
Verifying computations without reexecuting them: from
theoretical possibility to near practicality∗

Michael Walfish† and Andrew J. Blumberg‡

†New York University ‡The University of Texas at Austin

In this setup, a single reliable PC can monitor the opera-
tion of a herd of supercomputers working with possibly
extremely powerful but unreliable software and untested
hardware.
—Babai, Fortnow, Levin, Szegedy, 1991 [5]

How can a single PC check a herd of supercomputers with unreliable
software and untested hardware?

This classic problem is particularly relevant today, as much com-
putation is now outsourced: it is performed by machines that are
rented, remote, or both. For example, service providers (SPs) now
offer storage, computation, managed desktops, and more. As a result,
relatively weak devices (phones, tablets, laptops, PCs) can run com-
putations (storage, image processing, data analysis, video encoding,
etc.) on banks of machines controlled by someone else.

This arrangement is known as cloud computing, and its promise
is enormous. A lone graduate student with an intensive analysis of
genome data can now rent a hundred computers for twelve hours for
less than $200. And many companies now run their core computing
tasks (Web sites, application logic, storage, etc.) on machines owned
by SPs, which automatically replicate applications to meet demand.
Without cloud computing, these examples would require buying
hundreds of physical machines when demand spikes . . . and then
selling them back the next day.

But with this promise comes risk. SPs are complex and large-scale,
making it unlikely that execution is always correct. Moreover, SPs do
not necessarily have strong incentives to ensure correctness. Finally,
SPs are black boxes, so faults—which can include misconfigurations,
corruption of data in storage or transit, hardware problems, malicious
operation, and more [38]—are unlikely to be detectable. This raises
a central question, which goes beyond cloud computing: How can
we ever trust results computed by a third-party, or the integrity of
data stored by such a party?

A common answer is to replicate computations [16, 17, 39]. How-
ever, replication assumes that failures are uncorrelated, which may
not be a valid assumption: the hardware and software platforms
in cloud computing are often homogeneous. Another answer is
auditing—checking the responses in a small sample—but this as-
sumes that incorrect outputs, if they occur, are relatively frequent.
Still other solutions involve trusted hardware [19, 49] or attesta-
tion [40, 45, 50], but these mechanisms require a chain of trust and
assumptions that the hardware or a hypervisor works correctly.

But what if the third party returned its results along with a proof
that the results were computed correctly? And what if the proof
were inexpensive to check, compared to the cost of re-doing the
computation? Then few assumptions would be needed about the
kinds of faults that can occur: either the proof would check or it

∗This is a (slightly) expanded version of a forthcoming article for Com-
munications of the ACM (CACM).

wouldn’t. We call this vision proof-based verifiable computation,1

and the question now becomes: Can this vision be realized for a
wide class of computations?

Deep results in complexity theory and cryptography tell us that in
principle the answer is “yes”. Probabilistic proof systems [28, 56]—
which include interactive proofs (IPs) [4, 30, 37, 55], probabilisti-
cally checkable proofs (PCPs) [2, 3, 56], and argument systems [14]
(PCPs coupled with cryptographic commitments [35])—consist of
two parties: a verifier and a prover. In these protocols, the prover can
efficiently convince the verifier of a mathematical assertion. In fact,
the acclaimed PCP theorem [2, 3], together with refinements [31],
implies that a verifier only has to check three randomly chosen bits
in a suitably encoded proof!

Meanwhile, the claim “this program executed on this input pro-
duces that output” can be represented as a mathematical assertion of
the necessary form. The only requirement is that the verifier knows
the program, the input (or at least a digest, or fingerprint, of the
input), and the purported output. And this requirement is met in
many uses of outsourced computing; examples include MapReduce-
style text processing, scientific computing and simulations, database
queries, and Web request-response.2 Indeed, although the modern
significance of PCPs lies elsewhere, an original motivation was veri-
fying the correctness of remotely executed computations: the paper
quoted in our epigraph [5] was one of the seminal works that led to
the PCP theorem.

However, for decades these approaches to verifiable computa-
tion were purely theoretical. Interactive protocols were prohibitive
(exponential-time) for the prover and did not appear to save the
verifier work. The proofs arising from the PCP theorem (despite
asymptotic improvements [9, 23]) were so long and complicated
that it would have taken thousands of years to generate and check
them, and more storage bits than there are atoms in the universe.

But beginning around 2007, a number of theoretical works
achieved results that were especially relevant to the problem of
verifying cloud computations. Goldwasser et al., in their influential
Muggles paper [29], refocused the theory community’s attention on
verifying outsourced computations, in the context of an interactive
proof system that required only polynomial work from the prover,
and that applied to computations expressed as certain kinds of cir-
cuits; Ishai et al. [34] proposed a novel cryptographic commitment
to an entire linear function, and used this primitive to apply simple
PCP constructions to verifying general-purpose outsourced compu-
tations; and a couple of years later, Gentry’s breakthrough protocol
for fully homomorphic encryption (FHE) [26] led to work (GGP) on

1The term verifiable computation was defined formally by Gennaro et
al. [24], but our usage here is considerably broader.

2The condition does not hold for “proprietary” computations whose
logic is concealed from the verifier. However, the theory can be
adapted to this case too, as we discuss near the end of the article.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 3 of Report No. 165 (2013)

non-interactive protocols for general-purpose computations [20, 24].
These developments were exciting, but, as with the earlier work, im-
plementations were thought to be out of the question. So the theory
continued to remain theory—until recently.

The last few years have seen a number of projects overturn the con-
ventional wisdom about the hopeless impracticality of proof-based
verifiable computation. These projects aim squarely at building real
systems based on the theory mentioned above, specifically the PCP
theorem and Muggles (FHE-based protocols still seem too expen-
sive). The improvements over naive theoretical protocols are dra-
matic; it is not uncommon to read about factor-of-a-trillion speedups.
The projects take different approaches, but broadly speaking, they
apply both refinements of the theory and systems techniques. Some
projects include a full pipeline: a programmer specifies a computa-
tion in a high-level language, and then a compiler (a) transforms the
computation to the formalism that the verification machinery uses
and (b) outputs executables that implement the verifier and prover.
As a result, achieving verifiability is no harder for the programmer
than writing the code in the first place.

The goal of this article is to survey this blossoming area of re-
search. This is an exciting time for work on verifiable computation:
while none of the works that we will discuss is practical enough for
its inventors to raise venture capital for a startup, they merit being
referred to as “systems”. Moreover, many of the open problems cut
across sub-disciplines of computer science: parallel computing, pro-
gramming languages, systems engineering, complexity theory and
cryptography. The pace of progress has been rapid, and we believe
that real applications of these techniques to cloud computing will
appear in the next few years.

Roadmap. The next section gives an overview of the underlying
technology. The following sections describe progress in this research
area and articulate some of the open questions.

