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Abstract

In this paper we study the fractional block sensitivity of Boolean functions. Recently, Tal
[Tal13] and Gilmer, Saks, and Srinivasan [GSS13] independently introduced this complexity
measure, denoted by fbs(f), and showed that it is equal (up to a constant factor) to the ran-
domized certificate complexity, denoted by RC(f), which was introduced by Aaronson [Aar03].
In this paper, we relate the fractional block sensitivity to other complexity measures such as

sensitivity s(f) and approximate degree d̃eg(f). As a consequence we obtain the following
results:

1. We show that d̃eg(f) = Ω(
√

RC(f)), solving an open question posed by Aaronson [Aar03].

This also implies that d̃eg(f) = Ω(QC(f)), where QC(f) is the quantum certificate com-

plexity of f. As both d̃eg(f) and QC(f) serve as lower bounds for the bounded error quan-

tum query complexity, this shows that d̃eg(f) is always a tighter lower bound compared to
QC(f).

2. (a) We show that every transitive function on n variables must have RC(f) = Ω(n1/2),

QC(f) = Ω(n1/4) and d̃eg(f) = Ω(n1/4), and note that all these bounds are tight.
This is a strengthening of the previous lower bounds given by [SYZ04] and [Sun07].

(b) We show that Chakraborty’s [Cha11] example of a transitive function with s(f) =
O(n1/3) is optimal unless there is better than quadratic separation between the block
sensitivity and the sensitivity.

3. Using fractional block sensitivity, we show that the zero error randomized decision tree
complexity, R0(f), is upper bounded by O(R2(f)2 · logR2(f)) where R2(f) is the two-sided
bounded error randomized decision tree complexity of f . This improves the previous best
relation between these two complexity measures given by Midrijanis [Mid05] of R0(f) =
O(R2(f)2 · log n) (where n is the number of variables).

4. We show that the (non-negative weight) adversary methods to lower bound the bounded er-

ror quantum query complexity of f can not give better bounds than
√

RC0(f)RC1(f). This

refines the earlier bound of
√

C0(f)C1(f) by Spalek and Szegedy [SS06] and strengthens
the so called certificate complexity barrier to its randomized analogue.
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1 Introduction

The study of Boolean functions has become an integral part of theoretical computer science. Several
complexity measures associated to Boolean functions have been extensively studied over decades.
The one that is relevant to this paper is called the decision tree complexity. The decision tree model
a.k.a. query model is perhaps the simplest model of computation. This model, perhaps due to its
simplicity and fundamental nature, has been widely explored.

Fix a Boolean function f : {0, 1}n → {0, 1}. A deterministic decision tree Df for f takes
x = (x1, . . . , xn) as an input and determines the value of f(x1, . . . , xn) using queries of the form
“ is xi = 1? ”. Let C(Df , x) denote the cost of the computation, that is the number of queries
made by Df on input x. The deterministic decision tree complexity of f is defined as D(f) =
minDf

maxxC(Df , x). There are several complexity measures that are closely related to the decision
tree complexity, for example: the sensitivity, block sensitivity, and certificate complexity. There
are also randomized and quantum analogues of the decision tree complexity (see [BdW02] for an
excellent survey on this subject). Although the exact relations between these measures are yet to
be completely understood, all of them (with the notable exception of the sensitivity) are known to
be polynomially related to each other. Whether or not the sensitivity is polynomially related to
the decision tree complexity remains an outstanding open question [NS94].

The purpose of this paper is to study a relatively less studied complexity measure called frac-
tional block sensitivity. This measure was recently introduced by Tal [Tal13] and Gilmer, Saks, and
Srinivasan [GSS13] independently. Both showed that up to a constant factor, it is in fact equal to
the so called randomized certificate complexity defined by Aaronson [Aar03]. In this paper we relate
fractional block sensitivity to other complexity measures associated to the decision tree complexity
such as sensitivity, block sensitivity, certificate complexity, approximate degree etc.

Fractional Block Sensitivity

To set notations for the rest of this paper, if M is some complexity measure (such as s,bs, fbs,
FC,RC,QC,C) defined over a Boolean function f : {0, 1}n → {0, 1} and a point x ∈ {0, 1}n on
the Boolean hypercube, then we say that the complexity measure M of the function f , M(f), is
simply maxxM(f, x). We also denote M0(f) = maxx:f(x)=0M(f, x) and M1(f) analogously.

A Boolean function f : {0, 1}n → {0, 1} is said to be sensitive on the ith bit of input x =
(x1, . . . , xn) if f(x1, . . . , xi−1, 1− xi, xi+1, . . . , xn) 6= f(x). The sensitivity of f on input x, denoted
by s(f, x) is the number of sensitive bits of f on x. s(f), s0(f), s1(f) are defined as described above.

