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Abstract

For a class F of formulas (general de Morgan or read-once de Morgan), the shrinkage exponent
ΓF is the parameter measuring the reduction in size of a formula F ∈ F after F is hit with a
random restriction. A Boolean function f : {0, 1}n → {1,−1} is Fourier-concentrated if, when
viewed in the Fourier basis, f has most of its total mass on “low-degree” coefficients. We
show a direct connection between the two notions by proving that shrinkage implies Fourier
concentration: for a shrinkage exponent ΓF , a formula F ∈ F of size s will have most of its
Fourier mass on the coefficients of degree up to about s1/ΓF . More precisely, for a Boolean
function f : {0, 1}n → {1,−1} computable by a formula of (large enough) size s and for any
parameter r > 0,

∑
A⊆[n] : |A|>s1/Γ·r

f̂(A)2 6 s · polylog(s) · exp

(
−r

Γ
Γ−1

so(1)

)
,

where Γ is the shrinkage exponent for the corresponding class of formulas: Γ = 2 for de Morgan
formulas, and Γ = 1/ log2(

√
5 − 1) ≈ 3.27 for read-once de Morgan formulas. This Fourier

concentration result is optimal, to within the o(1) term in the exponent of s.
As a standard application of these Fourier concentration results, we get that subquadratic-

size de Morgan formulas have negligible correlation with parity. We also show the tight Θ(s1/Γ)
bound on the average sensitivity of read-once formulas of size s, which mirrors the known tight
bound Θ(

√
s) on the average sensitivity of general de Morgan s-size formulas.

Keywords: formula complexity, random restrictions, de Morgan formulas, read-once de Mor-
gan formulas, shrinkage exponent, Fourier analysis of Boolean functions, Fourier concentration,
average sensitivity

1 Introduction

Over the past thirty years, there have been a number of striking examples of interplay between
complexity and algorithms. We know that computationally hard problems are useful for build-
ing secure cryptosystems [BM84, Yao82, HILL99], and derandomization [NW94, BFNW93, IW97,
Uma03]. On the other hand, circuit lower bounds are implied by non-trivial algorithms for SAT
[KL82, Kan82, Wil13, Wil14] or Polynomial Identity Testing [KI04]. It has also been observed that
techniques used to prove existing circuit lower bounds are often useful for designing learning algo-
rithms [LMN93], SAT algorithms [Zan98, San10, ST12, IMP12, BIS12, CKK+15, CKS15, Tal15],
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and pseudorandom generators (PRGs) [Bra10, IMZ12, GMR+12, TX13] for the same class of cir-
cuits. In particular, the method of random restrictions, useful for proving lower bounds against
AC0 circuits [FSS84, Yao85, H̊as86] and de Morgan formulas [Sub61, And87, H̊as98, San10, KR13,
KRT13, Tal14], turns out to be also useful for designing such algorithms for the same circuit class.

We give another example of the connection between random restrictions and algorithms for
small de Morgan formulas, by relating the shrinkage exponent to the Fourier spectrum for such
formulas.

For a class F of formulas (general de Morgan or read-once de Morgan), the shrinkage exponent
ΓF is the parameter measuring the reduction in size of a formula F ∈ F after F is hit with a random
restriction: if every variable of an s-size formula F ∈ F is kept alive with probability p, and set
uniformly randomly to 0 or 1 otherwise, then the minimum formula size of the restricted function
is expected to be at most about pΓF · s. A Boolean function f : {0, 1}n → {1,−1} is Fourier-
concentrated if, when viewed in the Fourier basis, f has most of its total mass on “low-degree”
coefficients.

We show a direct connection between the two notions by proving that shrinkage implies Fourier
concentration: for a shrinkage exponent ΓF , a formula F ∈ F of size s will have most of its Fourier
mass on the coefficients of degree up to about s1/ΓF . More precisely, we prove the following.

Theorem 1.1 (Main Result). For F either the class of general de Morgan formulas or the class
of read-once de Morgan formulas, let f : {0, 1}n → {1,−1} be a Boolean function computable by a
formula in F of size s. Then for any sufficiently large s and for any parameter t > 0, we have

∑
A⊆[n] : |A|>t

f̂(A)2 6 s · polylog(s) · exp

(
−
(

tΓ

s1+o(1)

) 1
Γ−1

)
,

where Γ = ΓF is the shrinkage exponent for the corresponding class F of formulas: ΓF = 2 for de
Morgan formulas, and ΓF = 1/ log2(

√
5− 1) ≈ 3.27 for read-once de Morgan formulas.

This Fourier concentration result is optimal, to within the o(1) term in the exponent of s. (We
get the version stated in the abstract earlier by using t = s1/Γ · r, for any r > 0.)

Rather than the standard shrinkage in expectation, we actually need concentrated shrinkage of
de Morgan formulas under random restrictions, which means that a formula shrinks in size with
high probability when hit by a random restriction. Such concentrated shrinkage is implicitly proved
by [IMZ12] (which considered the case of certain pseudorandom restrictions), building upon the
earlier “shrinkage in expectation” results by [HRY95, H̊as98].

We establish these “shrinkage into Fourier concentration” implications for both general and
read-once de Morgan formulas. A weak version of such Fourier concentration for de Morgan formulas
follows from Khrapchenko’s lower-bound technique for formulas [Khr71]. A stronger version of
Fourier concentration can be deduced from known results in the “quantum computation” literature;
see Section 1.2 below for more details. Our proof is a classical argument to establish an even stronger
(almost tight) Fourier concentration result. The main novelty of our proof is that it exploits the
discovered connection between shrinkage and Fourier concentration. Thanks to this connection, we
also get the (almost tight) Fourier concentration result for read-once de Morgan formulas (which
are not distinguished from general de Morgan formulas by the “quantum arguments”).

These Fourier concentration results for small de Morgan formulas are similar to the Fourier
concentration result for AC0 circuits shown in the celebrated paper by Linial, Mansour, and
Nisan [LMN93] (and our proof is inspired by the proof in [LMN93]). As an immediate conse-
quence, we obtain, similarly to [LMN93], strong correlation lower bounds against parity, learning
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algorithms under the uniform distribution, and average sensitivity bounds for both general de
Morgan formulas and read-once de Morgan formulas.

1.1 Other results

1.1.1 Correlation bounds

The Fourier transform of a Boolean function f : {0, 1}n → {1,−1} is a way to express f in the
orthogonal basis of functions

χS(x1, . . . , xn) = (−1)
∑

i∈S xi ,

over all subsets S ⊆ [n]. Intuitively, the coefficient of f at the basis function χS , denoted f̂(S),
measures the correlation between f and the parity function on the inputs xi, for i ∈ S. Thus, one
would expect that the classes of circuits for which the parity function is hard to compute would not
have much weight on high-degree Fourier coefficients f̂(S) for large sets S, i.e., that such circuits
would exhibit concentration of the Fourier spectrum over low-degree coefficients.

The first such connection between complexity of computing parity and Fourier concentration
was shown by Linial, Mansour, and Nisan [LMN93], based on the strong average-case lower bounds
for AC0 circuits against the parity function [H̊as86]. As mentioned earlier, using the results in
quantum query complexity [FGG08, ACR+07, RŠ08, Rei09, Rei11], one can also show a version of
Fourier concentration for de Morgan formulas of sub-quadratic size.

We extend the approach of [LMN93] to the case of de Morgan formulas of sub-quadratic size.
Such formulas cannot compute the parity function in the worst case [Khr71], or even on average
(as follows from the work in the quantum setting [BBC+01, Rei11]). As an immediate corollary of
Theorem 1.1, we get that a size-s de Morgan formula on n inputs may compute the parity function
with bias at most exp(−n2/s1+o(1)). This is tight up to the o(1) term (see Lemma 5.3).

