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Abstract

A 1976 theorem of Chaitin, strengthening a 1969 theorem of Meyer,
says that infinitely many lengths n have a paucity of trivial strings
(only a bounded number of strings of length n having trivially low
plain Kolmogorov complexities). We use the probabilistic method
to give a new proof of this fact. This proof is much simpler than
previously published proofs. It also gives a tighter paucity bound,
and it shows that the set of lengths n at which there is a paucity
of trivial strings is not only infinite, but has positive Schnirelmann
density.

1 Background

A string of binary data is trivial if, like a string of all zeros, it contains
negligible information beyond that implicit in its length. This notion of
triviality has been made precise in several different ways, and these have
been useful in the foundations of Kolmogorov complexity [6], information-
theoretic characterizations of decidability and polynomial-time decidability
[2, 8], formal language theory [4], and the theory of K-trivial sequences [7, 3].

These applications share several common features. Each uses some ver-
sion of Kolmogorov complexity to quantify the information content of a
string. Each parametrizes its triviality notion by a nonnegative integer c,
defining a string to be c-trivial if its information content is within c bits of
a smallness criterion. Most crucially, the key to each of these applications is
a paucity theorem, stating that there are infinitely many lengths n at which
there is a paucity (at most a fixed multiple of 2c) of c-trivial strings of length
n.

The first such paucity theorem, reported in 1969, was proved by Meyer
[6]. Chaitin [2] subsequently strengthened Meyer’s proof, slightly relaxing
his triviality notion and obtaining the following.
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Theorem 1 (paucity theorem). There is a constant a ∈ N such that, for
every c ∈ N, there exist infinitely many lengths n ∈ N for which at most 2c+a

strings x ∈ {0, 1}n satisfy C(x) ≤ c+ log n.

The logarithm here is base-2, and C(x) is the plain Kolmogorov complexity
of x, the minimum number of bits required to program a fixed universal
Turing machine to print the string x. (Thorough treatments of C(x) appear
in [5, 7, 3].)

The proofs of Theorem 1 and Meyer’s earlier paucity theorem are some-
what involved. Part of this is because these early proofs were aimed at
proving more, namely that

(I) for every c ∈ N there are at most 2c+a infinite binary sequences that are
c-trivial in the sense that every nonempty prefix x of such a sequence
satisfies C(x) ≤ c+ log|x|; and

(II) every such c-trivial sequence is decidable.

It is clear that (I) follows immediately from Theorem 1, and it is now well
understood that (II) follows directly from (I), because every isolated infinite
branch of a decidable tree is decidable [3].

In the 1990s Li and Vitanyi [4] gave a proof of Theorem 1 that is simpler
than the original proof, even when one discounts the parts of the original
proof devoted to (I) and (II). However, even this simplified proof is nontrivial.

2 Result

The purpose of this note is to give a very simple proof of Theorem 1. As it
turns out, this very simple proof also strengthens Theorem 1 in two small
respects. First, while Theorem 1 asserts that the set L of lengths n at which
there is a paucity of c-trivial strings is infinite, our simple proof shows that
the (Schnirelmann) density

σ(L) = inf

{
|L<m|
m

∣∣∣∣ m ∈ Z+

}
of L, where we write L<m = L ∩ {0, . . . ,m − 1}, is strictly positive. That
is, the condition n ∈ L holds frequently, not just infinitely often [9]. Second,
while earlier proofs of Theorem 1 require the constant a to be as large as the
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number of bits required to encode a nontrivial Turing machine, our simple
proof shows that it suffices to take a = 1. We thus have the following.

Theorem 2 (frequent paucity theorem). For every c ∈ N the set of nonneg-
ative integers n for which at most 2c+1 strings x ∈ {0, 1}n satisfy C(x) ≤
c+ log n has density at least (2c+1 + 1)−1.

Proof. Let c ∈ N, and let d = 2c+1. For each n ∈ N, let

Bn = {x ∈ {0, 1}n|C(x) ≤ c+ log n} ,

noting that B0 = ∅, and let

L =

{
n ∈ N

∣∣∣∣ |Bn| ≤ d

}
.

Let m ∈ Z+, and let l = |L<m|. It suffices to show that

l >
m

d+ 1
. (∗)

Consider the average

µ =
1

m

m−1∑
n=0

|Bn|.

We have

µ =
1

m

∣∣∣∣∣
m−1⋃
n=0

Bn

∣∣∣∣∣
≤ 1

m

∣∣{0, 1}<c+logm
∣∣

<
1

m
2c+logm+1

= d

and

µ ≥ 1

m
(m− l)(d+ 1),

whence
md > (m− l)(d+ 1),

which is equivalent to (∗).
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3 Conclusion

The simplicity of the above proof is the main contribution of this note. Its
simplicity arises from its use of the first moment probabilistic method [1, 9]:
Rather than deal with the cardinalities |Bn| individually, it examines their
average.

A brief remark on pedagogy: Li and Vitanyi’s Kolmogorov complex-
ity characterization of regular languages [4, 5] yields a simple and intuitive
method for proving that languages are not regular. A possible obstacle to
teaching this method in undergraduate theory courses has been that the
characterization theorem relies on the (seemingly) difficult paucity theorem.
The simple proof here removes that obstacle.
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