A note about scope. We focus on solutions that provide integrity
to, and in principle can save work for, the verifier. Thus, we do not
treat exciting work on efficient implementations of secure multi-
party protocols (e.g., Huang et al. [32] and Kreuter et al. [36]). We
also exclude FHE-based approaches based on GGP [24] (as noted
above, these techniques seem too expensive) and the vast body of
domain-specific solutions (surveyed elsewhere [44, 53, 59]).

A PROBLEM AND THEORETICAL SOLUTIONS

The problem statement, and some observations about it. A ver-
ifier sends the specification of a computation p (e.g., the text of a
program) and input x to a prover. The prover computes an output
y and returns it to the verifier. If y = p(x), then a correct prover
should be able to convince the verifier of y’s correctness, either by an-
swering some questions or by providing a certificate of correctness.
Otherwise, the verifier should reject y with high probability.

In any protocol that solves this problem, we desire three things.
First, the protocol should provide some advantage to the verifier:
either the protocol should be cheaper for the verifier than executing
p(x) locally, or else the protocol should handle computations p that
the verifier could not execute itself (e.g., operations on state private
to the prover). Second, we do not want to make any assumptions
that the prover follows the protocol. Third, p should be general; later,
we will have to make some compromises, but for now, p should be
seen as encompassing all C programs whose running time can be
statically bounded given the input size.

Some reflections about this setup are in order. To begin with, we
are willing to accept some overhead for the prover, as we expect

proververifier
p

accept/
reject

1

2
circuit

output (y)

 input (x)

transcript

 computation (p)

p 1 circuit

encoded transcript
3

4

queries about the encoded
transcript; responses

tests

Figure 1—Framework in which a verifier can check that, for a compu-
tation p and desired input x, the prover’s purported output y is correct.
There are four steps. Step À: the verifier and prover compile p, which
is expressed in a high-level language (for example, the C programming
language), into a Boolean circuit, C. Step Á: the prover executes the
computation, obtaining a transcript for the execution of C on x. Step Â:
the prover encodes the transcript, to make it suitable for efficient query-
ing by the verifier. Step Ã: the verifier probabilistically queries the en-
coded transcript; the structure of this step varies among the protocols
(for example, in some of the works [7, 44], explicit queries are estab-
lished before the protocol begins, and this step requires sending only
the prover’s responses).

assurance to have a price. Something else to note is that whereas
some approaches to computer security attempt to reason about what
incorrect behavior looks like (think of spam detection, for instance),
we will specify correct behavior and ensure that anything other
than this behavior is visible as such; this frees us from having to
enumerate, or reason about, the possible failures of the prover.

Finally, one might wonder: how does our problem statement relate
to NP-complete problems, which are easy to check but believed to
be hard to solve? The answer is that the “check” of an NP solution
requires the checking entity to do work polynomial in the length of
the solution, whereas our verifier will do far less work than that!
(Randomness makes this possible.) Another answer is that many
computations (e.g., those that run in deterministic polynomial time)
do not admit an asymmetric checking structure—unless one invokes
the fascinating body of theory that we turn to now.

A framework for solving the problem in theory is depicted in
Figure 1. Because Boolean circuits (networks of AND, OR, NOT
gates) work naturally with the verification machinery, the first step
is for the verifier and prover to transform the computation to such
a circuit. This transformation is possible because any of our com-
putations p is naturally modeled by a Turing Machine (TM), and
meanwhile a TM can be “unrolled” into a Boolean circuit that is not
much larger than the number of steps in the computation [46].

Thus, from now on, we will talk only about the circuit C that
represents our computation p (Figure 1, step 1). Consistent with
the problem statement above, the verifier supplies the input x, and
the prover executes the circuit C on input x and claims the output
is y.3 In performing this step, the prover is expected to obtain a
valid transcript for {C, x, y} (Figure 1, step 2). A transcript is an
assignment of values to the circuit wires; in a valid transcript for
{C, x, y}, the values assigned to the input wires are those of x, the
intermediate values correspond to the correct operation of each gate
in C, and the values assigned to the output wires are y. Notice that if

3The framework also handles circuits where the prover supplies some
of the inputs and receives some of the outputs (enabling computations
over remote state inaccessible to the verifier). However, the techniques
for ensuring the validity of these auxiliary inputs and outputs are
mostly beyond our scope (we will briefly mention them later). Thus,
for simplicity we are treating p as a pure computation.

the claimed output is incorrect—that is, if y 6= p(x)—then a valid
transcript for {C, x, y} simply does not exist.

Therefore, if the prover could establish that a valid transcript
exists for {C, x, y}, this would convince the verifier of the correctness
of the execution. Of course, there is a simple proof that a valid
transcript exists: the transcript itself. However, the verifier can check
the transcript only by examining all of it, which would be as much
work as having executed p in the first place.

Instead, the prover will encode the transcript (Figure 1, step 3)
into a longer string. The encoding lets the verifier detect a transcript’s
validity by inspecting a small number of randomly-chosen locations
in the encoded string and then applying efficient tests to the contents
found therein. The machinery of PCPs, for example, allows exactly
this (see Sidebars 1–3; pages 8–9).

However, we still have a problem. The verifier cannot get its
hands on the entire encoded transcript; it’s longer—astronomically
longer, in some cases—than the plain transcript, so reading in the
whole thing would again require too much work from the verifier.
Furthermore, we don’t want the prover to have to write out the whole
encoded transcript: that would also be too much work, much of it
wasteful, since the verifier looks at only small pieces of the encoding.
And unfortunately, we cannot have the verifier just ask the prover
point-blank what the encoding holds at particular locations, as the
element of surprise is crucial for the protocols to work. That is, in
these protocols, if the verifier’s queries are known in advance, then
the prover can easily arrange its answers to fool the verifier.

As a result, the verifier has to issue its queries about the encoding
carefully (Figure 1, step 4). The literature describes three separate
techniques for this purpose. They draw on a richly varied set of
tools from complexity theory and cryptography, and are summarized
below. Their relative merits are discussed in the next section.

• Use the power of interaction. One set of protocols proceeds in
rounds: the verifier queries the prover about the contents of the
encoding at a particular location, the prover responds, the verifier
makes another query, the prover responds, etc. Just as a lawyer’s
questions of a witness restrict the answers that the witness can
give to the next question, until a lying witness is caught in a
contradiction, the prover’s answers in each round about what
the encoding holds limit the space of valid answers in the next
round. This continues until the last round, at which point a prover
that has answered perfidiously at any point—by answering based
on an invalid transcript or by giving answers that are untethered
to any transcript—simply has no valid answers. This approach
relies on interactive proof protocols [4, 30, 37, 55], most notably
Muggles [29], which was refined and implemented [21, 57–59].