A block B ⊆ {1, 2, . . . , n} is said to be sensitive on an input x if f(x⊕B) 6= f(x), where x⊕B
denotes the string obtained by flipping the values of all xi such that i ∈ B. The block sensitivity
of f on input x, denoted by bs(f, x), is the maximum number of pairwise disjoint blocks that are
sensitive on x. One may express bs(f, x) as the optimum value of an integer program. For every
potential block B ⊆ {1, 2, . . . , n} we have yB ∈ {0, 1}. The integer program is given as follows:

maximize
∑

B yB subject to: (∀i)
∑

B:i∈B yB ≤ 1

The fractional block sensitivity of f on input x, denoted by fbs(f, x) is the optimum value of the
relaxation of the above by allowing 0 ≤ yB ≤ 1. The fractional block sensitivity of f is now defined
as: maxx fbs(f, x). This relaxation exhibits some nice properties, such as being submultiplicative
under composition, that the block sensitivity does not have [Tal13].
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Related Work

We point out to two recent related works on fractional block sensitivity. Tal [Tal13] introduced the
complexity measure and proved interesting composition properties. Independently, Gilmer, Saks
and Srinivasan [GSS13] exhibited some limiting behavior of fractional block sensitivity and other
complexity measures. In both works, it was noted that

bs(f) ≤ fbs(f) = FC(f) ≤ C(f),

where C(f),FC(f) are the certificate complexity and the fractional certificate complexity of f ,
correspondingly. In fact, this holds locally for any input

bs(f, x) ≤ fbs(f, x) = FC(f, x) ≤ C(f, x).

As noted in both works, it turns out that this “new” complexity measure (fbs(f) or alterna-
tively FC(f)) is actually equal up to a constant to a previously known complexity measure defined
by Aaronson [Aar03] called randomized certificate complexity, and denoted by RC(f). Aaronson
studied this complexity measure and its quantum analogue, QC(f), establishing the tight rela-
tion QC(f) = Θ(

√
RC(f)) for any Boolean function. RC(f) and QC(f) serve as lower bounds

for the two-sided bounded error randomized decision tree complexity (R2(f)) and quantum query
complexity (Q2(f)) correspondingly.

Both [Tal13, GSS13] considered composition of Boolean functions, where the composition of
f : {0, 1}n → {0, 1} and g : {0, 1}n → {0, 1} is a function f ◦ g : {0, 1}nm → {0, 1} obtained by
substituting each variable in f with a copy of g on a disjoint set of m variables. Both showed that
taking a constant size function f and performing repeated compositions of f to itself, one gets
a sequence of functions whose block sensitivity and fractional block sensitivity behaves the same
asymptotically (see Claim 2.7 for a precise formulation). While this behavior seems to indicate
that bs and fbs are the same up to a constant factor for any Boolean function, it turns out to be
false as [GSS13] exhibit polynomial gaps between the two.1 2

The fact that using composition alone can not separate between bs and fbs seems like a negative
result, indicating this technique is just not strong enough to show certain results which can be
proven using other methods. However, it turns out that this behavior can be turned into a positive
result showing new relations between fractional block sensitivity and other complexity measures
such as degree and approximate degree, as we exhibit in this work.

Our Results

1.1 fbs(f) vs d̃eg(f)

Building upon the behavior of fbs and bs to composition and a recent result by Sherstov [She12] we
show that the fractional block sensitivity can be at most quadratically larger than the approximate
degree.

Theorem 1.1. (restatement of Theorem 3.4) fbs(f) = O(d̃eg(f)2).

1They also exhibit an optimal quadratic gap between fbs and C, which is in fact also an optimal gap between bs
and C.

2In this work, we give a different example which exhibits a polynomial gap between block sensitivity and fractional
block sensitivity.
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This extends a result by Nisan and Szegedy [NS94] who showed bs(f) = O(d̃eg(f)2). Since
randomized certificate complexity is of the same order as the fractional block sensitivity, this solves
an open problem posed by Aaronson [Aar03].

Corollary 1.2. d̃eg(f) = Ω(
√

RC(f)).

By Aaronson’s relation QC(f) = Θ(
√

RC(f)) we get as an immediate corollary

Corollary 1.3. d̃eg(f) = Ω(QC(f)).

Since both d̃eg(f) and QC(f) serve as lower bounds for Q2(f), this shows that d̃eg(f) is always
a tighter lower bound compared to QC(f). Ambainis [Amb99] shows that almost all functions have

d̃eg(f) = Ω(n) whereas Aaronson [Aar03] shows that for all functions QC(f) = O(
√
n). Hence,

there are (many) functions where QC(f) is much smaller than d̃eg(f).

