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Abstract

We consider the complexity of the firefighter problem where b ≥ 1 firefighters are available
at each time step. This problem is proved NP-complete even on trees of degree at
most three and budget one [11] and on trees of bounded degree b + 3 for any fixed
budget b ≥ 2 [3].

In this paper, we provide further insight into the complexity landscape of the problem
by showing that the pathwidth and the maximum degree of the input graph govern
its complexity. More precisely, we first prove that the problem is NP-complete even
on trees of pathwidth at most three for any fixed budget b ≥ 1. We then show that
the problem turns out to be fixed parameter-tractable with respect to the combined
parameter “pathwidth” and “maximum degree” of the input graph.

Keywords: firefighter problem, trees, pathwidth, cutwidth, bandwidth, parameterized
complexity

1. Introduction

The firefighter problem was introduced by Hartnell [14] and received considerable
attention in a series of papers [1, 5, 9, 11, 15, 16, 17, 19, 20, 7]. In its original version,
a fire breaks out at some vertex of a given graph. At each time step, one vertex can be
protected by a firefighter and then the fire spreads to all unprotected neighbors of the
vertices on fire. The process ends when the fire can no longer spread. At the end all
vertices that are not on fire are considered as saved. The objective is at each time step
to choose a vertex which will be protected by a firefighter such that a maximum number
of vertices in the graph is saved at the end of the process. In this paper, we consider a
more general version which allows us to protect b ≥ 1 vertices at each step (the value b

is called budget).
The original firefighter problem was proved to be NP-hard for bipartite graphs [19],

cubic graphs [17] and unit disk graphs [12]. Finbow et al. [11] showed that the problem
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is NP-hard even on trees. More precisely, they proved the following dichotomy theorem:
the problem is NP-hard even for trees of maximum degree three and it is solvable in
polynomial-time for graphs with maximum degree three, provided that the fire breaks
out at a vertex of degree at most two. Furthermore, the problem is polynomial-time
solvable for caterpillars and so-called P-trees [19]. Later, Bazgan et al. [3] extended
the previous results by showing that the general firefighter problem is NP-hard even
for trees of maximum degree b + 3 for any fixed budget b ≥ 2 and polynomial-time
solvable on k-caterpillars. From the approximation point of view, the problem is e

e−1 -

approximable on trees ( e
e−1 ≈ 1.5819) [5] and it is not n1−ε-approximable on general

graphs for any ε > 0 unless P = NP [1]. Moreover for trees in which each non-leaf vertex
has at most three children, the firefighter problem is 1.3997-approximable [16]. Very
recently, Costa et al. [7] extended the e

e−1 -approximation algorithm on trees to the case
where the fire breaks out at f > 1 vertices and b > 1 firefighters are available at each
step. From a parameterized perspective, the problem is W[1]-hard with respect to the
natural parameters “number of saved vertices” and “number of burned vertices” [8, 2].
Cai et al. [5] gave first fixed-parameter tractable algorithms and polynomial-size kernels
for trees for each of the following parameters: “number of saved vertices”, “number of
saved leaves”, “number of burned vertices”, and “number of protected vertices”.

In this paper we show that the complexity of the problem is governed by the maximum
degree and the pathwidth of the input graph. In Section 2, we first provide the formal
definition of the problem as well as some preliminaries. In Section 3, we complete the
hardness picture of the problem on trees by proving that it is also NP-complete on trees
of pathwidth three. We note that the given proof is also a simpler proof of the NP-
completeness of the problem on trees. In Section 4, we devise a parameterized algorithm
with respect to the combined parameter “pathwidth” and “maximum degree” of the
input graph. The conclusion is given in Section 5.

2. Preliminaries

Graph terminology. Let G = (V,E) be an undirected graph of order n. For a subset
S ⊆ V , G[S] is the induced subgraph of G. The neighborhood of a vertex v ∈ V , denoted
by N(v), is the set of all neighbors of v. We denote by Nk(v) the set of vertices which
are at distance at most k from v. The degree of a vertex v is denoted by degG(v) and
the maximum degree of the graph G is denoted by ∆(G).