1.1.2 Average sensitivity

Informally, the average sensitivity of a Boolean function f : {0, 1}n → {1,−1}, denoted AS(f),
measures the number of influential coordinates in a typical input x ∈ {0, 1}n, where a coordinate
i ∈ [n] is influential if flipping the ith bit in x flips the value f(x); we give a more formal definition
below. The Fourier concentration we show immediately yields the upper bound s1/Γ+o(1) on the
average sensitivity of read-once de Morgan formulas of size s, where Γ ≈ 3.27 is the shrinkage
exponent for read-once formulas. However, we show (thanks to a personal communication by
Nitin Saurabh) that the stronger upper bound O(s1/Γ) can be obtained from [Bop89]. We then
demonstrate the matching lower bound Ω(s1/Γ). As the average sensitivity of general de Morgan
formulas is O(

√
s) by Khrapchenko’s bound [Khr71] (as noted, e.g., in [BDS00, GKLR12]), we get

the following tight connection between the shrinkage exponent and the average sensitivity for the
class of (general and read-once) de Morgan formulas.

Theorem 1.2. Let f : {0, 1}n → {1,−1} be a Boolean function computable by a de Morgan formula
of size s. Then AS(f) 6 O(s1/Γ), where Γ is the shrinkage exponent for the corresponding class
of formulas: Γ = 2 for de Morgan formulas, and Γ = 1/ log2(

√
5 − 1) ≈ 3.27 for read-once de

Morgan formulas. The average sensitivity Ω(s1/Γ) can be achieved with size s de Morgan formulas
for Γ = 2, and read-once formulas for Γ = 1/ log2(

√
5− 1) ≈ 3.27.
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1.1.3 Learning

As a consequence of our Fourier concentration result, we can also get, similarly to [LMN93], that
the class of de Morgan formulas of size s is learnable to within error ε > 0 in time about

ns
1/Γ+o(1)·(log 1/ε)1−1/Γ

,

over the uniform distribution, where Γ = 2 for general de Morgan formulas, and Γ ≈ 3.27 for
read-once de Morgan formulas. We don’t explicitly prove these results here since much better
learning algorithms are already known for both general and read-once de Morgan formulas. For
general de Morgan formulas, using the quantum-setting results on the sign degree [Lee09], one gets
a PAC-learning algorithm for size s de Morgan formulas that runs in time nO(

√
s). For read-once de

Morgan formulas, Schapire [Sch94] gives a polynomial-time learning algorithm in the PAC model
for any product distribution (hence also for the uniform distribution).

1.2 Related work

As noted by Ganor, Komargodski, Lee, and Raz [GKLR12], the following Fourier concentration
result is implied by Khrapchenko’s bound [Khr71]: For f computable by size s de Morgan formula,
and for any 0 < ε < 1, ∑

|A|>s1/2/ε

f̂(A)2 6 O(ε).

The results in quantum query complexity [FGG08, ACR+07, RŠ08, Rei09, Rei11] imply that
every de Morgan formula F of size s can be approximated by a polynomial of degree D 6 O(r ·s1/2)
with point-wise error at most 2−r, and hence also in the `2-norm with the same error 2−r. This
implies that the Fourier spectrum of F above the degree D is at most 2−r. Hence, for a Boolean
function f computed by a de Morgan formula of size s, and for any t > 0,∑

|A|>t

f̂(A)2 6 exp(−t/s1/2). (1)

Our Theorem 1.1 provides the stronger bound exp(−t2/s1+o(1)), which is tight to within the o(1)
term in the exponent of s (see Lemma 5.3).

As observed in [KRT13], the Fourier concentration in Eq. (1) implies that any de Morgan
formula of size

s = o((n/ log(1/ε))2)

has correlation at most ε with the n-bit parity. The Fourier concentration bound in our Theorem 1.1
implies the correlation at most ε for formula size

s = (n2/ log(1/ε))1−o(1)

(tight to within the o(1) term).
Our proof of Theorem 1.1 exhibits a connection between the Fourier concentration parameters

for a class of formulas and the shrinkage exponent for the same class of formulas. This connection
also allows us to get Fourier concentration for the case of read-once formulas, whereas the afore-
mentioned quantum results (based on point-wise polynomial approximations) do not distinguish
between read-once and general de Morgan formulas1.

1The O(
√
s) upper bound on the degree of point-wise polynomial approximations is in fact tight for read-once

formulas (e.g., an n-variable OR function), and so quantum arguments (which automatically yield point-wise approx-
imations) cannot possibly yield better `2 approximation bounds for read-once formulas.
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For read-once formulas of size s, the upper bound O(s1/Γ) on the average sensitivity, where Γ
is the corresponding shrinkage exponent for read-once formulas, is implicit in the work of [Bop89].
This observation was made by Nitin Saurabh [personal communication, 2013], and we include his
argument, with his permission, in Section 7.2.

1.3 Our techniques

Our starting point is the result from [LMN93] which relates the Fourier spectrum of a given Boolean
function f for “large” Fourier coefficients to the expected Fourier spectrum of the corresponding
“large” Fourier coefficients for a random restriction of the function f ; here a random restriction
is obtained by first deciding, with probability p for each variable, whether to restrict it, and then
assigning randomly each selected variable either 0 or 1. If the function after a random restriction
is likely to depend on fewer than t variables (for some parameter t), then all Fourier coefficients of
degree at least t are zero (since a function that depends on fewer than t variables has zero correlation
with the parity function of t variables). This is surely the case when the restricted formula is of
size less than t. Thus, if we have a “high-probability” shrinkage result for a given class of formulas
under random restrictions (showing that a random restriction is likely to shrink the size of a given
formula), we immediately get a corresponding Fourier concentration result, where the error bound
of the concentration result is the same as the error bound for the shrinkage result.

However, for the case of general de Morgan formulas, such a “high-probability” shrinkage result
is simply not true. The problem is posed by the presence of “heavy” variables, the variables that
occur too often in a given formula. The notion of a random restriction needs to be modified so
that the heavy variables are always restricted, while each of the remaining light variables is chosen
to be restricted with some probability p. We adapt the result of [LMN93] mentioned above to the
setting of such modified restrictions.

Still, in order to get strong Fourier concentration, one needs the parameter p of a random
restriction to be quite small (e.g., nε/n), while the known shrinkage result of [IMZ12] applies only
to relatively large values of p (e.g., p > n−1/8). The solution is to apply a number of restrictions
recursively, each with a relatively large value of pi, so that the product of the pi’s is as small as we
want. Fortunately, the connection between the Fourier spectrum of the original function and of its
appropriate random restriction fits in well with such a recursive argument.

A similar approach also works for the case of read-once de Morgan formulas, which are known to
shrink with high probability under “pseudorandom” restrictions [IMZ12]. The analysis of [IMZ12]
can be used also for the case of truly random restrictions, yielding an exponentially small error. In
fact, the case of read-once formulas is slightly simpler as there are no heavy variables.

To prove the optimality of our Fourier concentration, we exhibit a family of small de Morgan
formulas that have non-trivial correlation with the parity function. Roughly, the constructed for-
mula computes the AND of parities of small disjoint subsets of the input variables (see Lemma 5.3).
This is a standard construction; see, e.g., [Man95, H̊as14] for some of the earlier uses.

For the lower bound on the average sensitivity of read-once formulas, we use an explicit family of
read-once formulas (NAND trees) constructed by [PZ93] (building on [Val84b]), which are known to
be shrinkage-resistant. We show that the same read-once formulas of size s have average sensitivity
Ω(s1/Γ) (see Theorem 7.5).

Remainder of the paper. We state the basics in Section 2, and show how to adapt the approach
of [LMN93] in Section 3. We prove the required concentrated shrinkage results for general and read-
once de Morgan formulas in Section 4. We derive the Fourier concentration result for general de
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Morgan formulas in Section 5, and for read-once formulas in Section 6. In Section 7 we give the
application of the Fourier concentration result to correlation with parity, and show tight average
sensitivity bounds for read-once de Morgan formulas. We make concluding remarks in Section 8.
The appendix contains some proofs omitted from the main body of the paper.

2 Preliminaries

2.1 Notation

We denote by [n] the set {1, 2, . . . , n}. We use exp(a) to denote the exponential function 2a, where
a is some numerical expression. All logarithms are base 2 unless explicitly stated otherwise.

2.2 Formulas

A de Morgan formula F on n variables x1, . . . , xn is a binary tree whose leaves are labeled by
variables or their negations, and whose internal nodes are labeled by the logical operations AND
or OR. The size of a formula F , denoted by L(F ), is the number of leaves in the tree.

A de Morgan formula is called read-once if every variable appears at most once in the tree.
Note that the size of a read-once formula on n variables is at most n.

