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Abstract

For Boolean functions computed by de Morgan formulas of subquadratic size or read-once
de Morgan formulas, we prove a sharp concentration of the Fourier mass on “small-degree”
coefficients. For a Boolean function f : {0, 1}n → {1,−1} computable by a de Morgan formula
of size s, we show that ∑

A⊆[n] : |A|>s1/Γ+ε

f̂(A)2 6 exp(−sε/3),

where Γ is the shrinkage exponent for the corresponding class of formulas: Γ = 2 for de Morgan
formulas, and Γ = 1/ log2(

√
5 − 1) ≈ 3.27 for read-once de Morgan formulas. We prove that

this Fourier concentration is essentially optimal.
As an application, we get that subquadratic-size de Morgan formulas have negligible correla-

tion with parity, and are learnable under the uniform distribution, and also lossily compressible,
in subexponential time. Finally, we establish the tight Θ(s1/Γ) bound on the average sensitiv-
ity of read-once formulas of size s; this mirrors the known tight bound Θ(

√
s) on the average

sensitivity of general de Morgan formulas of size s.

1 Introduction

Over the past thirty years, there have been a number of striking examples of interplay between
complexity and algorithms. We know that computationally hard problems are useful for build-
ing secure cryptosystems [BM84, Yao82, HILL99], and derandomization [NW94, BFNW93, IW97,
Uma03]. On the other hand, circuit lower bounds are implied by non-trivial algorithms for SAT
[KL82, Kan82, Wil10, Wil11] or Polynomial Identity Testing [KI04]. It has also been observed
that techniques used to prove existing circuit lower bounds are often useful for designing learning
algorithms [LMN93], SAT algorithms [Zan98, San10, ST12, IMP12, BIS12, CKK+13, CKS13], and
pseudorandom generators (PRGs) [Bra10, IMZ12, GMR+12, TX13] for the same class of circuits.
In particular, the method of random restrictions, useful for proving lower bounds against AC0 cir-
cuits [FSS84, Yao85, H̊as86] and de Morgan formulas [Sub61, And87, H̊as98, San10, KR13, KRT13],
turns out to be also useful for designing such algorithms for the same circuit class.

We give another example of the connection between random restrictions and algorithms for
small de Morgan formulas. We show tight Fourier concentration for small de Morgan formulas,
which is similar to the Fourier concentration for AC0 circuits shown in the celebrated paper by
Linial, Mansour, and Nisan [LMN93]. More precisely, we use concentrated shrinkage of de Morgan
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formulas under random restrictions to show that most of the Fourier mass of such formulas lies
on low-weight coefficients. Here concentrated shrinkage means that a formula shrinks in size with
high probability when hit by a random restriction. Such concentrated shrinkage is implicitly proved
by [IMZ12] (which considered the case of pseudorandom restrictions), building upon the earlier
“shrinkage in expectation” results by [HRY95, H̊as98].

As an immediate consequence of this Fourier concentration, we obtain, similarly to [LMN93],
strong correlation lower bounds against parity, learning algorithms under the uniform distribution,
and average sensitivity bounds for both general de Morgan formulas and read-once de Morgan
formulas (with better parameters for read-once formulas). We provide more details next.

1.1 Our results

1.1.1 Fourier concentration and correlation bounds

The Fourier transform of a Boolean function f : {0, 1}n → {1,−1} is a way to express f in the
orthogonal basis of functions χS(x1, . . . , xn) = (−1)

∑
i∈S xi , over all subsets S ⊆ [n]. Intuitively, the

coefficient of f at the basis function χS , denoted f̂(S), measures the correlation between f and the
parity function on the inputs xi, for i ∈ S. Thus, one would expect that the classes of circuits for
which the parity function is hard to compute would not have much weight on high-degree Fourier
coefficients f̂(S) for large sets S, i.e., that such circuits would exhibit concentration of the Fourier
spectrum over low-degree coefficients.

The first such connection between complexity of computing parity and Fourier concentration
was shown by Linial, Mansour, and Nisan [LMN93], based on the strong average-case lower bounds
for AC0 circuits against the parity function [H̊as86]. We extend the approach of [LMN93] to the case
of subquadratic-size de Morgan formulas, which cannot compute the parity function in the worst
case [Khr71], or even on average (as follows from the work in the quantum setting [BBC+01, Rei11]).

Our main result is the following.

Theorem 1.1. Let f : {0, 1}n → {1,−1} be a Boolean function computable by a de Morgan formula
of size s. Then, for any constant 0 < ε < 1/2, and any sufficiently large s,∑

A⊆[n] : |A|>s1/Γ+ε

f̂(A)2 6 exp(−sε/3),

where Γ is the shrinkage exponent for the corresponding class of formulas: Γ = 2 for de Morgan
formulas, and Γ = 1/ log2(

√
5− 1) ≈ 3.27 for read-once de Morgan formulas.

In words, this means that we have a very good approximation (in the `2 norm) to a de Morgan
formula of size s with a polynomial of degree about s1/Γ, where Γ is the shrinkage exponent for the
class of formulas. We also show our Fourier concentration is essentially optimal (Lemma 5.3).

As an immediate corollary of Theorem 1.1, we get that the parity on n bits cannot be computed
correctly on more than 1/2 + exp(−sε/3) fraction of inputs by any de Morgan formula of size
s < n2/(1+2ε) 6 n2(1−ε), for any constant 0 < ε < 1/2.

1.1.2 Learning and compression

As a consequence of such Fourier concentration, we get, similarly to [LMN93], that the class of de

Morgan formulas of size s is learnable in time ns
1/Γ+ε

to within error exp(−sΩ(ε)), over the uniform
distribution, where Γ = 2 for general de Morgan formulas, and Γ ≈ 3.27 for read-once de Morgan
formulas (see Theorem 7.2).
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This class of formulas is also lossily compressible in the sense of [CKK+13]. That is, given the
truth table of a Boolean function f : {0, 1}n → {1,−1} which is promised to be computable by
an unknown de Morgan (read-once) formula of size s, we can compute in deterministic time 2O(n),

a Boolean circuit C of size about ns
1/Γ+ε

, where Γ is the corresponding shrinkage exponent, such
that C agrees with f on all but exp(−nΩ(1)) fraction of n-bit inputs.

1.1.3 Average sensitivity

Informally, the average sensitivity of a Boolean function f : {0, 1}n → {1,−1}, denoted AS(f),
measures the number of influential coordinates in a typical input x ∈ {0, 1}n, where a coordinate
i ∈ [n] is influential if flipping the ith bit in x flips the value f(x); we give a more formal definition
below. The Fourier concentration we show immediately yields the upper bound s1/Γ+o(1) on the
average sensitivity of read-once de Morgan formulas of size s, where Γ ≈ 3.27 is the shrinkage
exponent for read-once formulas. However, we show (thanks to a personal communication by
Nitin Saurabh) that the stronger upper bound O(s1/Γ) can be obtained from [Bop89]. We then
demonstrate the matching lower bound Ω(s1/Γ). Combined with known results for general de
Morgan formulas, this yields the following tight connection between the shrinkage exponent and
the average sensitivity for the class of (general and read-once) de Morgan formulas.

Corollary 1.2. Let f : {0, 1}n → {1,−1} be a Boolean function computable by a de Morgan
formula of size s. Then AS(f) 6 O(s1/Γ), where Γ is the shrinkage exponent for the corresponding
class of formulas: Γ = 2 for de Morgan formulas, and Γ = 1/ log2(

√
5− 1) ≈ 3.27 for read-once de

Morgan formulas. The average sensitivity Ω(s1/Γ) can be achieved with size s de Morgan formulas
for Γ = 2, and read-once formulas for Γ = 1/ log2(

√
5− 1) ≈ 3.27.

1.2 Our techniques

Our starting point is the result from [LMN93] which relates the Fourier spectrum of a given Boolean
function f for “large” Fourier coefficients to the expected Fourier spectrum of the corresponding
“large” Fourier coefficients for a random restriction of the function f ; here a random restriction
is obtained by first deciding, with probability p for each variable, whether to restrict it, and then
assigning randomly each selected variable either 0 or 1. If a random restriction is likely to have fewer
than t variables (for some parameter t), then all Fourier coefficients of degree at least t are zero
(since it’s impossible to have a nonzero correlation with the parity function on t variables if your
function depends on fewer than t variables). Thus, if we have a “high-probability” shrinkage result
for a given class of formulas under random restrictions (showing that a random restriction is likely
to shrink the size of a given formula), we immediately get a corresponding Fourier concentration
result, where the error bound of the concentration result is the same as the error bound for the
shrinkage result.