A linear layout of G is a bijection π : V → {1, . . . , n}. For convenience, we express π
by the list L = (v1, . . . , vn) where π(vi) = i. Given a linear layout L, we denote the
distance between two vertices in L by dL(vi, vj) = |i− j|.

The cutwidth cw(G) of G is the minimum k ∈ N such that the vertices of G can be ar-
ranged in a linear layout L = (v1, . . . , vn) in such a way that, for every i ∈ {1, . . . , n− 1},
there are at most k edges between {v1, . . . , vi} and {vi+1, . . . , vn}.

The bandwidth bw(G) of G is the minimum k ∈ N such that the vertices of G can be
arranged in a linear layout L = (v1, . . . , vn) so that dL(vi, vj) ≤ k for every edge vivj of
G.

A path decomposition P of G is a pair (P,H) where P is a path with node set X and
H = {Hx : x ∈ X} is a family of subsets of V such that the following conditions are met

1.
⋃

x∈X Hx = V.
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2. For each uv ∈ E there is an x ∈ X with u, v ∈ Hx.
3. For each v ∈ V , the set of nodes {x : x ∈ X and v ∈ Hx} induces a subpath of P .

The width of a path decomposition P is maxx∈X |Hx| − 1. The pathwidth pw(G) of a
graph G is the minimum width over all possible path decompositions of G.

We may skip the argument of pw(G), cw(G), bw(G) and ∆(G) if the graph G is clear
from the context.

A star is a tree consisting of one vertex, called the center of the star, adjacent to all
the other vertices.

Parameterized complexity. Here we only give the basic notions on parameterized com-
plexity used in this paper, for more background the reader is referred to [10, 21]. The
parameterized complexity is a framework which provides a new way to express the compu-
tational complexity of problems. A decision problem parameterized by a problem-specific
parameter k is called fixed-parameter tractable if there exists an algorithm that solves
it in time f(k) · nO(1) where n is the instance size. The function f is typically super-
polynomial and only depends on k. In other words, the combinatorial explosion is confine
into f . We may sometimes say that a problem is fixed-parameter tractable with respect
the combined parameter k1,k2, . . . , and kp meaning that the problem can be solved in
time f(k1, k2, . . . , kp) · n

O(1).

Problems definition. We start with an informal explanation of the propagation process
for the firefighter problem. Let G = (V,E) be a graph of order n with a vertex s ∈ V ,
let b ∈ N be a budget. At step t = 0, a fire breaks out at vertex s and s starts burning.
At any subsequent step t > 0 the following two phases are performed in sequence:

1. Protection phase : The firefighter protects at most b vertices not yet on fire.
2. Spreading phase : Every unprotected vertex which is adjacent to a burned vertex

starts burning.

Burned and protected vertices remain burned and protected until the propagation process
stops, respectively. The propagation process stops when in a next step no new vertex can
be burned. We call a vertex saved if it is either protected or if all paths from any burned
vertex to it contains at least one protected vertex. Notice that, until the propagation
process stops, there is at least one new burned vertex at each step. This leads to the
following obvious lemma.

Lemma 1. The number of steps before the propagation process stops is less or equal to
the total number of burned vertices.

A protection strategy (or simply strategy) Φ indicates which vertices to protect at each
step until the propagation process stops. Since there can be at most n burned vertices,
it follows from Lemma 1 that the propagation unfolds in at most n steps. We are now
in position to give the formal definition of the investigated problem.

The Firefighter problem:
Input: A graph G = (V,E), a vertex s ∈ V , and positive integers b and k.
Question: Is there a strategy for an instance (G, s, b, k) with respect to budget b

such that at most k vertices are burned if a fire breaks out at s?

When dealing with trees, we use the following observation which is a straightforward
adaptation of the one by MacGillivray and Wang for the case b > 1 [19, Section 4.1].

3



Lemma 2. Among the strategies that maximizes the number of saved vertices (or equiv-
alently minimizes the number of burned vertices) for a tree, there exists one that protects
vertices adjacent to a burned vertex at each time step.

