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Abstract

Let g : {−1, 1}k → {−1, 1} be any Boolean function and q1, . . . , qk be any degree-2 polyno-
mials over {−1, 1}n. We give a deterministic algorithm which, given as input explicit descriptions of
g, q1, . . . , qk and an accuracy parameter ε > 0, approximates

Prx∼{−1,1}n [g(sign(q1(x)), . . . , sign(qk(x))) = 1]

to within an additive ±ε. For any constant ε > 0 and k ≥ 1 the running time of our algorithm is
a fixed polynomial in n (in fact this is true even for some not-too-small ε = on(1) and not-too-large
k = ωn(1)). This is the first fixed polynomial-time algorithm that can deterministically approximately
count satisfying assignments of a natural class of depth-3 Boolean circuits.

Our algorithm extends a recent result [DDS13] which gave a deterministic approximate count-
ing algorithm for a single degree-2 polynomial threshold function sign(q(x)), corresponding to the
k = 1 case of our result. Note that even in the k = 1 case it is NP-hard to determine whether
Prx∼{−1,1}n [sign(q(x)) = 1] is nonzero, so any sort of multiplicative approximation is almost cer-
tainly impossible even for efficient randomized algorithms.

Our algorithm and analysis requires several novel technical ingredients that go significantly beyond
the tools required to handle the k = 1 case in [DDS13]. One of these is a new multidimensional central
limit theorem for degree-2 polynomials in Gaussian random variables which builds on recent Malliavin-
calculus-based results from probability theory. We use this CLT as the basis of a new decomposition
technique for k-tuples of degree-2 Gaussian polynomials and thus obtain an efficient deterministic ap-
proximate counting algorithm for the Gaussian distribution, i.e., an algorithm for estimating

Prx∼N(0,1)n [g(sign(q1(x)), . . . , sign(qk(x))) = 1].

Finally, a third new ingredient is a “regularity lemma” for k-tuples of degree-d polynomial threshold
functions. This generalizes both the regularity lemmas of [DSTW10, HKM09] (which apply to a single
degree-d polynomial threshold function) and the regularity lemma of Gopalan et al [GOWZ10] (which
applies to a k-tuples of linear threshold functions, i.e., the case d = 1). Our new regularity lemma lets
us extend our deterministic approximate counting results from the Gaussian to the Boolean domain.
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1 Introduction

Unconditional derandomization has been an important research area in computational complexity theory
over the past two decades [AW85, Nis91, Nis92, NW94]. A major research goal in this area is to obtain
efficient deterministic approximate counting algorithms for “low-level” complexity classes such as constant
depth circuits, small space branching programs, polynomial threshold functions, and others [LVW93, LV96,
Tre04, GMR13, Vio09, GKM+11, DDS13]. Under the widely-believed hypothesis P = BPP, there must
be a polynomial time deterministic algorithm that can approximate the fraction of satisfying assignments
to any polynomial–size circuit. Since finding such an algorithm seems to be out of reach of present day
complexity theory [KI02], research efforts have been directed to the aforementioned low-level classes.

A natural class of Boolean functions to consider in this context is the class of polynomial threshold
functions (PTFs). Recall that a degree-d PTF, d ≥ 1, is a Boolean function f : {−1, 1}n → {−1, 1}
defined by f(x) = sign(p(x)) where p : {−1, 1}n → R is a degree-d polynomial over the reals and
sign : R → {−1, 1} is defined as sign(z) = 1 iff z ≥ 0. In the special case where d = 1, degree-d PTFs
are often referred to as linear threshold functions (LTFs). Understanding the structure of these functions
has been a topic of extensive investigation for decades (see e.g., [MK61, MTT61, MP68, Mur71, GHR92,
Orp92, Hås94, Pod09] and many other works) due to their importance in fields such as concrete complexity
theory [She08, She09, DHK+10, Kan10, Kan12b, Kan12a, KRS12], learning theory [KKMS08, SSSS11,
DOSW11, DDFS12], voting theory [APL07, DDS12], and others.

In the context of approximate counting, there is a significant gap in our understanding of low-degree
PTFs. An outstanding open problem is to design a deterministic algorithm that approximates the fraction of
satisfying assignments to a constant degree PTF over {−1, 1}n to an additive±ε and runs in time poly(n/ε).
Even for the class of degree-2 PTFs, until recently no deterministic algorithm was known with running time
poly(n) for any sub-constant value of the error ε. In previous work [DDS13] we obtained such an algorithm.
In the present paper we make further progress on this problem by developing the first efficient deterministic
counting algorithm for the class of juntas of (any constant number of) degree-2 PTFs.

1.1 Our main result. As our main result, we give a polynomial-time deterministic approximate counting
algorithm for any Boolean function of constantly many degree-2 polynomial threshold functions.

Theorem 1. [Deterministic approximate counting of functions of degree-2 PTFs over {−1, 1}n] There is
an algorithm with the following properties: given an arbitrary function g : {−1, 1}k → {−1, 1} and k
degree-2 polynomials q1(x1, . . . , xn), . . . , qk(x1, . . . , xn) and an accuracy parameter ε > 0, the algorithm

runs (deterministically) in time poly(n) · 2(1/ε)2O(k)

and outputs a value v ∈ [0, 1] such that∣∣Prx∈{−1,1}n [g(sign(q1(x)), . . . , sign(qk(x))) = 1]− v
∣∣ ≤ ε.

Our result may be (somewhat informally) restated in terms of Boolean circuits as a poly(n)-time de-
terministic approximate counting algorithm for the class NC0-Thr-AND2 of depth-3 circuits that have an
arbitrary NC0 gate (i.e., junta) at the top level, arbitrary weighted threshold gates at the middle level, and
fanin-2 AND gates at the bottom level. Theorem 1 is a broad generalization of the main result of [DDS13],
which establishes the special k = 1 case of the current result.

As noted in [DDS13], the problem of determining whether Prx∈{−1,1}n [p(x) ≥ 0] is nonzero for
a degree-2 polynomial p is well known to be NP-hard, and hence no efficient algorithm, even allowing
randomness, can give a multiplicative approximation to Prx∼{−1,1}n [p(x) ≥ 0] unless NP ⊆ RP. Given
this, it is natural to work towards an additive approximation, which is what we achieve.

Previous work. For k = 1 and d = 1 Gopalan et al. in [GKM+11] obtained a multiplicatively (1 ± ε)-
accurate deterministic poly(n, 1/ε) time approximate counting algorithm. For d ≥ 2, however, as noted
above additive approximation is the best one can hope for. For the special case of k = 1, in separate
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work [DDS13], the authors have given a deterministic approximate counting algorithm that runs in time
poly(n, 2poly(1/ε)). As we explain in detail in the rest of this introduction, more sophisticated ideas and
techniques are required to obtain the results of the current paper for general k. These include a new central
limit theorem based on Malliavin calculus and Stein’s method, and a new decomposition procedure that goes
well beyond the decomposition approach employed in [DDS13].

We remark that the only previous deterministic approximate counting algorithm for k-juntas of degree-
2 PTFs follows from the pseudorandom generators (PRGs) of [DKN10] (which are based on bounded
independence). The running time of the resulting algorithm is npoly(1/ε), even for k = 1.

1.2 Techniques. Our high-level approach to establishing Theorem 1 follows a by now standard approach
in this area. We first (i) establish the result for general polynomials over Gaussian inputs; then (ii) use a
“regularity lemma” to show that every polynomial over Boolean inputs can be decomposed into a “small”
number of regular polynomials over Boolean inputs; and finally (iii) use an invariance principle to reduce
the problem for “regular” polynomials over Boolean inputs to the problem for regular polynomials over
Gaussian inputs. This general approach has been used in a number of previous works, including construc-
tions of unconditional PRGs [DGJ+10, MZ10, GOWZ10, DKN10, Kan11, Kan12b], learning and property
testing [MORS10, OS11], and other works. However, we emphasize that significant novel conceptual and
technical work is required to make this approach work in our setting. More specifically, to achieve step (i),
we require (i.a) a new multidimensional CLT for degree-2 Gaussian polynomials with small eigenvalues and
(i.b) a new decomposition procedure that transforms a k-dimensional vector of Gaussian polynomials into a
tractable form for the purpose of approximate counting. For step (ii) we establish a novel regularity lemma
for k-vectors of low-degree polynomials. Finally, Step (iii) follows by an application of the invariance prin-
ciple of Mossel [Mos10] combined with appropriate mollification arguments [DKN10]. In the rest of this
section we discuss our new approaches to Steps (i) and (ii).

Step (i): The counting problem over Gaussian inputs. The current paper goes significantly beyond the
techniques of [DDS13]. To explain our new contributions let us first briefly recall the [DDS13] approach.

The main observation enabling the result in [DDS13] is this: Because of rotational symmetry of the
Gaussian distribution, a degree-2 Gaussian polynomial can be “diagonalized” so that there exist no “cross-
terms” in its representation. In a little more detail, if p(x) =

∑
i,j aijxixj (we ignore the linear term for

simplicity), where x ∼ N(0, 1)n, then p can be rewritten in the form p(y) =
∑

i λiy
2
i , where y ∼ N(0, 1)n

and the λi’s are the eigenvalues of the corresponding matrix. Roughly speaking, once such a represen-
tation has been (approximately) constructed, the counting problem can be solved efficiently by dynamic
programming. To construct such a decomposition, [DDS13] employs a “critical-index” based analysis on
the eigenvalues of the corresponding matrix. For the analysis of the [DDS13] algorithm, [DDS13] proves
a CLT for a single degree-2 Gaussian polynomial with small eigenvalues (this CLT is based on a result of
Chaterjee [Cha09]). (We note that this informal description suppresses several non-trivial technical issues,
see [DDS13] for details.)

At a high level, the approach of the current paper builds on the approach of [DDS13]. To solve the
Gaussian counting problem we use a combination of (i.a) a new multidimensional CLT for k-tuples of
degree-2 Gaussian polynomials with small eigenvalues, and (i.b) a novel decomposition result for k-tuples
of degree-2 Gaussian polynomials. We now elaborate on these steps.

(i.a) As our first contribution, we prove a new multidimensional central limit theorem for k-tuples of
degree-2 Gaussian polynomials (Theorem 8). Roughly speaking, our CLT states that if each poly-
nomial in the k-tuple has small eigenvalues, then the joint distribution of the k-tuple is close to a
k-dimensional Gaussian random variable with matching mean and covariance matrix. The closeness
here is with respect to the k-dimensional Kolmogorov distance over Rk (a natural generalization of
Kolmogorov distance to vector-valued random variables, which we denote dK and which is useful for
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analyzing PTFs). To establish our new CLT, we proceed in two steps: In the first (main) step, we make
essential use of a recent multidimensional CLT due to Nourdin and Peccati [NP09] (Theorem 11)
which is proved using a combination of Malliavin calculus and Stein’s method. To use this theorem
in our setting, we perform a linear-algebraic analysis which allows us to obtain precise bounds on
the Malliavin derivatives of degree-2 Gaussian polynomials with small eigenvalues. An application
of [NP09] then gives us a version of our desired CLT with respect to “test functions” with bounded
second derivatives (Theorem 12). In the second step, we use tools from mollification [DKN10] to
translate this notion of closeness into closeness with respect to k-dimensional Kolmogorov distance,
thus obtaining our intended CLT. (As a side note, we believe that this work is the first to use Malliavin-
calculus-based tools in the context of derandomization.)

(i.b) As our second contribution, we give an efficient procedure that transforms a k-tuple of degree-2 Gaus-
sian polynomials p = (p1, . . . , pk) into a k-tuple of degree-2 Gaussian polynomials r = (r1, . . . , rk)
such that: (1) p and r are dK-close, and (2) the k-tuple r has a “nice structure” that allows for efficient
deterministic approximate counting. In particular, there is a “small” set of variables such that for
each restriction ρ fixing this set, the restricted k-tuple of polynomials r|ρ is well-approximated by a
k-dimensional Gaussian random variable (with the appropriate mean and covariance matrix). Once
such an r has been obtained, deterministic approximate counting is straightforward via an appropriate
discretization of the k-dimensional Gaussian distribution (see Section 5).

We now elaborate on Item (1) above. At a high level, the main step of our transformation procedure
performs a “change of basis” to convert p = (p1(x), . . . , pk(x)) into an essentially equivalent (for
the purpose of approximate counting) vector q = (q1(y), . . . , qk(y)) of polynomials. The high-level
approach to achieve this is reminiscent of (and inspired by) the decomposition procedure for vectors
of k linear forms in [GOWZ10]. However, there are significant complications that arise in our setting.
In particular, in the [GOWZ10] approach, a vector of k linear forms is simplified by “collecting”
variables in a greedy fashion as follows: Each of the k linear forms has a “budget” of at most B,
meaning that at mostB variables will be collected on its behalf. Thus, the overall number of variables
that are collected is at most kB. At each stage some variable is collected which has large influence
in the remaining (uncollected) portion of some linear form. The [GOWZ10] analysis shows that
after at most B variables have been collected on behalf of each linear form, each of the k linear
forms will either be regular or its remaining portion (consisting of the uncollected variables) will have
small variance. In our current setting, we are dealing with k degree-2 Gaussian polynomials instead
of k linear forms. Recall that every degree-2 polynomial can be expressed as a linear combination
of squares of linear forms (i.e., it can be diagonalized). Intuitively, since Gaussians are invariant
under change of basis, we can attempt to use an approach where linear forms will play the role that
variables had in [GOWZ10]. Mimicking the [GOWZ10] strategy, each quadratic polynomial will have
at most B linear forms collected on its behalf, and at most kB linear forms will be collected overall.
Unfortunately, this vanilla strategy does not work even for k = 2, as it requires a single orthonormal
basis in which all the degree-2 polynomials are simultaneously diagonalized.

Instead, we resort to a more refined strategy. Starting with the k quadratic polynomials, we use the
following iterative algorithm: If the largest magnitude eigenvalue of each quadratic form is small,
we are already in the regular case (and we can appeal to our multidimensional CLT). Otherwise,
there exists at least one polynomial with a large magnitude eigenvalue. We proceed to collect the
corresponding linear form and “reduce” every polynomial by this linear form. (The exact description
of this reduction is somewhat involved to describe, but intuitively, it uses the fact that Gaussians are
invariant under orthogonal transformations.) This step is repeated iteratively; an argument similar to
[GOWZ10] shows that for every quadratic polynomial, we can collect at most B linear forms. At the
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end of this procedure, each of the k quadratic polynomials will either be “regular” (have small largest
magnitude eigenvalue compared to the variance of the remaining portion), or else the variance of the
remaining portion will be small. This completes the informal description of our transformation.

Our main result for the Gaussian setting is the following theorem:

Theorem 2. [Deterministic approximate counting of functions of degree-2 PTFs over Gaussians] There is
an algorithm with the following properties: It takes as input explicit descriptions of n-variable degree-2
polynomials q1, . . . , qk, an explicit description of a k-bit Boolean function g : {−1, 1}k → {−1, 1}, and a
value ε > 0. It runs (deterministically) in time poly(n) · 2poly(2k/ε) and outputs a value ṽ ∈ [0, 1] such that∣∣PrG∼N(0,1)n [g(Q1(G), . . . , Qk(G)) = 1]− ṽ

∣∣ ≤ ε, (1)

where Qi(x) = sign(qi(x)) for i = 1, . . . , k.

We note that in the case k = 1, the algorithm of the current work is not the same as the algorithm of
[DDS13] (indeed, observe the above algorithm runs in time exponential in 1/ε even for k = 1, whereas the
algorithm of [DDS13] runs in time poly(n/ε) for a single Gaussian polynomial).

Step (ii): The regularity lemma. Recall that the influence of variable i on a multilinear polynomial
p =

∑
S⊆[n] p̂(S)

∏
i∈S xi over {−1, 1}n (under the uniform distribution) is Infi(p)

def
=
∑

S3i p̂(S)2 and
that the variance of p is Var[p] = Ex∈{−1,1}n [(p(x)−E[p])2] =

∑
∅6=S p̂

2(S). For p a degree-d polynomial
we have Var[p] ≤

∑n
i=1 Infi(p) ≤ d · Var[p], so for small constant d the variance and the total influence∑n

i=1 Infi(d) are equal up to a small constant factor. A polynomial p is said to be τ -regular if for all i ∈ [n]
we have Infi(p) ≤ τ ·Var[p].