This approach works directly for the case of read-once de Morgan formulas, which are known to
shrink with high probability under “pseudorandom” restrictions [IMZ12], and the same analysis of
[IMZ12] can be used also for the case of truly random restrictions, yielding an exponentially small
error, as shown in our Theorem 4.2 below.

However, for the case of general de Morgan formulas, such a “high-probability” shrinkage result
is simply not true. The problem is posed by the presence of “heavy” variables, the variables that
occur too often in a given formula. The notion of a random restriction needs to be modified so
that the heavy variables are always restricted, while each of the remaining light variables is chosen
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to be restricted with some probability p. We adapt the result of [LMN93] mentioned above to the
setting of such modified restrictions.

Still, in order to get strong Fourier concentration, one needs the parameter p of a random
restriction to be quite small (e.g., nε/n), while the known shrinkage result of [IMZ12] applies only
to relatively large values of p (e.g., p > n−1/8). The solution is to apply a number of restrictions
recursively, each with a relatively large value of pi, so that the product of the pi’s is as small as we
want. Fortunately, the connection between the Fourier spectrum of the original function and of its
appropriate random restriction fits in well with such a recursive argument.

To prove the optimality of our Fourier concentration, we exhibit a family of small de Morgan for-
mulas that have non-trivial correlation with the parity function. Roughly, the constructed formula
computes the AND of parities of small disjoint subsets of the input variables (see Lemma 5.3).

The learning and compression results follow immediately from Fourier concentration, using stan-
dard methods (cf. [LMN93]). For the lower bound on the average sensitivity of read-once formulas,
we use an explicit family of read-once formulas constructed by [PZ93] (building on [Val84b]), which
are known to be shrinkage-resistant. We show that the same read-once formulas of size s have
average sensitivity Ω(s1/Γ) (see Theorem 7.5).

1.3 Related work

For size s de Morgan formulas, Ganor, Komargodski, and Raz [GKR12] proved the upper bound∑
|A|>s1/2/ε f̂(A)2 6 O(ε), which is tight for constant ε > 0. Actually, as pointed out to us by

one of the referees, a stronger result (matching our Theorem 1.1 for de Morgan formulas) can be
deduced from some of the quantum-based results mentioned by [GKR12]. In particular, the results
in quantum query complexity [FGG08, ACR+07, RŠ08, Rei09] imply that every de Morgan formula
F of size s can be approximated by a polynomial of degree D 6 O(t · s1/2+o(1)) with point-wise
error at most 2−t, and hence also in the `2-norm with the same error 2−t. This is easily seen to
imply that the Fourier spectrum of F above the degree D is at most 2−t. Setting t = sε yields the
required Fourier concentration as in Theorem 1.1.

In contrast, our Theorem 1.1 is proved using classical (non-quantum) arguments, and exhibits
a deep connection between the Fourier concentration parameters for a class of formulas and the
shrinkage exponent for the same class of formulas; the above-mentioned quantum results (based
on point-wise polynomial approximations) do not distinguish between read-once and general de
Morgan formulas.

Lee [Lee09] shows (based on a long line of work in the quantum setting [BBC+01, FGG08,
ACR+07, RŠ08, Rei09]) that every de Morgan formula of size s can be computed as the sign(p)
for a multilinear polynomial p of degree O(

√
s). In particular, this completely resolves a conjecture

by O’Donnell and Servedio made in the conference version of [OS10], which implies that Boolean
functions computable by size s de Morgan formulas are PAC-learnable in time O(n

√
s). For general

de Morgan formulas, this is stronger than our uniform-distribution learning result as it holds for
any distribution. On the other hand, our proof is completely classical, and we also get a better
running time for the case of read-once formulas.

The tight average sensitivity bound Θ(
√
s) for general de Morgan formulas of size s follows

from the work of [Shi00, Lee09] (using the quantum approach); an alternative (classical) proof is
also given by [GKR12]. For read-once formulas of size s, the upper bound O(s1/Γ) on the average
sensitivity, where Γ is the corresponding shrinkage exponent for read-once formulas, is implicit in
the work of [Bop89]. This observation was made by Nitin Saurabh [personal communication, 2013],
and we include his argument, with his permission, in Section C of the appendix.
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As observed in [KRT13], the quantum-setting work of [BBC+01, Rei11] implies that any de
Morgan formula of size o((n/ log(1/ε))2) has correlation at most 1/2 + ε with the n-bit parity. This
is comparable to the correlation bound implied by our Fourier concentration result (Corollary 7.1).

Remainder of the paper. We state the basics in Section 2, and show how to adapt the approach
of [LMN93] in Section 3. We prove the required concentrated shrinkage results for general and read-
once de Morgan formulas in Section 4. We derive the Fourier concentration result for general de
Morgan formulas in Section 5, and for read-once formulas in Section 6. In Section 7 we give the
applications of the Fourier concentration result to correlation with parity, learning, compression,
and average sensitivity for de Morgan formulas. We state some open questions in Section 8. The
Appendix contains some proofs omitted from the main body of the paper.

2 Preliminaries

2.1 Notation

We denote by [n] the set {1, 2, . . . , n}. We use exp(a) to denote the exponential function 2a, where
a is some numerical expression. All logarithms are base 2 unless explicitly stated otherwise.

2.2 Formulas

A de Morgan formula F on n variables x1, . . . , xn is a binary tree whose leaves are labeled by
variables or their negations, and whose internal nodes are labeled by the logical operations AND
or OR. The size of a formula F , denoted by L(F ), is the number of leaves in the tree.

A de Morgan formula is called read-once if every variable appears at most once in the tree.
Note that the size of a read-once formula on n variables is at most n.

2.3 Fourier transform

We review some basics of Fourier analysis of Boolean functions (see, e.g., [Wol08] for a survey).
We think of an n-variate Boolean function as {−1, 1}-valued, i.e., as f : {0, 1}n → {−1, 1}. For a
subset A ⊆ [n], we denote by χA the Boolean function mapping x1, . . . , xn ∈ {0, 1}n to the parity
(−1)

∑
i∈A xi . Let f : {0, 1}n → R be any function. The Fourier coefficient of f at A is defined as

f̂(A) := Expx∈{0,1}n [f(x) ·χA(x)]. Note that f̂(A) is exactly the advantage of f at computing χA,
the parity of the inputs from A.

The Parseval identity is
∑

A⊆[n] f̂(A)2 = Expx∈{0,1}n [f(x)2]. Note that for a Boolean function

f : {0, 1}n → {−1, 1}, we get
∑

A⊆[n] f̂(A)2 = 1.

2.4 Random restrictions

For 0 < p < 1, we define a p-restriction ρ of the set of n variables x1, . . . , xn as follows: for each
i ∈ [n], with probability p assign xi the value ∗ (i.e., leave xi unrestricted), and otherwise assign xi
uniformly at random a value 0 or 1. We denote by Rp the class of p-restrictions.

For a Boolean function f(x1, . . . , xn) and a random restriction ρ, fρ denotes the restricted
function obtained from f using ρ; fρ is a function of the variables left unrestricted by ρ. For a
Boolean function f , a subset S of variables, and a string r ∈ {0, 1}|S|, the notation fS←r means
the restriction of f where the variables in S are assigned the values given in r. We can combine
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different restrictions. For example, fS←r,ρ means the restriction of f where we assign the values r
to the variables in S, and then apply a restriction ρ to the resulting function in variables [n] \ S.

2.5 Chernoff-Hoeffding bound

We will use the following version of the Chernoff-Hoeffding bound [Che52, Hoe63].

Lemma 2.1 (Chernoff-Hoeffding). Let X =
∑t

i=1Xi be the sum of independent random variables
such that each Xi is in the range 0..s, and Exp[X] < E, for s, E > 1. Then Pr[X > 8E] < 2−E/s.

3 Fourier concentration via random restrictions

3.1 The starting point

We use the following result of [LMN93]; for completeness, we prove it in Section A of the Appendix.

Theorem 3.1 ([LMN93]). For arbitrary n-variate Boolean function f , integer t > 0 and a real
number 0 < p < 1 such that pt > 8,

∑
|A|>t

f̂(A)2 6 2 ·Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 .
3.2 Intuition for de Morgan formulas

Imagine we had a “dream version” of the concentrated shrinkage result for de Morgan formulas:
For any 0 < p < 1, a given de Morgan formula F on n variables of size s will shrink to size s′ 6 p2s
with probability 1− γ, for some “small” γ. Let us pick p so that p2s < n.

