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Abstract

We give a deterministic algorithm for approximately computing the fraction of Boolean assignments
that satisfy a degree-2 polynomial threshold function. Given a degree-2 input polynomial p(x1, . . . , xn)
and a parameter ε > 0, the algorithm approximates

Prx∼{−1,1}n [p(x) ≥ 0]

to within an additive ±ε in time poly(n, 2poly(1/ε)). Note that it is NP-hard to determine whether the
above probability is nonzero, so any sort of multiplicative approximation is almost certainly impossible
even for efficient randomized algorithms. This is the first deterministic algorithm for this counting
problem in which the running time is polynomial in n for ε = o(1). For “regular” polynomials p (those
in which no individual variable’s influence is large compared to the sum of all n variable influences)
our algorithm runs in poly(n, 1/ε) time. The algorithm also runs in poly(n, 1/ε) time to approximate
Prx∼N(0,1)n [p(x) ≥ 0] to within an additive ±ε, for any degree-2 polynomial p.

As an application of our counting result, we give a deterministic FPT multiplicative (1±ε)-approximation
algorithm to approximate the k-th absolute moment Ex∼{−1,1}n [|p(x)k|] of a degree-2 polynomial. The
algorithm’s running time is of the form poly(n) · f(k, 1/ε).
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1 Introduction

A degree-d polynomial threshold function (PTF) is a Boolean function f : {−1, 1}n → {−1, 1} defined by
f(x) = sign(p(x)) where p : {−1, 1}n → R is a degree-d polynomial. In the special case where d = 1,
degree-d PTFs are often referred to as linear threshold functions (LTFs) or halfspaces. While LTFs and low-
degree PTFs have been researched for decades (see e.g., [MK61, MTT61, MP68, Mur71, GHR92, Orp92,
Hås94, Pod09] and many other works) their study has recently received new impetus as they have played
important roles in complexity theory [She08, She09, DHK+10, Kan10, Kan12c, Kan12a, KRS12], learning
theory [KKMS08, SSSS11, DOSW11, DDFS12], voting theory [APL07, DDS12] and other areas.

An important problem associated with LTFs and PTFs is that of deterministically estimating the frac-
tion of assignments that satisfy a given LTF or PTF over {−1, 1}n. In particular, in this paper we are
interested in deterministically estimating the fraction of satisfying assignments for PTFs of degree d = 2.
This problem is motivated by the long line of work on deterministic approximate counting algorithms, start-
ing with the seminal work of Ajtai and Wigderson [AW85] who gave non-trivial deterministic counting
algorithms for constant-depth circuits. Since then much progress has been made on the design of determin-
istic counting algorithms for other classes of Boolean functions like DNFs, low-degree GF [2] polynomials
and LTFs [LV96, GMR13, Vio09, GKM+11]. Problems of this sort can be quite challenging; after close to
three decades of effort, deterministic polynomial time counting algorithms are not yet known for a simple
class like polynomial-size DNFs.

Looking beyond Boolean functions, there has been significant work on obtaining deterministic approx-
imate counting algorithms for combinatorial problems using ideas and techniques from statistical physics.
This includes work on counting matchings [BGK+07], independent sets [Wei06], proper colorings [LLY13]
and other problems in statistical physics [BG08]. We note that there is interest in obtaining such determinis-
tic algorithms despite the fact that in some of these cases an optimal randomized algorithm is already known
(e.g., for counting matchings [JSV01]) and the performance of the corresponding deterministic algorithm is
significantly worse [BGK+07]. For this paper, the most relevant prior work are the results of Gopalan et al.
and Stefankovic et al. [GKM+11] who independently obtained deterministic poly(n, 1/ε) time algorithms
for counting the satisfying assignments of an LTF up to (1± ε) multiplicative error. (As we discuss later, in
contrast with LTFs it is NP-hard to count the satisfying assignments of a degree-d PTF for any d > 1 up to
any multiplicative factor. Thus, the right notion of approximation for degree-2 PTFs is additive error.)

There has recently been significant work in the literature on unconditional derandomization of LTFs and
PTFs. The starting point of these works are the results of Rabani and Shpilka [RS09] and Diakonikolas et al
[DGJ+09] who gave explicit constructions of polynomial-sized hitting sets and pseudorandom generators for
LTFs. Building on these works, Meka and Zuckerman [MZ10] and subsequently Kane [Kan11a, Kan11b,
Kan12b] constructed polynomial-sized PRGs for degree-d PTFs for d > 1. These PRGs trivially imply
deterministic polynomial-time counting algorithms for any fixed d and fixed ε > 0. While there has been
significant research on improving the dependence of the size of these PRGs on ε, the best construction in the
current state of the art is due to Kane [Kan12c] who gave an explicit PRG for degree-d polynomial threshold
functions over {−1, 1}n of size nOd(1)·poly(1/ε). (In a related but different line of work [Kan11a, Kan11b,
Kan12b] focusing on PRGs for degree-d PTFs over the Gaussian N (0, 1)n distribution, the strongest result
to date is that of [Kan12b] which for any constant degree d gives an explicit PRG of size nfd(1/ε) for degree-
d PTFs; here fd(1/ε) is a slightly sub-polynomial function of 1/ε, even for d = 2). As a consequence, the
resulting deterministic counting algorithms have a running time which is at least nOd(1)·poly(1/ε) and thus the
running time of these algorithms is not a fixed polynomial in n. In particular, for any ε = o(1), the running
time of these algorithms is super-polynomial in n.

1.1 Our contributions. In this work we give the first fixed polynomial time deterministic algorithm for
a PTF problem of this sort. As our main result, for all ε > 0 we give a fixed poly(n)-time algorithm to
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deterministically ±ε-approximately count the number of satisfying assignments to a degree-2 PTF:

Theorem 1. [Deterministic approximate counting of degree-2 PTFs over {−1, 1}n, informal statement]
There is a deterministic algorithm which, given a degree-2 polynomial q(x1, . . . , xn) and ε > 0 as input,
runs in time poly(n, 2Õ(1/ε9)) and outputs a value v ∈ [0, 1] such that

∣∣Prx∈{−1,1}n [q(x) ≥ 0]− v
∣∣ ≤ ε.

Note that, as a consequence of this theorem, we get a poly(n) time deterministic algorithm to count the
fraction of satisfying assignments of a degree-2 PTF over {−1, 1}n up to error ε = Õ(log−1/9 n).

The influence of variable i on a polynomial p : {−1, 1}n → R, denoted Infi(p), is the sum of squares of
all coefficients of p that are on monomials containing xi; it is a measure of how much “effect” the variable
i has on the outcome of p. Following previous work [DHK+10] we say that a polynomial p is ε-regular
if maxi∈[n] Infi(p) ≤ ε ·

∑n
j=1 Infj(p). For sufficiently regular polynomials, our algorithm runs in fully

polynomial time poly(n, 1/ε):

Theorem 2. [Deterministic approximate counting of regular degree-2 PTFs over {−1, 1}n, informal state-
ment] Given ε > 0 and an O(ε9)-regular degree-2 polynomial q(x1, . . . , xn) our algorithm runs (determin-
istically) in time poly(n, 1/ε) and outputs a value v ∈ [0, 1] such that

∣∣Prx∈{−1,1}n [q(x) ≥ 0]− v
∣∣ ≤ ε.

We note that the regular case has been a bottleneck in all known constructions of explicit PRGs for PTFs;
the seed-length of known generators for regular PTFs is no better than for general PTFs. Given Theorem 2,
the only obstacle to improved running times for deterministic approximate counting algorithms is improving
the parameters of the “regularity lemma” which we use. 1

Discussion. Our counting results described above give deterministic additive approximations to the desired
probabilities. While additive approximation is not as strong as multiplicative approximation, we recall
that the problem of determining whether Prx∈{−1,1}n [q(x) ≥ 0] is nonzero is well-known to be NP-hard
for degree-2 polynomials even if all nonconstant monomials in q are restricted to have coefficient 1 (this
follows by a simple reduction from Max-Cut, see the polynomial qG,CUT defined below). Thus, no efficient
algorithm, even allowing randomness, can give any multiplicative approximation to Prx∼{−1,1}n [q(x) ≥ 0]
unless NP ⊆ RP. Given this, it is natural to consider additive approximation.

Our results for degree-2 PTFs yield efficient deterministic algorithms for a range of natural problems.
As a simple example, consider the following problem: Given an undirected n-node graph G = ([n], E) and
a size parameter k, the goal is to estimate the fraction of all 2n−1 cuts that contain at least k edges. (Recall
that exactly counting the number of cuts of at least a given size is known to be #P-hard [Pap94].) We remark
that a simple sampling-based approach yields an efficient randomized ±ε-additive approximation algorithm
for this problem. Now note that the value of the polynomial qG,CUT(x) = (|E|−

∑
{i,j}∈E xixj)/2 on input

x ∈ {−1, 1}n equals the number of edges in the cut corresponding to x (where vertices i such that xi = 1
are on one side of the cut and vertices i such that xi = −1 are on the other side). It is easy to see that if
|E| ≥ C9n then qG,CUT(x) must be (1/C9)-regular. Theorem 2 thus provides a deterministic poly(n, 1/C)-
time algorithm that gives an ±O(1/C)-additive approximation to the fraction of all cuts that have size at
least k in n-node graphs with at leastC9n edges, and Theorem 1 gives a deterministic poly(n, 2Õ(1/ε9))-time
±ε-approximation algorithm for all n-node graphs.

As another example, consider the polynomial qG,INDUCED(x) =
∑
{i,j}∈E

1+xi
2 · 1+xj

2 . In this case,
we have that qG,INDUCED(x) equals the number of edges in the subgraph of G that is induced by vertex
set {i : xi = 1}. Similarly to the example of the previous paragraph, Theorem 2 yields a deterministic
poly(n, 1/C)-time algorithm that gives a ±O(1/C)-additive approximation to the fraction of all induced
subgraphs that have at least k edges in n-node graphs with at least C9n edges, and Theorem 1 gives a
deterministic poly(n, 2Õ(1/ε9))-time ±ε-additive approximation algorithm for any graph.

1Indeed, Kane [Kan13] has suggested that using the notions of regularity and invariance from [Kan12c] may result in an
improved, though still 2poly(1/ε), running time for our approach; we have not explored that in this work.
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Estimating moments. Our results also imply deterministic fixed-parameter tractable (FPT) algorithms
for approximately computing moments of degree-2 polynomials. Consider the following computational
problem ABSOLUTE-MOMENT-OF-QUADRATIC: given as input a degree-2 polynomial q(x1, . . . , xn) and
an integer parameter k ≥ 1, output the value Ex∈{−1,1}n [|q(x)|k]. It is clear that the raw moment E[q(x)k]

can be computed exactly in nO(k) time by expanding out the polynomial q(x)k, performing multilinear
reduction, and outputting the constant term. Since the k-th raw moment equals the k-th absolute moment
when k is even, this gives an nO(k) time algorithm for ABSOLUTE-MOMENT-OF-QUADRATIC for even
k. However, for any fixed odd k ≥ 1 the ABSOLUTE-MOMENT-OF-QUADRATIC problem is #P-hard (see
Appendix B). Thus, it is natural to seek approximation algorithms for this problem.

Using the hyper-contractive inequality [Bon70, Bec75] it can be shown that the natural randomized algo-
rithm – draw uniform points from {−1, 1}n and use them to empirically estimate Ex∈{−1,1}n [|q(x)|k] – with
high probability gives a (1± ε)-accurate estimate of the k-th absolute moment of q in poly(n, 2k log k, 1/ε)
time. Using Theorem 1 we are able to derandomize this algorithm and obtain a deterministic FPT (1 ± ε)-
multiplicative approximation algorithm for ABSOLUTE-MOMENT-OF-QUADRATIC:

Theorem 3. There is a deterministic algorithm which, given any degree-2 polynomial q(x1, . . . , xn) with
b-bit integer coefficients, any integer k ≥ 1, and any ε ∈ (0, 1), runs in poly

(
n, b, 2Õ((k log k log(1/ε))9k/ε9)

)
time and outputs a value v ∈

[
(1− ε)Ex∈{−1,1}n [|q(x)|k], (1 + ε)Ex∈{−1,1}n [|q(x)|k]

]
that multiplica-

tively (1± ε)-approximates the k-th absolute moment of q.

1.2 Techniques. The major technical work in this paper goes into proving Theorem 2. Given Theorem 2,
we use a (deterministic) algorithmic version of the “regularity lemma for degree-d PTFs” from [DSTW10]
to reduce the case of general degree-2 PTFs to that of regular degree-2 PTFs. (The regularity lemma that is
implicit in [HKM09] can also be used for this purpose.)

As is usual in this line of work, we can use the invariance principle of Mossel et al. [MOO10] to show
that for anO(ε9)-regular degree-2 polynomial p : Rn → R, we have

∣∣Prx∈{−1,1}n [p(x) ≥ 0]−Prx∈N (0,1)n [p(x) ≥ 0]
∣∣ ≤

ε. Thus, to prove Theorem 2, we are left with the task of additively estimating Prx∈N (0,1)n [p(x) ≥ 0].
The first conceptual idea towards achieving the aforementioned task is this: Since Gaussian distributions

are invariant under rotations, computing the probability of interest Prx∈N (0,1)n [p(x) ≥ 0] is equivalent to
computing Prx∈N (0,1)n [p̃(x) ≥ 0] for a “decoupled” polynomial p̃. More precisely, there exists a polyno-
mial p̃ : Rn → R of the form p̃(x) =

∑n
i=1 λix

2
i +

∑n
i=1 µixi + C such that the distributions of p(x)

and p̃(x) (where x ∼ N (0, 1)n) are identical. Indeed, consider the symmetric matrix A associated with the
quadratic part of p(x) and let QT · A · Q = Λ be the spectral decomposition of A. It is easy to show that
p̃(x) = p((Q·x)1, . . . , (Q·x)n) is a decoupled polynomial with the same distribution as p(x), x ∼ N (0, 1)n.
The counting problem for p̃ should intuitively be significantly easier since there are no correlations between
p̃’s monomials, and hence it would be useful if p̃ could be efficiently exactly obtained from p. Strictly
speaking, this is not possible, as one cannot obtain the exact spectral decomposition of a symmetric matrix
A (for example, A can have irrational eigenvalues). For the sake of this informal discussion, we assume that
one can in fact obtain the exact decomposition and hence the polynomial p̃(x).