• Extract a commitment. These protocols proceed in two rounds.
The verifier first requires the prover to commit to the full contents
of the encoded transcript; the commitment relies on standard
cryptographic primitives, and we call the commited-to contents
a proof. In the second round, the verifier generates queries—
locations in the proof that the verifier is interested in—and then
asks the prover what values the proof contains at those locations;
the prover is forced to respond consistent with the commitment.
To generate queries and validate answers, the verifier uses PCPs
(they enable probabilistic checking, as described in Sidebar 3).
This approach was outlined in theory by Kilian [35], building
on the PCP theorem [2, 3]. Later, Ishai et al. [34] (IKO) gave a
drastic simplification, in which the prover can commit to a proof
without materializing the whole thing. IKO led to a series of
refinements, and implementation in a system [51–54, 59].

applicable	 computa-ons	

setup	 costs	 regular	 straight-‐line	 	 pure	 stateful	 general	 loops	

none	 (fast	 prover)	 Thaler	

none	 CMT	

low	 Allspice	

medium	 Pepper	 Ginger	 Zaatar,	
Pinocchio	 Pantry	

high	 TinyRAM	

Figure 2—Design space of implemented systems for proof-based ver-
ifiable computation; there is a three-way trade-off among cost, ex-
pressiveness, and functionality. Higher in the figure means lower cost,
and rightward generally means better expressiveness. The shaded sys-
tems achieve non-interactivity, zero-knowledge, etc. (Pantry achieves
these properties by leveraging Pinocchio.) Here, “regular” means struc-
turally similar parallel blocks; “straight-line” means not many condi-
tional statements; and “pure” means computations without side effects.
The setup costs increase by factors of roughly 100 from low to medium
to high.

• Hide the queries. Instead of extracting a commitment and then
revealing its queries, the verifier pre-encrypts its queries—as
above, the queries describe locations where the verifier wants to
inspect an eventual proof, and as above, these locations are chosen
by PCP machinery—and sends this description to the prover prior
to their interaction. Then, during the verification phase, powerful
cryptography achieves the following: the prover answers the
queries without being able to tell which locations in the proof
are being queried, and the verifier recovers the prover’s answers.
The verifier then uses PCP machinery to check the answers, as in
the commitment-based protocols. The approach was described in
theory by Gennaro et al. [25] (see also Bitansky et al. [12]), and
refined and implemented in two projects [7, 8, 44].

PROGRESS: IMPLEMENTED SYSTEMS

The three techniques described above are elegant and powerful, but
as noted, naive implementations would result in preposterous costs.
The research projects that implemented these techniques have ap-
plied theoretical innovations and serious systems work to achieve
near practical performance. We now explain the structure of the de-
sign space, survey the various efforts, and explore their performance
(in doing this, we will illustrate what “near practical” means).

We restrict our attention to implemented systems with published
experimental results. By “system”, we mean code (preferably publi-
cally released) that takes some kind of representation of a computa-
tion and produces executables for the verifier and the prover that run
on stock hardware. Ideally, this code is a compiler toolchain, and the
representation is a program in a high-level language.

The landscape
As depicted in Figure 2, we organize the design space in terms of a
three-way trade-off among cost, expressiveness, and functionality.
Here, cost mainly refers to setup costs for the verifier; as we will
see, this cost is the verifier’s largest expense, and affects whether
a system meets the goal of saving the verifier work. (This setup
cost also correlates with the prover’s cost for most of the systems
discussed.) By expressiveness, we mean the class of computations
that the system can handle while providing a benefit to the verifier.
By functionality, we mean whether the works provide properties
like non-interactivity (setup costs amortize indefinitely), zero knowl-
edge [28, 30] (the computation transcript is hidden from the verifier,
giving the prover some privacy), and public verifiability (anyone,
not just a particular verifier, can check a proof, provided that the
party who generated the queries is trusted).

CMT, Allspice, and Thaler. One line of work uses “the power
of interaction”; it starts from Muggles [29], the interactive proof
protocol mentioned in the previous two sections. CMT [21, 58]
exploits an algebraic insight to save orders of magnitude for the
prover, versus a naive implementation of Muggles.

For circuits to which CMT applies, performance is very good, in
part because Muggles and CMT do not use cryptographic operations.
In fact, refinements by Thaler [57] provide a prover that is optimal for
certain classes of computations: the costs are only a constant factor
(10–100×, depending on choice of baseline) over executing the
computation locally. Moreover, CMT applies in (and was originally
designed for) a streaming model, in which the verifier processes and
discards input as it comes in.

However, CMT’s expressiveness is limited. First, it imposes re-
quirements on the circuit’s geometry: the circuit must have struc-
turally similar parallel blocks. Of course, not all computations can
be expressed in that form. Second, the computation cannot use order
comparisons (less-than, etc.).

Allspice [59] has CMT’s low costs but achieves greater expres-
siveness (under the amortization model described next).

Pepper, Ginger, and Zaatar. Another line of work builds on the
“extract a commitment” technique (called an “efficient argument” in
the theory literature [14, 35]). Pepper [53] and Ginger [54] refine
the protocol of IKO. To begin with, they represent computations
as arithmetic constraints (i.e., a set of equations over a finite field);
a solution to the constraints corresponds to a valid transcript of
the computation. This representation is often far more concise than
Boolean circuits (used by IKO and in the proof of the PCP theo-
rem [2]) or arithmetic circuits (used by CMT). Pepper and Ginger
also strengthen IKO’s commitment primitive, explore low-overhead
PCP encodings for certain computations, and apply a number of
systems techniques (parallelization on distributed systems, etc.).

Pepper and Ginger dramatically reduce costs for the verifier and
prover, compared to IKO. However, as in IKO, the verifier incurs
setup costs. Both systems address this issue via amortization, reusing
the setup work over a batch: multiple instances of the same compu-
tation, on different inputs, verified simultaneously.

Pepper requires describing constraints manually. Ginger has a
compiler that targets a larger class of computations; also, the con-
straints can have auxiliary variables set by the prover, allowing
for efficient representation of not-equal-to checks and order com-
parisons. Still, both handle only straight-line computations with
repeated structure, and both require special-purpose PCP encodings.

Zaatar [52] composes the commitment protocol of Pepper and
Ginger with a new linear PCP [2, 34]; this PCP adapts an ingenious
algebraic encoding of computations from GGPR [25] (see below).
The PCP applies to all pure computations; as a result, Zaatar achieves
Ginger’s performance but with far greater generality.

Pinocchio. Pinocchio [44] instantiates the technique of hiding the
queries; Pinocchio is an implementation of GGPR (which is a non-
interactive argument, or more technically, a SNARG [27] and a
SNARK [10]). GGPR can be viewed as a probabilistically checkable
encoding of computations that is akin to a PCP (this is the piece
that Zaatar adapts) and, on top of that, a layer of sophisticated
cryptography.4 GGPR’s encoding is substantially more concise than
prior approaches, yielding major reductions in overhead.