As noted earlier, by adapting known invariance principles from the literature [Mos08] it is possible
to show that an algorithm for approximately counting satisfying assignments of a junta of degree-2 PTFs
over N(0, 1)n will in fact also succeed for approximately counting satisfying assignments of a junta of
sufficiently regular degree-2 PTFs over {−1, 1}n. Since Theorem 2 gives us an algorithm for the Gaussian
problem, to complete the chain we need a reduction from the problem of counting satisfying assignments
of a junta of arbitrary degree-2 PTFs over {−1, 1}n, to the problem of counting satisfying assignments of a
junta of regular degree-2 PTFs over {−1, 1}n.

We accomplish this by giving a novel regularity lemma for k-tuples of degree-2 (or more generally,
degree-d) polynomials. Informally speaking, this is an efficient deterministic algorithm with the following
property: given as input a k-tuple of arbitrary degree-2 polynomials (p1, . . . , pk) over {−1, 1}n, it con-
structs a decision tree of restrictions such that for almost every root-to-leaf path (i.e., restriction ρ) in the
decision tree, all k restricted polynomials (p1)ρ, . . . , (pk)ρ are “easy to handle” for deterministic approxi-
mate counting, in the following sense: each (pi)ρ is either highly regular, or else is highly skewed, in the
sense that its constant term is so large compared to its variance that the corresponding PTF sign((pi)ρ) is
guaranteed to be very close to a constant function. Such leaves are “easy to handle” because we can set the
PTFs corresponding to “skewed” polynomials to constants (and incur only small error); then we are left with
a junta of regular degree-2 PTFs, which can be handled using the Gaussian algorithm as sketched above.

A range of related “regularity lemmas” have been given in the LTF/PTF literature [DSTW10, HKM09,
BELY09, GOWZ10], but none with all the properties that we require. [Ser07] implicitly gave a regularity
lemma for a single LTF, and [DSTW10, HKM09, BELY09] each gave (slightly different flavors of) regularity
lemmas for a single degree-d PTF. Subsequently [GOWZ10] gave a regularity lemma for k-tuples of LTFs;
as noted earlier our decomposition for k-tuples of degree-2 polynomials over Gaussian inputs given in
Section 5 uses ideas from their work. However, as we describe in Section 7, their approach does not seem
to extend to degrees d > 1, so we must use a different approach to prove our regularity lemma.
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1.3 Organization. After giving some useful background in Section 2, we prove our new multidimensional
CLT in Section 3. We give the transformation procedure that is at the heart of our decomposition approach
in Section 4, and present the actual deterministic counting algorithm for the Gaussian case that uses this
transformation in Section 5. Section 6 shows how the new regularity lemma for k-tuples of Boolean PTFs
gives the main Boolean counting result, and finally the regularity lemma is proved in Section 7.

2 Definitions, Notation and Useful Background

Polynomials and PTFs. Throughout the paper we use lower-case letters p, q, etc. to denote low-degree
multivariate polynomials. We use capital letters to denote the corresponding polynomial threshold functions
that map to {−1, 1}, so typically P (x) = sign(p(x)), Q(x) = sign(q(x)), etc.

We consider multivariate polynomials over the domains Rn (endowed with the standard normal distri-
bution N(0, 1)n) and {−1, 1}n (endowed with the uniform distribution). Since x2 = 1 for x ∈ {−1, 1}, in
dealing with polynomials over the domain {−1, 1}n we may without loss of generality restrict our attention
to multilinear polynomials.

Kolmogorov distance between Rk-valued random variables. It will be convenient for us to use a natural
k-dimensional generalization of the Kolmogorov distance between two real-valued random variables which
we now describe. Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be two Rk-valued random variables. We
define the k-dimensional Kolmogorov distance between X and Y to be

dK(X,Y ) = sup
(θ1,...,θk)∈Rk

|Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]| .

This will be useful to us when we are analyzing k-juntas of degree-2 PTFs over Gaussian random variables;
we will typically have X = (q1(x), . . . , qk(x)) where x ∼ N(0, 1)n and qi is a degree-2 polynomial, and
have Y = (Y1, . . . , Yk) be a k-dimensional Gaussian random variable whose mean and covariance matrix
match those of X .

Notation and terminology for degree-2 polynomials. Let q = (q1(x), . . . , qk(x)) be a vector of polyno-
mials over Rn. We endow Rn with the N(0, 1)n distribution, and hence we may view q as a k-dimensional
random variable. We sometimes refer to the qi’s as Gaussian polynomials.

For A a real n× n matrix we write ‖A‖2 to denote the operator norm ‖A‖2 = max06=x∈Rn
‖Ax‖2
‖x‖2 .

Given a degree-2 polynomial q : Rn → R defined as q(x) =
∑

1≤i≤j≤n aijxixj +
∑

1≤i≤n bixi + C,
we define the (symmetric) matrix A corresponding to its quadratic part as : Aij = aij(1/2 + δij/2). Note
that with this definition we have that xT ·A · x =

∑
1≤i≤j≤n aijxixj for the vector x = (x1, . . . , xn).

Throughout the paper we adopt the convention that the eigenvalues λ1, . . . , λn of a real symmetric
matrix A satisfy |λ1| ≥ · · · ≥ |λn|. We sometimes write λmax(A) to denote λ1, and we sometimes write
λi(q) to refer to the i-th eigenvalue of the matrix A defined based on q as described above.

Degree-2 polynomials and their heads and tails. The following notation will be useful for us, especially
in Section 4. Let z(y1, . . . , yn) =

∑
1≤i≤j≤n aijyiyj +

∑
1≤i≤n biyi + c be a degree-2 polynomial. For

0 ≤ t ≤ n we say the t-head of z(y), denoted Headt(z(y)), is the polynomial

Headt(z(y))
def
=

∑
1≤i≤t,j≥i

aijyiyj +
∑

1≤i≤t
biyi (2)

and the t-tail of z(y), denoted Tailt(z(y)), is the polynomial
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Tailt(z(y))
def
=

∑
t<i≤j≤n

aijyiyj +
∑
t<i≤n

biyi + c, (3)

so clearly we have z(y) = Headt(z(y)) + Tailt(z(y)). (Intuitively, Tailt(z(y)) is the part of z(y) which
does not “touch” any of the first t variables y1, . . . , yt and Headt(z(y)) is the part which does “touch” those
variables.)

Remark 3. Note that if ρ = (ρ1, . . . , ρt) ∈ Rt is a restriction fixing variables y1, . . . , yt, then the restricted

polynomial z|ρ(y)
def
= z(ρ1, . . . , ρt, yt+1, . . . , yn) is of the form Tailt(z(y)) + L(yt+1, . . . , yn) where L is

an affine form.

We further define QuadTailt(z(y)), the “quadratic portion of the t-tail,” to be

QuadTailt(z(y))
def
=

∑
t<i≤j≤n

aijyiyj . (4)

Setting aside heads and tails, it will sometimes be useful for us to consider the sum of squares of all the
(non-constant) coefficients of a degree-2 polynomial. Towards that end we have the following definition:

Definition 4. Given p : Rn → R defined by p(x) =
∑

1≤i≤j≤n aijxixj +
∑

1≤i≤n bixi + C, define SS(p)

as SS(p) =
∑

1≤i≤j≤n a
2
ij +

∑
1≤i≤n b

2
i .

The following straightforward claim is established in [DDS13]:

Claim 5. [Claim 20 of [DDS13]] Given p : Rn → R, we have that 2SS(p) ≥ Var(p) ≥ SS(p).

Tail bounds and anti-concentration bounds on low-degree polynomials in Gaussian variables. We
will need the following standard concentration bound for low-degree polynomials over independent Gaus-
sians.

Theorem 6 (“degree-d Chernoff bound”, [Jan97]). Let p : Rn → R be a degree-d polynomial. For any
t > ed, we have

Prx∼N(0,1)n [|p(x)−E[p(x)]| > t ·
√

Var(p(x))] ≤ de−Ω(t2/d).

We will also use the following anti-concentration bound for degree-d polynomials over Gaussians:

Theorem 7 ([CW01]). Let p : Rn → R be a degree-d polynomial that is not identically 0. Then for all
ε > 0 and all θ ∈ R, we have

Prx∼N(0,1)n

[
|p(x)− θ| < ε

√
Var(p)

]
≤ O(dε1/d).

The model. Throughout this paper, our algorithms will repeatedly be performing basic linear algebraic
operations, in particular SVD computation and Gram-Schmidt orthogonalization. In the bit complexity
model, it is well-known that these linear algebraic operations can be performed (by deterministic algorithms)
up to additive error ε in time poly(n, 1/ε). For example, let A ∈ Rn×m have b-bit rational entries. It is
known (see [GL96] for details) that in time poly(n,m, b, 1/ε), it is possible to compute a value σ̃1 and

vectors u1 ∈ Rn, v1 ∈ Rm, such that σ̃1 =
uT1 Av1

‖u1‖‖v1‖ and |σ̃1 − σ1| ≤ ε, where σ1 is the largest singular

value of A. Likewise, given n linearly independent vectors v(1), . . . , v(n) ∈ Rm with b-bit rational entries,
it is possible to compute vectors ũ(1), . . . , ũ(n) in time poly(n,m, b) such that if u(1), . . . , u(n) is a Gram-
Schmidt orthogonalization of v(1), . . . , v(n) then we have |u(i) · u(j) − ũ(i) · ũ(j)| ≤ 2−poly(b) for all i, j.
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In this paper, we work in a unit-cost real number model of computation. This allows us to assume
that given a real matrix A ∈ Rn×m with b-bit rational entries, we can compute the SVD of A exactly in
time poly(n,m, b). Likewise, given n vectors over Rm, each of whose entries are b-bit rational numbers,
we can perform an exact Gram-Schmidt orthogonalization in time poly(n,m, b). Using high-accuracy
approximations of the sort described above throughout our algorithms, it is straightforward to translate
our unit-cost real-number algorithms into the bit complexity setting, at the cost of some additional error in
the resulting bound.

Using these two observations, it can be shown that by making sufficiently accurate approximations at
each stage where a numerical computation is performed by our “idealized” algorithm, the cumulative er-
ror resulting from all of the approximations can be absorbed into the final O(ε) error bound. Since inverse
polynomial levels of error can be achieved in polynomial time for all of the approximate numerical computa-
tions that our algorithm performs, and since only poly(n) many such approximation steps are performed by
poly(n)-time algorithms, the resulting approximate implementations of our algorithms in a bit-complexity
model also achieve the guarantee of our main results, at the cost of a fixed poly(n) overhead in the running
time. For the sake of completeness, such a detailed numerical analysis was performed in our previous pa-
per [DDS13]. Since working through the details of such an analysis is tedious and detracts from the clarity
of the presentation, we content ourselves with this brief discussion in this work.

3 A multidimensional CLT for degree-2 Gaussian polynomials

In this section we prove a central limit theorem which plays a crucial role in the decomposition result which
we establish in the following sections. Let q = (q1, . . . , qk) where each qi is a degree-2 polynomial in
Gaussian random variables (x1, . . . , xn) ∼ N(0, 1)n. Our CLT states that under suitable conditions on
q1, . . . , qk — all of them have only small–magnitude eigenvalues, no Var[qi] is too large and at least one
Var[qi] is not too small — the distribution of q is close (in k-dimensional Kolmogorov distance) to the
distribution of the k-dimensional Gaussian random variable whose mean and covariance matrix match q.

Theorem 8. Let q = (q1(x), . . . , qk(x)) where each qi is a degree-2 Gaussian polynomial that satisfies
Var[qi] ≤ 1 and |λmax(qi)| ≤ ε for all i ∈ [k]. Suppose that maxi∈[k] Var(qi) ≥ λ. Let C denote the
covariance matrix of q and let N = N((µ1, . . . , µk), C) be a k-dimensional Gaussian random variable
with covariance matrix C and mean (µ1, . . . , µk) where µi = E[qi]. Then

dK(q,N) ≤ O

(
k2/3ε1/6

λ1/6

)
.

Looking ahead to motivate this result for our ultimate purposes, Theorem 8 is useful for deterministic
approximate counting because if q = (q1, . . . , qk) satisfies the conditions of the theorem, then the theorem
ensures that Prx∼N(0,1)n [∀` ∈ [k], q`(x) ≤ 0] is close to Pr [∀` ∈ [k], N` ≤ 0]. Note that the latter quantity
can be efficiently estimated by a deterministic algorithm.

A key ingredient in the proof of Theorem 8 is a CLT due to Nourdin and Peccati [NP09] which gives a
bound that involves the Malliavin derivative of the functions q1, . . . , qk. In Section 3.1we give the necessary
background from Malliavin calculus and build on the [NP09] result to prove a result which is similar to
Theorem 8 but gives a bound on E[h(q)] − E[h(N)] rather than dK(q,N) for a broad class of “test func-
tions” h (see Theorem 12 below). In Section 3.2we show how Theorem 12can be combined with standard
“mollification” techniques to yield Theorem 8.

3.1 Malliavin calculus and test functions with bounded second derivative. We need some notation and
conceptual background before we can state the Nourdin-Peccati multi-dimensional CLT from [NP09]. Their
CLT is proved using Stein’s method; while there is a rich theory underlying their result we give only the
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absolute basics that suffice for our purposes. (See e.g. [NP09, Nou12] for detailed treatments of Malliavin
calculus and its interaction with Stein’s Method.)

We will use X to denote the space Rn endowed with the standard N(0, 1)n normal measure and P to
denote the family of all polynomials over X . For integer d ≥ 0 we let Hd denote the “d-th Wiener chaos”
of X , namely the space of all homogeneous degree-d Hermite polynomials over X . We define the operator
Id : P → Hd as follows : Id maps p ∈ P to the degree-d part of its Hermite expansion, so if p has degree d
then p = I0(p) + · · ·+ Id(p).

We next define the generator of the Ornstein-Uhlenbeck semigroup. This is the operator L which is
defined on P via

Lp =
∞∑
q=0
−q · Iq(p).

It is easy to see that for p ∈ P we have the inverse operator

L−1p =
∞∑
q=1

−1

q
Iq(p).

Next we introduce the notion of the Malliavin derivative. The Malliavin derivative operator D maps a
real-valued random variable (defined over X by a differentiable real-valued function f : Rn → R) to an
n-dimensional vector of random variables in the following way: for f : Rn → R,

Df =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)
.

The following key identity provides the fundamental connection between Malliavin Calculus and Stein’s
method, which is used to prove Theorem 11 below:

Claim 9 (see e.g. Equation (2.22) of [NP09]). Let h : R→ R be a continuous function with a bounded first
derivative. Let p and q be polynomials over X with E[q] = 0. Then E[qh(p)] = E[h′(p) · 〈Dp , −DL−1q〉].

Specializing to the case h(x) = x, we have

Corollary 10. Let p and q be finite degree polynomials overX with E[q] = 0. Then, E[qp] = E[〈Dp , −DL−1q〉].

We now recall the following CLT due to Nourdin and Peccati:

Theorem 11. [[NP09], see also [Nou12], Theorem 6.1] Let p = (p1, . . . , pk) where each pi is a Gaussian
polynomial with E[pi] = 0. LetC be a symmetric PSD matrix in Rk×k and letN be a mean-0 k-dimensional
Gaussian random variable with covariance matrix C. Then for any h : Rk → R, h ∈ C2 such that
‖h′′‖∞ <∞, we have

|E[h(p)]−E[h(N)]| < 1

2
‖h′′‖∞ ·

 k∑
i=1

k∑
j=1

E[|C(i, j)− Y (i, j)|]


where Y (i, j) = 〈Dpi ,−DL−1pj〉.