Note that a formula of size s′ has at most s′ variables, and hence, all its Fourier coefficients for
the sets of size greater than s′ are 0. In the notation of Theorem 3.1, every p-restriction ρ, such
that the formula size of Fρ is less than pt/2, contributes 0 to the overall expectation; every other
restriction ρ (where the formula doesn’t shrink) contributes at most 1 (by the Parseval equality).
Equating p2s and pt/2, we get for t = 2ps,

∑
|A|>t F̂ (A)2 6 2 · γ. Since t < n and p > 1/n, this also

forces s < n2/2. For s 6 n2−2ε, we can set p = nε/n, getting t = n1−ε. (Note that since we need
pt > 8, we get p > Ω(1/

√
s), and thus, t > Ω(

√
s).)

In reality, we don’t have such concentrated shrinkage. First, it is not true because a formula
may have “heavy” variables (those that appear too frequently in the formula), and if such a heavy
variable is missed (assigned ∗) by a p-random restriction, no substantial shrinkage of the formula
size will occur. Thus we need to ensure that the heavy variables are always restricted.

Secondly, the best known concentrated shrinkage results of [IMZ12, KRT13] do not work for
very small p. The way around it is to apply a number of random restrictions one after the other,
for appropriately chosen p1, p2, . . . , pk, thereby simulating a single restriction with the parameter
p =

∏k
i=1 pi; such a workaround was already used in [IMZ12] and [KRT13].

The following lemma will handle heavy variables. Intuitively, it says that each variable restricted
increases the effective degree of where the Fourier coefficients could be large by at most 1.

Lemma 3.2. Let f be a Boolean function, and x a variable for f . Let f0 be f with x set to 0,
f1 with x set to 1. For any δ > 0, if both

∑
A,|A|≥t f̂0(A)2 ≤ δ and

∑
A,|A|≥t f̂1(A)2 ≤ δ, then∑

A,|A|≥t+1 f̂(A)2 ≤ δ.
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Proof. For y := 1−2x, we can write f = 1/2(1+y)f0 +1/2(1−y)f1 = 1/2(f0 +f1)+(1/2)(f0−f1)y.
Then, for any set A not containing x,

f̂(A)2 + f̂(x ∪A)2 = (1/2(f̂0(A) + f̂1(A)))2 + (1/2(f̂0(A)− f̂1(A)))2

= 1/2 · f̂0(A)2 + 1/2 · f̂1(A)2.

Summing this over all A with |A| ≥ t yields at most δ by the assumptions for the restricted
functions. Every B of size ≥ t+ 1 (containing x or not) is included in this sum.

So to upperbound the Fourier mass of the coefficients for sets A with |A| > t, the idea is to
set all “heavy” variables (say, z of them), and upperbound the Fourier mass for each restricted
function over the coefficients for sets B with |B| > t− z. If we can bound the Fourier mass of each
restricted function by some δ, then, by Lemma 3.2, we get the same upper bound for the Fourier
mass of the original function over the sets of size greater than (t− z) + z = t, as required.

4 Concentrated shrinkage of de Morgan formulas

Here we prove the following shrinkage results for general and read-once de Morgan formulas, implicit
in [IMZ12].

Theorem 4.1 (Shrinkage of general de Morgan formulas). There exists a c > 0 such that, for every
L and every de Morgan formula F with L(F ) ≤ L on n variables that does not have any variable
appearing more than h times, and for every 0 < p < 1,

Prρ∈Rp

[
L(Fρ) > c · p2 · log3/2(1/p) · L

]
6 L(F ) · exp

(
−p6 · L/h

)
.

Theorem 4.2 (Shrinkage of read-once de Morgan formulas). For any read-once de Morgan formula
F (x1, . . . , xn) and p = (nε/n)1/Γ, for some ε ∈ [0, 1], we have

Prρ∈Rp

[
L(Fρ) > 2b · pΓ · n

]
6 exp(−Ω(nε/2)),

for some b = O(1/ε), where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Both of these results are proved using the well-known “shrinkage in expectation” results for
the corresponding classes of formulas [H̊as98, HRY95, DZ94]. The proof idea is to decompose a
given formula into a few batches of independent subformulas (with some extra conditions) and
apply “shrinkage in expectation” to each subformula. Since the subformulas in each batch are
independent, we can use the Chernoff-Hoeffding inequality to argue that the shrinkage occurs with
high probability in each batch, and hence, by the union bound, also for the entire original formula.

We provide more details below. First, in Section 4.1, we give arguments common for the proofs
of both these results. Then we prove Theorem 4.1 in Section 4.2, and Theorem 4.2 in Section 4.3.

4.1 Preliminary arguments

We will be using the following “shrinkage in expectation” results. H̊astad [H̊as98] showed that the
shrinkage exponent for de Morgan formulas is 2 (see also [Tal14] for an alternative, tighter proof).
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Theorem 4.3 ([H̊as98]). There exists a c > 0 such that, for every de Morgan formula F on n
variables and for every 0 < p < 1,

Expρ∈Rp [L(Fρ)] 6 c ·
(
p2 · µ(p, L(F )) · L(F ) + p ·

√
L(F )

)
,

where µ(p, L(F )) = 1 + log3/2 min{1/p, L(F )}.

H̊astad, Razborov, and Yao [HRY95] settled the shrinkage exponent for read-once formulas;
their result was tightened by Dubiner and Zwick [DZ94].

Theorem 4.4 ([HRY95, DZ94]). For every read-once formula F (x1, . . . , xn) and a parameter 0 <
p < 1,

Expρ∈Rp [L(Fρ)] 6 O
(
pΓ · n+ p · n1/Γ

)
,

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Next, we decompose a given (general or read-once) de Morgan formula as follows.

Lemma 4.5 ([IMZ12]). For every positive s and any de Morgan formula F on the set X of variables
with L(F ) > s, there exist m de Morgan formulas G1, . . . , Gm for m 6 O(L(F )/s), such that

1. L(Gi) 6 s, for all 1 6 i 6 m,

2. for each 1 6 i 6 m, Gi has at most 2 occurrences of “special” variables outside of X (different
variables for different Gi’s), and

3. for any restriction ρ of the variables X, L(Fρ) 6
∑m

i=1 L((Gi)ρ′) where ρ′(x) = ρ(x) for
x ∈ X and ρ′(x) = ∗ otherwise.

Moreover, if F is a read-once formula, then so is every formula Gi in the collection.

Proof sketch. Find a subformula of size between s/2 and s; a maximal subformula of size at most
s has size at least s/2. Replace the subformula with a new variable, called a subtree variable.
Repeatedly find either a subformula with exactly 2 subtree variables and of size less than s, or
a subformula with at most 1 subtree variable and of size between s/2 and s. (Take a minimal
subformula with size greater than s/2. If it has more than 2 subtree variables, take a minimal
subformula with at least 2 such variables; since each of its child formulas has at most 1 subtree
variable, it must have exactly 2.) Since each time, we either remove s nodes and create at most 1
new subtree variable, or reduce the number of subtree variables by one, we get a partition of the
formula into O(L(F )/s) subformulas each of size at most s and with at most 2 subtree variables.

The special variables correspond to the inputs which are outputs of some other subformulas.
We want to analyze the effect of a random restriction on F by using the upper bound of item (3) of
Lemma 4.5. To this end, we need to handle random restrictions that leave some specified variables
(the “special” variables in our case) unrestricted.

The idea is to take each subformula Gi and construct a new subformula G′i by replacing each
special variable in Gi with a restriction-resistant formula (on new variables, different for different
special variables); here we call a formula “restriction-resistant” if, for at least 3/4 of random
restrictions, the resulting restricted formula remains a non-constant function. Then we upperbound
the expected size Expρ′ [L((Gi)ρ′)], for ρ′ that leaves special variables unrestricted, by twice the

8



expected size Expρ[L((G′i)ρ)], for a standard random restriction ρ. The latter expectation can be
upperbounded using the above-mentioned “shrinkage in expectation” results.

For general de Morgan formulas, the parity function on k inputs is not likely to simplify to a
constant function for most p-restrictions, where pk � 1; the size of such a de Morgan formula is
O(k2). For read-once de Morgan formulas, the existence of restriction-resistant formulas follows
from the work by Valiant [Val84a]; see Section B in the appendix for the proof of the following.

Lemma 4.6 ([IMZ12]). For every 0 < p < 1, there exists a read-once de Morgan formula H of
size O(1/p4) such that, for all but at most 1/4 of p-restrictions ρ, we have

Hρ(~0) = 0 and Hρ(~1) = 1, (1)

where ~0 and ~1 denote the inputs of all 0’s and all 1’s, respectively.