The cryptography also provides many benefits. It hides the queries,
which allows them to be reused. The result is a protocol with min-

4GGPR does not explicitly invoke PCPs, but the key in their work can
be viewed as encrypted PCP queries [12, 52].

imal interaction (after a per-computation setup phase, the verifier
sends only an instance’s input to the prover) and thus qualitatively
better amortization behavior. Specifically, Pinocchio amortizes per-
computation setup costs over all future instances of a given com-
putation; by contrast, recall that Zaatar and Allspice amortize their
per-computation costs only over a batch. GGPR’s and Pinocchio’s
cryptography also yield zero knowledge and public verifiability.

Compared to Zaatar, Pinocchio brings some additional expense
in the prover’s costs and the verifier’s setup costs, though heroic
optimizations have resulted in surprisingly small overhead. Pinoc-
cho’s compiler initiated the use of C syntax in this area, and includes
some program constructs not present in prior work. The underlying
computational model (unrolled executions) is essentially the same
as Ginger’s and Zaatar’s [52, 54].

Although the systems described above have made tremendous
progress, they have done so within a programming model that is
not reflective of real-world computations. First, these systems re-
quire loop bounds to be known at compile time. Second, they do not
support indirect memory references scalably and efficiently, ruling
out RAM and thus general-purpose programming. Third, the veri-
fier must handle all inputs and outputs, a limitation that is at odds
with common uses of the cloud. For example, it is unreasonable
to insist that the verifier materialize the entire (massive) input to a
MapReduce job. The next two projects address these issues.

TinyRAM. Using the query-hiding technique, TinyRAM [7, 8]
compiles programs in C (not just a subset) to an innovative circuit
representation [6]. This circuit consists of the unrolled execution of
a general-purpose processor that can issue RAM operations, together
with a compact routing network that (roughly speaking) verifies the
consistency of RAM operations. Applying prior insights [12, 25, 52],
TinyRAM combines these circuits with proof machinery (transcript
encoding, queries, etc.) from Pinocchio.

TinyRAM’s circuits have several appealing aspects. First, the
technique for verifying memory consistency is efficient and elegant.
Second, the computational model (a processor execution) provides
a natural representation for high-level language features like data-
dependent looping, control flow, and self-modifying code. Finally,
as a result of its universality—all program executions with the same
number of steps use the same circuit—TinyRAM has the best amor-
tization behavior in the literature. Specifically, setup costs amortize
over all future computations of a given length.

On the other hand, the generality brings a steep price: TinyRAM’s
circuits are orders of magnitude larger than Pinocchio’s and Za-
atar’s for the same high-level programs. As a result, the verifier’s
setup work and the prover’s costs are orders of magnitude higher,
and TinyRAM is restricted to very short executions. At this scale,
its advantage in expressiveness is largely theoretical. Nevertheless,
TinyRAM’s approach is very promising.

Pantry. Pantry [15] extends the computational model of Zaatar
and Pinocchio, and works with both systems. Pantry provides a
general-purpose approach to state, yielding a RAM abstraction, ver-
ifiable MapReduce, verifiable queries on remote databases, and—
using Pinocchio’s zero knowledge variant—computations that keep
the prover’s state private. To date, Pantry is the only system to ex-
tensively use the capability of argument protocols (the “extract a
commitment” and “hide the queries” techniques) to handle computa-
tions for which the verifier does not have all the input. In Pantry’s
approach—which instantiates folklore techniques [6, 10, 25, 33]—
the verifier’s explicit input includes a digest (for example, a Merkle
hash [13, 41]) of the full input or state, and the prover is obliged to

ve
ri

fi
ca

ti
on

 c
os

t
(m

s
of

 C
P

U
 ti

m
e)

102

1011

108

105

1014

1017

0

1020

1023

1026

baseline 2
(103 ms)

baseline 1
(3.5 ms)

Ishai et al. (PCP-based efficient argument)

Pep
pe

r

CM
T

G
in

ge
r

128⨉128 matrix multiplication

Pin
occ

hio

Zaa
tar

Alls
pi

ce

Tin
yR

AM

Thale
r

Figure 3—Per-instance verification costs, excluding setup costs, ap-
plied to 128×128 matrix multiplication of 64-bit numbers. (Data for
Ishai et al. and TinyRAM are extrapolated.) The first baseline, of 3.5
ms, is the CPU time to execute natively, using floating-point arithmetic.
The second, of 103 ms, uses multi-precision arithmetic.

work over state that matches this digest.
Under Pantry, every operation against state compiles into the

evaluation of a cryptographic hash function. As a result, a memory
access is tens of thousands of times more costly than a basic arith-
metic operation. However, compared to TinyRAM, Pantry performs
better for all but the most memory-intensive programs.5

A brief look at performance
We will answer three questions:

1. How do the verifier’s variable (per-instance) costs compare to
the baseline of local, native execution? For some computations,
this baseline is an alternative to verifiable outsourcing.

2. What are the verifier’s setup costs, and how do they amortize?
In many of the systems, setup costs are significant and are paid
for only over multiple instances of the same circuit.

3. What is the prover’s overhead?

We will focus only on CPU costs. On the one hand, this focus
is conservative: verifiable outsourcing is motivated by more than
CPU savings for the verifier. For example, if inputs are large or
inaccessible, verifiable outsourcing saves network costs (the naive
alternative is to download the inputs and locally execute); in this
case, the CPU cost of local execution is irrelevant. On the other
hand, CPU costs provide a good sense of the overall expense of
the protocols. (For evaluations that take additional resources into
account, see Braun et al. [15].)

The data that we present are from re-implementations (by mem-
bers of our research group) of the various systems, and match or
exceed their published results.6 All experiments are run on the same
hardware (Intel Xeon E5-2680 processor, 2.7Ghz, 32GB RAM), with
the prover on one machine and the verifier on another. We perform
three runs per experiment; experimental variation is minor, so we
just report the average. For TinyRAM, we report extrapolated results
since, as noted earlier, TinyRAM on current hardware is restricted

5Preliminary experiments suggest that the best option might be to com-
bine the RAM abstraction from TinyRAM with Pantry’s approach to
execution verification and remote state.

6The exception is TinyRAM. Our reimplementation results in circuits
(and hence verifier setup costs and prover costs) that are twice as large
as the hand-optimized circuits that TinyRAM reports.

0

3

6

9

12

15

0 2k 4k 6k 8k

local (slo
pe: 103 ms/inst)

Zaatar (slope: 26 ms/inst)

ve
ri

fi
ca

ti
on

 c
os

t
(m

in
ut

es
 o

f
C

P
U

 ti
m

e)

number of instances

Ginger (slope: 14 ms/inst)
cross-over point: 980k instances

Pinocchio (slope: 10 ms/inst)

1 day

...
.