2.3 Fourier transform

We review some basics of Fourier analysis of Boolean functions (see, e.g., [Wol08] for a survey,
or [O’D14] for a more comprehensive treatment). We think of an n-variate Boolean function as
{−1, 1}-valued, i.e., as f : {0, 1}n → {−1, 1}. For a subset A ⊆ [n], define χA : {0, 1}n → {−1, 1}
to be

χA(x1, . . . , xn) := (−1)
∑

i∈A xi .

Let f : {0, 1}n → R be any function. The Fourier coefficient of f at A is defined as

f̂(A) := Expx∈{0,1}n [f(x) · χA(x)].

Note that f̂(A) is exactly the advantage2 of f at computing χA, the parity of the inputs from A.
The Parseval identity is ∑

A⊆[n]

f̂(A)2 = Expx∈{0,1}n
[
f(x)2

]
.

Note that for a Boolean function f : {0, 1}n → {−1, 1}, we get∑
A⊆[n]

f̂(A)2 = 1.

2.4 Random restrictions

For 0 < p < 1, we define a p-restriction ρ of the set of n variables x1, . . . , xn as follows: for each
i ∈ [n], with probability p assign xi the value ∗ (i.e., leave xi unrestricted), and otherwise assign
xi uniformly at random a value 0 or 1. We denote by Rp the distribution of p-restrictions. For
a Boolean function f(x1, . . . , xn) and a random restriction ρ, fρ denotes the restricted function
obtained from f using ρ; fρ is a function of the variables left unrestricted by ρ.

2Recall that, for functions g and h defined over the same domain D, the advantage of g at computing h is
Prx∈D[g(x) = h(x)]−Prx∈D[g(x) 6= h(x)].
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2.5 Chernoff-Hoeffding bound

We will use the following version of the Chernoff-Hoeffding bound [Che52, Hoe63].

Lemma 2.1 (Chernoff-Hoeffding). Let X =
∑t

i=1Xi be the sum of independent random variables
such that each Xi is in the range [0, s], and Exp[X] < E, for s, E > 1. Then

Pr[X > 8 · E] < 2−E/s.

3 Fourier concentration via random restrictions

We use the following result of [LMN93]; for completeness, we include its proof in the appendix.

Theorem 3.1 ([LMN93]). For arbitrary n-variate Boolean function f , integer t > 0 and a real
number 0 < p < 1 such that pt > 8,

∑
|A|>t

f̂(A)2 6 2 ·Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 .
Imagine we had a “dream version” of the concentrated shrinkage result for de Morgan formulas:

For any 0 < p < 1, a given de Morgan formula F on n variables of size s will shrink to size s′ 6 p2s
with probability 1− γ, for some “small” γ. Let us pick p so that p2s < n.

Note that a formula of size s′ depends on at most s′ variables, and hence, all its Fourier coeffi-
cients for the sets of size greater than s′ are 0. In the notation of Theorem 3.1, every p-restriction
ρ, such that the formula size of Fρ is less than pt/2, contributes 0 to the overall expectation; ev-
ery other restriction ρ (where the formula doesn’t shrink) contributes at most 1 (by the Parseval
equality). Equating p2s and pt/2, we get for every t > 2ps,∑

|A|>t

F̂ (A)2 6 2γ. (2)

For s 6 n2−2ε, we can achieve the bound of Eq. (2) by setting p = nε/n and t = 8n/nε.
In reality, we don’t have such concentrated shrinkage for very small values of γ because of

“heavy” variables (those that appear too frequently in the formula)3. In order to achieve γ that is
inverse-exponentially small in s, we will make sure that heavy variables are always restricted.

Also, the best known concentrated shrinkage results of [IMZ12, KRT13] do not work for very
small p. The way around it is to apply a number of random restrictions one after the other,
for appropriately chosen p1, p2, . . . , pk, thereby simulating a single restriction with the parameter
p =

∏k
i=1 pi; such a workaround was already used in [IMZ12] and [KRT13].

The following lemma will handle heavy variables. Intuitively, it says that each variable restricted
increases the effective degree of where the Fourier coefficients could be large by at most 1.

Lemma 3.2. Let f be a Boolean function, and x a variable for f . Let f0 be f with x set to 0, f1

with x set to 1. For any δ > 0, if∑
A : |A|≥t

f̂0(A)2 ≤ δ and
∑

A : |A|≥t

f̂1(A)2 ≤ δ,

3For example, consider g(x1, . . . , xn) = f(x1, . . . , xk), where k = O(logn) and f requires formula size s ≈ n2;
such a function f exists by a counting argument. For any 1/n < p < 1, a p-restriction of g will leave all x1, . . . , xk
unrestricted, and hence fail to shrink g at all, with probability γ > pk > 1/nO(log n).
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then ∑
A : |A|≥t+1

f̂(A)2 ≤ δ.

Proof. For y := 1− 2x, we can write

f =
(1 + y)f0

2
+

(1− y)f1

2

=
f0 + f1

2
+ y · f0 − f1

2
.

Then, for any set A not containing x,

f̂(A)2 + f̂(x ∪A)2 =

(
f̂0(A) + f̂1(A)

2

)2

+

(
f̂0(A)− f̂1(A)

2

)2

=
f̂0(A)2

2
+
f̂1(A)2

2
.

Summing this over all sets A with |A| ≥ t yields at most δ by the assumptions for the restricted
functions. Every set B with |B| ≥ t+ 1 (containing x or not) is included in this sum.

So to upper-bound the Fourier mass of the coefficients for sets A with |A| > t, the idea is to
set all “heavy” variables (say, z of them), and upper-bound the Fourier mass for each restricted
function over the coefficients for sets B with |B| > t− z. If we can bound the Fourier mass of each
restricted function by some δ, then, by Lemma 3.2, we get the same upper bound for the Fourier
mass of the original function over the sets of size greater than (t− z) + z = t, as required.

4 Concentrated shrinkage of de Morgan formulas

Here we prove the following shrinkage results for general and read-once de Morgan formulas, implicit
in [IMZ12].

Theorem 4.1 (Shrinkage of general de Morgan formulas). There exists a constant c > 0 such that,
for every L and every de Morgan formula F with L(F ) ≤ L on n variables that does not have any
variable appearing more than h times, and for every 0 < p < 1,

Prρ∈Rp

[
L(Fρ) > c · p2 · log3/2(1/p) · L

]
6 L(F ) · exp

(
−p6 · L/h

)
.

Theorem 4.2 (Shrinkage of read-once de Morgan formulas). There exist constants d, d′ > 0 such
that the following holds for any read-once de Morgan formula F (x1, . . . , xn) and 0 < p < 1:

Prρ∈Rp

[
L(Fρ) > d · pΓ · n

]
6 exp

(
−d′ · p2Γ · n

)
,

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Both of these results are proved using the well-known “shrinkage in expectation” results for
the corresponding classes of formulas [H̊as98, HRY95, DZ94]. The proof idea is to decompose a
given formula into a few batches of independent subformulas (with some extra conditions) and
apply “shrinkage in expectation” to each subformula. Since the subformulas in each batch are
independent, we can use the Chernoff-Hoeffding inequality to argue that the shrinkage occurs with
high probability in each batch, and hence, by the union bound, also for the entire original formula.

We provide more details below. First, in Section 4.1, we give arguments common for the proofs
of both these results. Then we prove Theorem 4.1 in Section 4.2, and Theorem 4.2 in Section 4.3.
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4.1 Preliminary arguments

We will be using the following “shrinkage in expectation” results. H̊astad [H̊as98] showed that the
shrinkage exponent for de Morgan formulas is 2 (see also [Tal14] for a tighter proof4).

Theorem 4.3 ([H̊as98]). There exists a constant c > 0 such that, for every de Morgan formula F
on n variables and for every 0 < p < 1,

Expρ∈Rp
[L(Fρ)] 6 c ·

(
p2 · µ(p, L(F )) · L(F ) + p ·

√
L(F )

)
,

where µ(p, L(F )) = 1 + log3/2 min{1/p, L(F )}.

H̊astad, Razborov, and Yao [HRY95] settled the shrinkage exponent for read-once formulas;
their result was tightened by Dubiner and Zwick [DZ94].