Throughout the paper, we assume all graphs to be connected since otherwise we can
simply consider the component where the initial burned vertex s belongs to.

3. Firefighting on path-like graphs

Finbow et al. [11] showed that the problem is NP-complete even on trees of degree
at most three. However, the constructed tree in the proof has an unbounded pathwidth.
In this section, we show that the Firefighter problem is NP-complete even on trees of
pathwidth three. For that purpose we use the following problem.

The Cubic Monotone 1-In-3-Sat problem:
Input: A CNF formula in which every clause contains exactly and only three positive
literals and every variable appears in exactly three clauses.
Question: Is there a satisfying assigment (a truth assignment such that each clause
has exactly one true literal) for the formula?

The NP-completeness of the above problem is due to its equivalence with the NP-
complete Exact Cover by 3-Sets problem [13].

Theorem 1. The Firefighter problem is NP-complete even on trees of pathwidth three
and budget one.

Proof. Clearly, Firefighter belongs to NP. Now we provide a polynomial-time reduc-
tion from Cubic Monotone 1-In-3-Sat.

In the proof, a guard-vertex is a star with k leaves where the center is adjacent to a
vertex of a graph. It is clear that if at most k vertices can be burned then the guard-vertex
has to be saved.

Let φ be a formula of Cubic Monotone 1-In-3-Sat with n variables {x1, . . . , xn}
and m initial clauses {c1, . . . , cm}. Notice that a simple calculation shows that n = m.
First, we extend φ into a new formula φ′ by adding m new clauses as follows. For each
clause cj we add the clause c̄j by taking negation of each variable of cj. A satisfying
assignment for φ′ is then a truth assignment such that each clause cj has exactly one
true literal and each clause c̄j has exactly two true literals. It is easy to see that φ has
a satisfying assignment if and only if φ′ has one.

Now we construct an instance I ′ = (T, s, 1, k) of Firefighter from φ′ as follows (see
Figure 1). We start with the construction of the tree T , the value of k will be specified
later.

• Start with a vertex set {s = u1, u2, . . . , up} and edges of {su2, u2u3, . . . , up−1up}
where p = 2n − 1 and add two degree-one vertices vxi and vx̄i adjacent to u2i−1

for every i ∈ {1, . . . , n}.

Then for each i ∈ {1, . . . , n} in two steps:

• Add a guard-vertex gi (resp. ḡi) adjacent to vxi (resp. vx̄i).
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• At each vertex vxi (resp. vx̄i) root a path of length 2 · (n− i) at vxi (resp. vx̄i) in
which the endpoint is adjacent to three degree-one vertices (called literal-vertices)
denoted by ℓxi

1 , ℓxi
2 , and ℓxi

3 (resp. ℓx̄i
1 , ℓx̄i

2 , and ℓx̄i
3 ). Each literal-vertex corresponds

to an occurence of the variable xi in an initial clause of φ. Analogously, the literal-
vertices ℓx̄i

1 , ℓx̄i
2 , and ℓx̄i

3 represent the negative literal x̄i that appears in the new
clauses of φ′.

Notice that each leaf of the constructed tree so far is at distance exactly p+ 1 from s.

• For each variable xi (resp. x̄i), i ∈ {1, . . . , n}, there are exactly three clauses
containing xi (resp. x̄i). Let cj (resp. c̄j), j ∈ {1, . . . ,m}, be the first one of
them. Then root a path Qxi

j (resp. Qx̄i

j ) of length 3 · (j − 1) at ℓxi
1 (resp. ℓx̄i

1 ), and

add a guard-vertex gxi

j adjacent to the endpoint of Qxi

j . To the endpoint of Qx̄i

j

(i) add a degree-one vertex dx̄i (a dummy-vertex) and (ii) root a path of length 3
where the last vertex of the path is a guard vertex gx̄i

j Repeat the same for two

other clauses with xi (resp. x̄i) and ℓxi
2 , ℓxi

3 (resp. ℓx̄i
2 , ℓx̄i

3 ).

To finish the construction, set k = p+ n
2 (11n+ 7).