CMT (slope: 36 ms/inst) Allspice (slope: 35 ms/inst)

9 months

...
.

cross-over point: 265M instances

Thaler (slope: 12 ms/inst)

TinyRAM (slope: 10 ms/inst)

Figure 4—Total costs and cross-over points (extrapolated), for
128×128 matrix multiplication. The slope of each line is the per-
instance cost (depicted in Figure 3); the y-intercepts are the setup costs
and equal 0 for local, CMT, and Thaler. The cross-over point is the
x-axis point at which a system’s total cost line crosses its “local” line.
The cross-over points for Zaatar and Pinocchio are in the thousands; the
special-purpose approaches do far better but do not apply to all compu-
tations. Zaatar’s cross-over point is somewhat better than Pinocchio’s,
which is much better than TinyRAM’s; however, TinyRAM has the best
amortization regime, followed by Pinocchio and then Zaatar (see text).

to executions much smaller than the benchmarks that we use. These
benchmarks are 128×128 matrix multiplication (of 64-bit quantities,
with full precision arithmetic) and PAM clustering of 20 vectors,
each of dimension 128.

Figure 3 depicts per-instance verification costs, for matrix multi-
plication, compared to two baselines. The first is a native execution
of the standard algorithm, implemented with floating-point oper-
ations; it costs 3.5 ms, and beats all of the systems at the given
input size.7 (At larger input sizes, the verifier would do better than
native execution: the verifier’s costs grow linearly in the input size,
which is only O(m2); local execution is O(m3).) The second is an
implementation of the algorithm using a multi-precision library; this
baseline models a situation in which complete precision is required.

We evaluate setup costs by asking about the cross-over point:
how many instances of a computation are required to amortize the
setup cost in the sense that the verifier spends fewer CPU cycles
on outsourcing versus executing locally? Figure 4 plots total cost
lines and cross-over points, versus the second baseline above. Notice
that setup costs (y-intercepts) are in minutes, whereas per-instance
execution and verification costs (slopes) are in milliseconds; thus,
amortization requires thousands of instances or more.

To evaluate prover overhead, Figure 5 normalizes the prover’s
cost to the floating-point baseline.

Summary and discussion. Performance differences among the sys-
tems are overshadowed by the general nature of costs in this area.
The verifier is practical if its computation is amenable to one of
the less expensive (but more restricted) protocols, or if there are a
large number of instances that will be run (on different inputs). And
when state is remote, the verifier doesn’t need to be faster than local
computation because it would be difficult—or impossible, if the
remote state is private—for the verifier to perform the computation
itself (such applications are evaluated elsewhere [15]).

The prover, of course, has terrible overhead: several orders of
magnitude (though as noted previously, this still represents tremen-
dous progress versus the prior costs). The prover’s practicality thus
depends on your ability to construct appropriate scenarios. Maybe

7Systems that report verification costs beating local execution choose
very expensive baselines for local computation [44, 52–54].

101

105

0

109

103

107

1011
w

or
ke

r’
s

co
st

no

rm
al

iz
ed

 to
 n

at
iv

e
C

matrix multiplication (m=128) PAM clustering (m=20, d=128)

N/A

1013

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Pe
pp

er
G

in
ge

r

P
in

oc
ch

io

Z
aa

ta
r

C
M

T

na
tiv

e
C

A
lls

pi
ce

T
in

yR
A

M

T
ha

le
r

Figure 5—Prover overhead normalized to native execution cost for two
computations. Prover overheads are generally enormous.

you’re sending Will Smith and Jeff Goldblum into space to save
Earth; then you care a lot more about correctness than costs (a calcu-
lus that applies to ordinary satellites too). More prosaically, there is
a scenario with an abundance of server CPU cycles, many instances
of the same computation to verify, and remotely stored inputs: data-
parallel cloud computing. Verifiable MapReduce [15] is therefore
an encouraging application.

OPEN QUESTIONS AND NEXT STEPS
The main issue in this area is performance, and the biggest problem
is the prover’s overhead. The verifier’s costs are also quantitatively
higher than ideal; qualitatively, we would ideally eliminate the veri-
fier’s setup phase while retaining expressivity (such schemes exist
in theory [11] but have very high overheads, even in principle).

The computational model is also a critical area of focus. Only
TinyRAM handles data-dependent loops, only Pantry handles re-
motely stored inputs, and only TinyRAM and Pantry handle com-
putations that work with RAM. Unfortunately, TinyRAM adds high
overhead to the circuit representation for every operation in the given
computation; Pantry, on the other hand, adds even higher overhead
to its constraint representation but only to operations that interact
with state. While improving the overhead of either representation
would be worthwhile, a more general research direction is to move
beyond the circuit and constraint model.

There are also questions in systems and programming languages.
For instance, can we develop programming languages that are well-
tailored to the circuit or constraint formalism? We might also be able
to co-design the language, computational model, and verification ma-
chinery: many of the protocols naturally work with parallel computa-
tions, and the current verification machinery is already amenable to
a parallel implementation. Another systems question is to develop a
realistic database application, which requires concurrency, relational
structures, etc. More generally, an important test for this area—so
far unmet—is to run experiments at realistic scale.

Another interesting area of investigation concerns privacy. By
leveraging Pinocchio, Pantry has experimented with simple applica-
tions that hide the prover’s state from the verifier, but there is more
work to be done here and other notions of privacy that are worth
providing. For example, we can provide verifiability while conceal-
ing the program that is executed (by composing techniques from
Pantry, Pinocchio, and TinyRAM). A speculative application is to
produce versions of Bitcoin in which transactions can be conducted
anonymously, in contrast to the status quo [18, 22].

REFLECTIONS AND PREDICTIONS

It is worth recalling that the intellectual foundations of this research
area really had nothing to do with practice. For example, the PCP
theorem is a landmark achievement of complexity theory, but if we
were to implement the theory as proposed, generating the proofs,
even for simple computations, would have taken longer than the
age of the universe. In contrast, the projects described in this article
have not only built systems from this theory but also performed
experimental evaluations that terminate before publication deadlines.

So that’s the encouraging news. The sobering news, of course, is
that these systems are basically toys. Part of the reason that we are
willing to label them near-practical is painful experience with what
the theory used to cost. (As a rough analogy, imagine a graduate
student’s delight in discovering hexadecimal machine code after
years spent programming one-tape Turing machines.)

Still, these systems are arguably useful in some scenarios. In high-
assurance contexts, we might be willing to pay a lot to know that a
remotely deployed machine is executing correctly. In the streaming
context, the verifier may not have space to compute locally, so we
could use CMT [21] to check that the outputs are correct, in concert
with Thaler’s refinements [57] to make the prover truly inexpensive.
Finally, data parallel cloud computations (like MapReduce jobs)
perfectly match the regimes in which the general-purpose schemes
perform well: abundant CPU cycles for the prover and many in-
stances of the same computation with different inputs.

Moreover, the gap separating the performance of the current
research prototypes and plausible deployment in the cloud is a few
orders of magnitude—which is certainly daunting, but, given the
current pace of improvement, might be bridged in a few years.