Theorem 4.4 ([HRY95, DZ94]). For every read-once formula F (x1, . . . , xn) and a parameter 0 <
p < 1,

Expρ∈Rp
[L(Fρ)] 6 O

(
pΓ · n+ p · n1/Γ

)
,

where Γ = 1/ log(
√

5− 1) ≈ 3.27.

Next, we decompose a given (general or read-once) de Morgan formula as follows.

Lemma 4.5 ([IMZ12]). There is a constant d0 > 0 such that, for every s > 0 and for every
de Morgan formula F on the set X of variables with L(F ) > s, there exist de Morgan formulas
G1, . . . , Gm, for m 6 d0 · (L(F )/s), satisfying the following conditions:

1. L(Gi) 6 s, for all 1 6 i 6 m,

2. for each 1 6 i 6 m, Gi has at most 2 occurrences of “special” variables outside of X (different
variables for different Gi’s), and

3. for any restriction ρ of the variables X, L(Fρ) 6
∑m

i=1 L((Gi)ρ′), where ρ′(x) = ρ(x) for
x ∈ X and ρ′(x) = ∗ otherwise.

Moreover, if F is a read-once formula, then so is every formula Gi in the collection.

Proof sketch. Find a subformula of size between s/2 and s; a maximal subformula of size at most
s has size at least s/2. Replace the subformula with a new variable, called a subtree variable.
Repeatedly find either a subformula with exactly 2 subtree variables and of size less than s, or
a subformula with at most 1 subtree variable and of size between s/2 and s; replace the found
subformula with a new subtree variable. (To find a required subformula, take a minimal subformula
of size between s/2 and s. If it has more than 2 subtree variables, take a minimal subformula with
at least 2 such variables; since each of its child formulas has at most 1 subtree variable, it must have
exactly 2.) Since each time, we either remove at least s/2 nodes and create 1 new subtree variable,
or reduce the number of subtree variables by one, we get at most d0 · (L(F )/s) subformulas, for
some constant d0 > 0, where each subformula is of size at most s and with at most 2 subtree
variables.

4In fact, starting from the tight Fourier concentration result for de Morgan formulas (obtained via quantum
arguments, cf. Section 1.2), [Tal14] proves a tight version of Theorem 4.3 with µ(p, L(F )) = 1. For our purposes, the
original version of Theorem 4.3 (which is proved using classical arguments only) is sufficient.

9



The special variables correspond to the inputs which are outputs of some other subformulas.
We want to analyze the effect of a random restriction on F by using the upper bound of item (3) of
Lemma 4.5. To this end, we need to handle random restrictions that leave some specified variables
(the “special” variables in our case) unrestricted.

The idea is to take each subformula Gi and construct a new subformula G′i by replacing each
special variable in Gi with a restriction-resistant formula (on new variables, different for different
special variables); here we call a formula “restriction-resistant” if, with probability at least 3/4 over
the random restrictions, the resulting restricted formula remains a non-constant function. Then we
upper-bound the expected size Expρ′ [L((Gi)ρ′)], for ρ′ that leaves special variables unrestricted, by
twice the expected size Expρ[L((G′i)ρ)], for a standard random restriction ρ. The latter expectation
can be upper-bounded using the above-mentioned “shrinkage in expectation” results.

For general de Morgan formulas, the parity function on k inputs is likely to stay a non-constant
function, with high probability over the p-restrictions, where pk � 1; the size of such a de Morgan
formula is O(k2). For read-once de Morgan formulas, the existence of restriction-resistant formulas
follows from the work by Valiant [Val84a]. We state this result with its proof next.

Lemma 4.6 ([IMZ12]). For every 0 < p < 1, there exists a read-once de Morgan formula H of
size O(1/pΓ), for Γ = 1/ log2(

√
5 − 1) ≈ 3.27, such that, with probability at least 3/4 over the

p-restrictions ρ, we have
Hρ(~0) = 0 and Hρ(~1) = 1, (3)

where ~0 and ~1 denote the inputs of all 0’s and all 1’s, respectively.

The proof of Lemma 4.6 uses the following notion. For a Boolean function f(x1, . . . , xn) and a
parameter p ∈ [0, 1], Boppana [Bop89] defined the amplification function

Af (p) := Prx1,...,xn [f(x1, . . . , xn) = 1],

where each xi is chosen independently at random to be 1 with probability p and 0 otherwise.
Boppana [Bop89] also observed that Valiant [Val84a] implicitly proved the following5.

Theorem 4.7 ([Val84a]). Let Tk be a complete binary tree of depth 2k whose root is labeled with
OR, the next layer of nodes with AND, the next layer with OR, and so on in the alternating fashion
for all layers but the leaves. Let Fk be the read-once formula computed by Tk on 22k variables. Then
for ψ = (

√
5− 1)/2 and any p ∈ [0, 1],

AFk
(ψ − (1− ψ)p) < 1/8 and AFk

(ψ + (1− ψ)p) > 7/8,

for 2k = log2ψ
ψ−1/

√
3

(1−ψ)p + O(1) = log2ψ(1/p) + O(1). The size of Fk is 22k = O(1/p1/ log2 2ψ) =

O(1/pΓ), for Γ = 1/ log2(
√

5− 1) ≈ 3.27.

Proof of Lemma 4.6. We use Theorem 4.7 to argue the existence of the required read-once formula
H. Consider the following distribution Dk on read-once formulas:

Take Tk. Independently, assign each leaf of Tk the value 1 with probability 2ψ − 1,
and ∗ otherwise. Label the ∗ leaves with distinct variables xi’s. Output the resulting
read-once formula in the variables xi’s.

5See also the lecture notes by Uri Zwick, www.cs.tau.ac.il/∼zwick/circ-comp-new/six.ps, for an explicit proof.
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Let F be a random read-once formula sampled according to Dk. Let ρ be a random p-restriction
on the variables of F . Consider Fρ(~1). This restricted formula on the all-one input string induces
the probability distribution on the leaves of Tk where each leaf, independently, gets value 1 with
probability

2ψ − 1 + 2(1− ψ)p+ 2(1− ψ)(1− p)/2 = ψ + (1− ψ)p.

Using Theorem 4.7, we get

PrF∈Dk,ρ∈Rp [Fρ(~1) = 1] = AFk
(ψ + (1− ψ)p)

> 7/8.

Now consider Fρ(~0). It induces the probability distribution on the leaves of Tk where each leaf,
independently, is 1 with probability

2ψ − 1 + 2(1− ψ)(1− p)/2 = ψ − (1− ψ)p,

and 0 otherwise. Using Theorem 4.7, we get

PrF∈Dk,ρ∈Rp [Fρ(~0) = 1] = AFk
(ψ − (1− ψ)p)

< 1/8.

We get by the union bound that

PrF∈Dk,ρ∈Rp [Fρ(~1) = 0 or Fρ(~0) = 1] < 1/8 + 1/8

= 1/4.

Finally, by averaging, there exists a particular read-once formulaH ∈ Dk such that, with probability
at least 3/4 over the random p-restrictions ρ, we have Hρ(~0) = 0 and Hρ(~1) = 1. The size of this
formula H is at most that of Fk, which is O(1/pΓ).

Now we can analyze the expected shrinkage of de Morgan formulas under p-restrictions that leave
some specified variables unrestricted. Let Gi be any formula in the decomposition of Lemma 4.5,
with at most two occurrences of special variables. Let H be a shrinkage-resistant formula in the
sense that, with probability at most 1/4 over p-restrictions σ, the restricted formula Hσ is not
a constant function. Let G′i be obtained from Gi by replacing the special variables in Gi by
independent copies of the formula H on new, disjoint sets of variables. Let ρ′ be a p-restriction on
the variables of Gi such that the special variables are assigned *. Let ρ be a p-restriction on all
variables of G′i which agrees with ρ′ on all variables of Gi.

We have the following.

Claim 4.8. Expρ′
[
L((Gi)ρ′)

]
6 2 ·Expρ [L((G′i)ρ)].

Proof of Claim 4.8. Let A be the event that a random p-restriction on the variables of two copies
of H leaves both these formulas non-constant. By the union bound, the probability of A is at least
1/2. Conditioned on A, we have

L
(
(Gi)ρ′

)
6 L

(
(G′i)ρ

)
,

since (G′i)ρ contains (Gi)ρ′ as a subfunction. Thus, for a fixed ρ′, and for a random ρ extending ρ′,
we get

Expρ[L((G′i)ρ)] > (1/2) · L((Gi)ρ′).