1.2 fbs of Transitive Functions

The effect of symmetry on the complexity of Boolean functions has been a recurrent theme in
the literature. In particular, transitive functions such as graph properties and cyclically invariant
functions have received considerable attention in the past (see for instance [SYZ04], [Cha11]; and
further references there). In this paper we study: how small can the fractional block sensitivity of
transitive functions be? We show the following:

Theorem 1.4. (restatement of Theorem 4.4) Let f : {0, 1}n → {0, 1} be a non constant transitive-
function then fbs(f) ≥ max{s(f), n/s(f)} ≥

√
n.

The
√
n lower bound on fbs is tight as demonstrated by the function ∨

√
n

i=1∧
√
n

i=1xij . Our theorem
has the following two consequences worth mentioning:

d̃eg(f) of Transitive Functions

Corollary 1.5. Let f : {0, 1}n → {0, 1} be a non-constant transitive Boolean function then

RC(f) = Ω(n1/2) and d̃eg(f) = Ω(QC(f)) = Ω(n1/4).

This improves the previous known bound of Ω(n1/6) by Sun [Sun07]. Since approximate degree
forms a lower bound on the quantum query complexity, this also gives a qualitative refinement
of the Ω(n1/4) lower bound on the quantum query complexity of transitive functions obtained
by Sun, Yao, and Zhang [SYZ04]. Moreover: this refinement is strict since there are transitive
functions where approximate degree is much smaller than the quantum query complexity (see
Section 5 in [Amb06]). Our Ω(n1/4) bound on approximate degree of transitive functions is tight
as demonstrated by an example in [SYZ04] with Õ(n1/4) quantum query complexity. A related
question that is open is what is the approximate degree of monotone transitive functions? It is
believed that their quantum query complexity is Ω(n1/3) since their randomized query complexity

is Ω(n2/3) and at most quadratic gap is expected between the two. Proving that d̃eg(f) = Ω(n1/3)
for monotone transitive functions will prove the desired lower bound on quantum query complexity.
The lowest known bound for approximate degree of a monotone transitive function is O(

√
n), given

by the OR function on n variables.
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Sensitivity of Transitive Functions

The relation of sensitivity to other complexity measures [NS94] is a notorious problem, as is the
problem of determining the minimal sensitivity achievable by transitive functions. Chakraborty
[Cha11] gave an example of a transitive function with s(f) = O(n1/3). The only lower bound known
is Ω(log n). No one has yet succeeded in finding a transitive function with sensitivity o(n1/3). In
this context, we hope that the following observation sheds some light.

Corollary 1.6. Any transitive Boolean function f : {0, 1}n → {0, 1} with s(f) = nα implies an
(1− α)/α exponent separating between bs and s.

In particular if α < 1/3 this will give a better than quadratic separation between block sensitivity
and sensitivity. It is conjectured that block sensitivity and sensitivity are quadratically related.
This suggests that Chakraborty’s example might, in fact, be optimal!

1.3 R0(f) vs R2(f)

In the randomized decision tree complexity there are at least three variants of randomized com-
putation (as in other models): zero-error (a.k.a. Las Vegas), one sided error, and two-sided error
(a.k.a. Monte Carlo), denoted by R0(f), R1(f) and R2(f) respectively. By definition R2(f) ≤
R1(f) ≤ R0(f) ≤ D(f). Nisan [Nis89] showed that D(f) = O(R2(f)3) and D(f) = O(R1(f)2). In
[Mid05], Midrijanis established the relation to R0(f) = O(R2(f)2 · log(n)). We follow this proof
and improve its bound.

Recall that the block sensitivity of f on x is the maximal number of disjoint blocks B ⊆ [n]
such that f(x) 6= f(x ⊕ B). What if we got rid of the disjointness condition? denote by nbs(f)
the number of flipping blocks (not necessarily disjoint) which are minimal with respect to set
inclusion. Each such block, B, is of size at most s(f), since f has sensitivity ≥ |B| on x⊕B when
B is a minimal flipping block. So a first order estimate is nbs(f) ≤ ns(f). Midrijanis shows that
R0(f) = O(R2(f) · log nbs(f)), and then uses the above upper bound on nbs(f) to get the desired
connection between R0(f) and R2(f). We refine the upper bound on nbs(f) to the tight estimate
nbs(f) ≤ fbs(f)s(f), which in turn yields the following result:

Theorem 1.7. (restatement of Theorem 5.3) R0(f) = O(R2(f)2 · log(R2(f)))

1.4 Tighter Limitations of Quantum Adversary

In [SS06], Spalek and Szegedy showed that seven seemingly different adversary methods, each giving
lower bounds on the quantum query complexity, are in fact equivalent. One of the methods is the
so called minimax method, denoted by MM(f). They show that this method can not give a lower
bound better than

√
C0(f)C1(f). We can refine their result by replacing the certificate complexity

with the randomized certificate complexity.