In what follows, we use Lemma 2 and thus we only consider strategies that protect
a vertex adjacent to a burned vertex at each time step. Recall that the budget is set to
one in the instance I ′. Now we show that there is a satisfying assignment for φ′ if and
only if there exists a strategy for I ′ such that at most k vertices in T are burned.

“⇒” : Suppose that there is a satisfying assignment τ for φ′. We define the following
strategy Φτ from τ . At each step t from 1 to p+1, if t is odd then protect vx̄⌈t/2⌉

if x⌈t/2⌉

is true otherwise protect vx⌈t/2⌉
. If t is even then protect the guard-vertex g⌈t/2⌉ if vx̄⌈t/2⌉

has been protected, otherwise protect ḡ⌈t/2⌉. At the end of time step p+1, the number of
burned vertices is exactly p+

∑n
i=1(3+2(n− i)+1) = p+3n+n2. Moreover, the literal-

vertices that are burned in T correspond to the true literals in φ′. Thus, by construction
and since τ statisfies φ′, the vertices adjacent to a burning vertex are exactly one guard-
vertex gxa

1 , two dummy vertices dx̄b , dx̄c and 3n− 1 other vertices where xa ∨ xb ∨ xc is
the first clause, a, b, c ∈ {1, . . . , n}. At step p+2, we must protect the guard vertex gxa

1 .
During the steps p + 3 and p + 4, the strategy must protect one vertex lying on the
path Dx̄b

1 and Dx̄c
1 , respectively. Thus 3(3n−3)+5 = 9n−4 more vertices are burned at

the end of step p+4. More generally, from time step p+3(j− 1)+ 2 to p+3(j − 1)+ 4,
for some j ∈ {1, . . . ,m}, the strategy Φτ must protect a guard-vertex gxa

j and one vertex

of each path D
x̄b

j and Dx̄c

j , where xa, xb, xc appear in the clause cj , a, b, c ∈ {1, . . . , n}.
Thus 9(n− (j−1))−4 vertices get burned. It follows that the number of burned vertices
from step p+ 2 to p+ 3m+ 1 is

∑m
j=1[9(n− (j − 1)) − 4] = 9

2m(m+ 1)− 4m. Putting

all together, we arrive at a total of p+3n+ n2 + 9
2m(m+1)− 4m = p+ n

2 (11n+7) = k

burned vertices.
“⇐”: Conversely, assume that there is no satisfying assignment for φ′. Observe

first that any strategy Φ for I ′ protects either vxi or vx̄i for each i ∈ {1, . . . , n}. As a
contradiction, suppose that there exists i ∈ {1, . . . , n} such that Φ does not protect vxi

and vx̄i . Then in some time step both vxi and vx̄i get burned. Hence, it is not possible to
protect both gi and ḡi and at least one will burn implying that more than k vertices would
burn, a contradiction. Furthermore, vxi and vx̄i cannot be both protected otherwise we
would have protected a vertex not adjacent to a burned vertex at some step. Now consider
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the situation at the end of step p+1. By the previous observation, the literal-vertices that
are burned in T can be interpreted as being the literals in φ′ set to true. As previously, the
number of burned vertices so far is exactly p+

∑n
i=1(3+2(n−i)+1) = p+3n+n2. Let ng

and nd be the number of guard-vertices and dummy-vertices adjacent to a burned vertex,
respectively. As it follows from the previous construction, we know that ng = 3 − nd

with 0 ≤ ng ≤ 3 and 0 ≤ nd ≤ 3. We have the following possible cases:

(1) ng > 1. In this case, a guard-vertex gets burned and hence more than k vertices
would burn.

(2) ng = 1. Let gxa
1 be that guard-vertex and let dx̄b , dx̄c be the nd = 3−ng = 2 dummy-

vertices where xa, xb, xc are variables of the first clause. At time step i = p + 2,
we must protect gxa

1 . Furthermore, during the step i = p + 3 (resp. i = p + 4),
any strategy must protect a vertex lying on the path D

x̄b
1 (resp. Dx̄c

1 ). Indeed, if
a strategy does otherwise then at least one guard-vertex gx̄b

1 or gx̄c
1 gets burned.