Suppose we have obtained the decoupled polynomial p̃(x). The second main idea in our approach is
the following: We show that one can efficiently construct a t-variable “junta” polynomial q : Rt → R, with
t = poly(1/ε), such that the distribution of q(x) is O(ε)-close to the distribution of p̃(x) in Kolmogorov
distance. (Recall that the Kolmogorov distance between two random variables is the maximum distance
between their CDFs.) To prove this, we use a powerful recent result of Chatterjee [Cha09] (Theorem 42),
proved using Stein’s method, which provides a central limit theorem for functions of Gaussians. Informally,
this CLT says that for any function F : Rn → R satisfying some technical conditions, if g1, . . . , gn are
independent N (0, 1) random variables, then F (g1, . . . , gn) is close in total variation distance (`1 distance
between the pdfs) to a Gaussian distribution with the “right” mean and variance. (We refrain from giving a
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more detailed description of the theorem here as the technical conditions stem from considering generators of
the Ornstein-Uhlenbeck process, thus rendering it somewhat unsuitable for an intuitive discussion.) Using
this result, we show that if maxi λ

2
i ≤ ε2 · Var(p̃) (i.e., if the maximum magnitude eigenvalue of the

symmetric matrix A corresponding to p is “small”), then the distribution of p̃(x) (hence, also of p(x)) is
O(ε)-close to N (E[p̃],Var(p̃)), and hence the one-variable polynomial q(x) =

√
Var(p̃)x1 + E[p̃] is the

desired junta. In the other case, i.e., the case that maxi λ
2
i > ε2 ·Var(p̃), one must resort to a more involved

approach as described below.
If maxi λ

2
i > ε2 ·Var(p̃), we perform a “critical index based” case analysis (in the style of Servedio, see

[Ser07]) appropriately tailored to the current setting. We remark that such analyses have been used several
times in the study of linear and polynomial threshold functions (see e.g., [DGJ+09, FGRW09, DHK+10,
DSTW10]). In all these previous works the critical index analysis was performed on influences of variables
in the original polynomial (or linear form). Two novel aspects of the analysis in the current work are that (i)
we must transform the polynomial from its original form into the “decoupled” version before carrying out
the critical index analysis; and (ii) in contrast to previous works, we perform the critical index analysis not on
the influences of variables, but rather on the eigenvalues of the quadratic part of the decoupled polynomial,
i.e., on the values (|λ1|, . . . , |λn|), ignoring the linear part of the decoupled polynomial. The following
paragraph explains the situation in detail.

Suppose that the eigenvalues are ordered so that |λ1| ≥ . . . ≥ |λn|. Consider the polynomials p̃H,i(x) =
C+

∑
j≤i(λjx

2
j +µjxj) (the “head part”) and p̃T,i(x) =

∑
j>i(λjx

2
j +µjxj) (the “tail part”). Define the τ -

critical index as the minimum ` ∈ [n] such that |λ`|/
√

Var(p̃T,`−1) ≤ τ . LetK0 = Θ(τ−2 log(1/τ)). If the
τ -critical index is more thanK0 then we show that the “head part” p̃H,K0(x) (appropriately shifted) captures
the distribution of p̃(x) up to a small error. In particular, the distribution of q(x) = p̃H,K0(x) +E[p̃T,K0(x)]
isO(

√
τ)-close to that of p̃ in Kolmogorov distance. On the other hand, if the critical index isK ≤ K0, then

it follows from Chatterjee’s CLT that the polynomial q(x) = p̃H,K(x)+
√

Var(p̃T,K(x))xK+1+E[p̃T,K(x)]
is O(τ)-close to p̃ in total variation distance (hence, also in Kolmogorov distance). Note that in both cases,
q(x) has at most K0 + 1 variables and hence setting τ = Θ(ε2), we obtain a polynomial q(x) on t ≤
K0 + 1 = poly(1/ε) variables whose distribution is Kolmogorov O(ε)-close to that of p̃(x).

Thus, we have effectively reduced our initial task to the deterministic approximate computation of
Prx∼N (0,1)K0+1 [q(x) ≥ 0]. This task can potentially be achieved in a number of different ways (see the
discussion at the start of Section 2.4); with the aim of giving a self-contained and poly(1/ε)-time algorithm,
we take a straightforward approach based on dynamic programming. To do this, we start by discretizing
the random variable N (0, 1) to obtain a distribution DN (supported on poly(1/ε) many points) which is
such that

∣∣∣Prx∼N (0,1)K0+1 [q(x) ≥ 0]−Pr
x∼DK0+1

N
[q(x) ≥ 0]

∣∣∣ ≤ ε. Since q(x) is a decoupled polynomial,

computing Pr
x∼DK0+1

N
[q(x) ≥ 0] can be reduced to the counting version of the knapsack problem where

the weights are integers of magnitude poly(1/ε), and therefore can be solved exactly in time poly(1/ε) by
standard dynamic programming.

Remark 4. We note that the dynamic programming approach we employ could be used to do deterministic
approximate counting for a decoupled n-variable Gaussian degree-2 polynomial p̃(x) in poly(n, 1/ε) time
even without the junta condition. However, the fact that p̃ is Kolmogorov-close to a junta polynomial q is
a structural insight which has already proved useful in followup work. Indeed, achieving a junta structure
is absolutely crucial for recent extensions of this result [DDS13, DS13] which generalize the deterministic
approximate counting algorithm presented here (to juntas of degree-2 PTFs in [DDS13] and to general
degree-d PTFs in [DS13], respectively).

Singular Value Decomposition: The above informal description glossed over the fact that given a matrix
A, it is in general not possible to exactly represent the SVD of A using a finite number of bits (let alone
to exactly compute the SVD in polynomial time). In our actual algorithm, we have to deal with the fact
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that we can only achieve an “approximate” SVD. We define a notion of approximation that is sufficient
for our purposes and show that such an approximation can be computed efficiently. Our basic algorithmic
primitive is (a variant of the) well-known “powering method” (see [Vis13] for a nice overview). Recall
that the powering method efficiently computes an approximation to the eigenvector corresponding to the
highest magnitude eigenvalue. In particular, the method has the following guarantee: given that the largest-
magnitude eigenvalue of A has absolute value |λmax(A)|, the powering method runs in time poly(n, 1/κ)
and returns a unit vector w such that ‖A · w‖2 ≥ |λmax(A)| · (1− κ).

For our purposes, we require an additional criterion: namely, that the vectorA ·w is almost parallel to w.
(This corresponds to the notion of “decoupling” the polynomial discussed earlier.) It can be shown that if one
naively applies the powering method, then it is not necessarily the case that the vector w it returns will also
satisfy this requirement. To get around this, we modify the matrix A before applying the powering method
and show that the vector w so returned provably satisfies the required criterion, i.e., A · w is almost parallel
to w. An additional caveat is that the standard “textbook” version of the method is a randomized algorithm,
and we of course need a deterministic algorithm. This can be handled by a straightforward derandomization,
resulting in only a linear time overhead.

1.3 Organization. We record basic background facts from linear algebra, probability, and analysis in
Appendix A, along with our new extended notion of the “critical index” of a pair of sequences. Section 2
establishes our main technical result – an algorithm for deterministically approximately counting satisfying
assignments of a degree-2 PTF under the Gaussian N (0, 1)n distribution. Section 3 extends this result
to satisfying assignments over {−1, 1}n. Finally, in Section 4 we give the application to deterministic
approximation of absolute moments.

2 Deterministic approximate counting for Gaussian distributions

2.1 Intuition. Our goal is to compute, up to an additive ±ε, the probability Prx∼N (0,1)n [p(x) ≥ 0].
The algorithm has two main stages. In the first stage (Section 2.3) we transform the original n-variable
degree-2 polynomial p into an essentially equivalent polynomial q with a “small” number of variables –
independent of n – and a nice special form (a degree-2 polynomial with no “cross terms”). The key algo-
rithmic tool used in this transformation is the routine APPROXIMATE-DECOMPOSE which is described
and analyzed in Section 2.2. In particular, suppose that the original degree–2 polynomial is of the form
p(x) =

∑
i<j ai,jxixj+

∑
i bixi+C = xTAx+bTx+C. The first stage constructs a degree-2 “junta” poly-

nomial q(y1, . . . , yK) : RK → R with no cross terms (that is, every non-constant monomial in q is either of
the form yi or y2

i ) where K = Õ(1/ε4), such that |Prx∼N (0,1)n [p(x) ≥ 0]−Pry∼N (0,1)K [q(y) ≥ 0]| ≤ ε.
Theorem 27 summarizes what is accomplished in the first stage. We view this stage as the main contribution
of the paper.

In the second stage (Section 2.4) we give an efficient deterministic algorithm to approximately count
the fraction of satisfying assignments for q. Our algorithm exploits both the fact that q depends on only
poly(1/ε) variables and the special form of q. Theorem 43 summarizes what is accomplished in the second
stage. Theorem 50 combines these two results and gives our main result for deterministic approximate
counting of Gaussian degree-2 PTFs.

The first stage: Constructing a degree-2 junta PTF. To implement the first step we take advantage of
the fact that x ∼ N (0, 1)n in order to “decouple” the variables. Suppose we have computed the spectral
decomposition of A as A = QΛQT . (We remark that our algorithm does not compute this decomposition
explicitly; rather, it iteratively approximates the eigenvector corresponding to the largest magnitude eigen-
value of A, as is described in detail in the pseudocode of algorithm Construct-Junta-PTF. For the
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sake of this intuitive explanation, we assume that we construct the entire spectrum.) Then, we can write p as

p(y) = yTΛy + µT y + C =
n∑
i=1

λiy
2
i +

n∑
i=1

µiyi + C,

where y = QTx and µ = QT b. Since Q is orthonormal, it follows that y ∼ N (0, 1)n and that the desired
probability can be equivalently written as Pry∼N (0,1)n [p(y) ≥ 0].

At this point, let us arrange the variables in order, so that the sequence |λ1|, . . . , |λn| is non-increasing.
We now consider the ε-critical index of the pair of sequences {λ2

i }ni=1 and {µ2
i }ni=1 (here {µ2

i }ni=1 is the
“auxiliary sequence”see Definition 71). The starting point of our analysis is the following result.

Informal theorem: If the ε-critical index is zero, then the random variable p(y), where y ∼ N (0, 1)n, is
O(
√
ε)-close in total variation distance to N (ν, σ2) where ν = E[p(y)] and σ2 = Var[p(y)].

As mentioned earlier, the proof of the above theorem uses a recent result of Chatterjee [Cha09] (The-
orem 42) which provides a central limit theorem for functions of Gaussians. With this as starting point,
we consider a case analysis depending on the value of the ε-critical index of the pair of sequences {λ2

i }ni=1

and {µ2
i }ni=1 ({µ2

i }ni=1 is the auxiliary sequence). Let K be the value of the the ε-critical index of the pair.

If K ≤ K0
def
= Õ(1/ε2), then the tail pT,K(y) =

∑
j>K(λjy

2
j + µjyj) can be replaced by N (νj , σ

2
j )

where νj = E[pT,K(y)] and σ2 = Var[pT,K(y)]. On the other hand, if K ≥ K0, then the distribution
of q(y) =

∑
j≤K0

(λjy
2
j + µjyj) + C differs from the distribution of p(y) by O(

√
ε) in Kolmogorov dis-

tance. In either case, we end up with a degree-2 polynomial on at most K0 + 1 = Õ(1/ε2) variables whose
distribution is O(

√
ε) close to the distribution of p(y) in Kolmogorov distance.

The main difficulty in the real algorithm and analysis vis-a-vis the idealized version described above
is that computationally, it is not possible to compute the exact spectral decomposition. Rather, what one
can achieve is some sort of an approximate decomposition (we are deliberately being vague here about the
exact nature of the approximation that can be achieved). Roughly speaking, at every stage of the algorithm
constructing q several approximations are introduced and non-trivial technical work is required in bounding
the corresponding error. See Sections 2.2 and 2.3 for the detailed analysis.

The second stage: Counting satisfying assignments of degree-2 juntas over Gaussian variables. We are
now left with the task of (approximately) counting Pr[q(y) ≥ 0]. To do this we start by discretizing each
normal random variable yi to a sufficiently fine granularity – it turns out that a grid of size poly(1/ε) suffices.
Let us denote by ỹi the discretized approximation to yi. We also round the coefficients of q to a suitable
poly(ε) granularity and denote by q′ the rounded polynomial. It can be shown that q(y) and q′(ỹ) are ε-close
in Kolmogorov distance. Finally, this reduces computing Pr[q(y) ≥ 0] to computing Pr[q′(ỹ) ≥ 0]. Since
the terms in q′ are decoupled (i.e., there are no cross terms) and have small integer coefficients, q′(ỹ) can
be expressed as a read-once branching program of size poly(1/ε). Using dynamic programming, one can
efficiently compute the exact probability Pr[q′(ỹ) ≥ 0] in time poly(1/ε). See Section 2.4 for the details.