We now use Theorem 11 to prove our main result of this subsection, which is the following CLT for mul-
tidimensional degree-2 Gaussian polynomials with small-magnitude eigenvalues. Our CLT says that such
multidimensional random variables must in fact be close to multidimensional Gaussian distributions, where
“closeness” here is measured using test functions with bounded second derivative. (In the next subsec-
tion we extend this result using mollification techniques to obtain Theorem 8, which uses multidimensional
Kolmogorov distance.)
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Theorem 12. Let q = (q1, . . . , qk) where each qi is a degree-2 mean-0 Gaussian polynomial with Var[qi] ≤
1 and |λmax(qi)| ≤ ε. Let C denote the covariance matrix of q, so C(i, j) = Cov(qi, qj) = E[qiqj ].
Let N be a mean-zero k-dimensional Gaussian random variable with covariance matrix C. Then for any
h : Rk → R, h ∈ C2 such that ‖h′′‖∞ <∞, we have

|E[h(q)]−E[h(N)]| < O(k2ε) · ‖h′′‖∞.

Proof. As in Theorem 11, we write Y (a, b) to denote 〈Dqa,−DL−1qb〉. For any 1 ≤ a, b ≤ k, we have

C(a, b) = Cov(qa, qb) = E[qaqb] = E[Y (a, b)], (5)

where the second equality is because qa and qb have mean 0 and the third equality is by Corollary 10. Since
C is a covariance matrix and every covariance matrix is PSD, we may apply Theorem 11, and we get that

|E[h(q)]−E[h(N)]| < k2

2
‖h′′‖∞· max

1≤a,b≤k
E[|C(a, b)−Y (a, b)|] =

k2

2
‖h′′‖∞· max

1≤a,b≤k
E[|Y (a, b)−E[Y (a, b)]|],

where we used (5) for the equality. By Jensen’s inequality we have E[|Y (a, b)−E[Y (a, b)]|] ≤
√

Var[Y (a, b)].
Lemma 13 below gives us that Var[Y (a, b)] ≤ O(ε2), and the theorem is proved.

It remains to establish the following lemma:

Lemma 13. For each 1 ≤ a, b ≤ k, we have that Var[Y (a, b)] = O(ε2).

Proof. Fix 1 ≤ a, b ≤ k, so qa(x1, . . . , xn) and qb(x1, . . . , xn) are degree-2 Gaussian polynomials with
mean 0. Recalling the spherical symmetry of the N(0, 1)n distribution, by a suitable choice of basis that
diagonalizes qa we may write

qa(x) =
n∑
i=1

λix
2
i +

n∑
i=1

βixi + γ and qb(x) =
n∑

i,j=1
δijxixj +

n∑
i=1

κixi + ρ,

where we take δij = δji for all 1 ≤ i, j ≤ k.
Recalling that Y (a, b) = 〈Dqa,−DL−1qb〉, we start by observing that Dqa = (2λ`x`+β`)`=1,...,n. For

−DL−1qb, we have that L−1qb = −I1(qb)− (1/2)I2(qb). We have I1(qb) =
∑n

i=1 κixi. Recalling that the
first two normalized Hermite polynomials are h1(x) = x and h2(x) = (x2− 1)/

√
2, it is straightforward to

verify that I2(qb) (the homogeneous degree-2 part of the Hermite expansion of qb) is

I2(qb) =
∑

1≤i 6=j≤k
δijh1(xi)h1(xj) +

n∑
i=1

√
2 · δiih2(xi).

Hence
L−1qb = −

n∑
i=1

κixi −
1

2

∑
1≤i 6=j≤k

δijxixj −
1

2

n∑
i=1

δii(x
2
i − 1),

so

−DL−1qb =

(
κ` +

n∑
i=1

δi`xi

)
`=1,...,n

.

We thus can write Y (a, b) as a degree-2 polynomial in the variables x1, . . . , xn as

Y (a, b) =
n∑̀
=1

(2λ`x` + β`) ·
(
κ` +

n∑
i=1

δi`xi

)
=

n∑
i=1

n∑̀
=1

2λ`δi`xix` +
n∑̀
=1

2κ`λ`x` +
n∑
i=1

(
n∑̀
=1

β`δi`

)
xi +

n∑̀
=1

κ`β`.
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By Claim 5, we know that Var[Y (a, b)] ≤ SS(Y (a, b)). Using the inequality (r + s)2 ≤ 2r2 + 2s2 for the
degree-1 coefficients, to prove the lemma it suffices to show that

n∑
i=1

n∑̀
=1

(λ`δi`)
2 +

n∑̀
=1

(κ`λ`)
2 +

n∑
i=1

(
n∑̀
=1

β`δi`

)2

≤ O(ε2). (6)

We bound each term of (6) in turn. For the first, we recall that each λ` is an eigenvalue of qa and hence
satisfies λ2

` ≤ ε2; hence we have

n∑
i=1

n∑̀
=1

(λ`δi`)
2 ≤ ε2

n∑
i=1

n∑̀
=1

(δi`)
2 ≤ ε2,

where we have used Claim 5 again to get that
∑n

i,`=1(δi`)
2 ≤ SS(qb) ≤ Var[qb] ≤ 1. For the second term,

we have
n∑̀
=1

(κ`λ`)
2 ≤ ε2 ·

n∑̀
=1

κ2
` ≤ ε2 · SS(qb) ≤ ε2.

Finally, for the third term, let us write M = (δi`) for the k× k matrix corresponding to the quadratic part of
qb and β̄ for the column vector whose `-th entry is β`. Then we have that

n∑
i=1

(
n∑̀
=1

β`δi`

)2

= ‖Mβ̄‖22 ≤ ‖λmax(M)β̄‖22 ≤ ε2‖β̄‖2 ≤ ε2,

where the second inequality is because each eigenvalue of pb has magnitude at most 1 and the third is
because ‖β̄‖22 ≤ SS(pa) ≤ Var[pa] ≤ 1. This concludes the proof of Lemma 13.

3.2 From test functions with bounded second derivative to multidimensional Kolmogorov distance.
In this subsection we show how “mollification” arguments can be used to extend Theorem 12 to Theorem
8. The main idea is to approximate the (discontinuous) indicator function of an appropriate region by an
appropriately “mollified” function (that is continuous with bounded second derivative) so that the corre-
sponding expectations are approximately preserved. There are several different mollification constructions
in the literature that could potentially by used for this purpose. We use the following theore from [DKN10].

Theorem 14. [[DKN10], Theorem 4.8 and Theorem 4.10] Let I : Rk → {0, 1} be the indicator of a region
R in Rk and c > 0 be arbitrary. Then there exists a function Ĩc : Rk → [0, 1] satisfying:

• ‖∂β Ĩc/∂xβ‖∞ ≤ (2c)|β| for any β ∈ Nk, and

• |I(x)− Ĩc(x)| ≤ min{1, O(( k
c·d(x,∂R))2)} for all x ∈ Rk,

where d(x, ∂R) is the Euclidean distance of the point x to the closest point in R.

We use this to prove the following lemma, which says that if a k-dimensional Gaussian X “mimics”
the joint distribution Y of a vector of k degree-2 Gaussian polynomials (in the sense of “fooling” all test
functions h with bounded second derivative), then X must have small k-dimensional Kolmogorov distance
from Y :

Lemma 15. Let p1(x), . . . , pk(x) : Rn → R be degree-2 polynomials with maxi∈[k] Var(pi) ≥ λ, and let
Y be their joint distribution when x is drawn from N(0, 1)n. Let X ∈ Rk be a jointly normal distribution
such that maxi Var(Xi) ≥ λ. Suppose that for all functions h : Rk → R, h ∈ C2, it holds that |E[h(X)]−
E[h(Y )]| ≤ ‖h′′‖∞ · η. Then we have

dK(X,Y ) ≤ O

(
k1/3η1/6

λ1/6

)
.
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Proof. Fix any θ ∈ Rn and define the function I : Rk → {0, 1} to be the indicator of the region R def
= {x ∈

Rk : xi ≤ θi}. Choose c > 0. We have∣∣Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]
∣∣

= |E[I(X)]−E[I(Y )]|

≤
∣∣∣E[Ĩc(X)]−E[Ĩc(Y )]

∣∣∣+
∣∣∣E[Ĩc(Y )]−EI(Y )]

∣∣∣+
∣∣∣E[Ĩc(X)]−E[I(X)]

∣∣∣
≤ 4c2η +

∣∣∣E[Ĩc(Y )]−EI(Y )]
∣∣∣+
∣∣∣E[Ĩc(X)]−E[I(X)]

∣∣∣ ,
where we used the first item of Theorem 14 to bound the first term. We proceed to bound the other two
terms. For the first one, choose δ > 0 and now note that∣∣E[Ĩc(Y )]−EI(Y )]

∣∣ ≤ Ey∼Y [|Ĩc(y)− I(y)|]

≤ Pry∼Y [d(y, ∂R) ≤ δ] +O

(
k2

c2δ2

)
≤ O

( √
δ

λ1/4

)
+O

(
k2

c2δ2

)
,

The second inequality above used 0 ≤ I, Ĩc ≤ 1 and the second item of Theorem 14. The final inequality
used the Carbery-Wright anti-concentration bound (Theorem 7) together with the observation that in order
for y ∼ Y to be within distance δ of δR, it must be the case that |pi(y)− θi| ≤ δ where i is the element of
[k] that has Var(pi) ≥ λ. Similar reasoning gives that

∣∣E[Ĩc(X)]−EI(X)]
∣∣ ≤ O( √δ

λ1/4

)
+O

( k2

c2δ2

)
(in fact here the

√
δ

λ1/4 can be strengthened to δ
λ1/2 because now Xi is a degree-1 rather than degree-2

polynomial in N(0, 1) Gaussians, but this will not help the overall bound). Optimizing for δ by setting
δ = k4/5λ1/10/c4/5, we get that

∣∣Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]
∣∣ ≤ 4c2η +O

(
k2/5

c2/5λ1/5

)
.

Now optimizing for c by choosing c = k1/6/(η5/12γ1/12), we get that

∣∣Pr[∀ i ∈ [k] Xi ≤ θi]−Pr[∀ i ∈ [k] Yi ≤ θi]
∣∣ ≤ O(k1/3η1/6

λ1/6

)
,

which concludes the proof of Lemma 15.

With Lemma 15 and Theorem 12 in hand we are ready to prove Theorem 8:

Proof of Theorem 8: For i ∈ [k] let q̃i(x) = qi(x) − E[qi], so q̃i has mean zero. Applying Theorem 12 to
q̃ = (q̃1, . . . , q̃k) we get that any hwith ‖h′′‖∞ ≤ ∞ satisfies |E[h(q̃)]−E[h(N(0, C))]| ≤ O(k2ε)·‖h′′‖∞.
Applying Lemma 15, taking X to be N(0, C) and its η parameter to be O(k2ε), we get that

dK(q̃, N(0, C)) ≤ O

(
k2/3ε1/6

λ1/6

)
,

which gives the theorem as claimed.
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4 Transforming a k-tuple of degree-2 Gaussian polynomials

In this section we present a deterministic procedure, called Transform, which transforms an arbitrary k-
tuple of degree-2 polynomials (q1, . . . , qk) into an “essentially equivalent” (for the purpose of approxi-
mately counting PTF satisfying assignments under the Gaussian distribution) k-tuple of degree-2 polynomi-
als (r1, . . . , rk) that have a “nice structure”. This structure enables an efficient deterministic decomposition
of the joint distribution. In the following section we will give an efficient algorithm to do deterministic
approximate counting for vectors of polynomials with this “nice structure.”

In more detail, the main theorem of this section, Theorem 16, says the following: Any k-tuple q =
(q1, . . . , qk) of degree-2 Gaussian polynomials can be efficiently deterministically transformed into a k-
tuple r = (r1, . . . , rk) of degree-2 Gaussian polynomials such that (i) dK(r, q) ≤ O(ε), and (ii) for every
restriction fixing the first t = poly(k/ε) variables, the k-tuple r|ρ = (r1|ρ, . . . , rk|ρ) of restricted poly-
nomials has k-dimensional Kolmogorov distance O(ε) from the k-dimensional Normal distribution with
matching mean and covariance matrix. More formally,

Theorem 16. There is an algorithm Transform with the following properties: It takes as input a k-tuple
q = (q1, . . . , qk) of degree-2 polynomials over Rn with Varx∼N(0,1)n [qi(x)] = 1 for all i ∈ [k], and a
parameter ε > 0. It runs in deterministic time poly(n, k, 1/ε) and outputs a k-tuple r = (r1, . . . , rk) of
degree-2 polynomials over Rn and a value 0 ≤ t ≤ O(k ln(1/ε)/ε2) such that both of the following hold:

(i) dK(q, r) ≤ O(ε), where q is the random variable q = (q1(x), . . . , qk(x)) with x ∼ N(0, 1)n and
r = (r1(y), . . . , rk(y)) with y ∼ N(0, 1)n; and

(ii) For every restriction ρ = (ρ1, . . . , ρt), we have

dK(r|ρ, N(µ(r|ρ),Σ(rρ))) ≤ ε.

Here “rρ” denotes the random variable (r1|ρ(y), . . . , rk|ρ(y)) where y ∼ N(0, 1)n and ri|ρ(y)
def
=

ri(ρ1, . . . , ρt, yt+1, . . . , yn); µ(r|ρ) denotes the vector of means (µ1|ρ, . . . , µk|ρ) ∈ Rk where µi|ρ =
Ey∼N(0,1)n [ri|ρ(y)]; and Σ(rρ) denotes the covariance matrix in Rk×k whose (i, j) entry is
Covy∼N(0,1)n(ri|ρ(y), rj |ρ(y)).

At a high level, the Transform procedure first performs a “change of basis” using the procedure
Change-Basis to convert q = (q1(x), . . . , qk(x)) into an “almost equivalent” vector p = (p1(y), . . . , pk(y))
of polynomials. (Conceptually the distribution of (p1(y), . . . , pk(y)) is identical to the distribution of
(q1(x), . . . , qk(x)), but in reality some approximations need to be made because we can only approximately
compute eigenvalues, etc.; hence the two vector-valued random variables are only “almost equivalent.”)
Next, the Transform procedure runs Process-Polys on (p1, . . . , pk); this further changes each pi slightly,
and yields polynomials r1, . . . , rk which are the final output of Transform(q1, . . . , qk). A detailed descrip-
tion of the Transform procedure follows:

Transform
Input: vector q = (q1, . . . , qk) of degree-2 polynomials q`(x1, . . . , xn) such that Ex∼N(0,1)n [q`(x)2] =
1 for all ` = 1, . . . , k; parameter ε > 0
Output: A vector r = (r1(y), . . . , rk(y)) of degree-2 polynomials over Rn, and a value 0 ≤ t ≤
O(k ln(1/ε)/ε2).

1. Set η = (ε/k)4/(log(k/ε))2 and ε′ = ε12η2/k8.
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2. Run Change-Basis((q1, . . . , qk), ε
′, η) and let (p1, . . . , pk), t be its output.

3. Run Process-Polys((p1, . . . , pk), t, η) and let (r1, . . . , rk), k
′ be its output.

4. Output (r1, . . . , rk), t.

Subsection 4.1 below gives a detailed description and analysis of Change-Basis, Subsection 4.2 does
the same for Process-Polys, and Subsection 4.3 proves Theorem 16.

4.1 The Change-Basis procedure.

Intuition. The high-level approach of the Change-Basis procedure is similar to the decomposition proce-
dure for vectors of k linear forms that was given in [GOWZ10], but there are significant additional compli-
cations that arise in our setting. Briefly, in the [GOWZ10] approach, a vector of k linear forms is simplified
by “collecting” variables in a greedy fashion. Each of the k linear forms has a budget of at most B, meaning
that at mostB variables will be collected on its behalf; thus the overall number of variables that are collected
is at most kB. Intuitively, at each stage some variable is collected which has large influence in the remaining
(uncollected) portion of some linear form. The [GOWZ10] analysis shows that after at most B variables
have been collected on behalf of each linear form, each of the k linear forms will either be regular or its
remaining portion (consisting of the uncollected variables) will have small variance. (See Section 7.3 for a
more detailed overview of the [GOWZ10] decomposition procedure).