Thus 2 dummy-vertices are burned.

(3) ng = 0. Hence we have exactly nd = 3 − ng = 3 dummy-vertices dx̄a , dx̄b , dx̄c

adjacent to burned vertices. Using a similar argument as before, we know that
during the step i = p + 2 (resp. i = p + 3, i = p + 4), a strategy must protect a
vertex lying on the path Dx̄a

1 (resp. Dx̄b
1 , Dx̄c

1 ). Thus 3 dummy-vertices are burned.

Notice that at step p + 5, we end up with a similar situation as in step p + 2. Now
consider an assignment for φ′. Since φ′ is not satisfiable, therefore φ is not satisfiable as
well. There are two possibilities:

• There exists a clause cj in φ with more than one true literal. Thus, we end up with
case (1) and there is no strategy for I ′ such that at most k vertices are burned.

• There is a clause cj in φ with only false literals. This corresponds to the case (3)
and the number of burned vertices would be at least 1 + p+ n

2 (11n+ 7) (at least
one extra dummy-vertex gets burned) giving us a total of at least k + 1 burned
vertices. Hence there is no strategy for I ′ where at most k vertices are burned.

It remains to prove that the pathwidth of T is at most three. To see this, ob-
serve that any subtree rooted at vxi or vx̄i has pathwidth two. Let Pxi and Px̄i be
the paths of the path-decompositions of these subtrees, respectively. We construct the
path-decomposition for T as follows. For every i ∈ {1, . . . , n− 1}, define the node Bi =
{u2i−1, u2i, u2i+1}. Extend all nodes of the paths Pxi and Px̄i to P ′

xi
and P ′

x̄i
by adding

the vertex u2i−1 inside it. Finally, connect the paths P ′
x1
, P ′

x̄1
and the node B1 to form

a path and continue in this way with P ′
x2
, P ′

x̄2
, B2, P

′
x3
, P ′

x̄3
, B3, . . . , Bn−1, P

′
xn
, P ′

x̄n
.

This completes the proof.

We can generalize the previous result to any fixed budget b ≥ 1 as follows.

Corollary 1. For any fixed budget b ≥ 1, the Firefighter problem is NP-complete
even on trees of pathwidth three.

Proof. We start from the reduction of Theorem 1 and alter the tree T as follows. Let w1

be the vertex s (corresponds also to u1). Add a path {w1w2, w2w3, . . . , w5nw5n+1} to T
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vx1
vx̄1

g1 ḡ1

s = u1

u2

u11

u10

vx̄6
vx6

g6 ḡ6

Figure 1: An example of part of a tree constructed from the formula φ = (x1 ∨ x3 ∨ x6) ∧ (x1 ∨ x2 ∨

x3)∧ (x3 ∨ x4 ∨ x5)∧ (x2 ∨ x4 ∨ x5)∧ (x1 ∨ x4 ∨ x6)∧ (x2 ∨ x6 ∨ x5). Guard vertices are represented by
a dot within a circle.

together with b− 1 guard-vertices added to each wi. First, one can easily check that the
pathwidth remains unchanged since the added component has pathwidth two and is only
connected to the root s. Second, it can be seen that at each time step, only one firefighter
can be placed “freely” as the other b− 1 firefighters must protect b− 1 guard-vertices. It
follows that we end up to a similar proof as for Theorem 1. This completes the proof.

4. Path-like graphs of bounded degree

As previously shown, for any fixed budget b ≥ 1, the Firefighter problem is NP-
complete on trees of bounded degree b + 3 [11, 3] and on trees of bounded pathwidth
three (Theorem 1). It is thus natural to ask for the complexity of the problem when
both the degree and the pathwidth of the input graph are bounded. In what follows,
we answer this question positively. A first step toward this goal is to use the following
combinatorial characterization of the number of burned vertices in a graph.