We note that alternative algorithmic approaches could potentially be used for this stage. We chose
our approach of discretizing and using dynamic programming because we feel that it is intuitive and self-
contained and because it easily gives a poly(1/ε)-time algorithm for this stage.

2.2 A useful algorithmic primitive. In this section we state and prove correctness of the main algorith-
mic primitive APPROXIMATE-DECOMPOSE that our procedure for constructing a degree-2 junta over
Gaussian variables will use. This primitive partially “decouples” a given input degree-2 polynomial by
transforming the polynomial into an (essentially equivalent) polynomial in which a new variable y (intu-
itively corresponding to the largest eigenvector of the input degree-2 polynomial’s matrix) essentially does
not appear together with any other variables in any monomials.
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Theorem 6 gives a precise statement of APPROXIMATE-DECOMPOSE’s performance. The reader
who is eager to see how APPROXIMATE-DECOMPOSE is used may wish to proceed directly from the
statement of Theorem 6 to Section 2.3.

We require the following definition to state Theorem 6. (Below a “normalized linear form” is an expres-
sion

∑n
i=1wixi with

∑n
i=1w

2
i = 1.)

Definition 5. Given a degree-2 polynomial p : Rn → R defined by p(x) =
∑

1≤i≤j≤n aijxixj+
∑

1≤i≤n bixi+
C and a normalized linear form L1(x), we define the residue of p with respect to L1(x), Res(p, L1(x)), to
be the polynomial obtained by the following process : For each i ∈ [n], express xi as αi1L1(x) + Ri(x)
where Ri(x) is orthogonal to the linear form L1(x). Now, consider the polynomial q(y1, x) = p(α11y1 +
R1(x), . . . , αn1y1 + Rn(x)). Res(p, L1(x)) is defined as the homogenous multilinear degree-2 part of
q(y1, x) which has the variable y1 present in all its terms.

Theorem 6. Let p : Rn → R be a degree-2 polynomial (with constant term 0) whose entries are b-bit
integers and let ε, η > 0. There exists a deterministic algorithm APPROXIMATE-DECOMPOSE which on
input an explicit description of p, ε and η runs in time poly(n, b, 1/ε, 1/η) and has the following guarantee
:

(a) If λmax(p) ≥ ε
√

Var(p), then the algorithm outputs rational numbers λ1, µ1 and a degree-2 poly-
nomial r : Rn+1 → R with the following property: for (y, x1, . . . , xn) ∼ N (0, 1)n+1, the two dis-
tributions p(x1, . . . , xn) and q(y1, x1, . . . , xn) are identical, where q(y1, x1, . . . , xn) equals λ1y

2
1 +

µ1y1 +r(y1, x1, . . . , xn). Further, Var(Res(r, y1)) ≤ 4η2 Var(p) and Var(r) ≤ (1−ε4/40) ·Var(p).

(b) If λmax(p) < ε
√

Var(p), then the algorithm either outputs “small max eigenvalue” or has the same
guarantee as (a).

In the rest of Section 2.2 we prove Theorem 6, but first we give some high-level intuition. Recall
from the introduction that we would like to compute the SVD of the symmetric matrix corresponding to
the quadratic part of the degree-2 polynomial p, but the exact SVD is hard to compute. APPROXIMATE-
DECOMPOSE works by computing an approximation to the largest eigenvalue-eigenvector pair, and using
the approximate eigenvector to play the role of L1 in Definition 5.

The case that is of most interest to us is when the largest eigenvalue has large magnitude compared to
the square root of the variance of p (since we will use Chatterjee’s theorem to deal with the complementary
case) so we focus on this case below. For this case, part (a) of Theorem 6 says that the algorithm out-
puts a degree-2 polynomial q(y1, x1, . . . , xn) with the same distribution as p. Crucially, in this polynomial
q, the first variable y1 is “approximately decoupled” from the rest of the polynomial, namely r (because
Var(Res(r, y1)) is small), and moreover Var(r) is substantially smaller than Var(p) (this is important be-
cause intuitively it means we have “made progress” on the polynomial p). Note that if we were given the
exact eigenvalue-eigenvector pair corresponding to the largest magnitude eigenvalue, it would be possible
to meet the conditions of case (a) with η = 0.

While approximating the largest eigenvector is a well-studied problem, we could not find any off-the-
shelf solution with the guarantees we required. APPROXIMATE-DECOMPOSE adapts the well-known
powering method for finding the largest eigenvector to give the desired guarantees.

2.2.1 Decomposing a matrix. In order to describe the APPROXIMATE-DECOMPOSE algorithm we
first need a more basic procedure which we call APPROXIMATE-LARGEST-EIGEN. Roughly speak-
ing, given a real symmetric matrix A with a large-magnitude eigenvalue, the APPROXIMATE-LARGEST-
EIGEN procedure outputs approximations of the largest-magnitude eigenvalue and its corresponding eigen-
vector. Theorem 7 gives a precise performance guarantee:
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Theorem 7. Let A ∈ Rn×n be a symmetric matrix whose entries are b-bit integers (not all 0) and ε, η > 0
be given rational numbers. There exists a deterministic algorithm APPROXIMATE-LARGEST-EIGEN
which on input A, ε and η, runs in time poly(n, b, 1/ε, 1/η) and has the following behavior:

(a) If |λmax(A)| ≥ ε‖A‖F , the algorithm outputs a number λ̃ ∈ R+ and unit vector w̃ ∈ Rn such that

(i) (1− η)|λmax(A)| ≤ |λ̃| ≤ |λmax(A)|;
(ii) the matrix B̃ = A− λ̃(w̃w̃T ) satisfies ‖B̃w̃‖2 < η‖A‖F ; and

(iii) ‖B̃‖F ≤ (1− ε2/40) · ‖A‖F .

(b) If |λmax(A)| < ε‖A‖F , the algorithm either outputs “small max eigenvalue” or behaves as in case
(a).

Let us describe the APPROXIMATE-LARGEST-EIGEN algorithm. Let 2−m ≤ ε ≤ 2−m+1. The
running time of the algorithm will have a polynomial dependence on 2m . Without loss of generality,
assume that λmax(A) is a positive number. Instead of working directly with the matrixA, we will work with
the matrix A′ = A + t · I where t = d‖A‖F e. Note that an eigevector-eigenvalue pair (v, λ) of A maps to
the pair (v, λ+ t) for A′.

For δ = min{ε4/100, η4/108}, the APPROXIMATE-LARGEST-EIGEN algorithm works as follows :

• For unit vectors e1, . . . , en and k = d 1
2δ · log(9n/4)e, the algorithm computes

µi =
‖A′ · (A′k · ei)‖22
‖(A′k · ei)‖22

.

• Let i∗ = arg maxi∈[n] µi, and define

w =
A′k · ei∗
‖A′k · ei∗‖2

, λ = ‖A · w‖2.

Note that sincew can have irrational entries, exact computation ofw and λ is not feasible. However, in
time poly(1/δ, b, n), we can compute a unit vector w̃ so that ‖w− w̃‖2 ≤ poly(δ, 1/b, 1/n). Define λ̃
as ‖A ·w̃‖2 rounded to a precision poly(δ, 1/b, 1/n). It is easy to see that |λ̃−λ| ≤ poly(δ, 1/b, 1/n).

• If λ̃2 ≥ (1− 9 · δ1/4) · ε2 · ‖A‖2F , then output the pair (w̃, λ̃). Else, output “small max eigenvalue”.

Proof of Theorem 7: We start with the following simple claim:

Claim 8. If |λmax(A)| ≤ (ε/2) · ‖A‖F , then APPROXIMATE-LARGEST-EIGEN outputs “small max
eigenvalue”.

Proof. Note that if |λmax(A)| ≤ (ε/2) · ‖A‖F , then λ̃2 ≤ ε2‖A‖2F /4. By our choice of δ we have that
λ̃2 < (1− 9 · δ1/4) · ε2 · ‖A‖2F , hence the algorithm will output “small max eigenvalue”.

Next let us recall the “powering method” to compute the largest eigenvalue of a symmetric matrix. See
the monograph by Vishnoi [Vis13] (the following statement is implicit in Lemma 8.1).

Lemma 9. Let A ∈ Rn×n be a symmetric matrix, λmax(A) be the largest magnitude eigenvalue of A
and v be the corresponding eigenvector. Let w be any unit vector such that |〈v, w〉| ≥ 2

3
√
n

. Then, for

k > 1
2κ · log(9n/4), ‖A · (Ak · v)‖2 ≥ |λmax(A)| · (1− κ) · ‖(Ak · v)‖2.
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Let vmax be the eigenvector corresponding to the largest eigenvalue of A′ and λmax(A′) be the corre-
sponding eigenvalue. It is clear that there is some i ∈ [n] such that |〈vmax, ei〉| ≥ 1√

n
.

Let i∗ be any such index. We will show that

w =
A′k · ei∗
‖A′k · ei∗‖2

and λ = ‖A · w‖2 (1)

are such that w̃ and λ̃ satisfy the conditions given in (a) and (b) of Theorem 7. Lemma 9 gives that
√
µi∗ ≥

(1− δ) · λmax(A′), and hence ‖A′ · w‖22 ≥ (1− δ)2λmax(A′)2.
Let v1, . . . , vn be the eigenvectors of A′ (and hence of A) and λ′1, . . . , λ

′
n be the corresponding eigen-

values of A′. Let w =
∑n

i=1 ci · vi and let S = {i ∈ [n] : λ′i ≥ (1−
√
δ) · λmax(A′)}.

Proposition 10.
∑

i 6∈S c
2
i ≤ 2

√
δ.

Proof. We haveA′ ·w =
∑n

i=1 ci ·λ′i ·vi and hence ‖A′ ·w‖22 =
∑n

i=1 c
2
i ·λ

′2
i =

∑
i∈S c

2
i ·λ

′2
i +

∑
i 6∈S c

2
i ·λ

′2
i .

As all eigenvalues of A′ are non-negative, for i /∈ S we have λ
′2
i ≤ (1−

√
δ)2 · λ2

max(A′). If
∑

i 6∈S c
2
i = κ,

then

(1− δ)2λ2
max(A′) ≤

∑
i∈S

c2
i · λ

′2
i +

∑
i 6∈S

c2
i · λ

′2
i ≤ (1− κ)λ2

max(A′) + κ(1−
√
δ)2λ2

max(A′).

The last inequality uses that ‖A′ ·w‖22 ≥ (1− δ)2λmax(A)2. Thus, −κ
√
δ(2−

√
δ) ≥ −δ(2− δ) and hence

κ ≤ 2
√
δ.

Proposition 11. If λmax(A) ≥ ε · ‖A‖F , then for w as defined above, ‖A ·w‖22 ≥ (1− 6 · δ1/4) · λ2
max(A).

Proof. Recall that an eigenvector vi with eigenvalue λi of A maps to an eigenvalue λi+ t of A′. Thus, if i is
such that λi + t ≥ (1−

√
δ)(λmax(A) + t), then λi ≥ (1−

√
δ)λmax(A)−

√
δ · t. Since λmax(A) ≥ εt/2,

if we choose δ ≤ ε4, then λi ≥ (1− 2 · δ1/4) · λmax(A). Thus, we have

S ⊆ {i ∈ [n] : λi ≥ (1− 2 · δ1/4) · λmax(A)}.

Now, observe that A · w =
∑

i∈S ci · λi · vi +
∑

i 6∈S ci · λi · vi. Hence,

‖A · w‖22 ≥
∑
i∈S

c2
i · λ2

i ≥ (1− 2 · δ1/4)2 · λ2
max(A) · (1− 2

√
δ) ≥ (1− 6 · δ1/4) · λ2

max(A),

where the second inequality uses Proposition 10.

Proposition 12. For w as defined in Equation (1) and λ ≥ 0, if λmax(A) ≥ (ε/2) · ‖A‖F and ‖A · w‖22 =
λ2 ≥ (1− 10 · δ1/4) · λ2

max(A), then for B = A− λw · wT , ‖B · w‖2 ≤ η · ‖A‖F /2.

Proof. We begin by noting that for i ∈ S, λ′i ≥ (1 −
√
δ)λmax(A′). This implies that λi + t ≥ (1 −√

δ)(λmax(A) + t). Using the bounds λmax(A) ≥ (ε/2)‖A‖F and δ ≤ ε4, we get that λi ≥ (1− 2 · δ1/4) ·
λmax(A).

By assumption we have that (1 − 10 · δ1/4)λmax(A) ≤ λ, and since ‖A · w‖22 = λ2 we also have that
λ ≤ λmax(A). As a consequence, we have that for every i ∈ S, |λ− λi| ≤ 10 · δ1/4|λmax(A)|. Note that

‖B · w‖22 = ‖A · w − λ · w‖22 =
∑
i∈S

c2
i (λi − λ)2 +

∑
i 6∈S

c2
i (λi − λ)2

≤ 100 ·
√
δ · λ2

max(A) ·

(∑
i∈S

c2
i

)
+
∑
i 6∈S

2 · c2
i · (λ2

i + λ2)

≤ 100 ·
√
δ · λ2

max(A) + 8
√
δ‖A‖2F ≤ 108

√
δ‖A‖2F ≤ η2 · ‖A‖2F /4,

where we used Proposition 10 and Fact 64 in the last line. The last inequality holds because δ ≤ η4/108.
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Claim 13. If λmax(A) ≥ ε · ‖A‖F , then the output satisfies the guarantees of part (a) of Theorem 7.

Proof. Recall that δ = min{ε4/100, η4/108}. We can then combine Proposition 10, Proposition 11 and
Proposition 12 to get that (1− η/2)λmax(A) ≤ λ ≤ λmax(A) and ‖Bw‖2 ≤ (η/2) · ‖A‖F . Finally, we use
Lemma 15 (proved below) to get that ‖B‖F ≤ (1− ε2/20)‖A‖F .

