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Abstract

A 1976 theorem of Chaitin can be used to show that arbitrarily
dense sets of lengths n have a paucity of trivial strings (only a bounded
number of strings of length n having trivially low plain Kolmogorov
complexities). We use the probabilistic method to give a new proof of
this fact. This proof is much simpler than previously published proofs,
and it gives a tighter paucity bound.

1 Background

A string of binary data is trivial if, like a string of all zeros, it contains
negligible information beyond that implicit in its length. This notion of
triviality has been made precise in several different ways, and these have
been useful in the foundations of Kolmogorov complexity [6], information-
theoretic characterizations of decidability and polynomial-time decidability
[2, 8], formal language theory [4], and the theory of K-trivial sequences [7, 3].

These applications share several common features. Each uses some ver-
sion of Kolmogorov complexity to quantify the information content of a
string. Each parametrizes its triviality notion by a nonnegative integer c,
defining a string to be c-trivial if its information content is within c bits of
a triviality criterion. Most crucially, the key to each of these applications is
a paucity theorem, stating that there are many lengths n at which there is a
paucity (at most a fixed multiple of 2c) of c-trivial strings of length n.

The first such paucity theorem, reported in 1969, was proved by Meyer
[6]. Chaitin subsequently strengthened Meyer’s proof, slightly relaxing his
triviality notion and obtaining the following.

Theorem 1 (Chaitin [2]). There is a constant a ∈ N such that, for all
n, d ∈ N, at most 2d+a strings x ∈ {0, 1}n satisfy C(x) ≤ d+ C(n).
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Here C(x) is the plain Kolmogorov complexity of x, the minimum number
of bits required to program a fixed universal Turing machine to print the
string x, and C(n) = C(sn), where s0, s1, . . . is a standard enumeration of
{0, 1}∗. (Thorough treatments of C(x) appear in [5, 7, 3].)

This note concerns paucity theorems involving log n, rather than C(n),
as a triviality criterion. Since C(n) is usually close to log n, one such paucity
theorem can be derived from Theorem 1, as we now show.

Logarithms here are base-2. We will use the (Schnirelmann) density of a
set L ⊆ N, which is

σ(L) = inf

{
|L<m|
m

∣∣∣∣ m ∈ Z+

}
,

where we write L<m = L∩{0, . . . ,m−1} [9]. Intuitively the condition n ∈ L
holds frequently if σ(L) > 0. This is clearly a stronger condition than the
assertion that L is infinite. To relate the triviality criteria log n and C(n),
define the set

L(r) =
{
n ∈ N

∣∣∣ C(n) + r ≥ log n
}

for each r ∈ N.

Observation 2. For each R ∈ N, σ(L(r)) ≥ 1− 21−r.

Proof. For each m ∈ Z+, the complement L(r)c of L(r) satisfies

(L(r)c)<m = {n < m |C(n) < (log n)− r}
⊆ {n < m |C(n) < (logm)− r}

so

|(L(r)c)<m| ≤
∣∣{0, 1}<(logm)−r∣∣

< 21−r+logm

= 21−rm.

It follows that

σ(L(r)) = inf

{
|L(r)<m|

m

∣∣∣∣m ∈ Z+

}
≥ inf

{
m− 21−rm

m

∣∣∣∣m ∈ Z+

}
= 1− 21−r.

�
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We now have the following easy consequence of Theorem 1.

Theorem 3 (very frequent paucity theorem). The constant a of Theorem 1
has the property that, for all c, r ∈ N, the set of nonnegative integers n for
which at most 2c+a+r strings x ∈ {0, 1}n satisfy C(x) ≤ c+ log n has density
at least 1− 21−r.

Proof. Let a ∈ N be as in Theorem 1, and let c, r ∈ N. For each n ∈ N,
define the sets

Bn = {x ∈ {0, 1}n|C(x) ≤ c+ log n}
and

B′n = {x ∈ {0, 1}n|C(x) ≤ c+ r + C(n)}
and let

Lc =
{
n ∈ N

∣∣|Bn| ≤ 2c+a+r
}
.

It suffice to show that σ(Lc) ≥ 1− 21−r.
Let n ∈ L(r). Then C(n) + r ≥ log n, so Bn ⊆ B′n. Applying Theorem 1

with d = c+ r, we have |B′| ≤ 2c+r+a, whence |Bn| ≤ 2c+r+a. Hence n ∈ Lc.
We have now shown that L(r) ⊆ Lc. It follows by Observation 2 that

σ(Lc) ≥ σ(L(r)) ≥ 1− 21−r.