Theorem 2. Consider a graph of pathwidth pw and maximum degree ∆.
If the number of initially burned vertices is bounded by f1(pw,∆) for some function f1
then there exists a protection strategy such that at most f2(pw,∆) ≥ f1(pw,∆) vertices
are burned for some function f2.
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Proof. First we prove the following claim: Consider a graph of cutwidth cw. If the
number of initially burned vertices is bounded by g1(cw) for some function g1 then there
exists a protection strategy such that at most g2(cw) ≥ g1(cw) vertices are burned for
some function g2. We will prove this by induction on cw.

The claim is obviously true when the cutwidth is 0 since the graph cannot contain
any edge. Suppose now that the claim is true for any graph of cutwidth at most k,
k > 0. We show that it also holds for a graph of cutwidth k + 1. Let H = (V,E) be
such a graph and F ⊆ V be the set of initially burned vertices with |F | ≤ g1(cw(H)) for
some function g1. Consider a linear layout L = (v1, . . . , vn) of H such that for every i =
1, . . . , n− 1, there are at most k + 1 edges between {v1, . . . , vi} and {vi+1, . . . , vn}. For
every s ∈ F and i ≥ 0, we define inductively the following sets, where R0(s) = L0(s) =
{s}

Ri(s) =

{

{s = vk, vk+1, . . . , vk′} if ∃vk′ ∈ N i(s) : vk′ = argmax
v∈Ni(s)

dL(s, v)

Ri−1(s) otherwise
(1)

Li(s) =

{

{s = vk, vk−1, . . . , vk′} if ∃vk′ ∈ N i(s) : vk′ = argmin
v∈Ni(s)

dL(s, v)

Li−1(s) otherwise
(2)

We are now in position to define the set Bi(s), called a bubble, by Bi(s) = Li(s) ∪Ri(s)
for all i ≥ 0. Informally speaking, the bubble Bi(s) corresponds to the effect zone of s
after i steps of propagation i.e. every burned vertex inside the bubble is due to the
vertex s. The idea of the proof is to show that every bubble can be “isolated” from the
rest of the graph in a bounded number of steps by surrounding it with firefighters (see
Figure 2). We then show that the inductive hypothesis can be applied on each bubble
which will prove the theorem.

Let s1, s2 ∈ F . We say that two bubbles Bi(s1) and Bj(s2) for some i, j ≥ 0 overlap
if there exists an edge uv ∈ E with u ∈ Bi(s1) and v ∈ Bj(s2). In this case, we can
merge two bubbles into one i.e. we create a new bubble which is the union of Bi(s1)
and Bj(s2).

Let us consider an initially burned vertex s ∈ F and its bubble B2·cw(H)(s). First,
merge B2·cw(H)(s) with every other bubble B2·cw(H)(s

′) with s′ ∈ F that possibly overlap
into a new one B′

2·cw(H)(s). By definition, we know that the number of edges with an

endpoint in B′
2·cw(H)(s) and the other one in V \B′

2·cw(H)(s) is less or equal to 2 · cw(H).

Thus, we define the strategy that consists in protecting one vertex v ∈ V \ B′
2·cw(H)(s)

adjacent to a vertex in B′
2·cw(H)(s) at each step t = 1, . . . , 2 · cw(H). Let F ′ be the set

of vertices burned at step 2 · cw(H). Since ∆(H) ≤ 2 · cw(H), we deduce that |F ′| is
less or equal to |F | ·∆(H)2·cw(H) ≤ g1(cw(H)) · (2 · cw(H))2·cw(H) hence bounded by a
function of cw(H). Let us consider the subgraph H ′ = H [B′

2·cw(H)(s)]. Observe that

we can safely remove every edge uv from H ′ for which u, v ∈ F ′. Indeed, such edge
cannot have any influence during the subsequent steps of propagation. By the definition
of a bubble, this implies that the cutwidth of H ′ is decreased by one and thus is now
at most k. Therefore, we can apply our inductive hypothesis to H ′ which tells us that
there is a strategy for H ′ such that at most g′2(cw(H

′)) vertices are burned for some
function g′2. By Lemma 1, this strategy uses at most g′2(cw(H