Now, recall that ‖w−w̃‖2 ≤ poly(δ, 1/b, 1/n) and |λ−λ̃| ≤ poly(δ, 1/b, 1/n). This implies guarantees
(i), (ii) and (iii).

Claim 14. If ε ≥ λmax(A) ≥ ε/2, then the output satisfies the conditions in part (b) of Theorem 7.

Proof. If λ̃2 ≤ (1− 9 · δ1/4) · ε2 · ‖A‖2F , then the algorithm outputs “small max eigenvalue” and the output
is correct. On the other hand, if λ̃2 ≥ (1 − 9 · δ1/4) · ε2 · ‖A‖2F , then it implies that λ2 ≥ (1 − 10 · δ1/4) ·
ε2 · ‖A‖2F . As λ2

max(A) ≤ ε2‖A‖2F , hence λ2 ≥ (1 − 10 · δ1/4) · λ2
max. Since δ ≤ η4/108, we get that

(1 − η/2)λmax(A) ≤ λ ≤ λmax(A). As above, Proposition 10, Proposition 12 and Proposition 12 give
that ‖Bw‖2 ≤ (η/2) · ‖A‖F , and Lemma 15 gives that ‖B‖F ≤ (1 − ε2/20)‖A‖F . As before, using that
‖w − w̃‖2 ≤ poly(δ, 1/b, 1/n) and |λ − λ̃| ≤ poly(δ, 1/b, 1/n), we get guarantees (i), (ii) and (iii) from
the output.

Claims 8, 13 and 14 together establish Theorem 7 modulo the proof of Lemma 15, which we provide
below.

Lemma 15. Let A ∈ Rn×n be symmetric with ‖A‖F = 1. For 0 < δ ≤ ε < 1, let λ with |λ| ≥ 3ε
and v ∈ Rn with ‖v‖2 = 1 be such that the matrix B = A − λ(vvT ) satisfies ‖Bv‖2 ≤ δ. Then,
‖B‖2F ≤ (1− 3ε2).

Proof. Recall that for any symmetric matrix C ∈ Rn×n we have ‖C‖2F = tr(C2). Hence we may prove the
lemma by bounding from above the quantity tr(B2). We can write

B2 = (A− λvvT )2 = A2 + λ2(vvT )2 − λA(vvT )− λ(vvT )A

and therefore
tr(B2) = tr(A2) + λ2tr

(
(vvT )2

)
− λtr

(
A(vvT )

)
− λtr

(
(vvT )A

)
.

Since ‖v‖2 = 1, we have that tr
(
(vvT )2

)
= 1. Moreover, tr

(
A(vvT )

)
= tr

(
(vvT )A

)
. Therefore,

tr(B2) = 1 + λ2 − 2λtr
(
A(vvT )

)
.

We will need the following claim:

Claim 16. We have that |tr(BvvT )| ≤ δ.

Proof. It follows easily from the definition that

tr(BvvT ) =
n∑
i=1

(b(i) · v)vi,

where b(i) ∈ Rn is the i-th row of B. Since Bv = [(b(1) · v) . . . (b(n) · v)]T the Cauchy-Schwarz inequality
implies that

|tr(BvvT )| ≤ ‖Bv‖2‖v‖2.

The claim follows from the fact that ‖Bv‖2 ≤ δ and ‖v‖2 = 1.
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Since
AvvT = BvvT + λ(vvT )2

we have
tr(AvvT ) = tr(BvvT ) + λtr

(
(vvT )2

)
= tr(BvvT ) + λ.

Claim 16 now implies that
λ− δ ≤ tr(AvvT ) ≤ λ+ δ.

Since |λ| ≥ ε > δ, the numbers λ− δ, λ, λ+ δ have the same sign, hence

λtr(AvvT ) = |λ| · |tr(AvvT )| ≥ |λ| · (|λ| − δ) = λ2 − δ|λ|

which gives that

tr(B2) ≤ 1 + λ2 − 2λ2 + 2δ|λ| = 1− λ2 + 2δ|λ| = 1− |λ|(|λ| − 2δ) ≤ 1− 3ε2

where the last inequality follows from our assumptions on λ and δ.

2.2.2 Technical claims about degree-2 polynomials. Before presenting and analyzing the APPROXIMATE-
DECOMPOSE algorithm we need some technical setup. We start with a useful definition:

Definition 17 (Rotational invariance of polynomials). Given two polynomials p(x) =
∑

1≤i≤j≤n aijxixj +∑
1≤i≤n bixi + C and q(x) =

∑
1≤i≤j≤n a

′
ijxixj +

∑
1≤i≤n b

′
ixi + C with the same constant term, we

say that they are rotationally equivalent if there is an orthogonal matrix Q such that QT · A · Q = A′ and
QT · b = b′. If the matrix A′ is diagonal then the polynomial q is said to be the decoupled equivalent of p.
In this case, the eigenvalues of A (or equivalently A′) are said to be the eigenvalues of the quadratic form p.

Claim 18. For any degree-2 polynomials p(x) and q(x) which are rotationally equivalent, the distributions
of p(x) and q(x) are identical when (x1, . . . , xn) ∼ N (0, 1)n.

Proof. Observe that q(x) = p(y) where y = Q · x. Now, since (x1, . . . , xn) is distributed according to
N (0, 1)n and Q is an orthogonal matrix, (y1, . . . , yn) has the same distribution. This proves the claim.

We will also use the following simple fact which relates the variance of a degree-2 polynomial p with
the Frobenius norm of the quadratic part of p.

Fact 19. Let p : Rn → R be a degree-2 polynomial and let A be the matrix corresponding to its quadratic
part. Then Var(p) ≥ 2‖A‖2F .

Proof. Let p(x) =
∑

1≤i≤j≤n aijxixj +
∑

1≤i≤n bixi + C. Equivalently, p(x) = xT · A · x + bT · x + C
where A is the matrix corresponding to the quadratic part of p. Using the fact that A is symmetric, we
get that there is an orthogonal matrix Q such that QTAQ = Λ where Λ is diagonal. Using the fact that if
x ∼ N (0, 1)n, then so is Qx, we get that the distribution of p(x) and q(x) = xTQTAQx + bTQx + C
are identical when x ∼ N (0, 1)n. However, q(x) = xTΛx + µTx + C where µ = QT · b. Note that
q(x) =

∑n
i=1(λix

2
i + µixi) + C. Hence,

Var(q) =
n∑
i=1

Var(λix
2
i + µixi) =

n∑
i=1

2λ2
i + µ2

i ≥ 2
n∑
i=1

λ2
i = 2‖A‖2F

(recall that for a univariate Gaussian random variable x ∼ N (0, 1) we have E[x4] = 3 and hence Var(x2) =
2.). Since the distributions of p(x) and q(x) are identical, we have that Var(p) ≥ 2‖A‖2F .
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We will also require another definition for degree-2 polynomials.

Definition 20. Given p : Rn → R defined by p(x) =
∑

1≤i≤j≤n aijxixj +
∑

1≤i≤n bixi +C, define SS(p)

as SS(p) =
∑

1≤i≤j≤n a
2
ij +

∑
1≤i≤n b

2
i .

We now have the following simple claim.

Claim 21. Given p : Rn → R, we have that 2SS(p) ≥ Var(p) ≥ SS(p).

Proof. Since neither SS(p) nor Var(p) is changed by adding a constant term to p it suffices to prove the
claim for p(x) =

∑
1≤i≤j≤n aijxixj +

∑
1≤i≤n bixi. We have

Ex1,...,xn∼N (0,1)[p(x1, . . . , xn)2] =
n∑
i=1

b2iE[x2
i ] +

∑
1≤i<j≤n

a2
ijE[x2

ix
2
j ] +

n∑
i=1

a2
iiE[x4

i ] +
∑

1≤i<j≤n
2aiiajjE[x2

ix
2
j ]

=

n∑
i=1

(b2i + 3a2
ii) +

∑
1≤i<j≤n

(a2
ij + 2aiiajj).

The first equality holds because every other cross-term has an odd power of some xi (for i ∈ [n]), and
for x ∼ N (0, 1) we have that E[xt] = 0 if t is odd. On the other hand, by linearity of expectation,
Ex1,...,xn [p] =

∑n
i=1 aii and hence

(Ex1,...,xn [p])2 =
n∑
i=1

a2
ii +

∑
1≤i<j≤n

2aiiajj

Hence, Var(p) =
∑n

i=1(b2i + 2a2
ii) +

∑
1≤i<j≤n a

2
ij . This implies the claimed bounds.

Claim 22. For the polynomial q(y1, x) constructed in Definition 5, the distributions of q(y1, x) and p(x)
are identical when (y1, x1, . . . , xn) ∼ N (0, 1)n.

Proof. Note that
p(x) = p(α1L1(x) +R1(x), . . . , αnL1(x) +Rn(x)).

Let D be the joint distribution of (R1(x), . . . , Rn(x)) when (x1, . . . , xn) ∼ N (0, 1)n. As Ri(x) is orthog-
onal to L1(x) for all i ∈ [n], hence D is independent of the distribution of L1(x) =

∑n
i=1wixi (when

(x1, . . . , xn) ∼ N (0, 1)n). Also, L1(x) is distributed like a standard normal. Using these two facts, we get
the claimed statement.

Claim 23. Given a degree-2 polynomial p : Rn → R, let L1(x) be a normalized linear form and A be the
matrix corresponding to the quadratic part of p. Let w1 be the vector corresponding to L1(x) and let Q
be any orthonormal matrix whose first column is w1. Let Ã = QT · A · Q. Then Var(Res(p, L1(x))) =
4 ·
∑

1≤j≤n Ã
2
1j .

Proof. Let xi = αi1L1(x) + Ri(x). Let Q = [w1, . . . , wn] be an orthonormal matrix. Let Li(x) be the
linear form corresponding to wi. Note that xi =

∑n
j=1QijLj(x) and hence Ri(x) =

∑n
j>1QijLj(x).

Since L1(x), . . . , Ln(x) are orthonormal, hence their joint distribution is same as (y1, . . . , yn) ∼ N (0, 1)n.
Also, observe that this implies that the joint distribution of R1(x), . . . , Rn(x) is independent of L1(x).

As a consequence, we get that the distribution of Res(p, L1(x)) is same as Res(p̃, y1) where

p̃(y1, . . . , yn) = p(
n∑
j=1

Q1jyj , . . . ,
n∑
j=1

Qnjyj) = p((Q · y)1, . . . , (Q · y)n)

Note that since A is the matrix corresponding to the quadratic part of p, we get that

Res(p̃, y1) = Res(p((Q · y)1, . . . , (Q · y)n), y1) = Res(yT ·QT ·A ·Q · y, y1) = Res(yT · Ã · y, y1)

Thus, Res(yT · Ã · y, y1) =
∑n

j=2 2Ã1jy1yj . Thus, Var(Res(yT · Ã · y, y1) = 4 ·
∑

1≤j≤n Ã
2
1j .
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2.2.3 Proof of Theorem 6. Recall the statement of Theorem 6:

Theorem 6. Let p : Rn → R be a degree-2 polynomial (with constant term 0) whose entries are b-bit
integers and let ε, η > 0. There exists a deterministic algorithm APPROXIMATE-DECOMPOSE which on
input an explicit description of p, ε and η runs in time poly(n, b, 1/ε, 1/η) and has the following guarantee
:

(a) If λmax(p) ≥ ε
√

Var(p), then the algorithm outputs rational numbers λ1, µ1 and a degree-2 poly-
nomial r : Rn+1 → R with the following property: for (y, x1, . . . , xn) ∼ N (0, 1)n+1, the two dis-
tributions p(x1, . . . , xn) and q(y1, x1, . . . , xn) are identical, where q(y1, x1, . . . , xn) equals λ1y

2
1 +

µ1y1 +r(y1, x1, . . . , xn). Further, Var(Res(r, y1)) ≤ 4η2 Var(p) and Var(r) ≤ (1−ε4/40) ·Var(p).

(b) If λmax(p) < ε
√

Var(p), then the algorithm either outputs “small max eigenvalue” or has the same
guarantee as (a).

Proof. The algorithm works as follows :

(i) Let A be the matrix corresponding to the quadratic part of p. If ‖A‖2F < ε2 · Var(p), then output
“small max eigenvalue”.

(ii) Run the algorithm APPROXIMATE-LARGEST-EIGEN from Theorem 7 on the matrix A. If the
output is “small max eigenvalue”, then return “small max eigenvalue”.

(iii) If the output of the algorithm APPROXIMATE-LARGEST-EIGEN is the tuple (λ,w1), then for each
unit vector ei, we express ei = αiw1 + vi where vi is orthogonal to w1. For the sake of brevity, we
will henceforth refer to

∑n
j=1 vijxj as Ri(x).

(iv) Define the polynomial q(y1, x1, . . . , xn) as p(α1y1 +R1(x), . . . , αny1 +Rn(x)).

The bound on the running time of the algorithm is obvious. We now give the proof of correctness of the
algorithm. First of all, if ‖A‖2F < ε2 ·Var(p), then λ2

max(A) ≤ ‖A‖2F < ε2 ·Var(p) and hence the output is
correct. So from now on, we assume that ‖A‖2F ≥ ε2 ·Var(p).

Now, assuming that the output of Theorem 7 in Step (ii) is “small max eigenvalue”, then by the guarantee
of Theorem 7 it must be the case that λ2

max(A) ≤ ε2 · ‖A‖2F . Using Fact 19, we get that λ2
max(A) ≤

ε2 ·Var(p)/2.
Thus, in both the cases that the output of the algorithm is “small max eigenvalue”, it is the case that

λ2
max(A) ≤ ε2 ·Var(p).