Now we can analyze the expected shrinkage of de Morgan formulas under p-restrictions that leave
some specified variables unrestricted. Let Gi be any formula in the decomposition of Lemma 4.5,
with at most two occurrences of special variables. Let H be a shrinkage-resistant formula in the
sense that, for all but at most 1/4 fraction of p-restrictions σ, the restricted formula Hσ is not
a constant function. Let G′i be obtained from Gi by replacing the special variables in Gi by
independent copies of the formula H on new, disjoint sets of variables. Let ρ′ be a p-restriction on
the variables of Gi such that the special variables are assigned *. Let ρ be a p-restriction on all
variables of G′i which agrees with ρ′ on all variables of Gi.

We have the following.

Claim 4.7. Expρ′ [L((Gi)ρ′)] 6 2 ·Expρ[L((G′i)ρ)].

Proof of Claim 4.7. Let A be the event that a random p-restriction on the variables of two copies
of H leaves both these formulas non-constant. By the union bound, the probability of A is at least
1/2. Conditioned on A, we have L((Gi)ρ′) 6 L((G′i)ρ). Thus, for a fixed ρ′, and for a random ρ
extending ρ′, we get

Expρ[L((G′i)ρ)] > (1/2) · L((Gi)ρ′).

Taking the expectation over ρ′ on both sides of this inequality yields the desired claim.

Now we are ready to prove our concentrated shrinkage results.

4.2 Proof of Theorem 4.1

Let s = c0p
−2 for some constant c0. Using Lemma 4.5, decompose a given formula F into O(L(F )/s)

subformulas Gi’s.
Let H be a de Morgan formula on 2/p fresh variables that computes the parity function. Each

such de Morgan formula for parity on 2/p variables has size O(1/p2). The probability that each of
2/p variables is assigned (0 or 1) by a random p-restriction is (1 − p)2/p 6 e−2 6 1/4. Thus H is
shrinkage-resistant.

Form G′i by replacing special variables in Gi by independent copies of the formula H. Since
each Gi is of size at most s = c0/p

2 and the size of H is O(1/p2), we get that each G′i has size
c′0/p

2, for some constant c′0. By Claim 4.7 and H̊astad’s Theorem 4.3, we get, for each Gi,

Exp[L((Gi)ρ′)] 6 2 ·Expρ[L((G′i)ρ)] 6 c1 · log3/2 s, (2)

for some constant c1, where ρ′ is a p-restriction on the variables of Gi excluding the special variables,
and ρ is a p-restriction extending ρ′ to all variables of G′i.

9



Thus, we have a collection of O(L(F )/s) formulas Gi, each of size at most s, such that no
variable appears in more than h of the Gj ’s, and such that L(Fρ) 6

∑
L((Gi)ρ′). So our lemma

reduces to showing concentration for the latter sum of random variables whose expectations are
upperbounded by Eq. (2).

Since each Gi shares any variables with at most sh other Gj ’s, we can partition Gi’s into O(sh)
batches, each of at most O(L(F )/(s2h)) formulas, so that the formulas in each batch are totally
independent, having no variables in common. By Eq. (2), the expected total formula size within each
batch is O(L(F )(log3/2 s)/(s2h)). As a random variable, this is the sum of independent random
variables in the range 0 to s. By the Chernoff-Hoeffding bound of Lemma 2.1, the probability
that the sum of the formula sizes in any batch is larger than c3L(F )(log3/2 s)/(s2h) is less than

2−Ω(L(F )(log3/2 s)/s3h). There are strictly less than L(F ) 6 L batches, so a union bound gives
the probability that all batches are of size O(L(F )(log3/2 s)/(s2h)) except with probability L ·
exp(−Ω(L(F )/(s3h))) = L · exp(−Ω(p6L(F )/h)). If they are, then summing up over the at most
O(sh) batches, L(Fρ) 6 O(L(F )(log3/2 s)/s) = O(p2 · L(F ) · log3/2(1/p)).

4.3 Proof of Theorem 4.2

First we prove a shrinkage result useful for relatively large parameters p.

Theorem 4.8. There exist constants d, d′ > 0 such that the following holds for any read-once de
Morgan formula F (x1, . . . , xn) and 0 < p < 1:

Prρ∈Rp
[
L(Fρ) > d · pΓ · n

]
6 exp(−d′ · p8 · n),

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Proof. Set s = c/p4, for a constant c to be determined. Using Lemma 4.5, partition a given formula
F (of size n) into O(n/s) subformulas G1, . . . , Gm of size at most s each.

Let H be a shrinkage-resistant read-once formula from Lemma 4.6. Define G′i to be Gi with
special variables in Gi replaced by independent copies of H. Note that L(G′i) 6 L(Gi) +O(1/p4),
which can be made at most 2 · L(Gi) by choosing p > (c/L(G))1/4 for a sufficiently large constant
c > 0. By Claim 4.7 and Theorem 4.4, we get for each Gi that

Expρ′ [L((Gi)ρ′)] 6 c′ · pΓ · s, (3)

for some constant c′, where ρ′ is a p-restriction over the variables of Gi excluding the special
variables.

By Lemma 4.5, we have L(Fρ) 6
∑

i L((Gi)ρ′). Note that the latter is the sum of independent
random variables, as different Gi’s have no variables in common (due to F being read-once). Each
of these random variables is in the range 0..s, with expectation upperbounded by Eq. (3). Hence,
the expectation of the sum of these random variables is at most c′′npΓ, for some constant c′′. By
the Chernoff-Hoeffding bound of Lemma 2.1, the probability that L(Fρ) is greater than 8c′′npΓ is

less than 2−c
′′npΓ/s 6 exp(−d′ · p8 · n), for some constant d′.

Now we prove Theorem 4.2, by recursively applying Theorem 4.8.

Proof of Theorem 4.2. Set q := n−ε/16, and k := 16(1 − ε)/(Γ · ε). We will apply k random q-
restrictions to our original formula F . Let Fi be the formula F after i restrictions are applied to
F , and let si be the size of Fi; we have F0 = F and s0 = n.

10



Consider stage i, for 1 6 i 6 k. If si−1 6 pΓn = nε, then si will also be less than nε with
probability 1. Assuming si−1 > nε, we get by Theorem 4.8 that Prρ∈Rq [si > d · qΓ · si−1] 6
exp(−d′ · q8 · nε) 6 exp(−d′nε/2). It follows that with probability at least 1− k · exp(−d′nε/2), we
have sk 6 dkqkΓn 6 dk · pΓ · n, as claimed.

5 Fourier concentration of de Morgan formulas

The main result of this section is the following.

Theorem 5.1. Let f : {0, 1}n → {−1, 1} be a Boolean function computed by a de Morgan formula
F (x1, . . . , xn) of size at most s. Then, for any constant 0 < ε < 1/2, and any sufficiently large s,∑

|A|>s1/2+ε

f̂(A)2 6 exp
(
−sε/3

)
.

5.1 Proof of the main result

Theorem 5.1 is implied by the following quantitative version (by equating ε of Theorem 5.1 with
εk/2 of Theorem 5.2).

Theorem 5.2. For each integer k > 0 there is a constant b so that, for any Boolean function f
computed by a de Morgan formula of size at most s, and for εk = (11/12)k and t = s(1+εk)/2,

∑
|A|>t

f̂(A)2 ≤ ks · exp

(
−Ω

(
sεk/4

logb s

))
,

for s sufficiently large.

Proof. The proof is by induction on k. The base case k = 0 is trivial, since the formula depends
on at most s variables, and the sum is over sets of size larger than s.

Assume the theorem holds for k ≥ 0. We will prove it for k+1. Let t = s(1+εk+1)/2. Let h =
√
s.

There are at most
√
s variables that are more than h-heavy (i.e., have more than h occurrences)

in a minimal formula for f . Let f ′ be any restriction of f assigning values to the heavy variables.
We will show that each f ′ has ∑

|A|≥t′
f̂ ′(A)2 ≤ ks · exp

(
−sΩ(εk)

)
,

where t′ = t/2. The claim will then follow from Lemma 3.2, since t > t′ +
√
s when s > 4(12/11)k .

For each such f ′, consider a random restriction ρ ∈ Rp for p = s−1/24/(c(log s)a), for constants
a and c to be chosen later. By Theorem 3.1, we get

∑
A : |A|≥t′

f̂ ′(A)2 ≤ 2 ·Expρ

 ∑
B : |B|≥pt′/2

f̂ ′ρ(B)2

 .
By Theorem 4.1, except with probability s · exp(−p6s/h) = s · exp(−Ω(s1/4/ log6a s)), the func-

tion f ′ρ has formula size at most s′′ = c1p
2s log3/2 s = (c1/c

2)s11/12(log s)3/2−2a = s11/12(log s)3/2−2a,
where we set c :=

√
c1.

