dim(Sm) = dim(V ) ≤ (400/δ4) max{δ6d, n1/2−λ1/16} = max{(400δ2)d, (400/δ4)n1/2−λ1/16}.

Without loss of generality, for the proof of the theorem we can assume that δ2 < 1/500.
Thus it must be that d = dim(V ) ≤ (400/δ4)n1/2−λ1/16 ≤ n1/2−λ. This completes the proof of
Theorem 1.

10.1 Proof of Lemma 10.2

Observe that for v ∈ V \ S, all 3 points of any triple in Mv cannot be in S since spanV (S) = S.
Thus we may assume that |S| ≤ (1 − δ)n, since otherwise each vector in V \ S would be spanned
by the points of S and we would be done.

Case 1: There exists v ∈ V \ S such that δn/4 of the triples in Mv have two of their points
contained in S. In this case let S′ = spanV ({v} ∪ S). Then |S′| ≥ |S| + (δ/4)n, and dim(S′) ≤
dim(S) + 1.

If Case 1 does not hold than each v ∈ V \S, Mv has 3δn/4 of its triples intersecting S in either
one or zero points. Let us call a point v type-zero if if has at least 3δn/8 of its triples contained in
V \ S and type-one otherwise. Notice that, if v is type-one, then it must have at least 3δn/8 of its
triples intersecting S in exactly one point. We now separate into two additional cases:

Case 2: There are at most δn/4 type-one points. Let V ′ ⊂ V \S be the set of all type-zero
points. Observe that, since |S| ≤ (1 − δ)n, we have |V ′| ≥ 3δn/4. Also observe that the vectors
in V ′ form a (3, δ/8)-LCC since each point in V ′ has at least 3δn/8 − δn/4 = δn/8 ≥ (δ/8)|V ′|
triples in its matching contained in V ′. Using Lemma 10.1 on V ′ we conclude that there is a subset
U ⊂ V ′ of size

|U | ≥ (δ3/300)|V ′| ≥ (δ4/400)n

and dimension

dim(U) ≤ max{8(δ/8)6d′, |V ′|1/2−λ/16} ≤ max{δ6d, n1/2−λ/16}.

Setting S′ = S ∪ U we are done.
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Case 3: There are at least δn/4 type-one points. In this case, there are δn/4 points v in
V \S, each having at least 3δn/8 of the triples in Mv intersecting S in exactly one point. Let A be a
linear transformation whose kernel equals span(S). After applying A to V \S we obtain a (2, 3δ/4)
LDC decoding the δn/4 type-one points. Thus the δn/4 points (after we apply the mapping A to
them) must span at most poly(1/δ) log n ≤ max{δ6d, n1/2−λ/16} dimensions by Theorem 4.5. Thus,
adding them to S will increase the dimension of its span by at most this number. This completes
the proof also in this case.
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[BFNW93] László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. Bpp has subexponen-
tial time simulations unless exptime has publishable proofs. Computational Complexity,
3:307–318, 1993.

[BK95] Manuel Blum and Sampath Kannan. Designing programs that check their work. J.
ACM, 42(1):269–291, January 1995.

[BLR93] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with appli-
cations to numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[CKGS98] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information
retrieval. J. ACM, 45(6):965–981, November 1998.

30



[DGY11] Zeev Dvir, Parikshit Gopalan, and Sergey Yekhanin. Matching vector codes. SIAM J.
Comput., 40(4):1154–1178, 2011.

[DS06] Zeev Dvir and Amir Shpilka. Locally decodable codes with 2 queries and polynomial
identity testing for depth 3 circuits. SIAM Journal on Computing, 36(5):1404–1434,
2006.

[DSW12] Z. Dvir, S. Saraf, and A. Wigderson. Improved rank bounds for design matrices and a
new proof of Kelly’s theorem, 2012. Manuscript.

[Dvi11] Z. Dvir. On Matrix Rigidity and Locally Self-correctable Codes. Computational Com-
plexity, 20(2):367–388, 2011. (Extended abstract appeared in CCC 2010).

[Efr09] Klim Efremenko. 3-query locally decodable codes of subexponential length. In STOC,
pages 39–44, 2009.

[GKST06] Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. Computa-
tional Complexity, 15(3):263–296, 2006.

[KdW04] Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395–420, 2004.

[Kop12] Swastik Kopparty. List-decoding multiplicity codes. Electronic Colloquium on Com-
putational Complexity (ECCC), 19:44, 2012.

[KS09] Neeraj Kayal and Shubhangi Saraf. Blackbox polynomial identity testing for depth
3 circuits. In FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on
Foundations of Computer Science, pages 198–207, Washington, DC, USA, 2009. IEEE
Computer Society.

[KSY11] Swastik Kopparty, Shubhangi Saraf, and Sergey Yekhanin. High-rate codes with
sublinear-time decoding. In STOC, pages 167–176, 2011.

[KT00] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In STOC, pages 80–86, 2000.

[Lax07] P.D. Lax. Linear Algebra and Its Applications. Number v. 10 in Linear algebra and its
applications. Wiley, 2007.

[LFKN92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods
for interactive proof systems. J. ACM, 39(4):859–868, October 1992.

[Lip90] RichardJ. Lipton. Efficient checking of computations. In Christian Choffrut and
Thomas Lengauer, editors, STACS 90, volume 415 of Lecture Notes in Computer Sci-
ence, pages 207–215. Springer Berlin Heidelberg, 1990.

[RS96] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

[Sha92] Adi Shamir. Ip = pspace. J. ACM, 39(4):869–877, October 1992.

31



[Val77] Leslie G. Valiant. Graph-theoretic arguments in low-level complexity. In MFCS, pages
162–176, 1977.

[Woo07] David Woodruff. New lower bounds for general locally decodable codes. Electronic
Colloquium on Computational Complexity (ECCC) TR07-006, 2007.

[Woo12] David P. Woodruff. A quadratic lower bound for three-query linear locally decodable
codes over any field. J. Comput. Sci. Technol., 27(4):678–686, 2012.

[Yek08] Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length.
J. ACM, 55(1), 2008.

32

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