Now, consider the case in which the algorithm reaches Step (iii). It must be the case that ‖A‖F ≥
ε ·
√

Var(p), and by Claim 8 it must hold that λmax(A) ≥ (ε/2) · ‖A‖F . We start with the following claim.

Claim 24. The distribution of q(y1, x1, . . . , xn) and p(x1, . . . , xn) are identical when (y1, x1, . . . , xn) ∼
N (0, 1)n+1.

Proof. The polynomial q(y1, x1, . . . , xn) is the same as the one constructed in Definition 5 and hence we
can use Claim 22 to get the stated claim.

Next, we prove the bound on Var(Res(q, y1)).

Claim 25. Var(Res(q, y1)) ≤ 2η2 Var(p).
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Proof. Consider the orthogonal matrix Q = [w1, . . . , wn]. Then, by using Claim 23, for Ã = QT · A · Q,
Var(Res(q, y1)) = 4

∑
j>1 Ã

2
1j . Now, using that w1, . . . , wn form an orthonormal basis, we get∑

j>1

Ã2
1j =

∑
j>1

(wTj ·A · w1)2

Now, note that for the value λ that APPROXIMATE-LARGEST-EIGEN outputs in Step (iii) of APPROXIMATE-
DECOMPOSE, we have

η2‖A‖2F ≥ ‖A · w1 − λw1‖22 =
n∑
j=1

(wTj ·A · w1 − λwTj · w1)2 ≥
n∑
j=2

(wTj ·A · w1)2

Here the first inequality follows from Theorem 7 part (a)(ii) while the second equality follows from the
definition of `2 norm of a vector. Thus, we get that

Var(Res(q, y1)) = 4
∑
j>1

Ã2
1j ≤ 4 · ‖A · w1 − λ1w1‖22 ≤ 4η2‖A‖2F ≤ 2η2 Var(p)

The last inequality uses Fact 19.

Thus, the only part that remains to be shown is that the variance of r goes down.

Claim 26. Var(r(y1, x1, x2, . . . , xn)) ≤ (1− ε4/40) ·Var(p).

Proof. Note that q(x) = λ1y
2
1 + µ1y1 + r(y1, x1, . . . , xn). Let r̃(y1, x1, . . . , xn) = Res(r, y1). Since

Var(r̃) ≤ 2η2 Var(p), hence using Fact 65, we get that

Var(λ1y
2
1 + µ1y1 + r(y1, x1, x2, . . . , xn)− r̃(y1, x1, . . . , xn)) ≤ (1 + 2η)2 Var(p).

However, note that r(y1, x1, x2, . . . , xn)− r̃(y1, x1, . . . , xn) is independent of y (call it r̃1(x1, . . . , xn)). As
a result, we get

Var(r̃1(x1, . . . , xn)) + Var(λ1y
2
1 + µ1y1) ≤ (1 + 2η)2 Var(p)

Since the algorithm reaches Step (iii) only if λmax(A) ≥ ε‖A‖F /2 and ‖A‖F ≥ ε
√

Var(p), hence λ1 ≥
(1− η)(ε2/2)

√
Var(p) and hence

Var(r̃1(x1, . . . , xn)) ≤ (1 + 2η)2 Var(p)− (1− η)2(ε4/4) Var(p) ≤ (1− ε4/20) ·Var(p).

This uses the fact η ≤ ε4/108. Again, using Fact 65 and that η ≤ ε4/108, we get that since Var(r̃) ≤
2η2 Var(p)

Var(r(y1, x1, x2, . . . , xn)) ≤ (1− ε4/40) ·Var(p).

This concludes the proof of Theorem 6.
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Construct-Junta-PTF

Input: Explicit description of an n-variable degree-2 polynomial p and ε > 0.
Output: A degree-2 polynomial q(y) =

∑K
i=1(λiy

2
i + µiyi) + C ′, with K = Õ(1/ε4), such that

|Prx∈N (0,1)n [p(x) ≥ 0]−Pry∈N (0,1)K [q(y) ≥ 0]| = O(ε).

Let p(x) = p′(x) + C, where p′ has constant term 0. Assume by rescaling that Var(p′) = Var(p) = 1.

Initialize: i = 1; s1(x) = p′(x); h0 ≡ 0.

Repeat the following:

1. Fix α def
= Θ(ε4/ log2(1/ε)).

2. If Var(si) < α output the polynomial qi−1 : Ri−1 → R defined by qi−1(y1, . . . , yi−1) =
hi−1(y1, . . . , yi−1) + E[si] + C.

3. If Var(si) ≥ α do the following

(a) Round down each coefficient of si to its closest integer multiple of γ/(Kn), where γ =
Θ̃((ε/K)2)

√
α and K = Θ̃(1/ε4). Let s′i(x) be the rounded polynomial.

(b) Run the routine APPROXIMATE-DECOMPOSE(s′i, ε, η := Θ̃(ε4/K4)).

(c) If the routine returns “small max eigenvalue” output the polynomial q′i : Ri → R
q′i(y1, . . . , yi) = hi−1(y1, . . . , yi−1) + βs′iyi + E[s′i] + C. where βs′i is obtained by rounding
down

√
Var(s′i) to the nearest integer multiple of εα/2.

(d) If the routine outputs numbers λi, µi and a polynomial ri : Rn+1 → R, we define si+1(x) =
ri(yi, x1, . . . , xn)−Res(ri, yi) and hi(y1, . . . , yi) = hi−1(y1, . . . , yi−1) + (λiy

2
i + µiyi).

4. i = i+ 1.

End Loop

2.3 The first stage: Constructing a junta polynomial. In this section, we describe an algorithm
Construct-Junta-PTFwhich given as input an n variable quadratic polynomial p, runs in time poly(n/ε)
and outputs a quadratic polynomial q on Õ(1/ε4) variables such that the distributions of p(Y ) and q(Y )
(when Y ∼ N (0, 1)n) are O(ε) close in Kolmogorov distance. More precisely, we prove the following
theorem.

Theorem 27. The algorithm Construct-Junta-PTF has the following performance guarantee: It takes
as input an explicit description of an n-variable degree-2 polynomial p with b-bit integer coefficients, and
a value ε > 0. It runs (deterministically) in time poly(n, b, 1/ε) and outputs a degree-2 polynomial q =∑K

i=1(λiy
2
i +µiyi) +C ′ such that

∣∣∣Prx∈N (0,1)n [p(x) ≥ 0]−Pry∈N (0,1)K [q(y) ≥ 0]
∣∣∣ ≤ O(ε), where each

λi, µi ∈ Z and K = Õ(1/ε4).

The full proof of the theorem is technical so first we give some intuition behind the algorithm and its
proof of correctness.

As mentioned in the introduction, if we were given the exact SVD then we could construct a decoupled
n-variable polynomial p̃ such that p(X) and p̃(X) have the same distribution whenX ∼ N (0, 1)n. Since we
cannot compute the exact SVD, we instead iteratively use the APPROXIMATE-DECOMPOSE algorithm.
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Consider the first time the APPROXIMATE-DECOMPOSE algorithm is called (on the polynomial
s′1 – think of this as just being the input polynomial p). If it outputs “small max eigenvalue”, then using
Chatterjee’s recent CLT for functions of Gaussians, we show that for X ∼ N (0, 1)n the distribution of
s′1(X) is close to N (E[s′1],Var(s′1)) in total variation distance. In this case we can set the polynomial
q =

√
Var[s′1]y1 + E[s′1] (note that we ignore technical details like the “rounding” that the algorithm

performs in this intuitive discussion).
On the other hand, if the APPROXIMATE-DECOMPOSE algorithm does not output “small max eigen-

value”, then let λ1y
2
1 +µ1y1 + r1(y1, x1, . . . , xn) be the output of APPROXIMATE-DECOMPOSE. Since

Var(Res(r, y1)) is small, it is not difficult to show that the distribution of λ1y
2
1 +µ1y1+r1(y1, x1, . . . , xn)−

Res(r, y1) is close to the distribution of s′1 in Kolmogorov distance. However, note that by definition,
r1(y1, x1, . . . , xn) − Res(r1, y1) does not involve the variable y1. We now iteratively work with the poly-
nomial s2(x1, . . . , xn) = r1(y1, x1, . . . , xn) − Res(r1, y1). In particular, we apply APPROXIMATE-
DECOMPOSE to the polynomial s′2 (this is a “rounded” version of s2 – think of it as just being s2).
In this second stage, if APPROXIMATE-DECOMPOSE outputs “small max eigenvalue”, we can set the
polynomial q to be q = λ1y

2
1 + µ1y1 +

√
Var(s′2)y2 + E[s′2]; otherwise we proceed as we did earlier to

obtain λ2, µ2, r2(y2, x1, . . . , xn); and so on.
If this iterative procedure terminates within Õ(1/ε4) steps because of APPROXIMATE-DECOMPOSE

returning “small max eigenvalue” at some stage, then its output is easily seen to satisfy the conditions of
the theorem. If the procedure continues through K = Õ(1/ε4) steps without terminating, then using the
critical-index style analysis, it can be shown that the variance of the remaining polynomial sK is at most
O(ε) (recall from Theorem 6 that each call to APPROXIMATE-DECOMPOSE reduces the variance of the
polynomial by a multiplicative factor of (1−ε4/40)). Since this variance is so small it can be shown that the
remaining polynomial can be safely ignored and that the polynomial

∑
1≤i≤K λiy

2
i +µiyi+E[sK ] satisfies

the conditions of the theorem.

The rest of this section is devoted to the proof of the above theorem. We start with a couple of preliminary
lemmas:

Lemma 28. Let p, q : Rn → R be degree-2 polynomials such that Var(q) ≤ ε′Var(p), where ε′ =
O(ε4/ log2(1/ε)). For x ∼ N (0, 1)n, let D denote the distribution of p(x) + q(x) and D̃ the distribution of
p(x) + E[q(x)]. Then we have dK(D, D̃) ≤ ε.

Proof. By the definition of the Kolmogorov distance it is no loss of generality to assume that E[q] = 0. For
a fixed but arbitrary θ ∈ R we will show that

|Pr[p(x) + q(x) ≤ θ]−Pr[p(x) ≤ θ]| ≤ ε.

We bound the LHS as follows: Fix x ∈ Rn. The point x contributes to the LHS only if there exists δ > 0
such that either |p(x) − θ| ≤ δ or |q(x)| ≥ δ. We select δ appropriately and bound the probability of
the first event using Theorem 69 and the probability of the second event using Theorem 68. Indeed, fix
δ = Θ(ε2)

√
Var(p) ≥ Ω(log(1/ε))

√
Var(q), where the inequality follows from the assumption Var(q) ≤

ε′Var(p). Theorem 69 yields

Prx∼N (0,1)n [|p(x)− θ| ≤ δ] = Prx∼N (0,1)n

[
|p(x)− θ| ≤ Θ(ε2)

√
Var(p)

]
≤ ε/2 (2)

and by Theorem 68

Prx∼N (0,1)n [|q(x)| ≥ δ] ≤ Prx∼N (0,1)n

[
|q(x)| ≥ Ω(log(1/ε))

√
Var(q)

]
≤ ε/2. (3)

The lemma now follows by a union bound.
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As a consequence we have the following:

Proposition 29. Let p : Rn → R be a degree-2 polynomial with Var(p)≥ α. Consider the polynomial
p′ : Rn → R obtained by rounding down each coefficient of p to its closest integer multiple of γ/n, where
γ = O(ε2/ log(1/ε)) ·

√
α. Then, we have

dK(p, p′) ≤ ε.

Proof. Note that e(x) = p(x)− p′(x) =
∑

i≤j δi,jxixj +
∑

i γixi where |δi,j | ≤ γ/n and |γi| ≤ γ/n. As
a consequence, we have SS(e) ≤ γ2 and therefore

Var(e) ≤ 2SS(e) ≤ Θ(ε4/ log2(1/ε))α ≤ Θ(ε4/ log2(1/ε)) Var(p)

where we used Claim 21 and the definition of γ. Fact 65 gives that Var(e) ≤ Θ(ε4/ log2(1/ε)) Var(p′) and
Lemma 28 now implies that

dK(p, p′) ≤ ε.

For the sake of intuition, we start by analyzing the first iteration of the loop. In the beginning of the first
iteration, we have s1(x) = p′(x), where p′ is the polynomial p without its constant term C. Hence we have
Var(s1) = 1, which means that Step 2 of the loop is not executed. In Step 3(a) we round s1 to obtain the
rounded polynomial s′1. By Proposition 29, it follows that

dK(s1, s
′
1) ≤ ε/K. (4)

Also note that the coefficients of s′1 are integer multiples of γ/(Kn) of magnitude poly(n/ε), hence up to a
scaling factor they are `-bit integers for ` = O(log(n/ε)). In Step 3(b) we run the routine APPROXIMATE-
DECOMPOSE on the rounded polynomial s′1. (Note that the routine runs in poly(n/ε) time.)

If the routine returns “small max eigenvalue” (Step 3(c)) then Theorem 6 guarantees that the maximum
magnitude eigenvalue of s′1 is indeed small, in particular |λmax(s′1)| ≤ ε

√
Var(s′1). In this case, the algo-

rithm outputs the univariate polynomial q′1(y1) = βs′1y1 + E[s′1] + C, where |βs′1 −
√

Var(s′1)| ≤ εα/2.
We have the following:

Claim 30. If |λmax(s′1)| ≤ ε
√

Var(s′1), we have that dK(s′1(x), q′1(y1)) = O(ε).