More speculatively, if the machinery becomes truly low overhead,
the effects will go far beyond verifying cloud computations: we will
have new ways of building systems. In any situation in which one
module performs a task for another, the delegating module will be
able to check the answers. This could apply at the micro level (if
the CPU could check the results of the GPU, this would expose
hardware errors) and the macro level (distributed systems could be
built under very different trust assumptions).

But even if none of the above comes to pass, there are exciting
intellectual currents here. Across computer systems, we are starting
to see a new style of work: reducing sophisticated cryptography
and other achievements of theoretical computer science to prac-
tice [32, 43, 47, 60]. These developments are likely a product of
our times: the preoccupation with strong security of various kinds,
and the computers powerful enough to run previously “paper-only”
algorithms. Whatever the cause, proof-based verifiable computation
is an excellent example of this tendency: not only does it compose
theoretical refinements with systems techniques, it also raises re-
search questions in other sub-disciplines of Computer Science. This
cross-pollination is the best news of all.

Acknowledgments
We thank Srinath Setty both for his help with this article, including
the experimental aspect, and for his deep influence on our under-
standing of this area. This article has also benefited from many pro-
ductive conversations with Justin Thaler, whose patient explanations
have been most helpful. This draft was improved by experimen-
tal assistance from Riad Wahby; by detailed feedback from Alexis
Gallagher and the anonymous CACM reviewers; and by comments
from Boaz Barak, William Blumberg, Oded Goldreich, Yuval Ishai,
Guy Rothblum, Riad Wahby, Eleanor Walfish, and Mark Walfish.
This work was supported by AFOSR grant FA9550-10-1-0073; NSF

grants 1055057 and 1040083; a Sloan Fellowship; and an Intel Early
Career Faculty Award.

REFERENCES
[1] S. Arora and B. Barak. Computational Complexity: A modern approach.

Cambridge University Press, 2009.
[2] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof

verification and the hardness of approximation problems. J. of the ACM,
45(3):501–555, May 1998. (Prelim. version FOCS 1992).

[3] S. Arora and S. Safra. Probabilistic checking of proofs: a new
characterization of NP. J. of the ACM, 45(1):70–122, Jan. 1998. (Prelim.
version FOCS 1992).

[4] L. Babai. Trading group theory for randomness. In STOC, pages 421–429,
1985.

[5] L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking
computations in polylogarithmic time. In STOC, 1991.

[6] E. Ben-Sasson, A. Chiesa, D. Genkin, and E. Tromer. Fast reductions from
RAMs to delegatable succinct constraint satisfaction problems. In ITCS,
pages 401–414, Jan. 2013.

[7] E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. SNARKs
for C: Verifying program executions succinctly and in zero knowledge. In
CRYPTO, pages 90–108, Aug. 2013.

[8] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Succinct
non-interactive zero knowledge for a von Neumann architecture. In
USENIX Security, Aug. 2014.

[9] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust
PCPs of proximity, shorter PCPs and applications to coding. SIAM J. on
Comp., 36(4):889–974, Dec. 2006.

[10] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable
collision resistance to succinct non-interactive arguments of knowledge,
and back again. In ITCS, pages 326–349, Jan. 2012.

[11] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. Recursive composition
and bootstrapping for SNARKs and proof-carrying data. In STOC, pages
111–120, June 2013.

[12] N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct
non-interactive arguments via linear interactive proofs. In IACR TCC,
pages 315–333, Mar. 2013.

[13] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor. Checking the
correctness of memories. In FOCS, pages 90–99, Oct. 1991.

[14] G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of
knowledge. J. of Comp. and Sys. Sciences, 37(2):156–189, Oct. 1988.

[15] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish.
Verifying computations with state. In SOSP, pages 341–357, Nov. 2013.

[16] R. Canetti, B. Riva, and G. Rothblum. Practical delegation of computation
using multiple servers. In ACM CCS, pages 445–454, 2011.

[17] M. Castro and B. Liskov. Practical Byzantine fault tolerance and proactive
recovery. ACM Trans. on Comp. Sys., 20(4):398–461, Nov. 2002.

[18] A. Chiesa, C. Garman, E. Ben-Sasson, I. Miers, M. Green, M. Virza, and
E. Tromer. Zerocash: Practical decentralized anonymous e-cash from
Bitcoin. In IEEE Symposium on Security and Privacy, May 2014.

[19] A. Chiesa and E. Tromer. Proof-carrying data and hearsay arguments from
signature cards. In ICS, 2010.

[20] K.-M. Chung, Y. Kalai, and S. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO 2010.

[21] G. Cormode, M. Mitzenmacher, and J. Thaler. Practical verified
computation with streaming interactive proofs. In ITCS, pages 90–112,
2012.

[22] G. Danezis, C. Fournet, M. Kohlweiss, and B. Parno. Pinocchio coin:
Building zerocoin from a succinct pairing-based proof system. In Workshop
on Language Support for Privacy-enhancing Technologies, Nov. 2013.

[23] I. Dinur. The PCP theorem by gap amplification. J. of the ACM,
54(3):12:1–12:44, June 2007.

[24] R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable computing:
Outsourcing computation to untrusted workers. In CRYPTO, pages
465–482, 2010.

[25] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span
programs and succinct NIZKs without PCPs. In EUROCRYPT, pages
626–645, May 2013.

[26] C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford
University, 2009.

[27] C. Gentry and D. Wichs. Separating succinct non-interactive arguments
from all falsifiable assumptions. In STOC, pages 99–108, June 2011.

[28] O. Goldreich. Probabilistic proof systems – a primer. Foundations and
Trends in Theoretical Computer Science, 3(1):1–91, 2007.

[29] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. Delegating computation:
Interactive proofs for muggles. In STOC, pages 113–122, May 2008.

[30] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of
interactive proof systems. SIAM J. on Comp., 18(1):186–208, 1989.

[31] J. Håstad. Some optimal inapproximability results. J. of the ACM,
48(4):798–859, July 2001. (Prelim. version STOC 1997).

[32] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security, 2011.

[33] Y. Ishai. Personal communication, June 2012.
[34] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. Efficient arguments without

short PCPs. In Conference on Computational Complexity (CCC), pages
278–291, 2007.

[35] J. Kilian. A note on efficient zero-knowledge proofs and arguments
(extended abstract). In STOC, pages 723–732, 1992.

[36] B. Kreuter, a. shelat, and C.-H. Shen. Billion-gate secure computation with
malicious adversaries. In USENIX Security, Aug. 2012.

[37] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for
interactive proof systems. J. of the ACM, 39(4):859–868, 1992.

[38] P. Mahajan, S. Setty, S. Lee, A. Clement, L. Alvisi, M. Dahlin, and
M. Walfish. Depot: Cloud storage with minimal trust. ACM Trans. on
Comp. Sys., 29(4), Dec. 2011.