Theorem 1.8. (restatement of Theorem 6.4) MM(f) ≤ O
(√

RC0(f)RC1(f)

)
Since the randomized certificate complexity may be strictly smaller than certificate complexity,

this gives a tighter limitation of the quantum adversary methods.
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2 Preliminaries

Let [n] denote the set {1, 2, . . . , n}. We say that a block B ⊆ [n] is a minimal flipping block for
f : {0, 1}n → {0, 1} on x ∈ {0, 1}n if f(x⊕B) 6= f(x), and for every proper subset of B, A ⊂ B we
have f(x) = f(x⊕A). In other words, B is a flipping block minimal to set inclusion.

2.1 Measures Equivalent to The Fractional Block Sensitivity

A 0-certificate for an input x such that f(x) = 0 is a partial assignment S → {0, 1} for the subset S
of variables, consistent with x, such that for any y that is consistent with the assignment f(y) = 0.
Similarly one can define a 1-certificate. The minimum cardinality of such an S is the certificate
complexity of f on x, denoted by C(f, x).

Next, we define a fractional version of the certificate complexity.

Definition 2.1 (Fractional Certificate). Let f : {0, 1}n → {0, 1} be a Boolean function, and W :
[n]→ R+ be a (non-negative) weight function on the coordinates. For any two points x, y ∈ {0, 1}n
we denote the W -weighted hamming distance between x and y as

Dist(W,x, y) =
∑

i:xi 6=yi

W (i) .

W is a fractional certificate for f on x ∈ {0, 1}n if for any y ∈ {0, 1}n such that f(x) 6= f(y) we
have Dist(W,x, y) ≥ 1. The fractional certificate complexity of f on x, denoted by FC(f, x),is the
minimal

∑
iW (i) of such W .

It is easy to verify that this is indeed a relaxation of certificate complexity: given a certificate
S for f on x we can assign weight 1 to each i ∈ S and weight 0 otherwise. This yields a feasible
fractional certificate for f on x, hence FC(f, x) ≤ C(f, x).

Aaronson [Aar03] defined a randomized version of the certificate complexity.

Definition 2.2 (Randomized Certificate). A randomized verifier for input x is a randomized algo-
rithm that, on input y in the domain of f (i) accepts with probability 1 if y = x, and (ii) rejects with
probability at least 1/2 if f(y) 6= f(x). The algorithm can behave arbitrarily on other case: y 6= x
but f(y) = f(x). Then RC(f, x) is the minimum expected number of queries used by a random-
ized verifier for x. We can similarly define the quantum analogue QC(f, x) by allowing quantum
algorithm instead of randomized.

2.2 Some Useful Properties of fbs and Other Measures

Every Boolean function f : {0, 1}n → {0, 1} can be represented as a unique multilinear polynomial

over R. Let deg(f) denote the degree of this polynomial. Given an ε we denote by d̃egε(f) the
minimal degree of a multilinear polynomial g : {0, 1}n → R such that for all x, |f(x) − g(x)| ≤ ε.

We denote d̃eg1/3(f) by d̃eg(f).

Theorem 2.3 (bs vs. deg, [NS94], improved in [Tal13]). Let f be a Boolean function, then

1. bs(f) ≤ deg(f)2

2. bs(f) ≤ 6 · d̃eg1/3(f)2
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We define the composition of two Boolean functions.

Definition 2.4 (Function Composition). Let f : {0, 1}n → {0, 1} and g : {0, 1}m → {0, 1}, then
the function composition of f and g, f ◦ g : {0, 1}nm → {0, 1} is defined as follows:

(f ◦ g)
(
x11, x

1
2, . . . , x

n
m

)
, f

(
g
(
x11, x

1
2, . . . , x

1
m

)
, . . . , g (xn1 , x

n
2 . . . , x

n
m)
)

We define the repeated composition of a Boolean function to itself.

Definition 2.5 (Function Powering). Let f : {0, 1}n → {0, 1} and k ∈ N, then the kth power of f
denoted by fk is defined recursively by f1 , f and fk , f ◦ (fk−1) for k > 1.