11



Let t′′ be the inductive Fourier coefficient size for the theorem with k and the formula size s′′,
i.e.,

t′′ = (s′′)(1+εk)/2

= s(11/24)(1+εk) · (log s)(3/4−a)(1+εk)

= s11/24+εk+1/2 · (log s)(3/4−a)(1+εk).

We claim we can pick a so that pt′/2 (the crucial value in Theorem 3.1) is greater than t′′. First,

pt′/2 = s(1+εk+1)/2 · s−1/24/(4c(log s)a)

= s11/24+εk+1/2/(4c(log s)a)

= (t′′/4c)(log s)aεk−(3/4)(1+εk).

For any a > (3/4)(1+εk)/εk, the exponent of log s will be greater than zero, so the whole expression
will be larger than t′′ for sufficiently large s.

Thus, except for the s · exp(−s1/4/ log6a s) fraction of ρ’s where shrinkage fails, we have∑
B : |B|≥pt′/2

f̂ ′ρ(B)2 ≤ ks′′ · exp

(
−Ω

(
(s′′)εk/4

poly log s′′

))

≤ ks · exp

(
−Ω

(
sεk+1/4

poly log s

))
.

Since the sum of squares of Fourier coefficients is bounded by 1 (by Parseval’s identity), we can add
the chance of failure, getting the bound (k + 1)s · exp

(
−Ω

(
sεk+1/4/poly log s

))
, as required.

5.2 Optimality of the Fourier concentration for de Morgan formulas

Let f : {0, 1}n → {1,−1} be a Boolean function computed by a de Morgan formula of size s. Since
the parity of m bits can be computed by a size O(m2) de Morgan formula, we have that f̂(A) = 1
for a set A ⊆ [n] of size |A| = O(

√
s). Thus, in order to get a non-trivial upper-bound on the

Fourier spectrum
∑
|A|>t f̂(A)2, we need to set t >

√
s.

In fact, as we shall argue, in order to get the upper bound 2−n
γ
, for some γ > 0, we need to

set t >
√
s · nγ/2. This shows that our Fourier concentration for sub-quadratic size de Morgan

formulas, Theorem 5.1, is tight, up to a constant factor in front of the parameter ε.

Lemma 5.3. For any γ > 0 and t 6 n, there is a de Morgan formula on n inputs of size O(t2/nγ)
that computes the parity on t bits with advantage 2−n

γ
.

Proof. Consider the following formula F (x1, . . . , xn). Set m = bnγc. Without loss of generality
assume that m is odd; otherwise take m − 1. Divide x1, . . . , xt into m disjoint blocks of size t/m
each. Compute the parity of each block, using a de Morgan formula of size O(t2/m2), and output
the AND of the results over all blocks. The overall formula size of F is O((t2/m2) ·m) = O(t2/m).

Next we argue that F has advantage 2−m in computing the parity of x1, . . . , xt. Note that F is
correct when all m blocks have odd parity, which happens with probability 2−m. If not all blocks
have odd parity, our formula always outputs 0, which is correct for exactly 1/2 of the inputs.

By Lemma 5.3, a function f computed by a de Morgan formula of size s may have f̂(A) > 2−n
γ

for a set A of size |A| 6 t for t satisfying O(t2/nγ) = s, i.e., for t = O(
√
s · nγ/2). It follows that in

order to achieve
∑
|A|>t f̂(A)2 < 2−n

ε/6
, one needs to set t >

√
s · nε/12.
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6 Fourier concentration of read-once de Morgan formulas

The main result of this section is the following.

Theorem 6.1. Let F (x1, . . . , xn) be any read-once de Morgan formula computing the Boolean
function f : {0, 1}n → {1,−1}. Then for every 0 < ε < 1 such that ε > Ω(1/

√
log n),∑

|A|>n1/Γ+ε

f̂(A)2 6 exp(−nε/3),

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Proof. For p = (nε/n)1/Γ, we get by Theorem 4.2 that for all but γ := exp(−Ω(nε/2)) fraction
of p-restrictions shrink the formula F to size at most 2b · nε, for some b = O(1/ε). Set t so that
2b ·nε = pt/2. We get t = n1/Γ+ε(1−1/Γ) ·2O(1/ε) 6 n1/Γ+ε, for ε such that 2O(1/ε) 6 nε/3, which holds
for ε > Ω(1/

√
log n). By Theorem 3.1, we conclude that

∑
|A|>t f̂(A)2 6 2γ 6 exp(−Ω(nε/2)) 6

exp(−nε/3), as required.

The bound in Theorem 6.1 is close to optimal (see Remark 7.6 below).

7 Applications

7.1 Correlation with Parity

Subquadratic-size de Morgan formula have exponentially small correlation with the parity function.

Corollary 7.1. Every de Morgan formula of size at most s = n2−2ε, for some 0 < ε < 1/2, agrees
with the parity function on n bits on at most 1/2 + exp(−sε/3) fraction of inputs.

Proof. Recall that the Fourier coefficient f̂(S) for a subset S ⊆ [n] measures the correlation of f with
the parity function on the positions in S. The result follows immediately from Theorem 5.1.

By Lemma 5.3, this correlation bound is essentially optimal.

7.2 Learning

As in [LMN93], the Fourier concentration result yields a learning algorithm for Boolean functions
f computable by small de Morgan formulas, where the learner is given labeled examples (x, f(x))
for the uniform distribution over inputs x. The learning algorithm produces a function g such
that g agrees with f on almost all inputs x. The error of the learning algorithm (i.e., the fraction
of inputs where g and f disagree) and its running time depend on the parameters of the Fourier
concentration result for the corresponding model of computation.

Theorem 7.2. Under the uniform distribution, one can learn, to within error exp(−nΩ(ε)) for any
0 < ε < 1/2, Boolean functions f : {0, 1}n → {1,−1} computable by formulas of size s in time
exp(s1/Γ+ε), where Γ = 2 for general de Morgan formulas and Γ ≈ 3.27 for read-once formulas.

Proof sketch. The proof mimics the analogous result in [LMN93] for AC0 circuits. Namely, for
the case of a de Morgan formula of size s on n inputs that computes a Boolean function f , we
approximate f with the Fourier expansion truncated at the degree d := s1/2+ε, denoted f̃ . The
normalized squared `2-norm of the difference ‖f−f̃‖2/2n is by Theorem 5.1 at most γ := exp(−sε/3).
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It is easy to see that the function sign(f̃), the sign of f̃ , agrees with f on all but at most γ fraction
of inputs in {0, 1}n. We can learn f̃ by estimating all Fourier coefficients f̂(A), for |A| 6 d, through
random sampling (assuming the uniform distribution on the samples (x, f(x))). It follows that one
can learn a function sign(p), for some degree d multilinear polynomial p, that agrees with f in
all but γ fraction of inputs, where the learning algorithm takes time polynomial in the number of
Fourier coefficients of degree at most d, i.e., at most poly(nd) = exp(s1/2+ε · log n).

For read-once de Morgan formulas, we proceed in the same way as above, but using Theorem 6.1.
This gives us degree d = n1/Γ+ε, and hence, the running time of the learning algorithm poly(nd) =
exp(n1/Γ+ε · log n), as required.

As mentioned earlier, using the quantum-setting results on the sign degree of de Morgan for-
mulas [Lee09], one gets a PAC-learning algorithm for size s de Morgan formulas that runs in time
nO(
√
s). This is better than our uniform-distribution learning algorithm of Theorem 7.2; however,

our result is proved in the classical setting. On the other hand, for read-once de Morgan formulas,
our learning algorithm appears to be the fastest known. Previously, a comparable running time
≈ exp(n1/3) was known for (read-once) DNFs, albeit in the stronger setting of PAC learning [KS04].

7.3 Compression

Given the truth table of a function f computable by a de Morgan formula of size s on n inputs,
we can compute in time poly(2n) all Fourier coefficients of f , and then define the approximation f̃
that is the truncated version of the Fourier expansion of f of degree at most d = s1/2+ε. As above,
the function g := sign(f̃) is the Boolean function that agrees with f on all but at most exp(−nΩ(ε))
fraction of inputs. The size of the circuit computing g is at most poly(nd), which is less than 2n/n
for s < n2−2ε, for 0 < ε < 1/2.