Taking the expectation over ρ′ on both sides of this inequality yields the desired claim.

Now we are ready to prove our concentrated shrinkage results.
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4.2 Proof of Theorem 4.1

Let s = c0p
−2 for some constant c0. Using Lemma 4.5, decompose a given formula F into O(L(F )/s)

subformulas Gi’s.
Let H be a de Morgan formula on 2/p fresh variables that computes the parity function. Each

such de Morgan formula for parity on 2/p variables has size O(1/p2). The probability that each of
2/p variables is assigned (0 or 1) by a random p-restriction is

(1− p)2/p 6 e−2

6 1/4.

Thus H is shrinkage-resistant.
Form G′i by replacing special variables in Gi by independent copies of the formula H. Since

each Gi is of size at most s = c0/p
2 and the size of H is O(1/p2), we get that each G′i has size

c′0/p
2, for some constant c′0. By Claim 4.8 and H̊astad’s Theorem 4.3, we get, for each Gi,

Exp[L((Gi)ρ′)] 6 2 ·Expρ[L((G′i)ρ)] 6 c1 · log3/2 s, (4)

for some constant c1, where ρ′ is a p-restriction on the variables of Gi excluding the special variables,
and ρ is a p-restriction extending ρ′ to all variables of G′i.

Thus, we have a collection of O(L(F )/s) formulas Gi, each of size at most s, such that no
variable appears in more than h of the Gj ’s, and such that

L(Fρ) 6
∑

L((Gi)ρ′).

So our lemma reduces to showing concentration for the latter sum of random variables whose
expectations are upper-bounded by Eq. (4).

Since each Gi shares any variables with at most sh other Gj ’s, we can partition Gi’s into O(sh)
batches, each of at most O(L(F )/(s2h)) formulas, so that the formulas in each batch are totally
independent, having no variables in common. By Eq. (4), the expected total formula size within
each batch is

O(L(F ) · (log3/2 s)/(s2h)).

As a random variable, this is the sum of independent random variables in the range [0, s]. By the
Chernoff-Hoeffding bound of Lemma 2.1, the probability that the sum of the formula sizes in any
batch is larger than

c3 · L(F ) · (log3/2 s)/(s2h)

is less than
2−Ω(L(F )·(log3/2 s)/s3h).

There are strictly less than L(F ) 6 L batches, so the union bound yields that all batches are of
size

O(L(F ) · (log3/2 s)/(s2h)),

except with probability at most

L · exp(−Ω(L(F )/(s3h))) = L · exp(−Ω(p6 · L(F )/h)).

If they are, then summing up over the at most O(sh) batches, we get

L(Fρ) 6 O(L(F ) · (log3/2 s)/s)

= O(p2 · L(F ) · log3/2(1/p)).
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4.3 Proof of Theorem 4.2

Set s = c/pΓ, for a constant c to be determined. Using Lemma 4.5, partition a given formula F (of
size n) into O(n/s) subformulas G1, . . . , Gm of size at most s each.

Let H be a shrinkage-resistant read-once formula from Lemma 4.6 of size O(1/pΓ). Define G′i
to be Gi with special variables in Gi replaced by independent copies of H. Note that

L(G′i) 6 L(Gi) +O(1/pΓ),

which can be made at most 2 · L(Gi), by choosing the constant c to be sufficiently large. By
Claim 4.8 and Theorem 4.4, we get for each Gi that

Expρ′ [L((Gi)ρ′)] 6 c′ · pΓ · s, (5)

for some constant c′, where ρ′ is a p-restriction over the variables of Gi excluding the special
variables.

By Lemma 4.5, we have

L(Fρ) 6
∑
i

L((Gi)ρ′).

Note that the latter is the sum of independent random variables, as different Gi’s have no variables
in common (due to F being read-once). Each of these random variables is in the range [0, s],
with expectation upper-bounded by Eq. (5). Hence, the expectation of the sum of these random
variables is at most c′′npΓ, for some constant c′′. By the Chernoff-Hoeffding bound of Lemma 2.1,
the probability that L(Fρ) is greater than 8c′′npΓ is less than

exp
(
−c′′ · n · pΓ/s

)
6 exp

(
−d′ · p2Γ · n

)
,

for some constant d′ > 0.

5 Fourier concentration of de Morgan formulas

5.1 Concentration

For parameters s and t, denote by F(s, t) the sum
∑
|A|>t f̂(A)2, where the formula size of f is at

most s. The main result of this section is the following.

Theorem 5.1.

F(s, t) ≤ s · polylog(s) · exp
(
− t2

s1+δ(s)

)
,

where δ(s) = O((log log s)2/ log s) = o(1).

Proof. Starting with an initial formula f of size s and the parameter t, we will apply a sequence of
restrictions from Rpi to f , for a sequence of probabilities pi (to be determined). After stage i, we
get a restricted formula fi+1 from the previous formula fi, and the new parameter ti+1 from ti. We
then use Theorem 3.1 to reduce the task of upper-bounding F(si, ti) to that of F(si+1, ti+1). For
our choice of pi’s, the sequence of si’s will decrease rapidly until at some stage ` = O(log log s) we
get s` < t`, at which point the recursion stops as we get F(s`, t`) = 0. The bound on F(s, t) will
be essentially the sum of the probabilities, for 0 6 i 6 `, that a random restriction ρ ∈ Rpi fails to
shrink the function fi to the size guaranteed by Theorem 4.1. We provide the details next.
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For a parameter h ∈ N, a variable of f is called h-heavy if this variable has more than h
occurrences in a minimal formula for f . Let nh denote the total number of h-heavy variables of f .

Let fi be a function with formula size at most si, and let ti be the parameter t at stage i. Set
hi = (2si)/ti. Let nhi denote the number of hi-heavy variables in the formula for fi. We get that
nhi 6 si/hi = ti/2. Let f ′ be any restriction of fi assigning values to all hi-heavy variables. Let
t′i = ti/2. Since t′i + nhi 6 ti, we get by Lemma 3.2 that it suffices to show, for each f ′, an upper

bound on
∑
|A|≥t′i

f̂ ′(A)2. By Theorem 3.1, the latter is at most

2 ·Expρ∈Rpi

 ∑
B : |B|≥ti+1

f̂ ′ρ(B)2

 ,
where ti+1 = pit

′
i/2 = piti/4.

By Theorem 4.1, except with probability

si · exp
(
−p6

i ·
si
hi

)
= si · exp

(
−p6

i ·
ti
2

)
(6)

over the random restrictions ρ ∈ Rpi , the function f ′ρ has formula size at most

si+1 = p2
i · si ·∆,

where ∆ = c log3/2 s, for the constant c as in Theorem 4.1. We will choose pi’s so that the ratio
si/ti becomes less than 1 within few iterations. To that end, we chose pi so that

si+1

ti+1
6

(
si
ti

) 5
6

· 1

2
. (7)

By the definitions of si+1 and ti+1, we have

si+1

ti+1
6
si
ti
· pi · 4∆,

and so we can satisfy Eq. (7) by setting

pi =

(
ti
si

) 1
6

· 1

8∆
.

For this choice of pi, the error probability in Eq. (6) becomes at most si · εi for

εi = exp

(
− t

2
i

si
· 1

2(8∆)6

)
. (8)

Using the Parseval identity (to bound by 1 the contribution of those restrictions that do not
shrink the formula), we get from the above that

Expρ∈Rpi

 ∑
B : |B|≥ti+1

f̂ ′ρ(B)2

 6 si · εi + F(si+1, ti+1).

Hence, overall, we have
F(si, ti) 6 2 · (si · εi + F(si+1, ti+1)). (9)

Let ` be the smallest integer such that s` < t`. We will argue below that ` = O(log log s).
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Claim 5.2. For some ` = O(log log s), we get s` < t`.

Proof. By Eq. (7), we have

si+1

ti+1
<

(
si
ti

) 5
6

· 1

2
.

Unwinding the recurrence for i+ 1 iterations, we get

si+1

ti+1
<
(s
t

)( 5
6)

i+1

· 1

2
,

which is less than 1 if i+ 1 > log6/5 log2(s/t).