In our current setting, we are dealing with k degree-2 Gaussian polynomials instead of k linear forms,
and linear forms will play a role for us which is analogous to the role that single variables played in
[GOWZ10]. Thus each quadratic polynomial will have at most B linear forms collected on its behalf and
at most kB linear forms will be collected overall. Of course a priori there are uncountably many pos-
sible linear forms to contend with, so it is not clear how to select a single linear form to collect in each
stage. We do this by (approximately) computing the largest eigenvalues of each quadratic form; in each
stage we collect some linear form, corresponding to an eigenvector for some quadratic polynomial, whose
corresponding eigenvalue is large compared to the variance of the remaining (“uncollected”) portion of the
quadratic polynomial. An argument similar to that of [GOWZ10] shows that after at most B linear forms
have been collected on behalf of each quadratic polynomial, each of the k quadratic polynomials will either
be “regular” (have small largest eigenvalue compared to the variance of the remaining portion), or else the
variance of the remaining portion will be small.

Remark 17. In this section we describe an “idealized” version of the algorithm which assumes that we can
do certain operations (construct an orthonormal basis, compute eigenvalues and eigenvectors) exactly with
no error. In fact these operations can only be carried out approximately, but the errors can in all cases be
made extremely small so that running the algorithm with “low-error” implementations of the idealized steps
still gives a successful implementation overall. However, keeping track of the errors and approximations is
quite cumbersome, so in order to highlight the main ideas we begin by describing the “idealized” version.

We will try to clearly state all of the idealized assumptions as they come up in the idealized algorithm be-
low. We will state Lemma 26, the main lemma about the Change-Basis algorithm, in versions corresponding
both to the “idealized” algorithm and to the “real” algorithm.

4.1.1 Setup for the Change-Basis procedure. We start with a few definitions. We say that a set A =
{L1(x), . . . , Lr(x)} of r ≤ n linear formsLi(x) = v(i)·x over x1, . . . , xn is orthonormal if Ex∼N(0,1)n [Li(x)Lj(x)] =

δij for 1 ≤ i, j ≤ r (equivalently, v(1), . . . , v(r) are orthonormal vectors).
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Definition 18. Let q : Rn → R be a degree-2 polynomial

q(x) =
∑

1≤i≤j≤n
aijxixj +

∑
1≤i≤n

bixi + c, (7)

and let {Li(x) = v(i) · x}i=1,...,n be a full orthonormal set of linear forms. Let A = {L1, . . . , Lr} and
B = {Lr+1, . . . , Ln} for some 0 ≤ r ≤ n. We define Proj(q,A,B), the projection of q onto A, and
Res(q,A,B), the residue of q w.r.t. A, as follows. Rewrite q using the linear forms Li(x), i.e.

q =
∑

1≤i≤j≤n
αijLi(x)Lj(x) +

∑
1≤i≤n

βiLi(x) + c. (8)

Define

Res(q,A,B)
def
=

∑
r<i≤j≤n

αijLi(x)Lj(x) +
∑

r<i≤n
βiLi(x) + c (9)

and
Proj(q,A,B)

def
= q − Res(q,A,B).

Note that the residue (resp. projection) of q corresponds to the tail (resp. head) of q in the basis of the linear
forms Li.

Idealized Assumption #1: There is a poly(n) time deterministic procedure Complete-Basis which, given
a setA = {Li(x)}i=1,...,r of orthonormal linear forms, outputs a set B = {Lj(x)}j=r+1,...,n such thatA∪B
is a full orthonormal set of linear forms.

Claim 19. There is an efficient algorithm Rewrite which, given as input q (in the form (7)and sets A =
{Li(x)}i=1,...,r, B = {Lr+1(x), . . . , Ln(x)} such thatA∪B is a full orthonormal basis, outputs coefficients
αij , βi, c such that (8) holds.

Proof sketch: Given A and B by performing a matrix inversion it is possible to efficiently compute co-
efficients uij such that for i ∈ [n] we have xi =

∑n
j=1 uijLj(x). Substituting

∑n
j=1 uijLj(x) for each

occurrence of xi in (8) we may rewrite q in the form (8) and obtain the desired coefficients.

Next we observe that the largest eigenvalue can never increase as we consider the residue of q with
respect to larger and larger orthonormal sets of linear forms:

Lemma 20. Fix any degree-2 polynomial q and any full orthonormal set {Li(x) = v(i) ·x}i=1,...,n of linear
forms. Let A = {Li(x) = v(i) · x}i=1,...,r and B = {Li(x) = v(i) · x}i=r+1,...,n. Then we have that
|λmax(Res(q,A,B))| ≤ |λmax(q)|.

Proof. Let M be the n × n symmetric matrix corresponding to the quadratic part of q, and let M ′ be the
n×n symmetric matrix corresponding to the quadratic part of Res(q,A,B). Let M̃ be the symmetric matrix
obtained from M by a change of basis to the new coordinate system defined by the n orthonormal linear
forms L1, . . . , Ln, and likewise let M̃ ′ be the matrix obtained from M ′ by the same change of basis. Note
that M̃ ′ is obtained from M̃ by zeroing out all entries M̃ij that have either i ∈ A or j ∈ A, i.e. M̃ ′

corresponds to the principal minor M̃B,B of M̃. Since eigenvalues are unaffected by a change of basis, it
suffices to show that |λmax(M̃)| ≥ |λmax(M̃ ′)|.

We may suppose without loss of generality that λmax(M̃ ′) is positive. By the variational characterization
of eigenvalues we have that λmax(M̃ ′) = max‖x‖=1 x

T M̃ ′x. Since M̃ ′ corresponds to the principal minor
M̃B,B of M̃ , a vector x′ that achieves the maximum must have nonzero coordinates only in B, and thus

λmax(M̃ ′) = (x′)T M̃ ′x′ = (x′)T M̃x′ ≤ max
‖x‖=1

xT M̃ ′x ≤ |λmax(M̃)|.
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4.1.2 The Change-Basis procedure. We now describe the Change-Basis procedure. This procedure
takes as input a vector q = (q1, . . . , qk) of k degree-2 polynomials, where each qi is specified explicitly by its
coefficientsas in (7), and two parameters ε′, η > 0. It outputs a vector of polynomials p = (p1(y), . . . , pk(y))

where each p`(y1, . . . , yn) is also specified explicitly by coefficients α(`)
ij , β(`)

i , c(`) that define p`(y) as

p`(y) =
∑

1≤i≤j≤n
α

(`)
ij yiyj +

∑
1≤i≤n

β
(`)
i yi + c(`), (10)

and an integer 0 ≤ t ≤ k ln(1/η)/ε′2. As its name suggests, the Change-Basis procedure essentially
performs a change of basis on Rn and rewrites the polynomials q`(x) in the new basis as p`(y). It is
helpful to think of yi as playing the role of Li(x) where {Li(x)}i=1,...,n is a set of orthonormal linear forms
computed by the algorithm, and to think of the coefficients α(`)

ij , β(`)
i , c(`) defining p`(y) as being obtained

from q`(x) by rewriting q`(x) using the linear forms Li(x) as in (8).
The Change-Basis procedure has two key properties. The first is that the two vector-valued random

variables (q1(x), . . . , qk(x)) (where x ∼ N(0, 1)n) and (p1(y), . . . , pk(y)) (where y ∼ N(0, 1)n) are very
close in Kolmogorov distance. (In the “idealized” version they are identically distributed, and in the “real”
version they are close in k-dimensional Kolmogorov distance.) The second is that each of the p` polynomials
is “nice” in a sense which we make precise in Lemma 26 below. (Roughly speaking, p` either almost entirely
depends only on a few variables, or else has a small-magnitude max eigenvalue.)

Change-Basis
Input: vector q = (q1, . . . , qk) of degree-2 polynomials q`(x1, . . . , xn) such that Ex∼N(0,1)n [q`(x)2] =
1 for all ` = 1, . . . , k; parameters ε′, η > 0
Output: A vector p = (p1(y), . . . , pk(y)) of degree-2 polynomials (described explicitly via their coef-
ficients as in (10)) satisfying the guarantees of Lemma 26, and an integer t ≥ 0.

1. Initialize the set of linear forms A to be ∅. Let q̃`(x) = q`(x) for all ` = 1, . . . , k.

2. If each ` = 1, . . . , k is such that q̃` satisfies either

(a) Var[q̃`] ≤ η, or (b) (λmax(q̃`))
2

Var[q̃`]]
≤ ε′,

then use Complete-Basis to compute a set B of linear forms B = {L|A|+1(x), . . . , Ln(x)} such
that A ∪ B is a full orthonormal basis, and go to Step 5. Otherwise, proceed to Step 3.

3. Let `′ ∈ [k] be such that q̃`′ does not satisfy either (a) or (b) above. Let v ∈ Rn be a unit
eigenvector corresponding to the maximum magnitude eigenvalue λmax(q̃`′). Let L(x) = v · x.
Add L(x) to A.

4. Use Complete-Basis(A) to compute a set of linear forms B = {L|A|+1(x), . . . , Ln(x)} such
that A ∪ B is a full orthonormal basis. For all ` = 1, . . . , k use Rewrite(q`,A,B) to compute
coefficients α(`)

ij , β
(`)
i , c(`) as in (8)). Set q̃`(x) = Res(q`,A,B) and Proj(q`,A,B) = q`(x) −

q̃`(x). Go to Step 2.

5. We have A = {L1(x), . . . , L|A|(x)} and B = {L|A|+1(x), . . . , Ln(x)}. For each ` ∈ [k] use

Rewrite on q` to compute coefficients α(`)
ij , β(`)

i , c(`) such that

q`(x) =
∑

1≤i≤j≤n
α

(`)
ij Li(x)Lj(x) +

∑
1≤i≤n

β
(`)
i Li(x) + c(`).
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Output the polynomials p1(y), . . . , pk(y) defined by these coefficients as in (10), and the value
t = |A|.

Idealized assumption #2: There is a poly(n) time deterministic procedure which, given q̃` as input,

• exactly computes the maximum eigenvalue λmax(q̃`), and

• exactly computes a unit eigenvector corresponding to λmax(q̃`).

Before we proceed with the proof, we recall some basic facts:

Definition 21 (Rotational invariance of polynomials). Given two polynomials p(x) =
∑

1≤i≤j≤n aijxixj +∑
1≤i≤n bixi + C and q(x) =

∑
1≤i≤j≤n a

′
ijxixj +

∑
1≤i≤n b

′
ixi + C with the same constant term, we

say that they are rotationally equivalent if there is an orthogonal matrix Q such that QT · A · Q = A′ and
QT · b = b′. If the matrix A′ is diagonal then the polynomial q is said to be the decoupled equivalent of p.
In this case, the eigenvalues of A (or equivalently A′) are said to be the eigenvalues of the quadratic form p.

Claim 22. For any degree-2 polynomials p(x) and q(x) which are rotationally equivalent, the distributions
of p(x) and q(x) are identical when (x1, . . . , xn) ∼ N(0, 1)n.

For x ∼ N(0, 1)n), since L1, . . . , Ln is an orthonormal basis, we have that (L1(x), . . . , Ln(x)) is dis-
tributed identically to (y1, . . . , yn) ∼ N(0, 1)n. By construction, we have that the matrix corresponding
to p` is an orthogonal transformation of the matrix corresponding to q`. That is, p` and q` are rotationally
equivalent.

Recalling the Tailt(·) and Headt(·) notation from Section 2, we see that the polynomial Tailt(p`(y))
corresponds precisely to the polynomial Res(q`,A,B) and that Headt(p`(y)) corresponds precisely to
Proj(q`,A,B). As a consequence, the eigenvalues of Tailt(p`) are identical to the eigenvalues of q̃`.

Claim 23. Let q(x) be a degree-2 Gaussian polynomial and A = {L1(x), . . . , Lr(x)} be an orthonormal
set of linear forms. Let q̃`(x) = Res(q`,A,B) and let v be a unit eigenvector of (the symmetric matrix

corresponding to) q̃`. Then the linear form L′(x)
def
= v · x is orthogonal to all of L1, . . . , Lr, i.e., E[L′(x) ·

Li(x)] = 0 for all ` = 1, . . . , r.

Proof. The claim follows from the fact that v lies in the span of B (as follows by the definition of the residue)
and that the sets of vectors A and B are orthonormal.

The above claim immediately implies that throughout the execution of Change-Basis, A is always an
orthonormal set of linear forms:

Corollary 24. At every stage in the execution of Change-Basis, the set A is orthonormal.

(As a side note we observe that since A ∪ B is a full orthonormal set, it is indeed straightforward
to compute Var[q̃`] in Step 2; the first time Step 2 is reached this is simply the same as Var[q`], and in
subsequent iterations we can do this in a straightforward way since we have computed the coefficients
α

(`)
ij , β

(`)
i in Step 4 immediately before reaching Step 2.)

Next we bound the value of t that the algorithm outputs:

Claim 25. The number of times that Change-Basis visits Step 2 is at most k ln(1/η)/ε′2. Hence the value t
that the algorithm returns is at most k ln(1/η)/ε′2.
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Proof. It is easy to see that after the end of any iteration, for any fixed ` ∈ [k], the variance of q̃` does not
increase. This follows by the definition of the residue and the expression of the variance as a function of
the coefficients. At the start of the algorithm each q̃` has Var(q̃`) = 1. We claim that each time Step 3 is
reached, the polynomial q̃i′ , i′ ∈ [k], that is identified in that step has its variance Var(q̃i′) multiplied by a
value which is at most (1− Ω(ε′2)) in the corresponding iteration. The claim follows from the fact that the
maximum magnitude eigenvalue of q̃i′ is at least ε′ ·

√
Var[q̃i′ ] and the definition of the residue. Thus each

specific j ∈ [k] can be chosen as the i′ in Step 3 at most O(ln(1/η)/ε′2) times (after this many iterations it
will be the case that Var[q̃j ] ≤ η). This proves the claim.

Thus we have proved the following:

Lemma 26. (Idealized lemma about Change-Basis:) Given as input a vector q = (q1, . . . , qk) of degree-2
polynomials such that Ex∼N(0,1)n [qi(x)2] = 1 and parameters ε′, η > 0, the algorithm Change-Basis((q1, . . . , qk), ε

′, η))
runs in time poly(n, t, 1/ε′) and outputs polynomials p1(y), . . . , pk(y) (described via their coefficients as
in (10)) and a value 0 ≤ t ≤ k ln(1/η)/ε′2 such that items (1) and (2) below both hold.

1. The vector-valued random variables q = (q1(x), . . . , qk(x)) (where x ∼ N(0, 1)n) and p = (p1(y), . . . , pk(y))
(where y ∼ N(0, 1)n) are identically distributed.

2. For each ` ∈ [k], at least one of the following holds:

(a) Vary∼N(0,1)n [Tailt(p`(y))] ≤ η, or (b) (λmax(Tailt(p`))
2

Var[Tailt(p`)]
≤ ε′.