To prove this claim we will need the following lemma. Its proof uses a powerful version of the Central
Limit Theorem for functions of independent Gaussian random variables (which can be obtained using Stein’s
method):

Lemma 31. Let p : Rn → R be a degree-2 polynomial over independent standard Gaussians. If |λmax(p)| ≤
ε
√

Var(p), then p is O(ε)-close to the GaussianN (E[p],Var(p)) in total variation distance (hence, also in
Kolmogorov distance).

The proof of Lemma 31 is deferred to Section 2.3.1.

Proof of Claim 30. Since |λmax(s′1)| ≤ ε
√

Var(s′1), by Lemma 31 it follows that

dK

(
s′1(x),

√
Var(s′1)y1 + E[s′1]

)
= O(ε),
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where x ∼ N (0, 1)n and y1 ∼ N (0, 1). Since βs′1 ≤
√

Var(s′1), Fact 67 yields

dK

(
βs′1y1 + E[s′1],

√
Var(s′1)y1 + E[s′1]

)
≤ (1/2)

|β2
s′1
−Var(s′1)|
β2
s′1

≤ εα

β2
s′1

= O(ε)

where we used that |β2
s′1
− Var(s′1)| ≤ 2|βs′1 −

√
Var(s′1)| ≤ εα and that β2

s′1
≥ α/2 (which uses that

Var(s1) ≥ α and |Var(s1)−Var(s′1)| ≤ 2γ2/K2 ≤ εα).
The claim follows from the aforementioned and the triangle inequality.

Now we analyze the execution of Step 3(d). Consider the numbers λ1, µ1 and degree-2 polynomial
r1 : Rn+1 → R returned by the routine Approximate-Decompose. Consider the polynomial

g1(y1, x1, . . . , xn) = λ1y
2
1 + µ1y1 + r1(y1, x1, . . . , xn).

Theorem 6 guarantees that the random variables s′1(x1, . . . , xn) and g1(y1, x1, . . . , xn), with (y1, x1, . . . , xn) ∼
N (0, 1)n+1 have identical distributions. (In particular, this implies that Var(g1) = Var(s′1).) The algorithm
proceeds to define

s2(x1, . . . , xn) = r1(y1, x1, . . . , xn)−Res(r1, y1)

and
h1(y1) = λ1y

2
1 + µ1y1.

Note that the two summands (λ1y
2
1 +µ1y1 and r1(y1, x1, . . . , xn)) defining g1 are correlated (because of the

variable y1). An important fact is that if we subtract Res(r1, y1) from the polynomial r1, the distribution of
the resulting polynomial remains close in Kolmogorov distance:

Claim 32. We have that dK(s′1, s2 + h1) ≤ ε/K.

Proof. Note that

dK(s′1, h1 + s2) = dK(g1, h1 + s2) = dK(g1, g1 −Res(r1, y1)).

By Theorem 6 it follows that

Var(Res(r1, y1)) ≤ η2 Var(s′1) = η2 Var(g1).

Since E[Res(r1, y1)] = 0, by Lemma 28 we get that dK(g1, s2 + h1) ≤ ε/K as desired.

The advantage of doing this is that s2 and h1 are independent random variables, since s2 does not depend
on y1. As a consequence, we also obtain the following:

Fact 33. Var(s2 + h1) = Var(s2) + Var(h1) ≥ 1− ε/K.

Proof. Note that
g1 = h1 + r1 = h1 + s2 +Res(r1, y1).

We have that Var(g1) = Var(s′1) ≥ (1− ε2/K2) Var(s1) and Var(Res(r1, y1)) ≤ 4η2 Var(s′1). By Fact 65
it follows that

Var(s2 + h1) ≥ (1− 2η) Var(g1) = (1− 2η) Var(s′1) ≥ (1− 2η)(1− ε2/K2) Var(s1)

which completes the proof since Var(s1) = 1.

We also have that the variance of the polynomial s2 is smaller than Var(s1) by a multiplicative factor:
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Claim 34. We have Var(s2) ≤ (1− ε4/40).

Proof. By Theorem 6 we know that

Var(r1) ≤ (1− ε4/40) Var(s′1) ≤ (1− ε4/40)

where the second inequality used the fact that Var(s′1) ≤ Var(s1) ≤ 1. Now note that s2 is obtained from
r1 by removing a subset of its terms. Therefore, Var(s2) ≤ Var(r1) and the claim follows.

This concludes our analysis of the first iteration of the loop.

We are now ready to analyze a generic iteration of the loop. Many aspects of this analysis will be similar
to our earlier analysis of the first iteration. Consider the j-th iteration of the loop, where j ≥ 2. We can
assume by induction that for all i < j the following hold:

(a) dK(si, s
′
i) ≤ ε/K (for j = 2 this holds by (4));

(b) dK(hi−1 + si, hi + si+1) ≤ 2ε/K, (for j = 2 this holds by (a) and Claim 32);

(c) Var(si+1) + Var(hi) ≥ (1− ε/K)i, and (for j = 2 this holds by Fact 33); and

(d) Var(si+1) ≤ (1− ε4/40)i (for j = 2 this holds by Claim 34).

We start by observing that j − 1 ≤ K, i.e., the total number of iterations is at most K + 1. Indeed, by
(d) above, for i = K we will have Var(si+1) ≤ (1− ε4/40)K < α and the algorithm terminates in Step 2.

In the beginning of the j-th iteration, we have the polynomial sj(x1, . . . , xn), satisfying Var(sj) ≤
(1 − ε4/40)j−1 and the polynomial hj−1(y1, . . . , yj−1). If the variance has become very small, we can
“truncate” sj taking into account its expectation (Step 2). Consider the polynomial

qj−1(y1, . . . , yj−1) = hj−1(y1, . . . , yj−1) + E[sj ] + C.

We have the following claim:

Claim 35. Suppose that Var(sj) < α, where α
def
= Θ(ε4/ log2(1/ε)). Then, we have that

dK(hj−1 + sj + C, qj−1) ≤ ε.

Proof. The claim is equivalent to showing that dK(hj−1 + sj , hj−1 + E[sj ]) ≤ ε. Note that by Part (c) of
the inductive hypothesis we have that Var(hj−1) + Var(sj) ≥ (1− ε/K)j−1. Since Var(sj)<α we get that

Var(hj−1)>(1− ε/K)j−1 − α ≥ 1/2,

where the last inequality uses the fact that j ≤ K + 1. The claim follows by an application of Lemma 28
for the polynomials hj−1 and sj .

Combining the above claim with Parts (a) and (b) of the inductive hypothesis and using the triangle
inequality completes the correctness analysis of the algorithm in the case that it exits in Step 2.

We now consider the complementary case that Var(sj) ≥ α (Step 3). In Step 3(a) we round sj to obtain the
rounded polynomial s′j . By Proposition 29, it follows that

dK(sj , s
′
j) ≤ ε/K

establishing Part (a) of the inductive hypothesis for i = j.
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Also note that the coefficients of s′j are integer multiples of γ/(Kn) of magnitude poly(n/ε). In
Step 3(b) we run the routine APPROXIMATE-DECOMPOSE on the rounded polynomial s′j . (Note that
the routine runs in poly(n/ε) time.)

If the routine returns “small max eigenvalue” (Step 3(c)) then Theorem 6 guarantees that the maxi-
mum magnitude eigenvalue of s′j is indeed small, in particular |λmax(s′j)| ≤ ε

√
Var(s′j). In this case,

the algorithm outputs the polynomial q′j(y1, . . . , jj) = hj−1(y1, . . . , yj−1) + βs′jyj + E[s′j ] + C, where

|βs′j −
√

Var(s′j)| ≤ εα/2. We have the following, which is very similar to Claim 30:

Claim 36. If |λmax(s′j)| ≤ ε
√

Var(s′j), we have that dK(s′j(x), βs′jyj + E[s′j ]) = O(ε).

Proof. Since |λmax(s′j)| ≤ ε
√

Var(s′j), by Lemma 31 it follows that

dK

(
s′j(x),

√
Var(s′j)yj + E[s′j ]

)
= O(ε),

where x ∼ N (0, 1)n and yj ∼ N (0, 1). Hence, by Fact 67, we get that

dK

(
βs′jyj + E[s′j ],

√
Var(s′j)yj + E[s′j ]

)
≤ (1/2)

|β2
s′j
−Var(s′j)|

β2
s′j

≤ εα

β2
s′j

= O(ε)

where the second inequality used the fact that |β2
s′j
−Var(s′j)| ≤ 2εα and the last uses the fact that β2

s′j
≥ α/2.

The claim follows from the aforementioned and the triangle inequality.

Our final claim for this case (the case that the algorithm exits in Step 3(c)) is the following:

Claim 37. We have that dK(q′j , p) = O(ε).

Proof. First, recall that dK(sj , s
′
j) ≤ ε/K and therefore by the above claim and triangle inequality we

get dK(sj(x), βs′jyj + E[s′j ]) = O(ε). A convolution argument (exploiting independence) now gives that
dK(hj−1 + sj , hj−1 + βs′jyj + E[s′j ]) = O(ε). Combining the above with Parts (a) and (b) of the inductive
hypothesis yields the claim by an application of the triangle inequality.

Now we analyze the execution of Step 3(d). To finish the proof it suffices to show that the inductive
hypotheses (a)–(d) all hold for i = j. Consider the numbers λj , µj and degree-2 polynomial rj : Rn+1 → R
returned by the routine APPROXIMATE-DECOMPOSE. Consider the polynomial

gj(yj , x1, . . . , xn) = λjy
2
j + µjyj + rj(yj , x1, . . . , xn).

Theorem 6 guarantees that the random variables s′j(x1, . . . , xn) and gj(yj , x1, . . . , xn), with (yj , x1, . . . , xn) ∼
N (0, 1)n+1 have identical distributions. (In particular, this implies that Var(gj) = Var(s′j).) The algorithm
proceeds to define

sj+1(x1, . . . , xn) = rj(yj , x1, . . . , xn)−Res(rj , yj)

and

hj(y1, . . . , yj) =
j∑
i=1

(λiy
2
i + µiyi).

Note that the two summands λjy2
j +µjyj and rj(yj , x1, . . . , xn) in gj are correlated (because of the variable

yj). Similarly to the first iteration, if we removeRes(rj , yj), there is a very small change in the Kolmogorov
distance :
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Claim 38. We have that dK(s′j , λjy
2
j + µjyj + sj+1) ≤ ε/K.

Proof. Note that

dK(s′j , λjy
2
j + µjyj + sj+1) = dK(gj , λjy

2
j + µjyj + sj+1) = dK(gj , gj −Res(rj , yj)).

By Theorem 6 it follows that

Var(Res(rj , yj)) ≤ η2 Var(s′j) = η2 Var(gj).

Since E[Res(rj , yj) = 0], by Lemma 28 we get that dK(gj , sj+1 + hj) ≤ ε/K as desired.

As a corollary, we establish Part (b) of the induction for i = j.

Corollary 39. We have that dK(hj−1 + sj , hj + sj+1) ≤ 2ε/K.

Proof. By Claim 38 and the fact that dK(sj , s
′
j) ≤ ε/K, we get that dK(sj , λjy

2
j + µjyj + sj+1) ≤ 2ε/K.

By a convolution argument (exploiting independence), it follows that dK(hj−1 + sj , hj−1 + λjy
2
j + µjyj +

sj+1) ≤ 2ε/K which completes the proof.

As a consequence, we also obtain the following, establishing Part (c) of the induction:

Fact 40. Var(sj+1) + Var(hj) ≥ (1− ε/K)j .

Proof. By definition we can write

gj + hj−1 = hj + rj = hj + sj+1 +Res(rj , yj).

We first claim that
Var(hj + sj+1) ≥ (1− 2η) Var(hj−1 + gj).

Indeed, by Theorem 6, we have that Var(Res(rj , yj)) ≤ 4η2 Var(s′j) and

Var(gj + hj−1) = Var(gj) + Var(hj−1) ≥ Var(gj) = Var(s′j)

where the first equality used independence. The claim now follows by Fact 65. Our second claim is that

Var(gj + hj−1) ≥ (1− ε2/K2) Var(sj + hj−1).

Indeed, we can write

Var(gj+hj−1) = Var(s′j)+Var(hj−1) ≥ (1−ε2/K2) Var(sj)+Var(hj−1) ≥ (1−ε2/K2) Var(sj+hj−1).

The desired fact follows by combining the above two claims with Part (c) of the inductive hypothesis.

Finally, we show that the variance of the polynomial sj+1 will decrease by a multiplicative factor, giving
(d) and completing the induction.

Claim 41. We have Var(sj+1) ≤ (1− ε4/40)j .

Proof. By Theorem 6 we know that

Var(rj) ≤ (1− ε4/40) Var(s′j) ≤ (1− ε4/40) Var(sj) ≤ (1− ε4/40)j

where we used the fact that Var(s′2) ≤ Var(s2) and Part (d) of the induction hypothesis. Now note that
sj+1 is obtained from rj by removing a subset of its terms. Therefore, Var(sj+1) ≤ Var(rj) and the claim
follows.