Lemma 2.6 (Function Composition Properties, [Tal13]). Let f : {0, 1}n → {0, 1} and g : {0, 1}m →
{0, 1} be Boolean functions, then the following hold:

1. deg(f ◦ g) = deg(f) · deg(g)

2. s(f ◦ g) ≤ s(f) · s(g)

3. fbs(f ◦ g) ≤ fbs(f) · fbs(g)

4. for z ∈ {0, 1}, if f(zn) = g(zm) = z then fbs(f ◦ g, znm) ≥ fbs(f, zn) · fbs(g, zm)

Tal shows in [Tal13] (Gilmer et al. [GSS13] have a similar independent result) that taking a
constant size Boolean function and composing it to itself many times yields a sequence of functions
with constant ratio between bs and fbs.

Claim 2.7 (Constant Gap, [Tal13]). Let f : {0, 1}n → {0, 1} then for any integer ` ∈ N the ratio
fbs(f `)/bs(f `) is at most c(n) = 25 · n2 · 2n i.e. independent of `.

3 Approximate Degree and Fractional Block Sensitivity

In this section we show that approximate degree can be at most quadratically smaller than the
fractional block sensitivity.

Lemma 3.1. Let M be any measure such that ∀f, g : M(f ◦ g) ≤ M(f) ·M(g). Then any bound
of the form ∀f : bs(f) ≤ M(f)α for some constant α > 0 implies the same bound on fbs, namely
∀f : fbs(f) ≤M(f)α.

Proof. Assume by contradiction that there exists an f : {0, 1}n → {0, 1} such that fbs(f) ≥
M(f)α + 1. Let ε = 1/M(f)α, then ε > 0 and we have fbs(f) ≥ M(f)α · (1 + ε) Without loss
of generality suppose that fbs(f) = maxx fbs(f, x) is realized at 0n and f(0n) = 0. By repeatedly
applying Lemma 2.6 we have fbs(f `) ≥ fbs(f)`. Overall, we get

bs(f `) ≥ 1

c(n)
· fbs(f `) (Claim 2.7)

≥ 1

c(n)
· fbs(f)` (fbs(f `) ≥ fbs(f)`)

≥ 1

c(n)
· (M(f)α · (1 + ε))` (contradiction assumption)

=
1

c(n)
·
(
M(f)`

)α
· (1 + ε)`

≥ 1

c(n)
·M(f `)α · (1 + ε)` . (assumption on M)
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Choosing a large enough `, one can guarantee 1
c(n) · (1 + ε)` > 2 and this is a contradiction.

Corollary 3.2. 1. ∀f : fbs(f) ≤ deg(f)2

2. If there exists a constant α > 0 such that ∀f : bs(f) ≤ s(f)α then ∀f : fbs(f) ≤ s(f)α

Proof. By Lemma 2.6 both deg and s fulfill the requirements in Lemma 3.1, so 2 follows immediately.
As for 1, by Theorem 2.3 we have ∀f : bs(f) ≤ deg(f)2 hence ∀f : fbs(f) ≤ deg(f)2.

In order to prove a similar bound on fbs with approximate degree, we need to understand the
behaviour of approximate degree with respect to composition. The following theorem by Sherstov
is useful in this context (recall that we are denoting d̃eg1/3(f) by d̃eg(f).).

Theorem 3.3 ([She12]). d̃eg(f ◦ g) = Θ(d̃eg(f) · d̃eg(g)).

Theorem 3.4. There is a universal constant c such that for any Boolean function fbs(f) ≤ c ·
d̃eg(f)2.

Proof. Let c1 be a universal constant such that for any Boolean functions f, g we have d̃eg(f ◦ g) ≤
c1 · d̃eg(f) · d̃eg(g) and bs(f) ≤

(
c1 · d̃eg(f)

)2
. The existence of c1 is guaranteed by Theorems 3.3

and 2.3. Define M(f) , c1 · d̃eg(f). Then M is a complexity measure for which bs(f) ≤ M(f)2

and M(f ◦ g) ≤M(f) ·M(g) since

M(f ◦ g) = c1 · d̃eg(f ◦ g) ≤ c1 · c1 · d̃eg(f) · d̃eg(g) = M(f) ·M(g) .

Applying Lemma 3.1 we get that

∀f : fbs(f) ≤M(f)2 = (c1)
2 · d̃eg(f)2 ,

which completes the proof.

We note that Theorem 3.4 is tight up to the constant factor as the ORn function gives
fbs(ORn) = n and d̃eg(ORn) = Θ(

√
n). See [NS94] for a proof.

4 Transitive Boolean Functions

Definition 4.1. Let f : {0, 1}n → {0, 1} be a Boolean function and σ ∈ Sn a permutation, we say
that f is invariant under σ if f(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)) for all x ∈ {0, 1}n.