�

The proofs of Theorem 1 and Meyer’s earlier paucity theorem are some-
what involved. Part of this is because these early proofs were aimed at
proving more, namely that

(I) for every c ∈ N there are at most 2c+a infinite binary sequences that are
c-trivial in the sense that every nonempty prefix x of such a sequence
satisfies C(x) ≤ c+ log|x|; and

(II) every such c-trivial sequence is decidable.

It is clear that (I) follows immediately from Theorem 1, and it is now well
understood that (II) follows directly from (I), because every isolated infinite
branch of a decidable tree is decidable [3].

In the 1990s, Li and Vitanyi proved the following paucity theorem.

Theorem 4 (Li and Vitanyi [4]). There is a constant a ∈ N such that, for
every c ∈ N, there exist infinitely many lengths n for which at most 2c+a

strings x ∈ {0, 1}n satisfy C(x) ≤ c+ log n.
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Theorem 4 is weaker than Theorem 3, because it only tells us that the
paucity of trivial strings occurs at infinitely many lengths. Li and Vitanyi’s
proof of Theorem 4 is simpler than the proof of Theorem 1 (hence simplier
than the proof of Theorem 3), even when one discounts the parts of the
proof of Theorem 1 devoted to (I) and (II). However, even Li and Vitanyi’s
simplified proof is nontrivial.

2 Result

The purpose of this note is to give a very simple proof of a frequent paucity
theorem. Our theorem’s frequency condition is as strong as that of The-
orem 3. However, our theorem improves on earlier paucity theorems in a
significant respect: While the proofs of Theorems 1, 3, and 4 require the
constant a to be as large as the number of bits required to encode a nontriv-
ial Turing machine, our simple proof shows that it suffices to take a = 1.

Our simple proof has a simple intuition: As in the proof of Theorem 3,
let

Bn = {x ∈ {0, 1}n|C(x) ≤ c+ log n} .
We want to show that |Bn| is often small. Well, the average of the first m
values of |Bn| is

1

m

m−1∑
n=0

|Bn| =
1

m

∣∣∣∣∣
m−1⋃
n=0

Bn

∣∣∣∣∣
≤ 1

m

∣∣{0, 1}<c+logm
∣∣

<
1

m
2c+logm+1

= 2c+1,

so |Bn| ≤ 2c+1 must hold frequently! The details follow.

Theorem 5. Let c ∈ N.
1 (frequent paucity). The set of nonnegative integers n for which at

most 2c+1 strings x ∈ {0, 1}n satisfy C(x) ≤ c + log n has density at least
(2c+1 − 1)−1.

2 (very frequent paucity). For every r ∈ N, the set of nonnegative integers
n for which at most 2c+r strings x ∈ {0, 1}n satisfy C(x) ≤ c + log n has
density at least 1− 21−r.

4



Proof. Let c, r ∈ N, and let d = 2c+r. For each n ∈ N, let

Bn = {x ∈ {0, 1}n|C(x) ≤ c+ log n} ,
noting that B0 = ∅, and let

L =
{
n ∈ N

∣∣∣ |Bn| ≤ d
}

Let m ∈ Z+, and let l = |L<m|.
Consider the average

µ =
1

m

m−1∑
n=0

|Bn|.

We have

µ =
1

m

∣∣∣∣∣
m−1⋃
n=0

Bn

∣∣∣∣∣
≤ 1

m

∣∣{0, }<c|logm∣∣
<

1

m
2c+logm+1

= 2c+1

and

µ ≥ 1

m
(m− l)(d+ 1)

whence
m · 2c+1 > (m− l)(d+ 1). (∗)

1. If r = 1, then (∗) says that

md > (m− l)(d+ 1)

whence
l >

m

d+ 1
.

Since this holds for all m ∈ Z+, it follows that σ(L) ≥ 1
d+1

2. More generally, for r ∈ N, (∗) implies that

m · 2c+1 > (m− l)2c+r,

whence
d > m(1− 21−r)

Since this holds for all m ∈ Z+, it follows that σ(L) ≥ 1− 21−r. �
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3 Conclusion

The simplicity of the above proof is the main contribution of this note. Its
simplicity arises from its use of the first moment probabilistic method [1,
9]: Rather than deal with the cardinalities |Bn| individually, it examines
their average. It is an open question whether the probabilistic method can
similarly simplify the proof of Theorem 1.

A brief remark on pedagogy: Li and Vitanyi’s Kolmogorov complex-
ity characterization of regular languages [4, 5] yields a simple and intuitive
method for proving that languages are not regular. A possible obstacle to
teaching this method in undergraduate theory courses has been that the
characterization theorem relies on the (seemingly) difficult Theorem 4. The
simple proof here removes that obstacle.
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