This completes the proof of correctness. We claim that the algorithm runs in poly(n, b, 1/ε) time. This
follows from the fact that the number of iterations of the loop is at most K + 1 = poly(1/ε) and each
iteration runs in poly(n, b, 1/ε) time. Indeed, it is easy to verify that the running time of a given iteration
is dominated by the call to the APPROXIMATE-DECOMPOSE routine. Since the input to this routine is
the polynomial s′i whose coefficients (up to rescaling) are integers whose magnitude is poly(n/ε), it follows
that the routine runs in polynomial time.
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2.3.1 Proof of Lemma 31. We note that even the Kolmogorov distance version of the lemma (which is
sufficient for our purposes) does not follow immediately from the Berry-Esséen theorem. One can poten-
tially deduce our desired statement from Berry-Esséen by using an appropriate case analysis on the structure
of the coefficients. However, we show that it can be deduced in a more principled way from a CLT version
obtained using Stein’s method. In particular, we will need the following theorem of Chatterjee:

Theorem 42. [Cha09] Let X ∼ N (0, 1)n and f : Rn → R. Let W = f(X1, . . . , Xn). Suppose that
E[W ] = µ and Var[W ] = σ2. Let Y ∼ N (0, 1)n be independent of X . Define the random variable T (X)
as

T (X) =

∫ 1

t=0

1

2
√
t
·EY

[
n∑
i=1

∂f(X)

∂Xi
· ∂f(

√
tX +

√
1− tY )

∂Xi

]
dt.

Then we have that

dTV

(
f(X),N (µ, σ2)

)
≤
√

Var[T ]

σ2
.

Note that by Claim 18 we can assume that p is of the form p(x) =
∑

i(λix
2
i + µixi). We want to apply this

theorem to deduce that the random variable p(X) with X ∼ N (0, 1)n is O(ε) close to a Gaussian with the
right mean and variance. Note that E[p(X)] =

∑n
i=1 λi and Var[p(X)] =

∑n
i=1(2λ2

i + µ2
i ). We will apply

the above theorem for the function f(x) = p(x) =
∑n

i=1(λix
2
i + µixi). We have that ∂p(x)

∂xi
= 2λixi + µi.

For t ∈ [0, 1] we can write

p(
√
tx+

√
1− ty) =

n∑
i=1

λi(
√
txi +

√
1− tyi)2 +

n∑
i=1

µi(
√
txi +

√
1− tyi)

and therefore
∂p(
√
tx+

√
1− ty)

∂xi
= λi(2txi + 2

√
t(1− t)yi) + µi

√
t.

Therefore,

EY

[
n∑
i=1

∂p(X)

∂Xi
· ∂p(

√
tX +

√
1− tY )

∂Xi

]
=

n∑
i=1

(2λiXi + µi)(2λitXi + µi
√
t)

and the desired integral equals

T =
n∑
i=1

(2λiXi + µi)(λiXi

∫ 1

0

√
tdt+ µi/2) =

n∑
i=1

(2λiXi + µi)(2λiXi/3 + µi/2)

=
n∑
i=1

(4λ2
iX

2
i /3 + 5/3λiµiXi + µ2

i /2)

from which it follows that

Var[T ] =
n∑
i=1

(
2(4λ2

i /3)2 + (5/3λiµi)
2
)
≤

n∑
i=1

(
2(5λ2

i /3)2 + (5/3λiµi)
2
)

= (25/9)
n∑
i=1

(
2λ4

i + λ2
iµ

2
i

)
≤ (25/9) max

i
λ2
i ·

n∑
i=1

(
2λ2

i + µ2
i

)
≤ (25/9)(ε2 Var[p]) ·Var[p]

= (25/9)(εVar[p])2.

An application of the Theorem now yields that dTV

(
p(X),N (µ, σ2)

)
≤ 5ε/3. Since dK(X,Y ) ≤ dTV(X,Y )

for any pair of random variables X,Y the lemma follows.
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2.4 The second stage: deterministic approximate counting for degree-2 junta PTFs over Gaussians.
In this section we use the K = Õ(1/ε4)-variable polynomial q(y) provided by Theorem 27 to do efficient
deterministic approximate counting.

One possible approach is to break the polynomial q(y) into two components q+ (corresponding to those
variables yi that have λi > 0) and q− (containing those yi that have λi < 0). Both q+(y) and−q−(y) follow
non-centered generalized chi-squared distributions, so it is conceivable that by directly analyzing the pdfs of
such distributions, one could (approximately) specify the region of RK over which q+(y)− q−(y) ≥ 0, and
then perform approximate numerical integration over that region to directly estimate Pry∼N (0,1)K [q(y) ≥
0]. While expressions have been given for the pdf of a generalized chi-squared distribution without the linear
part, we need expressions for the pdf when there is an additional linear part. Even in the case where there is
no linear part, the expressions for the pdf are somewhat forbidding (see equations (6) and (7) of [BHO09]),
so an approach along these lines is somewhat unappealing.

Instead of pursuing this technically involved direction, we adopt a technically and conceptually straight-
forward approach based on simple dynamic programming. The algorithm Count-Junta that we propose
and analyze is given below. Intuitively, the rounding that is performed in the first step transforms the poly-
nomial q to one with “small integer weights.” This, together with the discretization in Step 2 (which lets
us approximate each independent Gaussian input with a small discrete set of values), makes it possible to
perform dynamic programming to exactly count the number of satisfying assignments of the corresponding
PTF.

Count-Junta

Input: Explicit description of aK = Õ(1/ε4)-variable degree-2 polynomial q(y) =
∑K

i=1(λiy
2
i +µiyi)+τ ,

where each λi, µi, τ ∈ Z; parameter ε > 0.
Output: A value v ∈ [0, 1] such that∣∣∣Pry∈N (0,1)K [q(y) ≥ 0]− v

∣∣∣ ≤ ε.
1. Rounding. Set ε′ = Θ̃(ε6) to be a value of the form 1/2integer. Let M =

max{|λ1|, . . . , |λK |, |µ1|, . . . , |µK |}. Let q′(y) =
∑K

i=1(λ′iy
2
i + µ′iyi) + τ ′ be obtained from q(y)

by dividing all coefficients λi, µi, τ by 2dlog2Me · (ε′/2) and rounding the result to the nearest integer
(so each of λi′, µi′ is an integer with absolute value at most 2/ε′),

2. Discretizing each coordinate. Set ε? = Θ(ε/K) to be of the form 1/2integer. For i = 1, . . . ,K: run
Discretize(λ′i, µ

′
i, ε

?) and let Si = {si,1, . . . , si,R} be the multiset that it returns.

3. Counting via dynamic programming. Run DP(S1, . . . , SK , τ
′) and output the value it returns.

The performance guarantee of Count-Junta is given in the following theorem:

Theorem 43. Algorithm Count-Junta is given as input an explicit description of a polynomial q(y) =∑K
i=1(λiy

2
i +µiyi) + τ and ε > 0 where λi, µi ∈ Z, K = Õ(1/ε4), and each coefficient λi, µi, τ is a B-bit

integer. It runs (deterministically) in O(KB) ·polylog(1/ε) + poly(1/ε) bit operations and outputs a value
v ∈ [0, 1] such that ∣∣∣Pry∼N (0,1)K [q(y) ≥ 0]− v

∣∣∣ ≤ ε. (5)

2.4.1 Proof of Theorem 43
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Runtime analysis. It is straightforward to verify that Step 1 (rounding) can be carried out, and the integers
λ′i, µ

′
i, τ
′ obtained, in O(KB) · log(1/ε) bit operations (note that the coefficients λ′i, µ

′
i are obtained from

the original values simply by discarding all but the O(log(1/ε)) most significant bits). Note that each of
λ′i, µ

′
i is a O(log(1/ε))-bit integer.

The claimed running time of Count-Junta then follows easily from the running times established in
Lemma 45 and the analysis of DP given below.

Correctness. We start with a simple lemma establishing that the “rounding” step, Step 1, does not change
the acceptance probability of the PTF by more than a small amount:

Lemma 44. We have ∣∣∣Pry∼N (0,1)K [q(y) ≥ 0]−Pry∼N (0,1)K [q′(y) ≥ 0]
∣∣∣ ≤ ε/2. (6)

Proof. This is a standard argument using concentration (tail bounds for degree-2 polynomials in Gaussian
random variables) and anti-concentration (Carbery-Wright). Let a(y) = (2dlog2Me · (ε′/2))q′(y) − q(y).
We have that sign(q(y)) 6= sign(q′(y)) only if at least one of the following events occurs: (i) |a(y)| ≥
cε2Var(q), or (ii) |q(y)| ≤ cε2Var(q) (where c is an absolute constant). For (i), we observe that a(y) has at
most 2K + 1 coefficients that are each at most ε′M in magnitude and hence |Ey∼N (0,1)K [a(y)]| ≤ (K +

1)ε′M while Var(q) ≥M (recall that at last one of |λi|, |µi| is at least M ). So Var(a) ≤
√

2K + 1 · ε′ ·M ,
and by Theorem 68 (the “degree-2 Chernoff bound”) Pry∼N (0,1)K [|a(y)| ≥ cε2Var(q)] ≤ ε/4. On the
other hand, Theorem 69 gives us that Pr[|q(y)| ≤ cε2Var(q)] ≤ O(

√
cε2) ≤ ε/4. The lemma follows by a

union bound.

We now turn to Step 2 of the algorithm, in which each distribution λ′iy
2
i + µ′iyi, yi ∼ N (0, 1), is

converted to a nearby discrete distribution. The procedure Discretize is given below:

Discretize

Input: Integers `,m; real value ε? = 1/2integer.
Output: A multiset S = {s1, . . . , sR} of R = 2/ε? values such that the distribution DS satisfies
dK(DS , `Y 2 +mY ) ≤ ε?, where Y ∼ N (0, 1).

1. Let t1 < · · · < tR be the real values given by Fact 46 when its algorithm is run on input parameter ε?.

2. Output the multiset S = {s1, . . . , sR} where si = `t2i +mti for all i.

Our key lemma here says that DS is Kolmogorov-close to the univariate degree-2 Gaussian polynomial
`y2
i +myi:

Lemma 45. Given `,m, ε? as specified in Discretize, the procedure Discretize(`,m, ε?) outputs a
multiset S = {s1, . . . , sR} of R = 8/ε? values such that the distribution DS satisfies

dK(DS , `Y 2 +mY ) ≤ ε? where Y ∼ N (0, 1). (7)

Moreover, if ε? is of the form 1/2integer and |`|, |m| ≤ L, then the running time is Õ(1/(ε?)4 + log(L)/ε?)
and each element si is of the form ai/(C

′/(ε?)2) where C ′ is a (positive integer) absolute constant and ai
is an integer satisfying |ai| = Õ(L/(ε?)2).

Proof. We will use the following basic fact which says that it is easy to construct a high-accuracy ε-cover
for N (0, 1) w.r.t. Kolmogorov distance:
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Fact 46. There is a deterministic procedure with the following property: given as input any value ε? = 1/2j

where j ≥ 0 is an integer, the procedure runs in time Õ(1/(ε?)4) bit operations and outputs a set T =
{t1, . . . , t4/ε?} of 4/ε? real values such that dK(DT , Z) ≤ ε? where Z ∼ N (0, 1). Moreover each ti is a
rational number of the form integer/(C/ε?), where C > 0 is some absolute constant and the numerator is
at most Õ(1/ε?).

Proof. (A range of different proofs could be given for this fact; we chose this one both for its simplicity
of exposition and because the computational overhead of the dynamic programming routine outweighs the
runtime of this procedure, so its exact asymptotic running time is not too important.)

The deterministic procedure is very simple: it explicitly computes the values pj :=
(
n
j

)
/2n for j =

0, 1, . . . , n where n = Θ(1/(ε?)2) is odd (we can and do take it to additionally be a perfect square). It is
easy to see that all n of these values can be computed using a total of Õ(n2) =Õ(1/(ε?)4) bit operations
(each of the n =O(1/(ε?)2) binomial coefficients can be computed from the previous one by performing a
constant number of multiplications and divisions of an n =O(1/(ε?)2)-bit number with anO(log(1/ε?))-bit
number). For r ∈ R, let Ar = {z ∈ Z : r ≥ z ≥ 0} and let Pr =

∑
z∈Ar pz . The Berry-Esséen theorem

implies that for all r = 0, 1, . . . , n we have

|Pr −PrZ∼N (0,1)[Z ≤ ((r − (n+ 1)/2)/
√
n)]| ≤ 1/

√
n ≤ ε?/10.

LetDB denote the binomial distribution B(n, 1/2). Consider the distribution D̃B = (DB− (n+ 1)/2)/
√
n.

Then, note that dK(N (0, 1), D̃B) ≤ ε∗/10. Note that every element in the support of D̃B is a rational number
whose numerator is an integer (bounded by C/ε∗2) and the denominator is C/ε∗. Further, as 1/

√
n ≤ ε?/10

for any z ∈ R, Pr[D̃B = z] ≤ ε∗/10. This gives a straightforward method to obtain a distribution D′
supported on a 2/ε∗ points such that dK(D′, D̃B) ≤ ε∗/2. Rounding each value to a multiple of ε∗/4 (and
carefully moving the mass around), it is easy to obtain the set T of size 4/ε∗ points such that dTV (D′,DT ) ≤
ε∗/4. As a consequence,

dK(DT ,N (0, 1)) ≤ dTV (D′,DT ) + dK(D′, D̃B) + dK(N (0, 1), D̃B) ≤ ε.

The claim about the representation of points in T follows from the fact that they are a subset of the points in
the support of D̃B for which we proved this property. This concludes the proof of Fact 46

We next make the following claim for Kolmogorov distance for functions of random variables which is
an analogue of the “data processing inequality” for total variation distance. First, we make the following
definition.

Definition 47. Let f : R → R be a differentiable function. It is said to be k-modal if there are at most k
points z1, . . . , zk such that dfdx |x=zi = 0.

Claim 48. Let f be a unimodal function and letX and Y be real valued random variables. Then dK(f(X), f(Y )) ≤
2dK(X,Y ).

Proof. For any real number t, there are two possibilities :

(i) There are real numbers t1 ≤ t2 such that f(x) ≥ t if and only if x ∈ [t1, t2].

(ii) There are real numbers t1 ≤ t2 such that f(x) ≥ t if and only if x 6∈ (t1, t2).