An easy observation is that the permutations under which f is invariant form a subgroup of
Sn. We say a subgroup Γ ⊆ Sn is transitive if ∀i, j ∈ [n] , ∃σ ∈ Γ : σ(i) = j. We say a function
f is transitively-invariant or transitive if the invariant permutations of f are a transitive subgroup
of Sn. We say that f is cyclically invariant or cyclic if f is invariant under the left cyclic shift
permutation (2, 3, . . . , n, 1). In particular, any cyclic function is transitive.

We state a useful property of such subgroups:

Lemma 4.2 ([RV76]). If Γ ⊆ Sn is a transitive subgroup, then for any S ⊆ [n] and any i ∈ [n] we
have

|S| · |{σ(S) : σ ∈ Γ}| = n · |{σ(S) : σ ∈ Γ, i ∈ σ(S)}|
where σ(S) = {σ(x) : x ∈ S}.
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Claim 4.3. Let f : {0, 1}n → {0, 1} be any non constant transitive-function; then fbs(f, 0n) ≥
n/s(f).

Proof. Let B be a minimal block flipping the value of f at 0n, i.e., any proper subset of B does not
flip the value of f at 0n. The cardinality of B is at most s(f), since otherwise we have more than
s(f) sensitive coordinates on the input 1B. Take the blocks B = {σ(B) : σ ∈ Γ} (there might be
less than |Γ| such blocks as this is a set), and assign each such block a weight of w , n

|B|·|B| . Then,

by Lemma 4.2 the number of blocks containing a coordinate i ∈ [n] is exactly |B| · |B|/n. Hence,
the total weight of blocks containing i is exactly 1. The total weight is |B| · w = n/|B| ≥ n/s(f)
and this is a lower bound for the fractional block sensitivity at 0n.

This immediately yields the following:

Theorem 4.4. Let f : {0, 1}n → {0, 1} be any non constant transitive-function; then fbs(f) ≥
√
n.

Proof. fbs(f) ≥ max{s(f), n/s(f)} ≥
√
n.

Corollary 4.5. There is a family of cyclically invariant Boolean functions such that

fbs(f) = Ω(bs(f)4/3).

Proof. In [Sun07] Sun gives a probabilistic construction of a family of cyclically invariant functions
(which is in particular a family of transitive functions) for which bs(f) = O(n3/7·log(n)). In [Dru11],
Drucker improved this construction to give a family of cyclically invariant f ’s for which bs(f) =
O(n3/7 · log(n)1/7). In [Ama11], Amano improved this construction to give a family of cyclically
invariant f ’s for which bs(f) = O(n3/7). Thus, using claim 4.3, we get that fbs(f) ≥ n/s(f) ≥
n/bs(f) ≥ Ω(n4/7). This gives a separation between bs and fbs as fbs(f) ≥ Ω(bs(f)4/3).

Corollary 4.6. Any transitive Boolean function f : {0, 1}n → {0, 1} with s(f) = nα implies an
(1 − α)/α exponent separating between bs and s. In particular if α < 1/3 this will give a better
than quadratic separation between block sensitivity and sensitivity.

Proof. By Claim 4.3, fbs(f) ≥ n/s(f) = n1−α and by Corollary 3.2, this gives a (1−α)/α exponent
separating bs and s.

One can get a slightly more general result: the existence of a transitive function f for which
s0(f) · s1(f) · s(f) = o(n) implies a quadratic separation between block sensitivity and sensitivity.
This is true since given such a function f , one can construct a transitive function g : {0, 1}m →
{0, 1} with s(g) = o(m1/3) by composing ORs1(f)/s0(f) ◦ f in the case where s1(f) ≥ s0(f), or
ANDs0(f)/s1(f) ◦ f if s0(f) ≥ s1(f). The existence of such a function g implies the mentioned
separation by Corollary 4.6.

5 The Number of Minimal Flipping Blocks

Consider a Boolean function f : {0, 1}n → {0, 1} and a point x ∈ {0, 1}n. Recall that nbs(f, x)
counts the number of flipping blocks for f on x which are minimal with respect to set inclusion.
Given a parameter k, we will count how many minimal blocks of size k flip the value of f on x, and
denote this number by nbsk(f, x). Clearly nbs1(f, x) = s(f, x) and nbsk(f, x) ≤

(
n
k

)
by definition.