For the ` as in Claim 5.2, we get F(s`, t`) = 0 (since a formula g depending on fewer than t`
variables has ĝ(B) = 0 for every set B of size at least t`). Thus the recurrence in Eq. (9), when
started at i = 0, will terminate after at most ` steps. It follows that F(s0, t0) is at most

2s0ε0 + 22s1ε1 + · · ·+ 2`+1s`ε` 6 2`+2 · s · ε?, (10)

where ε? = max06i6`{εi}. Let 0 6 m 6 ` be such that ε? = εm. By unwinding the recurrence in
Eq. (8) for εm, we get

εm = exp

(
− t

2
m

sm
· 1

2(8∆)6

)
6 exp

(
−
t2m−1

sm−1
· 1

2(8∆)6
· 1

16∆

)
6 exp

(
− t

2

s
· 1

2(8∆)6 · (16∆)m

)
6 exp

(
− t

2

s
· 1

2(8∆)6 · (16∆)`

)
.

Plugging in this upper bound on ε? = εm into Eq. (10), we conclude that

F(s, t) 6 s · polylog(s) · exp
(
− t2

s · (log s)O(log log s)

)
,

which completes the proof.

5.2 Optimality

Let f : {0, 1}n → {1,−1} be a Boolean function computed by a de Morgan formula of size s. Since
the parity of m bits can be computed by a size O(m2) de Morgan formula, we have that f̂(A) = 1
for a set A ⊆ [n] of size |A| = O(

√
s). Thus, in order to get a non-trivial upper-bound on the

Fourier spectrum
∑
|A|>t f̂(A)2, we need to set t >

√
s. We will show something a bit stronger.

Lemma 5.3. For any t 6 n, there is a de Morgan formula of size s on n inputs that computes the
parity on t bits with advantage 2−O(t2/s).
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Proof. Consider the following formula F (x1, . . . , xn). Set m = bct2/sc, for some constant c > 0 to
be determined. Without loss of generality assume that m is odd; otherwise take m − 1. Divide
x1, . . . , xt into m disjoint blocks of size t/m each. Compute the parity of each block, using a de
Morgan formula of size O(t2/m2), and output the AND of the results over all blocks. The overall
formula size of F is O((t2/m2) · m) = O(t2/m) = O(s/c), which can be made at most s, for a
sufficiently large constant c.

Next we argue that F has advantage 2−m in computing the parity of x1, . . . , xt. Note that F is
correct when all m blocks have odd parity, which happens with probability 2−m. If not all blocks
have odd parity, our formula always outputs 0, which is correct for exactly 1/2 of the inputs.

By Lemma 5.3, a function f computed by a de Morgan formula of size s may have f̂(A) >
2−O(t2/s) for a set A of size t. Hence, we get that

F(s, t) > exp(−O(t2/s)),

implying that our Fourier concentration result for de Morgan formulas, Theorem 5.1, is tight, up
to the o(1) term in the exponent of s.

6 Fourier concentration of read-once de Morgan formulas

6.1 Concentration

Here we let F(n, t) denote the sum
∑
|A|>t f̂(A)2, where f has the read-once formula size at most

n. The main result of this section is the following.

Theorem 6.1.

F(n, t) 6 O(log n) · exp

(
−
(

tΓ

n1+δ(n)

) 1
Γ−1

)
,

where δ(n) = O((log log n)/ log n) = o(1) and Γ = 1/ log(
√

5− 1) ≈ 3.27.

Proof. Our proof strategy is similar to that in Theorem 5.1. We define a sequence of pi’s, and apply
restrictions from Rpi to an initial read-once formula f for ` steps, each time getting a new read-once
formula fi+1 of size at most ni+1 and a new parameter ti+1. We argue that within ` = O(log log n),
we get n` < t`, and hence our recursion will stop. The original sum F(n, t) will be upper-bounded
by the sum of error probabilities from Theorem 4.2 that a function from iteration i failed to shrink.
We provide the details next.

Let fi be a function computable by a read-once formula of size at most ni, and let ti be the
parameter t at stage i. Set ti+1 = piti/2. By Theorem 3.1, we have

F(ni, ti) 6 2 ·Expρ∈Rp1

 ∑
B : |B|>ti+1

(̂fi)ρ(B)2

 . (11)

By Theorem 4.2, except with probability at most

εi = exp(−d′ · p2Γ
i · ni) (12)

over ρ ∈ Rpi , the function fi+1 = (fi)ρ has read-once formula size at most

ni+1 = pΓ
i · ni · d,
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for some constants d, d′ > 0. With foresight, set

pi =

((
ti
ni

) 1
2

· 1

4d

) 1
Γ−1

.

We have

ni+1

ti+1
6
ni
ti
· (2d) · pΓ−1

i

=

(
ni
ti

) 1
2

· 1

2
.

It is easy to see (cf. the proof of Claim 5.2) that, for some ` 6 log log n+1, we get n` < t`, at which
point we have F(n`, t`) = 0.

By Eq. (11), we have
F(ni, ti) 6 2(εi + F(ni+1, ti+1)).

Starting at i = 0 and unwinding this recurrence for ` steps, we get

F(n, t) 6 2 ·
∑̀
i=0

2i · εi

6 2`+2 · εm

where 0 6 m 6 ` is such that εm = max06i6`{εi}. As ` 6 log logn+ 1, we get

F(n, t) 6 O(log n) · εm. (13)

Using our choice of pi in Eq. (12), we have

εi = exp

−d′ ·(( ti
ni

) 1
2

· 1

4d

) 2Γ
Γ−1

· ni


= exp

(
−ni ·

(
ti
ni

) Γ
Γ−1

· d′

(4d)
2Γ

Γ−1

)

= exp

(
−
(

tΓi
ni · (4d)2Γ

) 1
Γ−1

· d′
)
.

Unwinding this recurrence for m steps, we get

εm = exp

(
−
(

tΓm
nm · (4d)2Γ

) 1
Γ−1

· d′
)

6 exp

−( tΓm−1

nm−1 · (4d)2Γ · d2Γ

) 1
Γ−1

· d′


6 exp

(
−
(

tΓ

n · (4d)2Γ · (d2Γ)m

) 1
Γ−1

· d′
)
,
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which is at most

exp

(
−
(

tΓ

n · (log n)O(1)

) 1
Γ−1

)
,

since m 6 ` 6 log log n+ 1. Using this upper bound on εm in Eq. (13) completes the proof.

6.2 Optimality

For every n and t > n1/Γ, we give an example of a function f : {0, 1}n → {−1, 1} that matches the
upper bound of Theorem 6.1, to within the o(1) term in the exponent of n.

Lemma 6.2. For every n and t > n1/Γ, there exist a Boolean function f : {0, 1}n → {−1, 1}
computable by a read-once de Morgan formula, and a constant d > 0 such that

∑
|A|>t

f̂(A)2 > exp

(
−d ·

(
tΓ

n

) 1
Γ−1

)
.

Proof. For a parameter ` > 1 to be determined, partition the variables x1, . . . , xn into ` disjoint
sets X1, . . . , X` of size n/` each, and define f to be the Boolean function computed by the formula

F (x1, . . . , xn) = ∧`i=1H(Xi),

where H is the shrinkage-resistant formula of size n/` from Lemma 4.6. To show the required lower
bound on the Fourier mass of f above level t, we proceed in two steps: (1) show a lower bound on
the expected Fourier mass for the restriction fρ of f to a family of subsets of total size above Ω(tp),
for an appropriately chosen parameter 0 < p < 1, and (2) use the known connections between the
Fourier spectra of a function and its random restriction to argue that essentially the same lower
bound as in step (1) applies also to the Fourier mass of f above level t.

For step (1), we prove the following.

Claim 6.3. For p = Θ((`/n)1/Γ) and some constant C > 0,

Expρ∈Rp

 ∑
∅6=A1⊆X1,...,∅6=A`⊆X`

f̂ρ(A1 ∪ · · · ∪A`)2

 > 2−C·`.

Proof of Claim 6.3. For the proof, we shall need the following simple facts.

Fact 6.4. For each non-constant Boolean function g on at most c variables, there exists a subset
∅ 6= S ⊆ [c] such that |ĝ(S)| > 2−c.