(Non-idealized lemma about Change-Basis:) This is the same as the idealized lemma except that (1)
above is replaced by

dK(p, q) ≤ O(ε′). (11)

4.2 The Process-Polys procedure. In this subsection we describe and analyze the Process-Polys proce-
dure. Our main result about this procedure is the following:

Lemma 27. There is a deterministic procedure Process-Polys which runs in time poly(n, k, t, 1/ε′, 1/η)
and has the following performance guarantee: Given as input degree-2 polynomials p1(y), . . . , pk(y) sat-
isfying item (2) of Lemma 26, an integer 0 ≤ t ≤ n, and a parameter η, Process-Polys outputs a vector
r = (r1, . . . , rk) of degree-2 polynomials over Rn, and a value 0 ≤ k′ ≤ k, such that r, t, k′ satisfy the
following properties:

1. (r is as good as p for the purpose of approximate counting:)∣∣Pry∼N(0,1)n [∀` ∈ [k], r`(y) ≤ 0]−Prx∼N(0,1)n [∀` ∈ [k], p`(y) ≤ 0]
∣∣ ≤ O(ε);

2. For any restriction ρ = (ρ1, . . . , ρt) ∈ Rn and all 1 ≤ ` ≤ k′, the polynomial r`|ρ has degree at most
1;

3. For all k′ < ` ≤ k, the polynomial r`(y) has λmax(Tailt(r`))
2

Var[Tailt(r`)]
≤ ε′;

4. For all k′ < ` ≤ k, the polynomial r`(y) has Var[QuadTailt(r`)] ≥ η/2.

(Looking ahead, in Section 4.3 Items (2)–(4) of Lemma 27 will be used to show that for most restrictions
ρ = (ρ1, . . . , ρt), the distribution of (r1|ρ, . . . , rk|ρ) is close to the distribution of a multivariate Gaussian
with the right mean and covariance. Item (2) handles polynomials r1, . . . , rk′ and Items (3) and (4) will let
us use Theorem 8 for the remaining polynomials.)
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Process-Polys
Input: k-tuple p = (p1, . . . , pk) of degree-2 polynomials p`(y1, . . . , yn) such that
Vary∼N(0,1)n [p`(y)] = 1; integer t ≥ 0; parameter η > 0.
Output: k-tuple r = (r1, . . . , rk) of degree-2 polynomials r`(y1, . . . , yn) and integer 0 ≤ k′ ≤ k.

1. Reorder the polynomials p1(y), . . . , pk(y) so that p1, . . . , pk1 are the ones that have
Var[Tailt(p`)] ≤ η. For each ` ∈ [k1], define r`(y) = Headt(p`(y)) + E[Tailt(p`)].

2. Reorder the polynomials pk1+1(y), . . . , pk(y) so that pk1+1(y), . . . , pk2(y) are the ones that
have Var[QuadTailt(p`(y))] ≤ η/2. For each ` ∈ [k1 + 1, . . . , k2], define r`(y) = p`(y) −
QuadTailt(p`(y)).

3. For each ` ∈ [k2 + 1, . . . , k] define r`(y) = p`(y). Set k′ = k2 and output (r1, . . . , rk), k
′.

Recall that for 1 ≤ ` ≤ k each polynomial p` is of the form

p`(y) =
∑

1≤i≤j≤n
α

(`)
ij yiyj +

∑
1≤i≤n

β
(`)
i yi + c(`).

Because of Step 2 of Process-Polys, for 1 ≤ ` ≤ k1 we have that each polynomial r` is of the form

r`(y) =
∑

1≤i≤t,j≥i
α

(`)
ij yiyj +

∑
1≤i≤t

β
(`)
i yi + c(`),

which gives part (2) of the lemma for 1 ≤ ` ≤ k1. Because of Step 3, for k1 + 1 ≤ ` ≤ k2 we have that
each polynomial r` is of the form

r`(y) =
∑

1≤i≤t,j≥i
α

(`)
ij yiyj +

∑
1≤i≤n

β
(`)
i yi + c(`),

which gives part (2) of the lemma for k1 + 1 ≤ ` ≤ k2 = k′. For k2 + 1 ≤ ` ≤ k each polynomial r`(y) is
of the form

r`(y) =
∑

1≤i≤j≤n
α

(`)
ij yiyj +

∑
1≤i≤n

β
(`)
i yi + c(`) with Var[QuadTailt(p`(y))] > η/2,

which gives part (4) of the lemma.
Part (3) of the lemma follows immediately from item (2) of Lemma 26. Thus the only part which

remains to be shown is part (1).
We first deal with the polynomials r1, . . . , rk1 using the following simple claim:

Claim 28. For each ` ∈ [k1] we have that the r`(x) defined in Step 1 of Process-Polys satisfies

Prx∼N(0,1)n [sign(r`(x) 6= sign(p`(x))] ≤ O(
√

log(1/η) · η1/4).

Proof. Recall that for ` ∈ [k1] we have r` = Headt(p`) + E[Tailt(p`)] while p` = Headt(p`) + Tailt(p`).
Hence sign(r`(x) 6= sign(p`(x)) only if for some s > 0 we have both

|Headt(p`(x)) + Tailt(p`(x))| ≤ s√η and |Tailt(p`(x))−E[Tailt(p`(x))]| > s
√
η.
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To bound the probability of the first event, recalling that dK(p`, q`) ≤ O(ε′) (by part (1) of Lemma 26)
and that Var[q`] = 1, it easily follows that Var[p`] = Θ(1).Hence the Carbery-Wright inequality (Theorem
7) implies that

Prx[|Headt(p`(x)) + Tailt(p`(x))]|] ≤ s√η ≤ O(s1/2η1/4). (12)

For the second event, we recall that Var[Tailt(p`)] ≤ η, and hence for s > e we may apply Theorem 38
to conclude that

Prx[|Tailt(p`(x))−E[Tailt(p`(x))]| > s
√
η] ≤ O(e−s). (13)

Choosing s = Θ(log(1/η)) we get that the RHS of (12) and (13) are both Θ(
√

log(1/η) · η1/4), and the
claim is proved.

It remains to handle the polynomials rk1+1, . . . , rk2 . For this we use the following claim:

Claim 29. For each ` ∈ [k1 + 1, . . . , k2] we have that the r`(x) defined in Step 2 of Process-Polys satisfies

Prx∼N(0,1)n [sign(r`(x) 6= sign(p`(x))] ≤ O(
√

log(1/η) · η1/4).

Proof. The proof is similar to Claim 28. Recall that for ` ∈ [k1 + 1, k2] we have r` = p` −QuadTailt(p`).
Hence sign(r`(x)) 6= sign(p`(x)) only if for some s > 0 we have both

|p`(x) + E[QuadTailt(p`)]| ≤ s
√
η and |QuadTailt(p`(x))−E[QuadTailt(p`)]| > s

√
η.

For the first inequality, as above we have that Var[p`] = Θ(1) so as above we get that Prx[|p`(x) +
E[QuadTailt(p`)]| ≤ s

√
η] ≤ O(s1/2η1/4). For the second inequality we have Var[QuadTailt(p`)] ≤ η/2

so as above we get that Prx[|QuadTailt(p`) − E[QuadTailt(p`)]| > s
√
η] ≤ O(e−s). Choosing s =

Θ(log(1/η)) as before the claim is proved.

Recalling that η = Θ((ε/k)4/(log(k/ε))2), Claims 28 and 29, together with a union bound, give Lemma
27.

4.3 Proof of Theorem 16. Given what we have done so far in this section with the Change-Basis and
Process-Polys procedures, the proof of Theorem 16 is simple. Item (1) of Lemma 26 and Item (1) of Lemma
27 immediately give part (i) of Theorem 16. For part (ii), consider any restriction ρ = (ρ1, . . . , ρt) ∈ Rt
fixing variables y1, . . . , yt of the polynomials r1, . . . , rk.

We begin by observing that if the value k′ returned by Process-Polys equals k, then Item (2) of Lemma
27 ensures that for all 1 ≤ ` ≤ k the restricted polynomial r`|ρ(y) has degree at most 1. In this case the
distribution of (r1|ρ(y), . . . , rk|ρ(y)) for y ∼ N(0, 1)n is precisely that of a multivariate Gaussian over
Rk. Since such a multivariate Gaussian is completely determined by its mean and covariance matrix, in this
case we actually get that dK(r|ρ, N(µ(r|ρ),Σ(rρ))) = 0. So for the rest of the argument we may assume
that k′ < k, and consequently that there is at least one polynomial rk that has λmax(Tailt(rk))2

Var[Tailt(rk)] ≤ ε′ and
Var[QuadTailt(rk)] ≥ η/2.

First suppose that no restricted polynomial r`|ρ has Var[r`|ρ] > 1. Item (2) of Lemma 27 ensures that
for 1 ≤ ` ≤ k′ the restricted polynomial r`|ρ(y) has degree 1 (note that in terms of Theorem 8, this means
that the maximum magnitude of any eigenvalue of r`|ρ is zero). Now consider any ` ∈ [k′+ 1, k]. Recalling
Remark 3, we have that the polynomial r`|ρ equals Tailt(r`) + L for some affine form L. Hence

|λmax(r`|ρ)| = |λmax(Tailt(r`))| ≤
√

Var[Tailt(r`)] · ε′ ≤ O(
√
ε′).

where the first inequality is by Item (3). The second inequality holds because for ` ∈ [k′ + 1, k], the
polynomial r` output by Process-Polys is simply p`, so we have Var[Tailt(r`)] ≤ Var[p`] ≤ E[p2

` ]. As in
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the proof of Claim 28 we have that E[p2
` ] = O(1), giving the second inequality above. Item (4) ensures

that that for ` ∈ [k′ + 1, k] we have Var[r`|ρ(y)] = Var[Tailt(r`) + L] ≥ Var[QuadTailt(r`(y))] ≥ η/2.
Thus we may apply Theorem 8 and conclude that the distribution of (r1|ρ, . . . , rk|ρ) is O(k2/3ε′1/12/η1/6)-
close (i.e. O(ε)-close) in dK to the distribution of the appropriate multivariate Gaussian, as claimed in the
theorem.

Finally, consider the case that some restricted polynomial r`|ρ has Var[r`|ρ] > 1. In this case rescale
each such restricted polynomial r`|ρ to reduce its variance down to 1; let r̃1|ρ, . . . , r̃k|ρ be the restricted
polynomials after this rescaling. As above for 1 ≤ ` ≤ k′ we have that each restricted polynomial r̃`|ρ has
λmax(r̃`|ρ) = 0, so consider any ` ∈ [k′ + 1, k]. The rescaled polynomials r̃` satisfy r̃`|ρ = Tailt(r̃`) + L̃,
and we have

λmax(Tailt(r̃`))
2

Var[Tailt(r̃`)]
=
λmax(Tailt(r`))

2

Var[Tailt(r`)]
≤ ε′,

so we get

|λmax(r̃`|ρ)| = |λmax(Tailt(r̃`|ρ))| ≤
√

Var[Tailt(r̃`)] · ε′ ≤
√

Var[Tailt(r`)] · ε′ ≤ O(
√
ε′),

where for the penultimate inequality we recall that r̃` is obtained by scaling r` down. By assumption we
have that some ` has Var[r̃`|ρ] = 1, so we can apply Theorem 8 and conclude that

dK(r̃`|ρ, N(µ(r̃|ρ),Σ(r̃|ρ)) ≤ O(k2/3ε′1/12).

Un-rescaling to return to r` from r̃`, we get that

dK(r`|ρ, N(µ(r|ρ),Σ(r|ρ)) ≤ O(k2/3ε′1/12) = o(ε),

and Theorem 16 is proved.

5 Proof of Theorem 2: Efficient deterministic approximate counting using
transformed degree-2 Gaussian polynomials

Throughout this section we focus on counting intersections of degree-2 PTFs. The proof for an arbitrary
k-junta follows by expressing it as a disjunction of ANDk functions and a union bound.

Given Theorem 16, there is a natural approach for the counting algorithm Count-Gauss, corresponding
to the following steps:

Count-Gauss
Input: k-tuple p = (p1, . . . , pk) of degree-2 polynomials p`(y1, . . . , yn), ` ∈ [k], such that
Vary∼N(0,1)n [p`(y)] = 1; parameter ε > 0.
Output: An ±O(ε) additive approximation to the probability Prx∼N(0,1)n [∀` ∈ [k], p`(x) ≥ 0].

1. Run Transform(p, ε) to obtain a k-tuple of polynomials r = (r1, . . . , rk) each of unit variance
and a value 0 ≤ t ≤ O(k ln(1/ε)/ε2).

2. Deterministically construct a product distribution Dt = ⊗ti=1Di supported on a set S ⊆ Rt of
cardinality (kt/ε)O(t) such that a t-tuple τ = (τ1, . . . , τt) ∈ Rt drawn from Dt is “close” to a
draw of ρ = (ρ1, . . . , ρt) from N(0, 1)t. In particular, Di = D for all i ∈ [t], where D is a
sufficiently accurate discrete approximation to N(0, 1). (See the proof of Lemma 30 for a precise
description of the construction and guarantee.)
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3. For each τ ∈ S, simplify the polynomials r1, . . . , rk by applying the restriction to obtain
(r1|τ , . . . , rk|τ ), and compute the vector of means µ(rτ ) and matrix of covariances Σ(rτ ).

4. Finally, for each τ ∈ S, deterministically compute a ±ε-accurate additive approximation to the
probability Pry∼N(µ(rτ ),Σ(rτ ))[∀i ∈ [k], yi ≥ 0]; let pτ be the value of the approximation that is
computed. Average all the values of pτ obtained for each value τ ∈ S , and return the average.

Recall that the k-vector of polynomials r = (r1. . . . , rk) constructed in Step 1 satisfies the statement of
Theorem 16. In particular, for every restriction of the first t variables, the restricted polynomials are ε-close
in Kolmogorov distance to a Gaussian with the corresponding mean and covariance matrix. Hence, for each
possible restriction ρ of these t variables, the probability that the restricted intersection of polynomials is
satisfied is ε-close to the quantity Pry∼N(µ(rρ),Σ(rρ))[∀i ∈ [k], yi ≥ 0]. Hence, if we could take “all” pos-
sible restrictions of these t variables, compute the corresponding probabilities and “average” the outcomes,
we would end up with an ε-approximation to the desired probability. To achieve this efficiently, in Step 2,
we construct a sufficiently accurate discrete approximation to the normal distribution N(0, 1)t.

We have the following lemma:

Lemma 30. Let r` : Rn → R, ` ∈ [k], be k unit variance degree-2 polynomials. There exists a discrete
distribution Dt = ⊗ti=1Di supported on (kt/ε)O(t) points that can be constructed explicitly in output
polynomial time such that∣∣Prx∼Nt(0,1),y∼Nn−t(0,1) [∀` ∈ [k], r`(x, y) ≥ 0]−Prx̃∼Dt,y∼Nn−t(0,1) [∀` ∈ [k], r`(x̃, y) ≥ 0]

∣∣ ≤ O(ε).

Proof. Before we proceed with the formal proof, we provide some intuition. The main technical point is
how “fine” a discretization we need to guarantee an ±ε approximation to the desired probability

Prz∼Nn(0,1)[∀` ∈ [k], r`(z) ≥ 0].

Each component Dj , j ∈ [t], of the product distribution Dt will be a discrete approximation to the stan-
dard Gaussian distribution N(0, 1). Consider a sample x = (x1, . . . , xt) ∼ N t(0, 1) drawn from the
standard Gaussian and its coordinate-wise closest discretized value x̃ = (x̃1, . . . , x̃t). The main idea is
to construct each Dj in such a way so that with probability at least 1 − O(ε/k) over x, the absolute
difference maxj∈[t] |xj − x̃j | is at most δ (where δ is a sufficiently small quantity). Conditioning on
this event, the difference between the two probabilities Prx∼Nt(0,1),y∼Nn−t(0,1) [∀` ∈ [k], r`(x, y) ≥ 0] and
Prx̃∼Dt,y∼Nn−t(0,1) [∀` ∈ [k], r`(x̃, y) ≥ 0] can be bounded from above by the probability of the following
event: there exists ` ∈ [k] such that the polynomial r`(x, y) is “close” to 0 or the difference between the
two restricted polynomials r`(x, y) − r`(x̃, y) is “large”. Each of these events can in turn be bounded by
a combination of anti-concentration and concentration for degree-2 polynomials which completes the proof
by a union bound.

Construction of the discrete distribution Dt. The distribution Dt = ⊗tj=1Dj is a product distribution,
whose individual marginals Dj , j ∈ [t], are identical, i.e., Dj = D. The distribution D is a discrete
approximation to N(0, 1). Intuitively, to construct D we proceed as follows. After truncating the “tails” of
the Gaussian distribution, we partition the domain into a set of subintervals Ii. The distribution D will be
supported on the leftmost points of the Ii’s and the probability mass of each such point will be approximately
equal to the mass the Gaussian distribution assigns to the corresponding interval. More specifically, let us
denote ε′ = ε/(kt) and M = Θ(

√
log(1/ε′)). Then D is supported on the grid of points si = i · δ, where
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i is an integer and δ is chosen (with foresight) to be δ def
= Θ

(
ε2/(k2 log(k/ε))

)
. The range of the index i is

such that |i| · δ ≤M , i.e. i ∈ [−s, s], where s ∈ Z+ with s = O((1/δ) ·M).
The probability mass that D assigns to the point si = i · δ is approximately equal to the probability that

a standard Gaussian random variable assigns to the interval Ii = [si, si+1). In particular, if Φ(I) denotes
the probability that a standard Gaussian puts in interval I , we will guarantee that∑

i
|Φ(Ii)−D(si)| ≤ ε′. (14)

To achieve this we make the error in each interval to be at most ε′ divided by the number of intervals. It is
clear that D can be constructed explicitly in time poly(tk/ε). Note that, as a consequence of (14) we have
that dK(D,N(0, 1)) ≤ ε′.