′)) steps to be applied.
It follows that the number of burned vertices in H after applying this strategy is at
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s
B2(s)B3(s) B1(s)

Figure 2: A linear layout of a graph of cutwidth two. Dashed ellipses represent the bubbles associated
to an initially burned vertex s.

most the number of burned vertices from step 1 to the step 2 ·cw(H)+g′2(cw(H
′)) which

is |F |·∆(H)2·cw(H)+g′
2
(cw(H′)) ≤ g1(cw(H))·(2·cw(H))2·cw(H)+g′

2
(cw(H′)) which is bounded

by a function of cw(H). From now on, one can see that the previous argument can be
applied iteratively to each bubble. Since the number of bubbles is bounded by g1(cw(H))
(there is at most one bubble for each vertex initially on fire), we deduce that the total
number of burned vertices is bounded by g2(cw(H)) some function g2. This concludes
the proof of the claim.

We are now in position to prove the theorem. Let G be a graph. Suppose that
the number of initially burned vertices in G is at most f1(pw(G),∆(G)) for some func-
tion f1. We know that pw(G) ≤ cw(G) and ∆(G) ≤ 2 · cw(G) [18]. Thus the number
of burned vertices is at most f ′

1(cw(G)) for some function f ′
1. From the above claim

we deduce that there exists a strategy such that at most f ′
2(cw(G)) vertices get burned.

Since cw(G) ≤ pw(G) ·∆(G) [6], it follows that the number of burned vertices is bounded
by f2(pw(G),∆(G)) for some function f2. This completes the proof.

Remark 1. Notice that Theorem 2 is still valid even if the number of firefighters available
at each step is not the same (for example if there are b1 firefighters at time step one, b2
firefighters during the second time step, etc.).

In [2] the authors proved that the Firefighter problem is fixed-parameter tractable
with respect to the combined parameter k and the budget b. Let (G, s, b, k) be an
instance of Firefighter where G has maximum degree ∆. We can derive the following
algorithm: If b ≥ ∆ then protect all the vertices in N(s) at time step one; otherwise,
apply the algorithm from [2]. We then easily obtain the following

Theorem 3. The Firefighter problem is fixed-parameter tractable with respect to the
combined parameter k and “maximum degree” of the input graph.

We are now in position to give the main result of this section.

Theorem 4. The Firefighter problem is fixed-parameter tractable with respect to the
combined parameter “pathwidth” and “maximum degree” of the input graph.

Proof. Let (G, s, b, k) be an instance of Firefighter where G has maximum degree ∆
and pathwidth pw. We design the following algorithm. For each value k′ = 1, . . . , k run
the f(k′,∆) · nO(1)-time algorithm of Theorem 3: If the algorithm returns “yes” then
return “yes”. If the algorithm has returned the answer “no” for all k′ = 1, . . . , k then
return “no”.

Using Theorem 2, we know that there exists a function f ′ such that if k′ ≥ f ′(pw,∆)
the algorithm will necessarily returns “yes” and stops. It follows that the algorithm is
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called at most f ′(pw,∆) times. The overall running time is then bounded by

O(f ′(pw,∆) · f(k′,∆) · nO(1)) = O(f ′(pw,∆) · f(f ′(pw,∆),∆) · nO(1))

= f ′′(pw,∆) · nO(1)

for some function f ′′. This completes the proof.

From the proof of Theorem 2 and the fact that cw(G) ≤ bw(G)(bw(G)+1)
2 [4] for any

graph G, we easily deduce the following corollary.

Corollary 2. The Firefighter problem is fixed-parameter tractable with respect to the
parameters “cutwidth” and “bandwidth”.

5. Conclusion

In this paper we showed that the Firefighter problem is NP-complete even on trees
of pathwidth three but fixed-parameter tractable with respect to the combined parameter
“pathwidth” and “maximum degree” of the input graph. The combination of these two
results with the NP-completeness of the problem on trees of bounded degree [11] indicates
that the complexity of the problem depends heavily on the degree and the pathwidth of
the graph. We left as an open question whether the problem is polynomial-time solvable
on graphs of pathwidth two.
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