Proof of Fact 6.4. Since g is non-constant, ĝ(S) 6= 0 for some ∅ 6= S ⊆ [c]. As each Fourier
coefficient of a c-variate Boolean function is of the form k/2c for an integer k, the claim follows.

Fact 6.5. For G(x1, . . . , x2c) = G1(x1, . . . , xc) ∧ G2(xc+1, . . . , x2c), let g1, g2 : {0, 1}c → {−1, 1}
and g : {0, 1}2c → {−1, 1} be the Boolean functions computed by the formulas G1, G2, and G,
respectively. Then for any non-empty subsets S1 ⊆ {1, . . . , c} and S2 ⊆ {c+ 1, . . . , 2c}, we have

ĝ(S1 ∪ S2) = −1

2
· ĝ1(S1) · ĝ2(S2).

Proof of Fact 6.5. Observe that g = 1
2 · (1 + g1 + g2 − g1 · g2) , with the first three terms on the

right-hand side having no Fourier mass on S1 ∪ S2.
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Now we continue with the proof of the claim. Each copy of the formula H is of size n′ = n/`. By
Lemma 4.6, we have for p = Θ((n′)−1/Γ) that, with probability at least 3/4 over random restrictions
ρ ∈ Rp, the function computed by Hρ is non-constant. On the other hand, by Theorem 4.4 and
Markov’s inequality, the restriction of H under ρ ∈ Rp has size at most c, for some constant c > 0,
with probability at least 3/4. It follows that, with probability at least 1/2 over random restrictions
ρ ∈ Rp, both conditions hold for H, i.e., the function computed by Hρ is a non-constant function
on at most c variables, for some constant c > 0.

Since the ` copies of H depend on disjoint sets of variables X1, . . . , X`, we conclude that, with
probability at least 2−` over ρ ∈ Rp, each restricted formula Hρ(Xi), for 1 6 i 6 `, computes a non-
constant Boolean function on at most c variables. For such a restriction ρ, we get by Fact 6.4 that
there exist non-empty sets S1, . . . , S`, where each Si ⊆ Xi, such that, for each 1 6 i 6 `, |ĝi(Si)| >
2−c, where gi is the Boolean function computed by the restricted formula Hρ(Xi). Applying Fact 6.5

inductively to the formula Fρ = ∧`i=1Hρ(Xi), we get that
∣∣∣f̂ρ(S1 ∪ . . . S`)

∣∣∣ > 21−` · 2−c` > 2−(c+1)`.

It follows that

Expρ∈Rp

 ∑
∅6=A1⊆X1,...,∅6=A`⊆X`

f̂ρ(A1 ∪ · · · ∪A`)2

 > 2−` · 2−2(c+1)`,

which is at least 2−C·`, for C = 2c+ 3.

Then, for step (2), we use the well-known fact (see, e.g., [O’D14, Proposition 4.17]) that, for
any Boolean function g(x1, . . . , xn) and any subset S ⊆ [n],

Expρ∈Rp
[ĝρ(S)2] =

∑
A⊆[n]

ĝ(A)2 ·Prρ∈Rp [Aρ = S],

where Aρ denotes the subset of elements of A that were left unrestricted by the random p-restriction
ρ (where each element of A is left unrestricted, independently, with probability p). Applying this
to our function f , we get that

Expρ

 ∑
∅6=A1⊆X1,...,∅6=A`⊆X`

f̂ρ(A1 ∪ · · · ∪A`)2

 =
∑
A⊆[n]

f̂(A)2 ·Prρ [∀i ∈ [`], Aρ ∩Xi 6= ∅] ,

and hence, by Claim 6.3,

2−C·` 6
∑
A⊆[n]

f̂(A)2 ·Prρ [∀i ∈ [`], Aρ ∩Xi 6= ∅] . (14)

We shall need the following.

Claim 6.6. For any constant D > 0, let A ⊆ [n] be any set such that |A| 6 `
D·p . Then

Prρ∈Rp [∀i ∈ [`], Aρ ∩Xi 6= ∅] 6

(
2

D

)`/2
.

Proof of Claim 6.6. By averaging, for at least `/2 blocks Xi’s, we have |A ∩ Xi| 6 2
Dp . For each

such block Xi, we have by the union bound that Prρ∈Rp [Aρ ∩Xi 6= ∅] 6 2
D . The claim follows.
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Claim 6.6 and Parseval’s identity imply that, for any constant D > 0, we have

∑
A⊆[n]

f̂(A)2 ·Prρ∈Rp [∀i ∈ [`], Aρ ∩Xi 6= ∅] 6

 ∑
|A|> `

Dp

f̂(A)2

+

(
2

D

)`/2
.

By Eq. (14), we conclude that ∑
|A|> `

Dp

f̂(A)2 > 2−C·` − (2/D)`/2.

For D = 22C+3, we get ∑
|A|> `

Dp

f̂(A)2 >
1

2
· 2−C·`. (15)

Finally, set ` so that t = `/(Dp). As p = Θ((`/n)1/Γ), we get ` = Θ(t(`/n)1/Γ), which yields

` = Θ
((
tΓ/n

) 1
Γ−1

)
. By Eq. (15), the lemma follows.

7 Other results

7.1 Correlation with Parity

Subquadratic-size de Morgan formula have exponentially small correlation with the parity function.

Corollary 7.1. Every de Morgan formula of size at most s = n2−ε, for some 0 < ε 6 1, agrees
with the parity function on n bits on at most

1/2 + exp(−nε−o(1))

fraction of inputs.

Proof. Recall that the Fourier coefficient f̂(S) for a subset S ⊆ [n] measures the correlation of f with
the parity function on the positions in S. The result follows immediately from Theorem 5.1.

By Lemma 5.3, this correlation bound is tight, up to the o(1) term.

7.2 Average sensitivity

Recall that for a Boolean function f : {0, 1}n → {1,−1} and a string w ∈ {0, 1}n, the sensitivity
of f at w is the number of Hamming neighbors w′ of w such that f(w) 6= f(w′). The average
sensitivity of f , denoted by AS(f), is the average over all w ∈ {0, 1}n of the sensitivity of f at w.
It is shown by [KKL88] that

AS(f) =
∑
A⊆[n]

|A| · f̂(A)2. (16)

The parity function on m bits has average sensitivity m. Since a de Morgan formula of size s
can compute the parity on Ω(

√
s) bits, we get a lower bound Ω(

√
s) on the average sensitivity of

de Morgan formulas of size s. The matching O(
√
s) upper bound on the average sensitivity of size

s de Morgan formulas follows from Khrapchenko’s result [Khr71] (as noted in [BDS00, GKLR12]).
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For read-once formulas of size s, Eq. (16) and Theorem 6.1 readily imply the upper bound
s1/Γ+o(1) on average sensitivity, where Γ = 1/ log2(

√
5 − 1) ≈ 3.27 is the shrinkage exponent

for read-once formulas. However, a stronger upper bound can be shown. As was pointed out
to us by Nitin Saurabh (personal communication), the following bound is implicitly proved by
Boppana [Bop89].

Theorem 7.2 (implicit in [Bop89]). Let f : {0, 1}n → {1,−1} be a Boolean function computed by
a read-once de Morgan formula. Then AS(f) 6 n1/Γ.

We will prove the theorem for {0, 1}-valued Boolean functions; clearly this does not affect the
average sensitivity. We again use Boppana’s amplification function, Af , mentioned earlier. Here
we use a slightly more general definition of Af : for a Boolean function f : {0, 1}n → {0, 1} and
parameters p1, . . . , pn ∈ [0, 1], define the amplification function

Af (p1, . . . , pn) := Prx1,...,xn [f(x1, . . . , xn) = 1],

where each xi is chosen independently at random to be 1 with probability pi, and 0 with probability
1− pi. For p ∈ [0, 1], define

Af (p) := Af (p, . . . , p).

Boppana [Bop89, Theorem 2.1] proved the following upper bound on the derivative of Af .

Theorem 7.3 ([Bop89]). For any read-once formula f of size n and any 0 < p < 1,

A′f (p) 6 n1/Γ ·
H(Af (p))

H(p)
,

where H(p) := −p log2 p−(1−p) log2(1−p) is the binary entropy function, and Γ = 1/ log2(
√

5−1).