In addition, nbs(f, x) =
∑s(f)

i=1 nbsk(f, x) by the fact that a minimal flipping block can be of size at
most s(f). We give the following estimate on nbsk which is independent of n.
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Claim 5.1. nbsk(f, x) ≤ fbs(f, x) · nbsk−1(f)

Proof. Let N := nbsk(f, x) be the number of minimal flipping blocks B ⊆ [n] of size k. For any
such block B and any i ∈ B the block B − {i} is a minimal flipping block of size k− 1 for x⊕ {i}.
Note that for a fixed i ∈ [n], if i is contained in B1, B2, . . . Bt then all blocks B1−{i}, . . . , Bt−{i}
are different minimal flipping blocks for f on x⊕{i}, each of size k−1. By definition their number
is at most nbsk−1(f, x⊕{i}) ≤ nbsk−1(f). Thus, putting weight 1/nbsk−1(f) for all blocks B ⊆ [n]
of size k gives a feasible solution to the fractional block sensitivity linear program of f on x. The
value of this solution is N

nbsk−1(f)
, hence

fbs(f, x) ≥ N

nbsk−1(f)
.

Corollary 5.2. nbsk(f, x) ≤
∏k
i=1 fbs(f) ≤ fbs(f)k

We note that this bound is tight since taking the function f = ∧ki=1 ∨ki=1 xij , we have fbs(f) =
s(f) = k, while nbsk(f, 0) = kk.

Midrijanis showed that for any Boolean function f : {0, 1}n → {0, 1} it holds that R0(f) =
O(R2(f) · log nbs(f)) deriving the upper bound R0(f) = O(R2(f)2 · log n) . We improve this bound
by the improved bound on nbsk(f).

Theorem 5.3. R0(f) = O(R2(f)2 · log(R2(f)))

Proof. Assume without loss of generality that fbs(f) ≥ 2 as any function with fbs(f) < 2 de-
pends only on at most one variable, and the statement of the theorem is true for such functions.
Corollary 5.2 implies

nbs(f) =

s(f)∑
k=1

nbsk(f) ≤
s(f)∑
k=1

fbs(f)k ≤ 2 · fbs(f)s(f) .

Using Midrijanis’ relation R0(f) = O(R2(f) · log nbs(f)) gives R0(f) = O(R2(f) ·s(f) · log(fbs(f))).
Since s(f) ≤ fbs(f) = O(R2(f)) we get

R0(f) = O(R2(f)2 · log(R2(f))) .

6 Tighter Limitations of Quantum Adversary Method

The next lemma by Blum and Impagliazzo states that every 0-certificate and 1-certificate intersect.
This lemma is crucial for the proof that D(f) ≤ C0(f) · C1(f).

Lemma 6.1 ([BI87]). Let f : {0, 1}n → {0, 1} be a Boolean function, x, y ∈ {0, 1}n points on
the Boolean hypercube such that f(x) = 0 and f(y) = 1. Let S, T ⊆ [n] be certificates for x, y
respectively, then there is a coordinate i ∈ S ∩ T such that xi 6= yi.

The following lemma is a generalization of Lemma 6.1 to the case of fractional certificates.
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Lemma 6.2 (Relaxed intersection of fractional certificates). Let f : {0, 1}n → {0, 1} be a Boolean
function, x, y ∈ {0, 1}n points on the Boolean hypercube such that f(x) = 0 and f(y) = 1. Let
Wx,Wy : [n]→ R+ be fractional certificates for f on x and y respectively, then∑

i:xi 6=yi

min{Wx(i),Wy(i)} ≥ 1 .

Proof. Let z ∈ {0, 1}n be the point defined by

zi =

{
yi if Wx(i) < Wy(i)

xi otherwise,

for i ∈ [n]. Then the Wx hamming distance between x and z is

Dist(Wx, x, z) =
∑

i:Wx(i)<Wy(i) and xi 6=yi

Wx(i)

and this is at most
∑

i:xi 6=yi min{Wx(i),Wy(i)}. Similarly,

Dist(Wy, y, z) ≤
∑

i:xi 6=yi

min{Wx(i),Wy(i)} .

By the definition of fractional certificate, one of Dist(Wx, x, z), Dist(Wy, y, z) must be at least 1,
hence

∑
i:xi 6=yi min{Wx(i),Wy(i)} ≥ 1.

6.1 The Quantum Adversary Bound and Fractional Certificate Complexity

In this section we show that the following measure which lower bounds the quantum query com-
plexity is limited by the fractional certificate complexity.

Definition 6.3 (Minimax over probability distributions). Let S ⊆ {0, 1}n, and let f : S → {0, 1}
be a partial function. Let p : S × [n]→ R denote a set of probability distributions, that is px(i) ≥ 0
and

∑
i px(i) = 1 for every x ∈ S. Then

MM(f) = min
p

max
x,y:f(x) 6=f(y)

1∑
i:xi 6=yi

√
px(i)py(i)

We adapt the proof of Spalek and Szegedy that MM(f) ≤
√

C0(f)C1(f) for total functions

([SS06], Theorem 3.2) to show that MM(f) ≤
√

FC0(f)FC1(f), using Lemma 6.2. We also include
an improved bound for partial functions.