In the language of [KK13, CKK+13], this means that we have a deterministic lossy-compression
algorithm for the class of de Morgan formulas of sub-quadratic size.1 Similarly, we get, for read-
once de Morgan formulas on n inputs, a lossy-compression algorithm producing a circuit of size at
most exp(n1/3+ε) which agrees with the formula on all but at most exp(−nΩ(ε)) fraction of inputs.

7.4 Average sensitivity

Recall that for a Boolean function f : {0, 1}n → {1,−1} and a string w ∈ {0, 1}n, the sensitivity
of f at w is the number of Hamming neighbors w′ of w such that f(w) 6= f(w′). The average
sensitivity of f , denoted by AS(f), is the average over all w ∈ {0, 1}n of the sensitivity of f at w.
It is shown by [KKL88] that

AS(f) =
∑
A⊆[n]

|A| · f̂(A)2. (4)

The parity function on m bits has average sensitivity m. Since a de Morgan formula of size s
can compute the parity on Ω(

√
s) bits, we get a lower bound Ω(

√
s) on the average sensitivity of de

Morgan formulas of size s. Combining the result of [Lee09] on the approximate degree of size s de
Morgan formulas being O(

√
s), with the result of Shi [Shi00] that approximate degree upperbounds

average sensitivity, we immediately get the matching O(
√
s) upper bound on the average sensitivity

of size s de Morgan formulas. Ganor et al. [GKR12] give an alternative proof of this upper bound,
using completely classical (non-quantum) arguments.

1Using the quantum results for de Morgan formulas [Lee09], one gets a lossless compression algorithm for size s
de Morgan formulas that produces a circuit of size exp(

√
s logn), agreeing with the de Morgan formula on all inputs.
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For read-once formulas of size s, Eq. (4) and Theorem 6.1 readily imply the upper bound
s1/Γ+o(1) on average sensitivity, where Γ = 1/ log2(

√
5 − 1) ≈ 3.27 is the shrinkage exponent for

read-once formulas. However, a stronger upper bound can be shown; see Section C for the proof.

Theorem 7.3 (implicit in [Bop89]). Let f : {0, 1}n → {1,−1} be a Boolean function computed by
a read-once de Morgan formula. Then AS(f) 6 n1/Γ.

Next we argue that the average sensitivity bound for read-once formulas in Theorem 7.3 is tight.
We will need a variant of Valiant’s read-once formula defined in [PZ93] (where it was used to argue
that the the shrinkage exponent for read-once formulas can be at most Γ). The formula is defined
as follows. Let {rn} be a sequence of bits. Set F1,0 = x1 ∧x2, and F1,1 = x1 ∨x2. For n > 1, define
Fn,b = Fn−1,1−b NAND Fn−1,rn , for b ∈ {0, 1}. Here we use disjoint sets of variables for all of our
subformulas.

Let pn,b denote the probability that Fn,b = 1 on a uniformly random input.

Lemma 7.4 ([PZ93]). There exists a sequence {rn} such that

1. pn,0, pn,1 → ψ :=
√

5−1
2 ≈ 0.62, as n→∞,

2. pn,0 < ψ < pn,1 for every n > 1, and

3. there exists a constant c > 0 such that for every n > 1, pn,1 − pn,0 < c · ψn.

For N = 2n, we define FN (x1, . . . , xN ) := Fn,0(x1, . . . , xN ), for Fn,0 given by Lemma 7.4. We
have the following.

Theorem 7.5. For all large enough N = 2n, the read-once formula FN (x1, . . . , xN ) is such that
AS(fN ) > Ω(N1/Γ), where fN is the {1,−1}-valued Boolean function computed by the formula FN .

Proof. For an N -variate Boolean function f , AS(f) = Expw∈{0,1}N
[∑N

i=1 χ(i, w)
]
, where χ(i, w) =

1 if f(w1, . . . , wi−1, xi, wi+1, . . . , wN ) depends on xi, and 0 otherwise. By the linearity of expecta-
tion, we have

AS(f) =
N∑
i=1

Prw∈{0,1}N [f(w1, . . . , wi−1, xi, wi+1, . . . , wN ) depends on xi],

where the ith probability expression in the summation above is also known as the influence of
coordinate i on f , denoted Inf i[f ]. We will show for our read-once formulas FN computing the
Boolean functions fN that, for each 1 6 i 6 N , Inf i[fN ] > Ω(N1/Γ−1), concluding the proof.

Consider an arbitrary leaf xi, 1 6 i 6 N , of FN . For the path in the formula from the leaf xi to
the root, all non-leaf nodes v1, . . . , vn are NAND gates, except for the gate v1 closest to the leaf xi
which may be either AND or OR. For each node vj , let Gvj be the subformula of FN corresponding
to the node u feeding into the gate vj such that u is not on the path v1, . . . , vn.

For a given assignment w to the N−1 variables x1, . . . , xi−1, xi+1, . . . , xN , the restricted function
is non-constant (i.e., depends on xi) iff each formula Gvj , for 2 6 j 6 n, evaluates to 1 under the
assignment w, while Gv1 evaluates to 1 if v1 is an AND gate, or to 0 if v1 is an OR gate. Since
these formulas Gvj ’s depend on disjoint sets of variables, we get that the probability over w that
the variable xj survives w is (1/2) · p2 · · · · · pn, where, for 2 6 j 6 n, pj = Prz[Gvj (z) = 1], for z is
a uniformly random assignment to the variables of Gvj .
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For 2 6 j 6 n, we have by construction that Gvj = Fj−1,bj for some bj ∈ {0, 1}. Hence, for each
2 6 j 6 n, we get by Lemma 7.4 that pj > pj−1,0. Thus, xi survives a random assignment w with
probability at least (1/2)

∏n−1
j=1 pj,0.

Let d ∈ N be a smallest constant such that c · ψd 6 1/2, where c and ψ are as in Lemma 7.4.
Note that, for each j > d, we have by Lemma 7.4 that pj,0 > ψ − cψj = ψ(1 − cψj−1). Thus, we
get for some constant α > 0 that

(1/2)

n−1∏
j=1

pj,0 = α ·
n−1∏
j=d+1

pj,0

> α ·
n−1∏
j=d+1

ψ(1− c · ψj−1)

= (α/ψd+1) · ψn ·
n−1∏
j=d+1

(1− c · ψj−1).

Using the inequality 1− y > e−2y valid for all 0 6 y 6 1/2, we get

n−1∏
j=d+1

(1− c · ψj−1) > e−2c
∑n−2
j=d ψ

j

> e−2cψd/(1−ψ),

which is some positive constant. Hence, the probability that xi survives a random assignment
w to the other variables of FN is at least β · ψn for some constant β > 0. Finally, we have
ψn = 2n log2 ψ = N log2(2ψ)−1 = N1/Γ−1, which concludes the proof.

Remark 7.6. As a consequence of Theorem 7.5, to achieve
∑
|A|>t f̂(A)2 6 1/n, for a Boolean

function f : {0, 1}n → {1,−1} computable by some read-once de Morgan formula, one needs
t > Ω(n1/Γ). Thus, our Fourier concentration bound in Theorem 6.1 is close to optimal.

8 Open questions

Does k-wise independence ε-fool read-once formulas of size n for k = O((log 1/ε) · n1/Γ) where Γ
is the shrinkage exponent for read-once formulas? Note that for general de Morgan formulas of
size n, the corresponding statement follows from the quantum results on the approximate degree
O(
√
s) [Lee09]. Observe that the approximate degree for read-once formulas of size n must be at

least n1/2 (the same as that for general de Morgan formulas of size n), and so one needs a different
argument for showing such a k-wise independence result for read-once formulas.
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of size n can be evaluated in time n1/2+o(1) on a quantum computer. In Proceedings of
the Forty-Eighth Annual IEEE Symposium on Foundations of Computer Science, pages
363–372, 2007.

[And87] A.E. Andreev. On a method of obtaining more than quadratic effective lower bounds for
the complexity of π-schemes. Vestnik Moskovskogo Universiteta. Matematika, 42(1):70–
73, 1987. English translation in Moscow University Mathematics Bulletin.

[BBC+01] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower bounds
by polynomials. Journal of the Association for Computing Machinery, 48(4):778–797,
2001.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simu-
lations unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318,
1993.

[BIS12] P. Beame, R. Impagliazzo, and S. Srinivasan. Approximating AC0 by small height deci-
sion trees and a deterministic algorithm for #AC0SAT. In Proceedings of the Twenty-
Seventh Annual IEEE Conference on Computational Complexity, pages 117–125, 2012.

[BM84] M. Blum and S. Micali. How to generate cryptographically strong sequences of pseudo-
random bits. SIAM Journal on Computing, 13:850–864, 1984.