Properties of D. We define the natural coupling between N(0, 1) and Dj , j ∈ [t]: a sample xj ∼ N(0, 1)
such that xj ∈ Ii is coupled to the point x̃j that corresponds to the left endpoint of the interval Ii. If
xj is such that |xj | > M we map xj to an arbitrary point. This defines a coupling between the product
distributions Dt and N t(0, 1). The main property of this coupling is the following:

Fact 31. With probability at least 1−O(ε/k) over a sample x ∼ N t(0, 1) its “coupled” version x̃ satisfies
maxj∈[t]|xj − x̃j | ≤ δ.

Proof. For each coordinate j ∈ [t], it follows from Condition (14) and the concentration of the standard
Gaussian random variable that with probability at least 1− ε′ we have |xj − x̃j | ≤ δ. The fact then follows
by a union bound.

We henceforth condition on this event. For technical reasons, we will further condition on the event that
ε′ ≤ |xj | ≤ M for all j ∈ [t]. This event will happen with probability at least 1 − O(ε/k), by Gaussian
concentration and anti-concentration followed by a union bound. Note that the complementary event affects
the desired probabilities by at most ε.

Fix an x = (x1, . . . , xt) with ε′ ≤ |xj | ≤ M for all j ∈ [t] and a value x̃ = (x̃1, . . . , x̃t) such that
maxj∈[t] |xj − x̃j | ≤ δ. For ` ∈ [k], consider the difference e`(x, x̃, y) = r`(x, y) − r`(x̃, y) as a random
variable in y ∼ N(0, 1)n−t. We have the following claim:

Claim 32. We have that Vary[e`] = O(δ2).

Proof. Let r`(x1, . . . , xn) =
∑

i,j aijxixj +
∑

i bixi+C. By our assumption that Var[r`] = 1 and Claim 5,
it follows that the sum of the squares of the coefficients of r` is in [1/2, 1]. A simple calculation yields that
the difference between r`(x1, x2, . . . , xn) and r`(x̃1, . . . , x̃t, xt+1, . . . , xn) is at most∑

1≤i≤j≤t
aij(xixj − x̃ix̃j) +

∑
i≤t,j≥t+1

aij(xi − x̃i)xj +
∑
i≤t

bi(xi − x̃i)

Taking into consideration our assumption that the sum of the squared coefficients of r` is at most 1 and
that |xj − x̃j | ≤ δ for all j ∈ [t], the variance of the above quantity term can be bounded from above by
O(δ2).

Given a value of γ > 0, the two desired probabilities differ only if there exists ` ∈ [k] such that

Prx,x̃,y[|e`(x, x̃, y)| ≥ γ] (15)

or
Prx,y[|r`(x, y)| ≤ γ]. (16)
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We will select the parameter γ appropriately so that for a given ` ∈ [k], both probabilities above are at most
O(ε/k). The proof of the lemma will then follow by a union bound over `.

For fixed x, x̃, an application of the Chernoff bound (Theorem 38) in conjunction with Claim 32 implies
that Pry[|e`(x, x̃, y)| ≥ γ] is at most ε̃ = ε/k as long as γ = Ω(log(1/ε̃)δ). By Fact 31 it thus follows that
(15) is at most O(ε/k). Similarly, since Var[r`] = 1, by choosing γ = Θ(ε̃2), Carbery–Wright (Theorem 7)
implies that (16) is at most O(ε̃). By our choice of δ, it follows that for this choice of γ we indeed have that
γ = Ω(log(1/ε̃)δ), which completes the proof.

For Step 4 we note that the corresponding problem is that of counting an intersection of k halfspaces with
respect to a Gaussian distribution over Rk. We recall that, by Theorem 1.5 of [GOWZ10], s = Õ(k6/ε2)-
wise independence ε-fools such functions. Since we are dealing with a k-dimensional problem, any explicit
construction of an s-wise independent distribution yields a deterministic ε-approximate counting algorithm
that runs in time kO(s), completing the proof of Theorem 2.

6 Deterministic approximate counting for g(sign(q1(x)), . . . , sign(qk(x))) over
{−1, 1}n

In this section we extend the deterministic approximate counting result that we established for the Gaussian
distribution on Rn to the uniform distribution over {−1, 1}n, and prove Theorem 1. As discussed in the
introduction, there are three main ingredients in the proof of Theorem 1. The first, of course, is the Gaussian
counting result, Theorem 2, established earlier. The second is a deterministic algorithmic regularity lemma
for k-tuples of low-degree polynomials:

Lemma 33. [algorithmic regularity lemma, general k, general d] There is an algorithm ConstructTree

with the following property:
Let p1, . . . , pk be degree-d multilinear polynomials with b-bit integer coefficients over {−1, 1}n. Fix

0 < τ, ε, δ < 1/4. Algorithm ConstructTree (which is deterministic) runs in time poly(n, b, 2Dd,k(τ,ε,δ))
and outputs a decision tree T of depth at most

Dd,k(τ, ε, δ) :=

(
1

τ
· log

1

ε
·
)(2d)Θ(k)

· log
1

δ
.

Each internal node of the tree is labeled with a variable and each leaf ρ is labeled with a k-tuple of polyno-
mials ((p1)ρ, . . . , (pk)ρ) and with a k-tuple of labels (label1(ρ), . . . , labelk(ρ)). For each leaf ρ and each
i ∈ [k] the polynomial (pi)ρ is the polynomial obtained by applying restriction ρ to polynomial pi, and
labeli(ρ) belongs to the set {+1,−1,“fail”, “regular”}. The tree T has the following properties:

1. For each leaf ρ and index i ∈ [k], if labeli(ρ) ∈ {+1,−1}, then Prx∈{−1,1}n [sign((pi)ρ(x)) 6=
labeli(ρ)] ≤ ε;

2. For each leaf ρ and index i ∈ [k], if labeli(ρ) =“regular” then (pi)ρ is τ -regular; and

3. With probability at least 1−δ, a random path from the root reaches a leaf ρ such that labeli(ρ) 6=“fail”
for all i ∈ [k].

The third ingredient is the following version of the multidimensional invariance principle, which lets us
move from the Gaussian to the Boolean domain:
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Theorem 34. Let p1(x), . . . , pk(x) be degree-d multilinear polynomials over {−1, 1}n, and let Pi(x) =
sign(pi(x)) for i = 1, . . . , k. Suppose that each pi is τ -regular. Then for any g : {−1, 1}k → {−1, 1}, we
have that∣∣Prx∼{−1,1}n [g(P1(x), . . . , Pk(x)) = 1]−PrG∼N(0,1)n [g(P1(G), . . . , Pk(G)) = 1]

∣∣ ≤ ε̃(d, τ, k),

where ε̃(d, τ, k) := 2O(k) · 2O(d) · τ1/(8d).

The regularity lemma for k-tuples of polynomials, Lemma 33, requires significant technical work; we
prove it in Section 7. In contrast, Theorem 34 is a fairly direct consequence of the multidimensional in-
variance principle of Mossel [Mos08] . We explain how Theorem 34 follows from [Mos08] in Section 6.1.
Before establishing the regularity lemma and the invariance principle that we will use, though, we first show
how Theorem 1 follows from these results.

Proof of Theorem 1 using Theorem 2, Lemma 33 and Theorem 34: The algorithm for approximating
Prx∼{−1,1}n [g(Q1(x), . . . , Qk(x)) = 1] to within an additive ±ε works as follows. It first runs algorithm
ConstructTree from Lemma 33 with parameters d, k, τ0, ε0, and δ0, where τ0 satisfies
widetildeε(d, τ0, k) ≤ ε/4, ε0 equals ε/(4k), and δ0 equals ε/4, to construct the decision tree T . It initial-
izes the value ṽ to be 0, and then iterates over all leaves ρ of the tree T , adding a contribution ṽρ to ṽ at each
leaf ρ according to the following rules: for a given leaf ρ at depth dρ,

• If any i ∈ [k] has labeli(ρ) = “fail” then the contribution ṽρ from that leaf is 0. Otherwise,

• Let κ(ρ) be the restriction of variables y1, . . . , yk corresponding to the string (label1(ρ), . . . , labelk(ρ)) ∈
{+1,−1, “regular”}, so κ(ρ) fixes variable yi to b ∈ {+1,−1} if labeli(ρ) = b and κ(ρ) leaves vari-
able yi unfixed if labeli(ρ) =“regular.” Run the algorithm of Theorem 2, providing as input the
k-tuple of polynomials ((p1)ρ, . . . , (pk)ρ), the Boolean function gκ(ρ) (i.e. g with restriction κ(ρ)
applied to it), and the accuracy parameter ε/4; let w̃ρ be the value thus obtained. The contribution
from this leaf is ṽρ := w̃ρ · 2−dρ .

Theorem 2 and Lemma 33 imply that the running time is as claimed; we now prove correctness. Let v
denote the true value of Prx∼{−1,1}n [g(Q1(x), . . . , Qk(x)) = 1]. We may write v as

∑
ρ vρ, where the sum

is over all leaves ρ of T and vρ = wρ · 2−dρ where

wρ = Prx∼{−1,1}n [g((Q1)ρ(x), . . . , (Qk)ρ(x)) = 1].

We show that |v − ṽ| ≤ ε by showing that
∑

ρ |ṽρ − vρ| ≤ ε. To do this, let us partition the set of all leaves
ρ of T into two disjoint subsets A and B, where a leaf ρ belongs to A if some i ∈ [k] has labeli(ρ) =“fail”.
Part (3) of Lemma 33 implies that

∑
ρ∈A 2−dρ ≤ δ0 = ε/4, so we have that∑

ρ∈A
|ṽρ − vρ| =

∑
ρ∈A

vρ ≤
∑
ρ∈A

2−dρ ≤ ε/4.

We bound
∑

ρ∈B |ṽρ − vρ| ≤ 3ε/4 by showing that each leaf ρ ∈ B satisfies |wρ − w̃ρ| ≤ 3ε/4; this is
sufficient since∑

ρ∈B
|ṽρ − vρ| =

∑
ρ∈B

2−dρ |w̃ρ − wρ| ≤
(

max
ρ∈B
|wρ − w̃ρ|

)
·
∑
ρ∈B

2−dρ ≤ max
ρ∈B
|wρ − w̃ρ| ≤ 3ε/4.
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So fix any leaf ρ ∈ B. Let Sκ(ρ) ⊆ [k] be the subset of those indices i such that labeli(ρ) = “regular”. By
part (2) of Lemma 33 we have that (pi)ρ is τ0-regular for each i ∈ Sκ(ρ). Hence we may apply Theorem 34
to the Boolean function gκ(ρ) : {−1, 1}Sκ(ρ) → {−1, 1}, and we get that∣∣Prx∼{−1,1}n [gκ(ρ)((Q1)ρ(x), . . . , (Qk)ρ(x)) = 1]−PrG∼N(0,1)n [gκ(ρ)((Q1)ρ(G), . . . , (Qk)ρ(G)) = 1]

∣∣
≤ ε̃(d, τ0, k) ≤ ε/4. (17)

By Theorem 2 we have that∣∣w̃ρ −PrG∼N(0,1)n [gκ(ρ)((Q1)ρ(G), . . . , (Qk)ρ(G)) = 1]
∣∣ ≤ ε/4. (18)

Finally, part (1) of Lemma 33 and a union bound give that∣∣wρ −Prx∼{−1,1}n [gκ(ρ)((Q1)ρ(x), . . . , (Qk)ρ(x)) = 1]
∣∣ ≤ ∑

i∈([k]\Sκ(ρ))

Prx∼{−1,1}n [(Qi)ρ(x) 6= labeli(ρ)]

≤ k · ε0 = ε/4. (19)

Combining (17), (18) and (19) with the triangle inequality we get that |wρ − w̃ρ| ≤ 3ε/4, which concludes
the proof of Theorem 1.

6.1 Proof of Theorem 34 . We start by proving the theorem for the case that the k-junta g is the ANDk

function. In fact, in this particular case the dependence of the error on the parameter k is polynomial. The
generalization to an arbitrary k-junta follows using a union bound and the fact that any k-junta can be written
as an OR of at most 2k ANDk functions, each of which is satisfied by a different point in {−1, 1}k.

The proof has two steps: In the first step we prove the theorem for “smooth” functions; in the second step
we use FT-mollification to reduce the theorem to the smooth case. The first step is an immediate application
of Theorem 4.1 in [Mos10]. In particular, the following statement is a corollary of his statement to our
setting:

Theorem 35 ([Mos10], Corollary of Theorem 4.1). Let p1(x), p2(x), . . . , pk(x) be degree-d multilinear
polynomials (where either x ∈ {−1, 1}n or x ∈ Rn) such that Var[pi] = 1 and maxj Infj(pi) ≤ τ for
all i = 1, . . . , k. Let Ψ : Rk → R be a C3 function with ‖Ψ(i)‖∞ ≤ B for every vector i ∈ (Z≥0)n with
‖i‖1 ≤ 3, where Ψ(i) denotes the i-th iterated partial derivative of Ψ. Then,∣∣Ex∼{−1,1}n [Ψ (p1(x), . . . , pk(x))]−EG∼N(0,1)n [Ψ (p1(G), . . . , pk(G))]

∣∣ ≤ ε := 2Bk9/2(8
√

2)d · d
√
τ .

Remark 36. We now briefly explain how the above is obtained from Theorem 4.1 of [Mos10]. Theorem 4.1
considers a k-dimensional multi-linear polynomial q = (q1, . . . , qk). The variance of the k-vector q is
defined to be the sum of the variances of the individual components, i.e., Var[q] =

∑
j∈[k] Var[qj ]. Similarly,

the influence of the i-th variable on q is defined as the sum of the influences of the components, i.e., Infi[q] =∑
j∈[k] Infi[qj ]. The degree of q is the maximum of the degree of the components. Note that when we apply

Theorem 4.1 to our setting, the corresponding k-dimensional multi-linear polynomial p = (p1, . . . , pk) has
variance equal to k. Similarly, the influence of each variable in p is at most kτ . Finally, the value α in the
notation of [Mos10] is by definition equal to 1/2. (See the derivation on top of p. 21 of the ArXiV version
of [Mos10].)

Note that in Theorem 35 the error parameter ε depends polynomially on k and exponentially on d. As
we now show, when the k-junta g is the AND function, the second step (FT-mollifcation) also results in a
polynomial dependence on k.
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Let g be the AND function on k variables. We assume (wlog) that the range of g is {0, 1} as opposed
to {−1, 1}. Let p = (p1, . . . , pk) be our k-vector of degree-d multilinear polynomials satisfying the as-
sumptions of Theorem 35. Denote by θi and p′i the constant and non-constant parts of pi respectively, for
i = 1, . . . , k, so pi(x) = p′i(x) + θi for i = 1, . . . , k, where p′i(x) is a degree-d polynomial with constant
term 0 and variance 1.

Consider the region R = {yi + θi ≥ 0, i ∈ [k]} ⊆ Rk. We claim that, in order to prove Theorem 34
for g being the ANDk function, it suffices to establish the existence of a smooth function Ψ such that the
following two bounds hold:

Ex∼D
[
Ψ
(
p′1(x), . . . , p′k(x)

)]
≈δ Ex∼D

[
IR
(
p′1(x), . . . , p′k(x)

)]
, (20)

where D is taken either to be the uniform distribution over {−1, 1}n or to be N(0, 1)n, for an appropriately
small value of δ. Indeed, given these two versions of Equation 20, Theorem 34 follows from Theorem 35
and the triangle inequality with ε̃ = 2δ + ε.