Theorem 6.4. Let S ⊆ {0, 1}n and let f : S → {0, 1} be a non constant function.

1. If S = {0, 1}n, then MM(f) ≤
√

FC0(f)FC1(f).

2. If S ⊂ {0, 1}n, and FC0(f) ≥ FC1(f) then MM(f) ≤ 2
√
nFC1(f).
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Proof. We begin with the case of total functions, i.e. S = {0, 1}n. For any x ∈ {0, 1}n, fix some
arbitrary minimal certificate Wx for f on x, and distribute the probability px(i) proportional to
the weights given by Wx. Namely,

px(i) =
Wx(i)

|Wx|
, (1)

for i ∈ [n] where |Wx| =
∑

iWx(i). Since MM is the minimum over all probability distributions,

MM(f) ≤ max
x,y:f(x)6=f(y)

1∑
i:xi 6=yi

√
px(i)py(i)

(2)

Plugging (1) into (2) gives

MM(f) ≤ max
x,y:f(x)6=f(y)

√
|Wx||Wy|∑

i:xi 6=yi
√
Wx(i)Wy(i)

≤ max
x,y:f(x)6=f(y)

√
|Wx||Wy|∑

i:xi 6=yi min{Wx(i),Wy(i)}
(min{a, b} ≤

√
ab for a, b ≥ 0)

≤ max
x,y:f(x)6=f(y)

√
FC0(f)FC1(f)∑

i:xi 6=yi min{Wx(i),Wy(i)}
(optimality of Wx,Wy)

≤
√

FC0(f)FC1(f) (Lemma 6.2)

which completes the proof of the first part of the theorem.
Now we deal with partial functions.3 For any x ∈ {0, 1}n, fix some arbitrary minimal certificate

Wx for f on x, and put

qx(i) =
1

2n
+

1

2
· Wx(i)

|Wx|
,

for i ∈ [n] where |Wx| =
∑

iWx(i). This is the average between the uniform distribution and px
from Equation 1. Since MM is the minimum over all probability distributions,

MM(f) ≤ max
x,y:f(x)6=f(y)

1∑
i:xi 6=yi

√
qx(i)qy(i)

(3)

Take any x and y such that f(x) = 1 and f(y) = 0, then∑
i:xi 6=yi

√
qx(i)qy(i) ≥

∑
i:xi 6=yi

√
Wx(i)

2|Wx|
· 1

2n
(by definition of q)

≥

√√√√ ∑
i:xi 6=yi

Wx(i)

2|Wx|
· 1

2n
(
∑

i

√
ai ≥

√∑
i ai)

≥

√
1

2|Wx|
· 1

2n
(by definition of FC)

≥

√
1

4FC1(f) · n
.

Plugging this into Equation (3) completes the proof.

3Note that Lemma 6.2 does not hold for partial functions as we needed f to be defined on z.
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7 Open Ends

The relation of fractional block sensitivity with certificate complexity was tightly understood by
Gilmer et al. [GSS13]. In this paper the relation of fractional block sensitivity with approximate de-
gree (and with degree) was tightly understood. However, tightly relating fractional block sensitivity
to other complexity measures remains open. We highlight some of these questions.

Relation to randomized decision tree complexity Aaronson posed in [Aar03] the question
of whether or not R(f) ≤ RC0(f) ·RC1(f), where R(f) is the randomized decision tree complexity.
Trying to adapt Blum and Impagliazzo’s argument from [BI87] to the randomized case seems
promising since we generalized Lemma 6.1 (which was crucial for Blum and Impagliazzo’s proof)
to the randomized analogue. However, our attempts to do so have failed so far.

Relation to block sensitivity The relation of fractional block sensitivity with block sensitivity
was partially understood in [GSS13]. They gave a family of functions where fbs(f) = Θ

(
bs(f)3/2

)
which complements the known relation fbs(f) ≤ C(f) ≤ bs(f)2 for any Boolean function. Deter-
mining the right exponent in the range [3/2, 2] remains open.

Relation to sensitivity Lemma 3.1 shows that for any constant α it holds that ∀f : bs(f) ≤
s(f)α iff ∀f : fbs(f) ≤ s(f)α. Thus, understanding the relation between block sensitivity and
sensitivity is essentially the same as understanding the relation between fractional block sensitivity
and sensitivity.
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