Lemma 7.4 (N. Saurabh, personal communication). For every monotone n-variate Boolean func-
tion f , we have AS(f) = A′f (1/2).

Proof. Observe that

A′f (1/2) =

n∑
i=1

∂Af (p1, . . . , pn)

∂pi

∣∣∣∣∣
(1/2,...,1/2)

.

On the other hand, using monotonicity of f , we will show that each ith summand on the right-hand
side of the above formula is exactly equal to Inf i[f ], the influence of coordinate i on f . Since

AS(f) =

n∑
i=1

Inf i[f ],

the lemma will follow.
We have

Inf i[f ] =
∑

x∈{0,1}n : (f(x)=1)∧(f(xi)=0)

1

2n−1
,

where xi denotes x with the ith coordinate flipped. Write

Af (p1, . . . , pn) =
∑

x∈{0,1}n : f(x)=1

Px,
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where for x = (x1, . . . , xn),

Px :=
n∏
i=1

pxii (1− pi)1−xi

is the probability mass contributed by the point x. Observe that, for points x and xi, the partial
derivatives of Px and Pxi with respect to pi cancel each other. Thus, the points x and xi such that
f(x) = f(xi) = 1 contribute 0 to the partial derivative of Af with respect to pi. Each x such that
f(x) = 1 but f(xi) = 0 must have its ith coordinate xi = 1 by the monotonicity of f . Hence, each
such x will contribute

(1/pi) ·
n∏
j=1

p
xj
j (1− pj)1−xj

to the partial derivative of Af with respect to pi. When all pj = 1/2, this contribution is exactly
1/2n−1.

We can now finish the proof of Theorem 7.2.

Proof of Theorem 7.2. Without loss of generality, a given read-once Boolean function f can be
assumed monotone: we can always remove negations from any negative literals in the read-once
formula f , without changing AS(f). By Theorem 7.3 and Lemma 7.4, we get

AS(f) 6 n1/Γ ·H(Af (1/2))

6 n1/Γ,

as required.

Next we show that the average sensitivity bound for read-once formulas in Theorem 7.2 is tight.

Theorem 7.5. For all large enough n, there is an n-variate Boolean function f computable by a
read-once formula of size n such that

AS(f) > Ω(n1/Γ).

Proof. For every n-variate Boolean function f and for every 0 6 t 6 n, we get by Eq. (16) that

AS(f) =
∑
A⊆[n]

|A| · f̂(A)2

>
∑
|A|>t

|A| · f̂(A)2

> t ·
∑
|A|>t

f̂(A)2.

On the other hand, for the read-once n-variate Boolean function f from Lemma 6.2, we have∑
|A|>t

f̂(A)2 > Ω(1),

for t = n1/Γ. For this f , we conclude by the above that AS(f) > Ω(n1/Γ), as required.

22



8 Concluding remarks

We argued that shrinkage implies Fourier concentration for de Morgan formulas. Tal [Tal14] has
recently proved that, in some sense, the reverse is also true: starting with the known tight Fourier
concentration result for de Morgan formulas (proved via quantum arguments), he shows a tight
shrinkage result for de Morgan formulas, improving upon the parameters of [H̊as98]. So there
appears to be a certain equivalence between shrinkage and Fourier concentration for de Morgan
formulas, which raises the issue of proving such connection more generally. For example, one could
consider classes of formulas over different bases (say, monotone formulas).

Can one further improve the parameters of Theorem 1.1 (getting rid of the o(1) term there)?
Does k-wise independence ε-fool read-once formulas of size n for

k = O((log 1/ε) · n1/Γ)

where Γ is the shrinkage exponent for read-once formulas? For general de Morgan formulas of
size n, the corresponding statement follows from the quantum results on the approximate degree
O(
√
s) [Rei11]. On the other hand, the approximate degree for read-once formulas of size n must

be at least n1/2 (the same as that for general de Morgan formulas of size n), and so one needs a
different argument for showing such a k-wise independence result for read-once formulas.
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A Proof of Theorem 3.1

For a Boolean function f , a subset S of variables, and a string r ∈ {0, 1}|S|, denote by fS←r the
restriction of f where the variables in S are assigned the values given in r. We can combine different
restrictions. For example, fS←r,ρ means the restriction of f where we assign the values r to the
variables in S, and then apply a restriction ρ to the resulting function in variables [n] \ S.

Now we give the proof of Theorem 3.1, which we re-state first.

Theorem A.1 ([LMN93]). For arbitrary n-variate Boolean function f , integer t > 0 and a real
number 0 < p < 1 such that pt > 8,

∑
|A|>t

f̂(A)2 6 2 ·Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 .
Proof. We have

∑
|A|>t

f̂(A)2 6 2 ·ExpS

 ∑
A : |A∩S|>pt/2

f̂(A)2

 (17)

= 2 ·ExpS,r∈{0,1}|Sc|

 ∑
B : |B|>pt/2

f̂Sc←r(B)2

 (18)

= 2 ·Expρ∈Rp

 ∑
B : |B|>pt/2

f̂ρ(B)2

 , (19)
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where the first expectation is over random sets S obtained by choosing each item i ∈ [n], indepen-
dently, with probability p; the second expectation is over S as before, and over uniformly random
assignment r (for the variables outside of S).

Eq. (19) is by definition. Eq. (18) is proved in Lemma A.2 below. We show Eq. (17) next.
Consider any set A of size at least t. It will contribute f̂(A)2 to the expectation over S for

every random set S that intersects A in at least pt/2 locations. The expected intersection size
between S and A (where each element i ∈ [n] is put into S with probability p) is p|A| > pt. By
Chernoff, almost all sets S will intersect the set A in at least half the expected number of places;
by requiring that pt > 8, we get that this holds for at least half of all random sets S. Multiplying
this expectation by 2 ensures that each f̂(A)2 is counted at least once.

Lemma A.2 ([LMN93]). For a Boolean function f on n variables, an arbitrary subset S ⊆ [n],
and an integer k, we have

∑
A : |A∩S|>k

f̂(A)2 = Expr∈{0,1}|Sc|

∑
|B|>k

f̂Sc←r(B)2

 . (20)

Proof. We start by re-writing the left-hand side of Eq. (20):∑
A : |A∩S|>k

f̂(A)2 =
∑

B⊆S : |B|>k

∑
D⊆Sc

f̂(B ∪D)2. (21)

For all sets B ⊆ S and D ⊆ Sc, we have

f̂(B ∪D) = Expx∈{0,1}n [f(x) · χB∪D(x)]

= Expr∈{0,1}|Sc|,r′∈{0,1}|S|
[
fSc←r(r

′) · χ(B∪D)∩S(r′) · χ(B∪D)∩Sc(r)
]

= Expr∈{0,1}|Sc|

[
χD(r) ·Expr′∈{0,1}|S|

[
fSc←r(r

′) · χB(r′)
]]

= Expr∈{0,1}|Sc|

[
χD(r) · f̂Sc←r(B)

]
.

Therefore, for every fixed B ⊆ S, we get

∑
D⊆Sc

f̂(B ∪D)2 =
∑
D

2−|S
c| ·

∑
r∈{0,1}|Sc|

χD(r) · f̂Sc←r(B)

2

= 2−2|Sc| ·
∑

r1,r2∈{0,1}|Sc|

f̂Sc←r1(B) · f̂Sc←r2(B) ·
∑
D

χD(r1 ⊕ r2),

where r1 ⊕ r2 denotes the bit-wise XOR of the two strings. Observing that

∑
D⊆Sc

χD(r) =

{
2|S

c| if r is an all-zero string

0 otherwise
,

we can continue the above sequence of equalities, getting the following:∑
D⊆Sc

f̂(B ∪D)2 = 2−|S
c| ·

∑
r∈{0,1}|Sc|

f̂Sc←r(B)2

= Expr∈{0,1}|Sc|

[
f̂Sc←r(B)2

]
.
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Finally, plugging in the last expression into the right-hand side of Eq. (21), we conclude∑
A : |A∩S|>k

f̂(A)2 =
∑

B⊆S : |B|>k

Expr∈{0,1}|Sc|

[
f̂Sc←r(B)2

]

= Expr∈{0,1}|Sc|

∑
|B|>k

f̂Sc←r(B)2

 ,
as required.
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