To establish the existence of a smooth approximation Ψ to IR satisfying 20, we appeal to Theorem 14.
In particular, the smooth function Ψ will be the function Ĩc of that theorem, for an appropriately large value
of the parameter c > 0. Note that there is a tradeoff between the relevant parameters: On the one hand, the
higher the value of c, the better an approximation Ĩc will be to IR, and hence the smaller the parameter δ will
be. On the other hand, when c increases, so does the upper bound on the magnitude of the derivatives of Ĩc
(see the first condition of Theorem 14). This in turn places a lower bound on the value of B (the maximum
value of the third derivative) in Theorem 35 – hence, the parameter ε increases. As a consequence of this
tradeoff, one needs to select the parameter c carefully to minimize the total error of ε̃ = O(δ + ε).

We will additionally need to use the fact that the random vector p′ = (p′1, . . . , p
′
k) is sufficiently anti-

concentrated (so that the contribution to the error from the region where IR and its FT-mollified version
differ by a lot is sufficiently small). For the case of the Gaussian distribution, this follows immediately
from the Carbery-Wright inequality (Theorem 7). For the case of the uniform distribution over the cube,
this follows (as usual), by a combination of the “basic” invariance principle of [MOO10] combined with
Theorem 7.

We perform the calculation for the regular boolean case below. It turns out that this is the bottleneck
quantitatively – and it subsumes the Gaussian case (since the corresponding anti-concentration bound holds
for the Gaussian case as well). We start by recording the following fact, which is a corollary of [MOO10]
combined with Theorem 7:

Fact 37. Let q : {−1, 1}n → R be a τ -regular degree-d polynomial with Var[q] = 1 and ρ > 0. Then, for
all θ ∈ R we have

Prx∈{−1,1}n [|p(x)− θ| ≤ ρ] ≤ O(dτ1/(8d)) +O(dρ1/d).

Choice of Parameters: We set ρ def
= O(τ1/8) and choose the parameter c in Theorem 14 equal to c def

= k/ρ.
We proceed to bound from above the quantity∣∣∣Ex∼{−1,1}n

[
IR
(
p′1(x), . . . , p′k(x)

)]
−Ex∼{−1,1}n

[
Ĩc
(
p′1(x), . . . , p′k(x)

)]∣∣∣ .
We start by observing that for any y ∈ Rk, the Euclidean distance ‖y − ∂R‖ is at least mini |yi + θi|.

Hence by a union bound combined with the above fact we obtain

Prx[‖p′(x)− ∂R‖ ≤ ρ] ≤ Prx[min
i
{|p′i(x) + θi|} ≤ ρ] ≤

k∑
i=1

Prx[|p′i(x) + θi| ≤ ρ] = O(kdτ1/(8d)).

Similarly, for w ≥ ρ we have

Prx[‖p′(x)− ∂R‖ ≤ w] = O(kdw1/d).
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Using these inequalities and Theorem 14 we bound from above the desired quantity as follows:∣∣∣Ex [IR (p′(x)
)]
−Ex

[
Ĩc
(
p′(x)

)]∣∣∣
≤ Ex

[∣∣∣IR(p′(x))− Ĩc(p′(x))
∣∣∣]

≤ Prx[‖p′(x)− ∂R‖ ≤ ρ] +
∞∑
s=0

(
k2

c222sρ2

)
Prx[‖p′(x)− ∂R‖ ≤ 2s+1ρ]

≤ O(kdτ1/(8d)) +O(kdρ1/d)
∞∑
s=0

2−2s2s/d (by our choice of c = k/ρ)

= O(kdτ1/(8d)).

Hence we obtain Equation 20 for δ = O(kdτ1/(8d)). It remains to determine the corresponding value of ε
in Theorem 35. Note that, by Theorem 14, the value of the third derivative of the FT-mollified function Ĩc
will be at most (2c)3 = O(k/ρ)3. This is the value of B, which determines the value of ε. The total error ε
is roughly

ε = B · poly(k) · 2O(d) ·
√
τ = poly(k) · 2O(d) ·

√
τ/ρ3 = poly(k) · 2O(d) · τ1/8.

Therefore, the total error is ε̃ = 2δ+ε which is at most poly(k) ·2O(d) ·τ1/(8d). This completes the proof for
the case of the AND function. The general case follows via a union bound by viewing an arbitrary k-junta
as a disjunction of 2k ANDk functions.

7 An algorithmic regularity lemma: Proof of Lemma 33

7.1 Useful definitions and tools For p(x1, . . . , xn) =
∑

S⊂[n],|S|≤d p̂(S)
∏
i∈S xi a multilinear degree-d

polynomial over {−1, 1}n, recall that

Infi(p) =
∑
S3i

p̂(S)2 = Exi∈{−1,1}[Varx\xi∈{−1,1}n−1 [p(x)]]

and that ∑
06=S

p̂(S)2 = Var[p] ≤
n∑
i=1

Infi(p) ≤ d ·Var[p]. (21)

We say that p is τ -regular if for all i ∈ [n] we have

Infi(p) ≤ τ ·Var[p].

We will use the following standard tail bound on low-degree polynomials over {−1, 1}n, see e.g. The-
orem 2.12 of [AH11] for a proof. (Here and throughout this section unless otherwise indicated, we write
Pr[·], E[·] and Var[·] to indicate probability, expectation, and variance with respect to a uniform draw of x
from {−1, 1}n.)

Theorem 38 (“degree-d Chernoff bound”, [AH11]). Let p : {−1, 1}n → R be a degree-d polynomial. For
any t > ed, we have

Pr[|p(x)−E[p]| > t ·
√

Var[p]] ≤ de−Ω(t2/d).

As a corollary we have:
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Corollary 39. There is an absolute constant C such that the following holds:
Let p : {−1, 1}n → R be a degree-d multilinear polynomial that has

|p̂(∅)| = |E[p]| ≥ (C log(d/ε))d/2 ·Var[p]. (22)

Then Pr[sign(p(x)) 6= sign(p̂(∅))] ≤ ε. We say that a polynomial p satisfying (22) is ε-skewed.

The following terminology will be convenient for us:

Definition 40. Fix 0 < ε, τ < 1/4 and let q(x1, . . . , xn) be a multilinear degree-d polynomial. We say that
q is (τ, ε)-good if at least one of the following two conditions holds:

1. q is τ -regular; or

2. q is ε-skewed.

Using this terminology we can give a concise statement of the regularity lemma for a single degree-d
polynomial as follows:

Lemma 41. [regularity lemma, k = 1] [DSTW10, Kan13] There is a positive absolute constant A such that
the following holds:

Let p be a degree-d multilinear polynomial over {−1, 1}n and fix 0 < τ, ε, δ < 1/4. Then there is a
decision tree T of depth at most

Dd,1(τ, ε, δ) :=
1

τ

(
d log

1

τ
log

1

ε

)Ad
· log

1

δ
,

1such that with probability at least 1− δ, at a random leaf ρ the restricted polynomial pρ is (τ, ε)-good.

(We note that [DSTW10] states the regularity lemma in a form which is slightly weaker than this because
it only claims that for almost every leaf the restricted PTF at that leaf is τ -close to τ -regular. However,
inspection of the [DSTW10] proof shows that it actually gives the above result: at almost every leaf the
restricted polynomial is either regular or skewed. Proposition 15 of [Kan13] gives a statement equivalent to
Lemma 41 above, along with a streamlined proof. We further note that [HKM09] independently established
a very similar regularity lemma, although with slightly different parameters, that could also be used in place
of Lemma 41.)

7.2 The structural result The main structural result we prove is the following extension of Lemma 41 to
k-tuples of degree-d polynomials:

Lemma 42. [regularity lemma, general k, general d] Let p1, . . . , pk be degree-d multilinear polynomials
over {−1, 1}n. Fix 0 < τ, ε, δ < 1/4. Then there is a decision tree T of depth at most

Dd,k(τ, ε, δ) ≤
(

1

τ
· log

1

ε

)(2d)Θ(k)

· log
1

δ

such that with probability at least 1 − δ, at a random leaf ρ all the restricted polynomials (p1)ρ, . . . , (pk)ρ
are (τ, ε)-good.

1Throughout the paper we write “Dd,k(τ, ε, δ)” to denote the depth bound of the decision tree given by a regularity lemma for
k-tuples of degree-d polynomials in which the regularity parameter is τ , the skew parameter is ε, and the “probability that a leaf is
not (τ, ε)-good” parameter is δ.
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Remark 43. It is easy to verify (see Theorem 52 of [DDS13]) that there is an efficient deterministic algo-
rithm that constructs the decision tree whose existence is asserted by the original k = 1 regularity lemma
for degree-d polynomials, Lemma 41. Given this, inspection of the proof of Lemma 42 shows that the same
is true for the decision tree whose existence is asserted by Lemma 42. (The key observation, in both cases,
is that given a degree-d polynomial q, it is easy to efficiently deterministically compute the values |q̂(∅)|,
Infi(q) and Var[q], and thus to determine whether or not q is τ -regular and whether or not it is ε-skewed.)
Thus in order to establish the algorithmic regularity lemma, Lemma 33, it is sufficient to prove Lemma 42.

Remark 44. Suppose that we prove a result like Lemma 42 but with a bound of γ(d, k, τ, ε, δ) on the RHS
upper bounding Dd,k(τ, ε, δ). Then it is easy to see that we immediately get a bound of γ(d, k, τ, ε, 1/2) ·
O(log 1

δ ), simply by repeating the construction 2 ln 1
δ times on leaves that do not satisfy the desired (τ, ε)-

good condition. Thus to prove Lemma 42 it suffices to prove a bound of the form γ(d, k, τ, ε, δ) and indeed
this is what we do below, by showing that

γ(d, k, τ, ε, δ) =

(
1

τ
· log

1

ε
· log

1

δ

)(2d)Θ(k)

is an upper bound on the solution of the equations (24) and (25) given below; see Section 7.7.

7.3 Previous results and our approach. As noted earlier, Gopalan et al. prove a regularity lemma for
k-tuples of linear forms in [GOWZ10]. While their lemma is phrased somewhat differently (they prove it
in a more general setting of product probability spaces), it yields a result that is qualitatively similar to the
special d = 1 case of Lemma 42. Indeed, the quantitative bound (i.e. the number of variables that are
restricted) in the [GOWZ10] lemma is better than the quantitative bounds we achieve in the case d = 1.
However, there seem to be significant obstacles in extending the [GOWZ10] approach from linear forms
to degree-d polynomials; we discuss their approach, and contrast it with our approach, in the rest of this
subsection.

The [GOWZ10] regularity lemma works by “collecting variables” in a greedy fashion. Each of the k
linear forms has an initial “budget” of at most B (the exact value of B is not important for us), meaning that
at most B variables will be restricted “on its behalf”. The lemma iteratively builds a set S where each linear
form gets to contribute up to B variables to the set. At each step in building S, if some linear form `i (a) has
not yet exceeded its budget of B variables and (b) is not yet regular, then a variable that has high influence
in `i (relative to the total influence of all variables in `i) is put into S and the “budget” of `i is decreased by
one. If no such linear form exists then the process ends. It is clear that the process ends after at most kB
variables have been added into S. At the end of the process, each linear form `i is either regular, or else
there have been B occasions when `i contributed a high-influence variable to S. This ensures that if ρ is a
random restriction fixing the variables in S, then with high probability the restricted (`i)ρ will be skewed.
(The argument for this goes back to [Ser07, DGJ+10] and employs a simple anti-concentration bound for
linear forms with super-increasing weights.)

While these arguments work well for d = 1 (linear forms), it is not clear how to extend them to d > 1.
One issue is that in a linear form, any restriction of a set S of “head” variables leaves the same “tail”
linear form (changing only the constant term), while this is not true for higher-degree polynomials. A more
significant obstacle is that for d > 1, restricted variables can interact with each other “in the head” of the
polynomial pi, and we do not have a degree-d analogue of the simple anti-concentration bound for linear
forms with super-increasing weights that is at the heart of the d = 1 argument. (This anti-concentration
bound uses independence between variables in a linear form to enable a restriction argument saying that
regardless of the existence of other variables “between” the variables with super-increasing weights, a linear
form containing super-increasing weights must have good anti-concentration. This no longer holds in the
higher degree setting.)
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Our approach. The idea behind our approach is extremely simple. Consider first the case of k = 2 where
there are two polynomials p1 and p2. For carefully chosen parameters τ ′ � τ and ε′ � ε we first use the
usual regularity lemma (for a single polynomial) on p1 to construct a decision tree such that at a random
leaf ρ′, the polynomial (p1)ρ′ is with high probability (τ ′, ε′)-good. Then at each leaf ρ′, we use the usual
regularity lemma (for a single polynomial) on (p2)ρ′ to construct a decision tree such that at a random leaf
ρ2 of the tree, the polynomial ((p2)ρ′)ρ2 is with high probability (τ, ε)-good.

The only thing that can go wrong in the above scheme is that (p1)ρ′ is (τ ′, ε′)-good, but as a result of
subsequently applying the restriction ρ2, the resulting polynomial ((p1)ρ′)ρ2 is not (τ, ε)-good. However, if
(p1)ρ′ is τ ′-regular, then exploiting the fact that τ ′ � τ , it can be shown that ((p1)ρ′)ρ2 will at least be τ -
regular – intuitively this is because restricting the (relatively few) variables ρ2 required to ensure that (p2)ρ′

becomes (τ, ε)-good, cannot “damage” the τ ′-regularity of (p1)ρ′ by too much. And similarly, if (p1)ρ′ is
ε′-skewed, then exploiting the fact that ε′ � ε) it can be shown that ((p1)ρ′)ρ2 will at least be ε-skewed, for
similar reasons. Thus, we can bound the overall failure probability that either polynomial fails to be (τ, ε)-
good as desired. The general argument for k > 2 is an inductive extension of the above simple argument for
k = 2. 2

7.4 Proof of Lemma 42 In this section we prove Lemma 42. The argument is an inductive one using the
result for (k − 1)-tuples of degree-d polynomials. As discussed in Remark 44, to establish Lemma 42 it
suffices to prove the following:

Lemma 45. [regularity lemma, general k, general d > 1] Let p1, . . . , pk be multilinear degree-d polyno-
mials over {−1, 1}n. Fix 0 < τ, ε, δ < 1/4. Then there is a decision tree T of depth at most

Dd,k(τ, ε, δ) ≤
(

1

τ
· log

1

ε
· log

1

δ

)(2d)Θ(k)

(23)

such that with probability at least 1− δ, at a random leaf ρ all of (p1)ρ, . . . , (pk)ρ are (τ, ε)-good.

Proof. The proof is by induction on k. The base case k = 1 is given by Lemma 41; we have thatDd,1(τ, ε, δ)
satisfies the claimed bound (23). So we may suppose that k ≥ 2 and that Lemma 42 holds for 1, 2, . . . , k−1.

Here is a description of how the tree for p1, . . . , pk is constructed.

(a) Let

τ ′ =
τΘ(d)(

d log 1
τ log 1

ε log 1
δ

)Θ(d2)
, ε′ =

( ε
d

) 1
τ2 (d log 1

τ
log 1

ε )
Θ(d)·(log 1

δ
)2

. (24)

Let T ′ be the depth-Dd,k−1(τ ′, ε′, δ/2) decision tree obtained by inductively applying the “k − 1”
case of Lemma 45 to the polynomials p1(x), . . . , pk−1 with parameters τ ′, ε′, and δ/2.

(b) For each leaf ρ′ in T ′ such that all of (p1)ρ′ , . . . , (pk−1)ρ′ are (τ ′, ε′)-good:

– Apply the “k = 1” case of Lemma 45 to the polynomial (pk)ρ′ with parameters τ , ε, and δ/2.
(We say that a leaf/restriction obtained in this second phase, which we denote ρk, extends ρ′.)