[39] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed
Computing, 11(4):203–213, Oct. 1998. (Prelim. version STOC 1997).

[40] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker:
An execution infrastructure for TCB minimization. In EuroSys, 2008.

[41] R. C. Merkle. A digital signature based on a conventional encryption
function. In CRYPTO, pages 369–378, Aug. 1987.

[42] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, Cambridge, United Kingdom, 1995.

[43] A. Narayan and A. Haeberlen. DJoin: Differentially private join queries
over distributed databases. In OSDI, 2012.

[44] B. Parno, C. Gentry, J. Howell, and M. Raykova. Pinocchio: Nearly
practical verifiable computation. In IEEE Symposium on Security and
Privacy, pages 238–252, May 2013.

[45] B. Parno, J. M. McCune, and A. Perrig. Bootstrapping Trust in Modern
Computers. Springer, 2011.

[46] N. Pippenger and M. J. Fischer. Relations among complexity measures. J.
of the ACM, 26(2):361–381, Apr. 1979.

[47] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan.
CryptDB: Protecting confidentiality with encrypted query processing. In
SOSP, 2011.

[48] G. N. Rothblum. Delegating Computation Reliably: Paradigms and
Constructions. PhD thesis, Massachusetts Institute of Technology, 2009.

[49] A.-R. Sadeghi, T. Schneider, and M. Winandy. Token-based cloud
computing: secure outsourcing of data and arbitrary computations with
lower latency. In TRUST, pages 417–429, 2010.

[50] A. Seshadri, M. Luk, E. Shi, A. Perrig, L. van Doorn, and P. Khosla.
Pioneer: Verifying integrity and guaranteeing execution of code on legacy
platforms. In SOSP, pages 1–16, 2005.

[51] S. Setty, A. J. Blumberg, and M. Walfish. Toward practical and
unconditional verification of remote computations. In HotOS, May 2011.

[52] S. Setty, B. Braun, V. Vu, A. J. Blumberg, B. Parno, and M. Walfish.
Resolving the conflict between generality and plausibility in verified
computation. In EuroSys, pages 71–84, Apr. 2013.

[53] S. Setty, R. McPherson, A. J. Blumberg, and M. Walfish. Making argument
systems for outsourced computation practical (sometimes). In NDSS, 2012.

[54] S. Setty, V. Vu, N. Panpalia, B. Braun, A. J. Blumberg, and M. Walfish.
Taking proof-based verified computation a few steps closer to practicality.
In USENIX Security, pages 253–268, Aug. 2012.

[55] A. Shamir. IP = PSPACE. J. of the ACM, 39(4), Oct. 1992.
[56] M. Sudan. Probabilistically checkable proofs. Communications of the

ACM, 52(3):76–84, Mar. 2009.
[57] J. Thaler. Time-optimal interactive proofs for circuit evaluation. In

CRYPTO, pages 71–89, Aug. 2013.
[58] J. Thaler, M. Roberts, M. Mitzenmacher, and H. Pfister. Verifiable

computation with massively parallel interactive proofs. In USENIX
HotCloud Workshop, June 2012.

[59] V. Vu, S. Setty, A. J. Blumberg, and M. Walfish. A hybrid architecture for
interactive verifiable computation. In IEEE Symposium on Security and
Privacy, pages 223–237, May 2013.

[60] D. I. Wolinsky, H. Corrigan-Gibbs, B. Ford, and A. Johnson. Dissent in
numbers: Making strong anonymity scale. In OSDI, 2012.

This sidebar will demonstrate a connection between program execu-
tion and polynomials. As a warmup, consider an AND gate, with two
(binary) inputs, z1, z2. One can represent its execution as a function:

AND(z1, z2) = z1 · z2.

Here, the function AND behaves exactly as the gate would: it evaluates
to 1 if z1 and z2 are both 1, and it evaluates to 0 in the other three cases.
Now, consider this function of three variables:

fAND(z1, z2, z3) = z3 − AND(z1, z2)

= z3 − z1 · z2.

Observe that fAND(z1, z2, z3) evaluates to 0 when, and only when, z3
equals the AND of z1 and z2. For example, fAND(1, 1, 1) = 0 and
fAND(0, 1, 0) = 0 (both of these cases correspond to correct computa-
tion by an AND gate), but fAND(0, 1, 1) 6= 0.

We can do the same thing with an OR gate:

fOR(z1, z2, z3) = z3 − z1 − z2 + z1 · z2.

For example, fOR(0, 0, 0) = 0, fOR(1, 1, 1) = 0, and fOR(0, 1, 0) 6= 0.
In all of these cases, the function is determining whether its third
argument (z3) does in fact represent the OR of its first two arguments
(z1 and z2). Finally, we can do this with a NOT gate:

fNOT(z1, z2) = 1− z1 + z2.

The intent of this warmup is to communicate that the correct exe-
cution of a gate can be encoded in whether some function evaluates
to 0. Such a function is known as an arithmetization of the gate.

Now, we extend the idea to a line L(t) over a dummy variable, t:

L(t) = (z3 − z1 · z2) · t.

This line is parameterized by z1, z2, and z3: depending on their values,
L(t) becomes different lines. A crucial fact is that this line is the 0-
line (that is, it covers the horizontal axis, or equivalently, evaluates to
0 for all values of t) if and only if z3 is the AND of z1 and z2. This
is because the y-intercept of L(t) is always 0, and the slope of L(t) is
given by the function fAND. Indeed, if (z1, z2, z3) = (1, 1, 0), which
corresponds to an incorrect computation of AND, then L(t) = t, a
line that crosses the horizontal axis only once. On the other hand, if
(z1, z2, z3) = (0, 1, 0), which corresponds to a correct computation of
AND, then L(t) = 0 · t, which is 0 for all values of t.

We can generalize this idea to higher order polynomials (a line is
just a degree-1 polynomial). Consider the following degree-2 polyno-
mial, or parabola, Q(t) in the variable t:

Q(t) = [z1 · z2 (1− z3) + z3 (1− z1 · z2)] t2 + (z3 − z1 · z2) · t.

As with L(t), the parabola Q(t) is parameterized by z1, z2, and z3:
they determine the coefficients. And as with L(t), this parabola is the
0 parabola (all coefficients are 0, causing the parabola to evaluate to
0 for all values of t) if and only if z3 is the AND of z1 and z2. For
example, if (z1, z2, z3) = (1, 1, 0), which is an incorrect computation
of AND, then Q(t) = t2 − t, which crosses the horizontal axis only
at t=0 and t=1. On the other hand, if (z1, z2, z3) = (0, 1, 0), which is
a correct computation of AND, then Q(t) = 0 · t2 + 0 · t, which of
course is 0 for all values of t.