[Bop89] R. Boppana. Amplification of probabilistic Boolean formulas. In S. Micali, editor,
Randomness and Computation, volume 5 of Advances in Computer Research, pages
27–45. JAI Press, Greenwich, CT, 1989. (preliminary version in FOCS’85).

[Bra10] M. Braverman. Polylogarithmic independence fools AC0 circuits. Journal of the Asso-
ciation for Computing Machinery, 57(5):28:1–28:10, 2010.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the
sum of observations. Annals of Mathematical Statistics, 23:493–509, 1952.

[CKK+13] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining cir-
cuit lower bound proofs for meta-algorithms. Electronic Colloquium on Computational
Complexity, 20(57), 2013.

[CKS13] R. Chen, V. Kabanets, and N. Saurabh. An improved deterministic #SAT algorithm
for small de Morgan formulas. Electronic Colloquium on Computational Complexity
(ECCC), 20(150), 2013.

[DZ94] M. Dubiner and U. Zwick. How do read-once formulae shrink? Combinatorics, Proba-
bility & Computing, 3:455–469, 1994.

[FGG08] E. Fahri, J. Goldstone, and S. Gutmann. A quantum algorithm for the hamiltonian
NAND tree. Theory of Computing, 4:169–190, 2008.

[FSS84] M. Furst, J.B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Mathematical Systems Theory, 17(1):13–27, April 1984.

17



[GKR12] A. Ganor, I. Komargodski, and R. Raz. The spectrum of small de Morgan formulas.
Electronic Colloquium on Computational Complexity, TR12-174, 2012.

[GMR+12] P. Gopalan, R. Meka, O. Reingold, L. Trevisan, and S. Vadhan. Better pseudorandom
generators via milder pseudorandom restrictions. In Proceedings of the Fifty-Third
Annual IEEE Symposium on Foundations of Computer Science, pages 120–129, 2012.

[H̊as86] J. H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of the
Eighteenth Annual ACM Symposium on Theory of Computing, pages 6–20, 1986.

[H̊as98] J. H̊astad. The shrinkage exponent of de Morgan formulae is 2. SIAM Journal on
Computing, 27:48–64, 1998.

[HILL99] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28:1364–1396, 1999.

[Hoe63] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963.

[HRY95] J. H̊astad, A.A. Razborov, and A.C. Yao. On the shrinkage exponent for read-once
formulae. Theoretical Computer Science, 141(1&2):269–282, 1995.

[IMP12] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for AC0. In Pro-
ceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 961–972, 2012.

[IMZ12] R. Impagliazzo, R. Meka, and D. Zuckerman. Pseudorandomness from shrinkage. In
Proceedings of the Fifty-Third Annual IEEE Symposium on Foundations of Computer
Science, pages 111–119, 2012.

[IW97] R. Impagliazzo and A. Wigderson. P=BPP if E requires exponential circuits: Deran-
domizing the XOR Lemma. In Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing, pages 220–229, 1997.

[Kan82] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information
and Control, 55:40–56, 1982.

[Khr71] V.M. Khrapchenko. A method of determining lower bounds for the complexity of
π-schemes. Matematicheskie Zametki, 10(1):83–92, 1971. English translation in Math-
ematical Notes of the Academy of Sciences of the USSR.

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means prov-
ing circuit lower bounds. Computational Complexity, 13(1–2):1–46, 2004.

[KK13] V. Kabanets and A. Kolokolova. Compression of Boolean functions. Electronic Collo-
quium on Computational Complexity, 20(24), 2013.

[KKL88] J. Kahn, G. Kalai, and N. Linial. The influence of variables on Boolean functions
(extended abstract). In Proceedings of the Twenty-Ninth Annual IEEE Symposium on
Foundations of Computer Science, pages 68–80, 1988.

[KL82] R.M. Karp and R.J. Lipton. Turing machines that take advice. L’Enseignement
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[RŠ08] B. Reichardt and R. Špalek. Span-program-based quantum algorithms for evaluat-
ing formulas. In Proceedings of the Fortieth Annual ACM Symposium on Theory of
Computing, pages 103–112, 2008.

[San10] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In Proceedings of the Fifty-First Annual IEEE Symposium on Foundations
of Computer Science, pages 183–192, 2010.

[Shi00] Y. Shi. Lower bounds of quantum black-box complexity and degree of approximating
polynomials by influence of boolean variables. Information Processing Letters, 75(12):79
– 83, 2000.

[ST12] K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness for for-
mulas over the full binary basis. In Proceedings of the Twenty-Seventh Annual IEEE
Conference on Computational Complexity, pages 107–116, 2012.

[Sub61] B.A. Subbotovskaya. Realizations of linear function by formulas using ∨, &, −. Doklady
Akademii Nauk SSSR, 136(3):553–555, 1961. English translation in Soviet Mathematics
Doklady.

19



[Tal14] A. Tal. Shrinkage of de Morgan formulas from quantum query complexity. Electronic
Colloquium on Computational Complexity, 21(48), 2014.

[TX13] L. Trevisan and T. Xue. A derandomized switching lemma and an improved deran-
domization of AC0. In Proceedings of the Twenty-Eighth Annual IEEE Conference on
Computational Complexity, pages 242–247, 2013.

[Uma03] C. Umans. Pseudo-random generators for all hardnesses. Journal of Computer and
System Sciences, 67(2):419–440, 2003.

[Val84a] L.G. Valiant. Short monotone formulae for the majority function. Journal of Algo-
rithms, 5(3):363–366, 1984.

[Val84b] L.G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–
1142, 1984.

[Wil10] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. In
Proceedings of the Forty-Second Annual ACM Symposium on Theory of Computing,
pages 231–240, 2010.

[Wil11] R. Williams. Non-uniform ACC circuit lower bounds. In Proceedings of the Twenty-
Sixth Annual IEEE Conference on Computational Complexity, pages 115–125, 2011.

[Wol08] R. de Wolf. A Brief Introduction to Fourier Analysis on the Boolean Cube. Number 1
in Graduate Surveys. Theory of Computing Library, 2008.

[Yao82] A.C. Yao. Theory and applications of trapdoor functions. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Foundations of Computer Science, pages 80–91,
1982.

[Yao85] A.C. Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of the
Twenty-Sixth Annual IEEE Symposium on Foundations of Computer Science, pages
1–10, 1985.

[Zan98] F. Zane. Circuits, CNFs, and Satisfiability. PhD thesis, UCSD, 1998.

A Proof of Theorem 3.1

We first re-state Theorem 3.1.

Theorem A.1 ([LMN93]). For arbitrary n-variate Boolean function f , integer t > 0 and a real
number 0 < p < 1 such that pt > 8,

∑
|A|>t

f̂(A)2 6 2 ·Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 .
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Proof. We have

∑
|A|>t

f̂(A)2 6 2 ·ExpS

 ∑
A : |A∩S|>pt/2

f̂(A)2

 (5)

= 2 ·ExpS,r∈{0,1}|Sc|

 ∑
B : |B|>pt/2

f̂Sc←r(B)2

 (6)

= 2 ·Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 , (7)

where the first expectation is over random sets S obtained by choosing each item i ∈ [n], indepen-
dently, with probability p; the second expectation is over S as before, and over uniformly random
assignment r (for the variables outside of S).

The last equality, Eq. (7), is by definition. The second equality, Eq. (6), is proved in Lemma A.2
below. It remains to argue the first inequality, Eq. (5).

Consider any set A of size greater than t. It will contribute f̂(A)2 to the expectation over S for
every random set S that intersects A in more than pt/2 locations. The expected intersection size
between S and A (where each element i ∈ [n] is put into S with probability p) is p|A| > pt. By
Chernoff, almost all sets S will intersect the set A in at least half the expected number of places;
by requiring that pt > 8, we get that this holds for at least half of all random sets S. Multiplying
this expectation by 2 ensures that each f̂(A)2 is counted at least once.

Lemma A.2 ([LMN93]). For a Boolean function f on n variables, an arbitrary subset S ⊆ [n],
and an integer k, we have

∑
A : |A∩S|>k

f̂(A)2 = Expr∈{0,1}|Sc|

 ∑
|B|>k

f̂Sc←r(B)2

 . (8)

Proof. We start by re-writing the left-hand side of Eq. (8):∑
A : |A∩S|>k

f̂(A)2 =
∑

B⊆S : |B|>k

∑
D⊆Sc

f̂(B ∪D)2. (9)

For all sets B ⊆ S and D ⊆ Sc, we have

f̂(B ∪D) = Expx∈{0,1}n [f(x) · χB∪D(x)]

= Expr∈{0,1}|Sc|,r′∈{0,1}|S|
[
fSc←r(r

′) · χ(B∪D)∩S(r′) · χ(B∪D)∩Sc(r)
]

= Expr∈{0,1}|Sc|
[
χD(r) ·Expr′∈{0,1}|S|

[
fSc←r(r

′) · χB(r′)
]]

= Expr∈{0,1}|Sc|
[
χD(r) · f̂Sc←r(B)

]
.