2As suggested by the sketch given above, we choose τ ′ relative to τ so that if (p1)ρ′ is τ ′-regular then ((p1)ρ′)ρ2 will be
τ -regular with probability 1 (and similarly for ε′ and ε). A natural idea is to weaken this requirement so that ((p1)ρ′)ρ2 will be
τ -regular only with high probability over a random choice of ρ2. It is possible to give an analysis following this approach, but the
details are significantly more involved and the resulting overall bound that we were able to obtain is not significantly better than the
bound we achieve with our simpler “probability-1” approach. Very roughly speaking the difficulties arise because it is non-trivial
to give a strong tail bound over the choice of a random restriction sampled from a decision tree in which different sets of variables
may be queried on different paths.
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– Replace the leaf ρ′ with the depth-Dd,1(τ, ε, δ/2) tree (call it Tρ′) thus obtained.

(c) Output the resulting tree T .

It is clear that the decision tree T has depth at most

Dd,k(τ, ε, δ)
def
= Dd,k−1(τ ′, ε′, δ/2) +Dd,1(τ, ε, δ/2). (25)

In Section 7.7 we shall show that the quantity Dd,k(τ, ε, δ) that is defined by (24) and (25) later indeed
satisfies (23).

For a given leaf ρ of T , let ρ′ be the restriction corresponding to the variables fixed in step (a), and let
ρk be the restriction that extends ρ′ in step (b), so ρ = ρ′ρk.

In order for it not to be the case that all of (p1)ρ, . . . , (pk)ρ are (τ, ε)-good at a leaf ρ = ρ′ρk, one of the
following must occur:

(i) one of (p1)ρ′ , . . . , (pk−1)ρ′ is not (τ ′, ε′)-good;

(ii) all of (p1)ρ′ , . . . , (pk−1)ρ′ are (τ ′, ε′)-good but (pk)ρ′ρk is not (τ, ε)-good;

(iii) all of (p1)ρ′ , . . . , (pk−1)ρ′ are (τ ′, ε′)-good but one of (p1)ρ′ρk , . . . , (pk−1)ρ′ρk . is not (τ, ε)-good.

By step (a), we have Pr[(i)] ≤ δ/2. Given any fixed ρ′ such that all of (p1)ρ′ , . . . , (pk−1)ρ′ are (τ ′, ε′)-
good, by step (b) we have Prρk [(pk)ρ′ρk is not (τ, ε)-good] ≤ δ/2, and hence Pr[(ii)] ≤ δ/2. So via a
union bound, the desired probability bound (that with probability 1 − δ, all of (p1)ρ′ρk , . . . , (pk)ρ′ρk are
(τ, ε)-good at a random leaf ρ = ρ′ρk) follows from the following claim, which says that (iii) above cannot
occur:

Claim 46. Fix any i ∈ {1, . . . , k − 1}. Fix ρ′ to be any leaf in T ′ such that (pi)ρ′ is (τ ′, ε′)-good. Then
(pi)ρ′ρk is (τ, ε)-good.

To prove Claim 46, let us write a(x) to denote (pi)ρ′(x), so the polynomial a is (τ ′, ε′)-good. There are
two cases depending on whether a is τ ′-regular or ε′-skewed.

Case I: a is τ ′-regular. In this case the desired bound is given by the following lemma which we prove in
Section 7.5. (Note that the setting of τ ′ given in Equation (24) is compatible with the setting given in the
lemma below.)

Lemma 47. Let a(x) be a degree-d τ ′-regular polynomial, where

τ ′ =
1

2

(
d− 1

eD

)d−1

· 1

16D2
and D = Dd,1(τ, ε, δ/2).

Let T be a depth-D decision tree. Then for each leaf ρ of T , the polynomial aρ is τ -regular.

Case II: a is ε′-skewed. In this case the desired bound is given by the following lemma which we prove in
Section 7.6. (Note that the setting of ε′ given in Equation (24) is compatible with the setting given in the
lemma below.)

Lemma 48. Let a(x) be a degree-d ε′-skewed polynomial, where

ε′ =
( ε
d

)Θ((eD/d)2)
and D = Dd,1(τ, ε, δ/2).

Let T be a depth-D decision tree. Then for each leaf ρ of T , the polynomial aρ is ε-skewed.

These lemmas, together with the argument (given in Section 7.7) showing thatDd,k(τ, ε, δ) =
(

1
τ · log 1

ε · log 1
δ

)(2d)Θ(k)

satisfies equations (24) and (25), yield Claim 46.
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7.5 Proof of Lemma 47 The key to proving Lemma 47 is establishing the following claim. (Throughout
this subsection the expression “

(
d−1
es

)d−1
” and its multiplicative inverse should both be interpreted as 1

when d = 1.)

Claim 49. Let p(x1, . . . , xn) be a multilinear degree-d polynomial which is τ ′-regular. Let S ⊂ [n] be a set
of at most s variables and let ρ be a restriction fixing precisely the variables in S. Suppose that

τ ′ ≤ 1

2

(
d− 1

es

)d−1

·min

{
1

16s2
, τ

}
.

Then we have that pρ is τ -regular.

Proof of Claim 49: Since p is τ ′-regular, for each i ∈ [n] we have that Infi(p) ≤ τ ′ ·Var[p]. Let T denote
[n] \ S, the set of variables that “survive” the restriction. The high level idea of the proof is to show that
both of the following events take place:

(i) No variable j ∈ T has Infj(pρ) “too much larger” than τ ′ · Var[p], i.e. all j ∈ T satisfy Infj(pρ) ≤
ατ ′Var[p] for some “not too large” α > 1; and

(ii) The variance Var[pρ] is “not too much smaller” than Var[p], i.e. Var[pρ] ≥ (1 − β) Var[p] for some
“not too large” 0 < β < 1.

Given (i) and (ii), the definition of regularity implies that pρ is
(

α
1−β · τ

′
)

-regular.

Event (i): Upper bounding influences in the restricted polynomial. We use the following simple claim,
which says that even in the worst case influences cannot grow too much under restrictions fixing “few”
variables in low-degree polynomials.

Claim 50. Let p(x1, . . . , xn) be a degree-d polynomial and S ⊂ [n] a set of at most s variables. Then for

any j ∈ [n] \ S and any ρ ∈ {−1, 1}S , we have Infj(pρ) ≤
(

es
d−1

)d−1
· Infj(p).

Proof. Let T denote [n] \ S. Fix any j ∈ T and any U ⊆ T such that j ∈ U. The Fourier coefficient p̂ρ(U)
equals

∑
S′⊆S p̂(S

′ ∪ U)
∏
i∈S′ ρi. Recalling that p has degree d, we see that in order for a subset S′ to

make a nonzero contribution to the sum it must be the case that |S′| ≤ d − |U | ≤ d − 1, so we have that

p̂ρ(U) is a (±1)-weighted sum of at most
∑d−1

j=0

(
s
j

)
≤
(

es
d−1

)d−1
Fourier coefficients of p. It follows from

Cauchy-Schwarz that

p̂ρ(U)2 =

∑
S′⊆S

p̂(S′ ∪ U)
∏
i∈S′

ρi

2

≤

∑
S′⊆S

p̂(S′ ∪ U)2

 · ( es

d− 1

)d−1

.

Summing this inequality over all U ⊆ T such that j ∈ U , we get that

Infj(pρ) =
∑

j∈U⊆T
p̂ρ(U)2 ≤

 ∑
j∈V⊆[n]

p̂(V )2

 · ( es

d− 1

)d−1

=

(
es

d− 1

)d−1

Infj(p).

In the context of event (i), since Infj(p) ≤ τ ′ · Var[p], we get that Infj(pρ) ≤
(

es
d−1

)d−1
· τ ′ · Var[p],

i.e. the “α” parameter of (i) is
(

es
d−1

)d−1
.
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Event (ii): Lower bounding the variance of the restricted polynomial. The following simple claim
says that restricting a single variable in a regular polynomial cannot decrease the variance by too much:

Claim 51. For p(x1, . . . , xn) any multilinear degree-d κ-regular polynomial and ρ any restriction that fixes
a single variable to a value in {−1, 1}, the restricted polynomial pρ satisfies Var[pρ] ≥ (1− 2

√
κ) Var[p].

Proof. Let κ be a restriction that fixes x1 to either +1 or −1. For a set U ⊂ [n], 1 /∈ U we have that
the sets U and U ∪ {1} together contribute p̂(U)2 + p̂(U ∪ {1})2 to Var[p] =

∑
06=V p̂(V )2. In pρ, we

have p̂ρ(U ∪ {1}) = 0 and p̂ρ(U) = p̂(U) ± p̂(U ∪ {1}), so the sets U and U ∪ {1} together contribute
(p̂(U)± p̂(U ∪{1}))2 to Var[pρ]. Hence the difference between the contributions in p versus in pρ is at most
2|p̂(U)p̂(U ∪ {1})| in magnitude. Summing over all U ⊂ [n], 1 /∈ U we get that

Var[p]−Var[pρ] ≤ 2
∑

1/∈U⊂[n]

|p̂(U)p̂(U ∪ {1})|

≤ 2 ·
√ ∑

1/∈U⊂[n]

p̂(U)2 ·
√ ∑

1/∈U⊂[n]

p̂(U ∪ {1})2

≤ 2 ·
√

Var[p] ·
√

Inf1(p)

≤ 2 ·
√

Var[p] ·
√
κ ·Var[p] (because p is κ-regular)

= 2
√
κ ·Var[p].

To establish part (ii), we consider the restriction ρ fixing all variables in S as being built up by restricting
one variable at a time. We must be careful in doing this, because the variance lower bound of Claim 51
depends on the regularity of the current polynomial, and this regularity changes as we successively restrict
variables (indeed this regularity is what we are trying to bound). Therefore, for 0 ≤ t ≤ s, let us define regt
as the “worst-case” (largest possible) regularity of the polynomial p after t variables have been restricted
(so we have reg0 = τ ′ since by assumption p is initially τ ′-regular); our goal is to upper bound regs. For
0 ≤ t ≤ s, let ρt denote a restriction that fixes exactly t of the s variables in S (so pρ0 is simply p). By
repeated applications of Claim 51 we have

Var[pρt ] ≥
(
1− 2

√
regt−1

)
Var[pρt−1 ]

≥
(
1− 2

√
regt−1

) (
1− 2

√
regt−2

)
Var[pρt−2 ]

≥ · · ·
≥ (1− 2

√
regt−1) · · · (1− 2

√
reg0) Var[p],

and by Claim 50 we have that every j satisfies Infj(pρt) ≤
(

es
d−1

)d−1
· maxi∈[n] Infi(p). We shall set

parameters so that
∑s−1

r=0
√

regr ≤ 1
4 ; since

(1− 2
√

regt−1) · · · (1− 2
√

reg0) ≥ 1− 2
s−1∑
r=0

√
regr,

this means that for all 0 ≤ t ≤ s we shall have Var[pρt ] ≥ 1
2 Var[p]. We therefore have that every t satisfies

Infj(pρt)

Var[pρt ]
≤

(
es
d−1

)d−1
·maxi∈[n] Infi(p)

1
2 Var[p]

≤ 2

(
es

d− 1

)d−1

τ ′,

33



and therefore regt ≤ 2
(

es
d−1

)d−1
τ ′. Finally, to confirm that

∑s−1
r=0
√

regr ≤ 1
4 as required, we observe that

we have
s−1∑
r=0

√
regr ≤ s

√
max

0≤r≤s−1
regr ≤ s

√
2

(
es

d− 1

)d−1

τ ′

which is at most 1
4 by the conditions that Claim 49 puts on τ ′. So we indeed have that

regs ≤ 2

(
es

d− 1

)d−1

τ ′ ≤ τ,

again by the conditions that Claim 49 puts on τ ′. This concludes the proof of Claim 49.
With Claim 49 in hand we are ready to prove Lemma 47. As stated in the lemma, let a(x) be a degree-d

τ ′-regular polynomial, where

τ ′ =
1

2

(
d− 1

eD

)d−1

· 1

16D2
and D = Dd,1(τ, ε, δ/2)

(note that by the definition of the Dd,1(·, ·, ·) function we have that 1
16D2 < τ ). Claim 49 gives that at

every leaf ρ of T the polynomial aρ is τ -regular, and Lemma 47 is proved.

7.6 Proof of Lemma 48 We may suppose w.l.o.g. that Var[a] = 1. Since a is ε′-skewed, we may suppose
that p̂(∅) ≥ (C log(d/ε′))d/2.

Let ρ be any restriction fixing up to D variables. The idea of the proof is to show that (i) p̂ρ(∅) > 0 is
still “fairly large”, and (ii) Var[p] is “not too large”; together these conditions imply that pρ is skewed. We
get both (i) and (ii) from the following claim which is quite similar to Claim 50:

Claim 52. Let p(x1, . . . , xn) be a degree-d polynomial with Var[p] = 1 and p̂(∅) = 0. Let S ⊂ [n] be
a set of at most s variables. Then for any ρ ∈ {−1, 1}S , we have that (i) |p̂ρ(∅)| ≤

(
es
d

)d/2, and (ii)

Var[pρ] ≤
(

es
d−1

)d−1
Var[p].

Proof. Let T denote [n] \ S and let us write xS to denote the vector of variables (xi)i∈S and likewise xT
denotes (xi)i∈T . We may write p(x) as p(xS , xT ) = p′(xS) + q(xS , xT ) where p′(xS) is the truncation of
p comprising only the monomials all of whose variables are in S, i.e. p′(xS) =

∑
U⊆S p̂(U)

∏
i∈U xi.

For part (i), it is clear that for ρ ∈ {−1, 1}S we have that p̂ρ equals p′(ρ). Since

Var[p′] =
∑
U⊆S

p̂(U)2 ≤
∑
U⊆[n]

p̂(U)2 = Var[p] = 1,

we have

|p̂ρ(∅)| =

∣∣∣∣∣∣
∑
U⊆S

p̂(U)
∏
i∈U

ρi

∣∣∣∣∣∣ ≤
√∑
U⊆S

p̂(U)2 ·

√√√√ d∑
j=0

(
s

j

)
≤
(
es

d

)d/2
.

For (ii), as in the proof of Claim 50 we get that any nonempty U ⊆ T has

p̂ρ(U)2 =

∑
S′⊆S

p̂(S′ ∪ U)
∏
i∈S′

ρi

2

≤

∑
S′⊆S

p̂(S′ ∪ U)2

 · ( es

d− 1

)d−1

.
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Summing this inequality over all nonempty U ⊆ T ,we get that

Var[pρ] =
∑
∅6=U⊆T

p̂ρ(U)2 ≤

 ∑
∅6=V⊆[n]

p̂(V )2

 · ( es

d− 1

)d−1

=

(
es

d− 1

)d−1

Var[p].

This concludes the proof of Claim 52.

Proof of Lemma 48: Fix any leaf ρ in the decision tree T from the statement of Lemma 48. As noted at the
start of this subsection we may suppose w.l.o.g. that Var[a] = 1 and â(∅) ≥ (C log(d/ε′))d/2. Claim 52
gives us that p̂ρ(∅) ≥ (C log( dε′ ))

d/2 − ( eDd )d/2 and that Var[pρ] ≤ ( eDd−1)d−1, so pρ must be ε-skewed as
long as the following inequality holds:(

C log

(
d

ε′

))d/2
≥
(
eD

d

)d/2
+

(
eD

d− 1

)d−1

·
(
C log

(
d

ε

))d/2
. (26)

Simplifying the above inequality we find that taking ε′ as specified in Lemma 48 satisfies the inequality,
and Lemma 48 is proved.

7.7 The solution to the equations To complete the proof of Lemma 42 it suffices to show that the quantity
Dd,k(τ, ε, δ) that is defined by (24) and (25) indeed satisfies (23). It is clear from Lemma 41 that (23) holds
when k = 1. A tedious but straightforward induction using (24) and (25) shows that (23) gives a valid upper
bound. (To verify the inductive step it is helpful to note that for k > 1, equations (24) and (25) together
imply that Dd,k(τ, ε, δ) ≤ 2Dd,k−1(τ ′, ε′, δ/2).)
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