Summarizing, L(t) (resp., Q(t)) is the 0-line (resp., 0-parabola)
when and only when z3 = AND(z1, z2). This concept is powerful,
for if there is an efficient way to check whether a polynomial is 0,
then there is now an efficient check of whether a circuit was executed
correctly (here, we have generalized to circuit from gate). And there
are indeed such checks of polynomials, as described in Sidebar 2.

Sidebar 1: Encoding a circuit’s execution in a polynomial.

This sidebar explains the idea behind a fast probabilistic check of a
transcript’s validity. As noted in the text, computations are expressed
as Boolean circuits. As an example, consider the following computa-
tion, where x1 and x2 are bits:

if (x1 != x2) { y = 1 } else { y = 0 }

This computation could be represented by a single XOR gate; for
illustration, we represent it in terms of AND, OR, NOT:

AND

AND
OR

NOT

NOT

x1
x2 y

z1

z2

z3

z4

To establish the correctness of a purported output y given inputs
x1, x2, the prover must demonstrate to the verifier that it has a valid
transcript (see text) for this circuit. A naive way to do this is for the
prover to simply send the transcript to the verifier, and for the verifier
to check it step-by-step. However, that would take as much time as
the computation.

Instead the two parties encode the computation as a polynomial
Q(t) over a dummy variable t. Sidebar 1 gives an example of this
process for a single gate, but the idea generalizes to a full circuit. The
result is a polynomial Q(t) that evaluates to 0 for all t if and only if
each gate’s output in the transcript follows correctly from its inputs.

Generalizing the single-gate case, the coefficients of Q(t) are
given by various combinations of x1, x2, z1, z2, z3, z4, y. Variables cor-
responding to inputs x1, x2 and output y are hard-coded, ensuring that
the polynomial expresses a computation based on the correct inputs
and the purported output.

Now, the verifier wants a probabilistic and efficient check that Q(t)
is 0 everywhere (see Sidebar 1). A key fact is that if a polynomial
is not the zero polynomial, it has few roots (consider a parabola: it
crosses the horizontal axis a maximum of two times). For example,
if we take x1=0, x2=0, y=1, which is an incorrect execution of the
above circuit, then the corresponding polynomial might look like this:

t

Q(t)

and a polynomial corresponding to a correct execution is simply a
horizontal line on the axis.

The check, then, is the following. The verifier chooses a random
value for t (call it τ) from a pre-existing range (for example, integers
between 0 and M, for some M), and evaluates Q at τ . The verifier
accepts the computation as correct if Q(τ) = 0 and rejects otherwise.
This process occasionally produces errors since even a non-zero poly-
nomial Q is zero sometimes (the idea here is a variant of “a stopped
clock is right twice per day”), but this event happens rarely and is
independent of the prover’s actions.

But how does the verifier actually evaluate Q(τ)? Recall that our
setup, for now, is that the prover sends a (possibly long) encoded
transcript to the verifier. The next sidebar will explain what is in the
encoded transcript, and how it allows the verifier to evaluate Q(τ).

Sidebar 2: Probabilistically checking a transcript’s validity.

This sidebar answers the following question: how does the prover en-
code its transcript, and how does the verifier use this encoded tran-
script to evaluate Q at a randomly chosen point? (The encoded tran-
script is known as a probabilistically checkable proof, or PCP. For the
purposes of this sidebar, we assume that the prover sends the PCP to
the verifier; in the main text, we will ultimately avoid this transmis-
sion, using commitment and other techniques.)

A naive solution is a protocol in which: the prover claims that it is
sending {Q(0), . . . , Q(M)} to the verifier, the verifier chooses one of
these values at random, and the verifier checks whether the randomly-
chosen value is 0. However, this protocol does not work: even if there
is no valid transcript, the prover could cause the verifier’s “check” to
always pass, by sending a string of zeroes.

Instead, the prover will encode the transcript, z, and the verifier
will impose structure on this encoding; in this way, both parties to-
gether form the required polynomial Q. This process is detailed in
the rest of this sidebar, which will be somewhat more technical than
Sidebars 1 and 2. Nevertheless, we will be simplifying heavily; read-
ers who want the full picture are referred to tutorials on PCP tech-
niques [42, §7.8][1, Ch. 13, Ch. 22][9, Apdx A][53, §2.1][52, §2-3,
Apdx. A] and interactive proof techniques [1, §8.3][48, §3.2-3.3].

As a warmup, observe that we can rewrite the polynomial Q by re-
garding the “z” variables as unknowns. For example, the polynomial
Q(t) in Sidebar 1 can be written as:

Q(t, z1, z2, z3) = (−2t2) · z1 · z2 · z3 + (t2 − t) · z1 · z2 + (t2 + t) · z3.

An important fact is that for any circuit, the polynomial Q that
encodes its execution can be represented as a linear combination of
the components of the transcript and pairwise products of components
of the transcript. We will now state this fact using notation. Assume
that there are n circuit wires, labeled (z1, . . . , zn), and arranged as
a vector ~z. Further, let 〈~a, ~b〉 denote the dot product between two
vectors, and let~a⊗~b denote a vector whose components are all pairs
aibj. Then we can write Q as

Q(t,~z) = g0(t) + 〈~g1(t) ,~z〉+ 〈~g2(t),~z ⊗~z〉 ,

where g0 is a function from t to scalars, and ~g1 and ~g2 are functions
from t to vectors.

Now, what if the verifier had a table that contained 〈~b, ~z〉 for all
vectors~b (in a finite vector space), and likewise a table that contained
〈~c, ~z ⊗ ~z〉 for all vectors ~c? Then, the verifier could evaluate Q(τ)
by inspecting the tables in only one location each. Specifically, the
verifier would randomly choose τ ; then compute g0(τ), ~g1(τ), and
~g2(τ); then use the two tables to look up 〈~g1(τ), ~z〉 and 〈~g2(τ), ~z⊗~z〉;
and add these values to g0(τ). If the tables were produced correctly,
this final sum (of scalars) will yield Q(τ ,~z).

However, a few issues remain. The verifier cannot know that it ac-
tually received tables of the correct form, or that the tables are consis-
tent with each other. So the verifier performs additional spot checks;
the rough idea is that if the tables deviate too heavily from the cor-
rect form, then the spot checks will pick up the divergence with high
probability (and if the tables deviate from the correct form but only
mildly, the verifier’s checks continue to work).

At this point, we have answered the question at the beginning of
this sidebar: the correct encoding of a valid transcript z is the two
tables of values. In other words, these two tables form the probabilis-
tically checkable proof, or PCP.

Notice that the two tables are exponentially larger than the tran-
script. Therefore, the prover cannot send them to the verifier or even
materialize them. The purpose of the three techniques discussed next
in the text—interactivity, commitment, hide the queries—is, roughly
speaking, to allow the verifier to query the prover about the tables
without either party having to materialize or handle them.

Sidebar 3: Probabilistically checkable proofs (simplified).

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