Therefore, for every fixed B ⊆ S, we get

∑
D⊆Sc

f̂(B ∪D)2 =
∑
D

2−|S
c| ·

∑
r∈{0,1}|Sc|

χD(r) · f̂Sc←r(B)

2

= 2−2|Sc| ·
∑

r1,r2∈{0,1}|Sc|
f̂Sc←r1(B)f̂Sc←r2(B) ·

∑
D

χD(r1 ⊕ r2),
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where r1 ⊕ r2 denotes the bit-wise XOR of the two strings. Observing that

∑
D⊆Sc

χD(r) =

{
2|S

c| if r is an all-zero string

0 otherwise
,

we can continue the above sequence of equalities, getting the following:∑
D⊆Sc

f̂(B ∪D)2 = 2−|S
c| ·

∑
r∈{0,1}|Sc|

f̂Sc←r(B)2

= Expr∈{0,1}|Sc|
[
f̂Sc←r(B)2

]
.

Finally, plugging in the last expression into the right-hand side of Eq. (9), we conclude∑
A : |A∩S|>k

f̂(A)2 =
∑

B⊆S : |B|>k

Expr∈{0,1}|Sc|
[
f̂Sc←r(B)2

]

= Expr∈{0,1}|Sc|

 ∑
|B|>k

f̂Sc←r(B)2

 ,
as required.

B Proof of Lemma 4.6

We re-state Lemma 4.6.

Lemma B.1 ([IMZ12]). For every 0 < p < 1, there exists a read-once de Morgan formula H of
size O(1/p4) such that, for all but at most 1/4 of p-restrictions ρ, we have

Hρ(~0) = 0 and Hρ(~1) = 1,

where ~0 and ~1 denote the inputs of all 0’s and all 1’s, respectively.

For a Boolean function f(x1, . . . , xn) and a parameter p ∈ [0, 1], Boppana [Bop89] defined the
amplification function Af (p) := Prx1,...,xn [f(x1, . . . , xn) = 1], where each xi is chosen indepen-
dently at random to be 1 with probability p and 0 otherwise. Boppana [Bop89] also observed that
Valiant [Val84a] implicitly proved the following.2

Theorem B.2 ([Val84a]). Let Tk be a complete binary tree of depth 2k whose root is labeled with
OR, the next layer of nodes with AND, the next layer with OR, and so on in the alternating fashion
for all layers but the leaves. Let Fk be the read-once formula computed by Tk on 22k variables. Then
for ψ = (

√
5− 1)/2 and any p ∈ [0, 1],

AFk(ψ − (1− ψ)p) < 1/8 and AFk(ψ + (1− ψ)p) > 7/8,

for 2k = log2ψ
ψ−1/

√
3

(1−ψ)p + O(1) = log2ψ(1/p) + O(1). The size of Fk is 22k = O(1/p1/ log2 2ψ) =

O(1/pΓ), for Γ = 1/ log2(
√

5− 1) ≈ 3.27.

2See also the lecture notes by Uri Zwick, www.cs.tau.ac.il/∼zwick/circ-comp-new/six.ps, for an explicit proof.

22



Proof of Lemma B.1. We use Theorem B.2 to argue the existence of the required read-once formula
H. Consider the following distribution Dk on read-once formulas:

Take Tk. Independently, assign each leaf of Tk the value 1 with probability 2ψ − 1,
and ∗ otherwise. Label the ∗ leaves with distinct variables xi’s. Output the resulting
read-once formula in the variables xi’s.

Let F be a random read-once formula sampled according to Dk. Let ρ be a random p-restriction
on the variables of F . Consider Fρ(~1). This restricted formula on the all-one input string induces
the probability distribution on the leaves of Tk where each leaf, independently, gets value 1 with
probability 2ψ − 1 + 2(1− ψ)p+ 2(1− ψ)(1− p)/2 = ψ + (1− ψ)p. Using Theorem B.2, we get

PrF∈Dk,ρ∈Rp [Fρ(~1) = 1] = AFk(ψ + (1− ψ)p) > 7/8. (10)

Now consider Fρ(~0). It induces the probability distribution on the leaves of Tk where each leaf,
independently, is 1 with probability 2ψ − 1 + 2(1 − ψ)(1 − p)/2 = ψ − (1 − ψ)p, and 0 otherwise.
Using Theorem B.2, we get

PrF∈Dk,ρ∈Rp [Fρ(~0) = 1] = AFk(ψ − (1− ψ)p) < 1/8. (11)

Using Eqs. (10) and (11), we get by the union bound that

PrF∈Dk,ρ∈Rp [Fρ(~1) = 0 or Fρ(~0) = 1] < 1/8 + 1/8 = 1/4.

Finally, by averaging, there exists a particular read-once formula H ∈ Dk such that, for all but less
than 1/4 of random p-restrictions ρ, we have Hρ(~0) = 0 and Hρ(~1) = 1. The size of this formula H
is at most that of Fk, which is O(1/pΓ) 6 O(1/p4).

C Upper bound on the average sensitivity of read-once formulas

Here we present the proof of Theorem 7.3. We first re-state the theorem for {0, 1}-valued Boolean
functions; clearly this does not affect the average sensitivity.

Theorem C.1 (implicit in [Bop89]). Let f : {0, 1}n → {0, 1} be a Boolean function computed by a
read-once de Morgan formula. Then AS(f) 6 n1/Γ.

We again use Boppana’s amplification function, Af , mentioned in Section B. Here we use a
slightly more general definition of Af : for a Boolean function f : {0, 1}n → {0, 1} and parameters
p1, . . . , pn ∈ [0, 1], define the amplification function Af (p1, . . . , pn) := Prx1,...,xn [f(x1, . . . , xn) = 1],
where each xi is chosen independently at random to be 1 with probability pi, and 0 with probability
1− pi. For p ∈ [0, 1], define Af (p) := Af (p, . . . , p).

Boppana [Bop89, Theorem 2.1] proved the following upper bound on the derivative of Af .

Theorem C.2 ([Bop89]). For any read-once formula f of size n and any 0 < p < 1,

A′f (p) 6 n1/Γ ·
H(Af (p))

H(p)
,

where H(p) := −p log2 p−(1−p) log2(1−p) is the binary entropy function, and Γ = 1/ log2(
√

5−1).

Lemma C.3 (N. Saurabh, personal communication). For every monotone n-variate Boolean func-
tion f , we have AS(f) = A′f (1/2).
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Proof. Observe that

A′f (1/2) =
n∑
i=1

∂Af (p1, . . . , pn)

∂pi

∣∣∣∣∣
(1/2,...,1/2)

.

On the other hand, using monotonicity of f , we will show that each ith summand on the right-
hand side of the above formula is exactly equal to Inf i[f ], the influence of coordinate i on f . Since
AS(f) =

∑n
i=1 Inf i[f ], the lemma will follow.

We have

Inf i[f ] =
∑

x∈{0,1}n : (f(x)=1)∧(f(xi)=0)

1

2n−1
,

where xi denotes x with the ith coordinate flipped. Write Af (p1, . . . , pn) =
∑

x∈{0,1}n : f(x)=1 Px,

where for x = (x1, . . . , xn), Px :=
∏n
i=1 p

xi
i (1 − pi)1−xi is the probability mass contributed by the

point x. Observe that, for points x and xi, the partial derivatives of Px and Pxi with respect
to pi cancel each other. Thus, the points x and xi such that f(x) = f(xi) = 1 contribute 0 to
the partial derivative of Af with respect to pi. Each x such that f(x) = 1 but f(xi) = 0 must
have its ith coordinate xi = 1 by the monotonicity of f . Hence, each such x will contribute
(1/pi) ·

∏n
j=1 p

xj
j (1− pj)1−xj to the partial derivative of Af with respect to pi. When all pj = 1/2,

this contribution is exactly 1/2n−1.

We can now finish the proof of Theorem C.1.

Proof of Theorem C.1. Without loss of generality, a given read-once Boolean function f can be
assumed monotone: we can always remove negations from any negative literals in the read-once
formula f , without changing AS(f). By Theorem C.2 and Lemma C.3, we get AS(f) 6 n1/Γ ·
H(Af (1/2)) 6 n1/Γ.
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