In case (i),

Pr[f(X) ∈ [t,∞)] = Pr[X ∈ [t1, t2]] and Pr[f(Y ) ∈ [t,∞)] = Pr[Y ∈ [t1, t2]].
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As a consequence,

dK(f(X), f(Y )) = sup
t∈R
|Pr[f(X) ∈ [t,∞)]−Pr[f(Y ) ∈ [t,∞)]|

≤ sup
t1,t2∈R

|Pr[X ∈ [t1, t2]]−Pr[Y ∈ [t1, t2]]| ≤ 2dK(X,Y ).

In case (ii),

Pr[f(X) ∈ [t,∞)] = Pr[X 6∈ [t1, t2]] and Pr[f(Y ) ∈ [t,∞)] = Pr[Y 6∈ [t1, t2]].

As a consequence,

dK(f(X), f(Y )) = sup
t∈R
|Pr[f(X) ∈ [t,∞)]−Pr[f(Y ) ∈ [t,∞)]|

≤ sup
t1,t2∈R

|Pr[X 6∈ [t1, t2]]−Pr[Y 6∈ [t1, t2]]| ≤ 2dK(X,Y ).

This proves the stated claim.

We first apply Fact 46 to construct a distribution DT such that dK(DT ,N (0, 1)) ≤ ε∗/2. We then
observe that the function f(t) = `t2 + mt is unimodal and hence DS = f(DT ), we have dK(DS , `Y 2 +
mY ) ≤ ε∗ where Y ∼ N (0, 1). This concludes the proof of Lemma 45.

With Lemma 45 in hand it is simple to obtain the following:

Lemma 49. LetX1, . . . , XK be independent random variables whereXi ∼ DSi (see Step 2 of Count-Junta).
Then

dK

(
K∑
i=1

Xi,
K∑
i=1

(λ′iy
2
i + µ′iyi)

)
≤ Kε? ≤ ε/2 where y = (y1, . . . , yk) ∼ N (0, 1)K . (8)

Proof. This follows immediately from (7) and the sub-additivity property of Kolmogorov distance: for
A1, . . . , An independent random variables and B1, . . . , Bn independent random variables,

dK(
n∑
i=1

Ai,
n∑
i=1

Bi) ≤
n∑
i=1

dK(Ai, Bi).

(See e.g. Equation (4.2.3) of [BK01] for an explicit statement; this also follows easily from the triangle
inequality and the basic bound that dK(X1 +Y,X2 +Y ) ≤ dK(X1, X2) forX1, X2, Y independent random
variables.)

Finally we turn to Step 3, the dynamic programming. The algorithm DP uses dynamic programming
to compute the exact value of Pr[X1 + · · · + XK + τ ′ ≥ 0], where X1, . . . , XK are independent random
variables with Xi distributed according to DSi . Observe that by Lemma 45, for any 1 ≤ i ≤ K the
partial sum X1 + · · · + Xi must always be of the form c/(C ′/(ε?)2) where c is an integer satisfying |c| ≤
Õ((i/ε)/(ε/K)2) = Õ((K/ε)3) = N , where N = poly(1/ε). Thus the dynamic program has a variable
vi,n for each pair (i, n) where 1 ≤ i ≤ K and |n| ≤ N ; the value of variable vi,n is Pr[X1 + · · · + Xi =
n/(C ′/(ε?)2). Given the values of variables vi−1,n for all n and the multiset Si it is straightforward to
compute the values of variables vi,n for all n. Since each nonzero probability under any distribution DSi is
a rational number with both numerator and denominator O(log(1/ε)) bits long, the bit complexity of every
value vi,n is at most Õ(K) bits, and since there areKN entries in the table, the overall running time of DP is
Õ(K2N) = poly(1/ε) bit operations. The procedure DP(S1, . . . , SK , τ

′) returns the value v =
∑N

n=0 vK,n,
which by the above discussion is exactly equal to

Pr(X1,...,XK)∼DS1×···×DSK
[X1 + · · ·+XK + τ ′ ≥ 0]. (9)

Now equations (6) and (8) together establish that the value (9) output by Count-Junta satisfies (5)
as required for correctness. This concludes the proof of Theorem 43.
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2.4.2 Putting it all together. Combining algorithms Construct-Junta-PTF and Count-Junta,
Theorems 27 and 43, give our main result for degree-2 PTFs over Gaussian variables:

Theorem 50. [Deterministic approximate counting of degree-2 PTFs over Gaussians] There is an algorithm
with the following properties: It takes as input an explicit description of an n-variable degree-2 polynomial
p with b-bit integer coefficients and a value ε > 0. It runs (deterministically) in time poly(n, b, 1/ε) and
outputs a value v ∈ [0, 1] such that ∣∣Prx∼N (0,1)n [p(x) ≥ 0]− v

∣∣ ≤ ε. (10)

3 Deterministic approximate counting for degree-2 polynomials over {−1, 1}n

In this section we extend the results of the previous section to give a deterministic algorithm for approx-
imately counting satisfying assignments of a degree-2 PTF over the Boolean hypercube. We prove the
following:

Theorem 51. [Deterministic approximate counting of degree-2 PTFs over {−1, 1}n] There is an algorithm
with the following properties: It takes as input an explicit description of an n-variable degree-2 multilinear
polynomial p with b-bit integer coefficients and a value ε > 0. It outputs a value v ∈ [0, 1] such that∣∣Prx∼{−1,1}n [p(x) ≥ 0]− v

∣∣ ≤ ε and runs (deterministically) in time poly(n, b, 2Õ(1/ε9)).

The main ingredient in the proof of Theorem 51 is the “regularity lemma for PTFs” of [DSTW10].
As stated in [DSTW10], this lemma is an existential statement which says that every degree-d PTF over
{−1, 1}n can be expressed as a shallow decision tree with variables at the internal nodes and degree-d
PTFs at the leaves, such that a random path in the decision tree is quite likely to reach a leaf that has a
“close-to-regular” PTF.

The precise statement is:

Lemma 52. [Theorem 1 of [DSTW10]] Let f(x) = sign(p(x)) be any degree-d PTF. Fix any τ > 0. Then
f is equivalent to a decision tree T , of depth

depth(d, τ) :=
1

τ
·
(
d log

1

τ

)O(d)

with variables at the internal nodes and a degree-d PTF fρ = sign(pρ) at each leaf ρ, with the following
property: with probability at least 1−τ , a random path from the root reaches a leaf ρ such that fρ is τ -close
to some τ -regular degree-d PTF.

Intuitively, this lemma is helpful for us because for regular polynomials g we can simply use Prx∼N (0,1)n [g(x) ≥
0] (which we can approximate efficiently using Theorem 50) as a proxy for Prx∼{−1,1}n [g(x) ≥ 0] and in-
cur only small error. However, to use the lemma in our context we need a deterministic algorithm which
efficiently constructs the decision tree. While it is not clear from the lemma statement above, fortunately the
[DSTW10] proof in fact provides such an algorithm, as we explain below.

3.1 Proof of Theorem 51 As we describe below, the argument of [DSTW10] actually gives the following
lemma, which is an effective version of Lemma 52 above.

Theorem 53. Let p(x1, . . . , xn) be an input multilinear degree-d PTF with b-bit integer coefficients. Fix
any τ > 0. There is an algorithm AConstruct−Tree which, on input p and a parameter τ > 0, runs in
poly(n, b, 2depth(d,τ)) time and outputs a decision tree T of depth

depth(d, τ) :=
1

τ
·
(
d log

1

τ

)O(d)

,
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where each internal node of the tree is labeled with a variable and each leaf ρ of the tree is labeled with a
pair (pρ, label(ρ)) where label(ρ) ∈ {+1,−1,“fail”,“regular”}. The tree T has the following properties:

1. Every input x ∈ {−1, 1}n to the tree reaches a leaf ρ such that p(x) = pρ(x);

2. If leaf ρ has label(ρ) ∈ {+1,−1} then Prx∈{−1,1}n [sign(pρ(x)) 6= label(ρ)] ≤ τ ;

3. If leaf ρ has label(ρ) = “regular” then pρ is τ -regular; and

4. With probability at most τ , a random path from the root reaches a leaf ρ such that label(ρ) = “fail”.

We prove Theorem 53 in Section 3.2 below, but first we show how it gives Theorem 51.

Proof of Theorem 51, assuming Theorem 53: The algorithm for approximating Prx∈{−1,1}n [p(x) ≥ 0] to
±εworks as follows. It first runsAConstruct−Tree with its “τ” parameter set to Θ(ε9) to construct the decision
tree T . It then iterates over all leaves ρ of the tree. For each leaf ρ at depth dρ that has label(ρ) = +1 it
adds 2−dρ to v (which is initially zero), and for each leaf ρ at depth dρ that has label(ρ) = “regular” it runs
the algorithm of Theorem 50 on pρ (with its “ε” parameter set to Θ(ε9)) to obtain a value vρ ∈ [0, 1] and
adds vρ · 2−dρ to v. It outputs the value v ∈ [0, 1] thus obtained.

Theorems 53 and 50 imply that the running time is as claimed. To establish correctness of the algorithm
we will use the “invariance principle” of [MOO10]:

Theorem 54 ([MOO10]). Let p(x) =
∑

S⊆[n],|S|≤d pSxS be a degree-dmultilinear polynomial with Var[p] =

1. Then supt∈R |Prx∈{−1,1}n [p(x) ≤ t]−PrG∼N (0,1)n [p(G) ≤ t]| ≤ O(dτ1/(4d+1)), where τ is such that
each coordinate i ∈ [n] has Infi(p) ≤ τ .

By Theorem 53, the leaves of T that are marked +1,−1 or “fail” collectively contribute at most Θ(ε9) ≤
ε/2 to the error of the output value v. Theorem 54 implies that each leaf ρ at depth dρ that is marked “regular”
contributes at most 2−dρ · ε/2 to the error, so the total contribution from all such leaves is at most ε/2. This
concludes the proof of Theorem 51.

3.2 Proof of Theorem 53: The [DSTW10] construction. Theorem 1 of [DSTW10] establishes the ex-
istence of the claimed decision tree T by analyzing an iterative procedure that constructs T . Inspection of
this procedure reveals that it can be straightforwardly implemented by an efficient deterministic algorithm.
We first provide some details of the procedure below and then analyze its running time.

The iterative procedure uses parameters β = τ , and τ̃ chosen such that τ = τ̃ · (C ′d ln d ln(1/τ̃))d

where C ′ is a universal constant (see Lemma 12 and the proof of Theorem 1 of [DSTW10]). It works to
construct T by processing each node of the tree that has not yet been declared a leaf of T in the manner that
we now describe.

Processing a single node: Consider a given node that is currently a leaf of the partially-constructed decision
tree but has not yet been declared a leaf of T . Call such a node ρ; it corresponds to a restriction of some of
the variables, and such a node is currently labeled with the restricted polynomial pρ. (At the beginning of
the procedure the node ρ is the root of T , corresponding to the empty restriction that fixes no variables, and
the polynomial pρ is simply p.) Let us write pρ(x) =

∑
|S|≤d,S⊂[n] pρ,SxS where xS =

∏
i∈S xi.

If the depth dρ of ρ is greater than depth(d, τ) then the procedure declares ρ to be a leaf of T and
labels it with the pair (pρ, “fail”). Otherwise, the procedure first computes Infi(pρ) =

∑
S3i(pρ,S)2 for

all i = 1, . . . , n and Inf(pρ) =
∑n

i=1 Infi(pρ). It sorts the variables in decreasing order of influence (for
notational convenience we shall suppose that Inf1(pρ) ≥ Inf2(pρ) ≥ · · · ), and operates as follows:

1. If Inf1(pρ) ≤ τ · Inf(pρ) then the node ρ is declared a leaf of T and is labeled with the pair
(pρ, “regular”).
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Otherwise, let ciτ (pρ), the τ -critical index of pρ, be the least i such that

Infi+1(pρ) ≤ τ ·
n∑

j=i+1

Infj(pρ).

Let α = Θ(d log log(1/τ) + d log d).

2. If ciτ (pρ) ≥ α/τ̃ then the procedure “expands” node ρ by replacing it with a complete decision tree
of depth α/τ̃ , where all internal nodes at the i-th level of this tree contain variable xi. For each new
restriction ρ′ (an extension of ρ) resulting from this expansion the procedure computes pρ′ and labels
node ρ′ with that polynomial.

Let us write pρ(x) = pρ(xH , xT ) = p′ρ(xH) + qρ(xH , xT ) where p′ρ(xH) is the truncation of p
containing only the monomials all of whose variables lie in the set H = {1, . . . , ciτ (pρ)}.
It is easy to see that the constant term of the polynomial pρ′ is precisely p′ρ(ρ

′). The procedure com-

putes |p′ρ(ρ′)| and ‖qρ(ρ, xT )‖2. If |p′ρ(ρ′)| ≥ t?
def
= 1/(2Cd) (here C > 0 is a universal constant;

see Definition 2 and the discussion at the end of Section 1.2 of [DSTW10]) and ‖qρ(ρ, xT )‖2 ≤ t? ·
(Θ(log(1/β)))−d/2 then the procedure declares ρ′ to be a leaf and labels it with the pair (pρ′ , sign(p′ρ(ρ

′))).

3. If ciτ (pρ) < α/τ̃ then the procedure expands node ρ by replacing it with a complete decision tree of
depth ciτ (pρ), where again all internal nodes at the i-th level of this tree contain variable xi. As in the
previous case, for each new restriction ρ′ resulting from this expansion the procedure computes pρ′
and labels node ρ′ with that polynomial.

It is clear that the above procedure constructs a tree T that satisfies properties (1), (2) and (3) of Theo-
rem 53. The analysis of [DSTW10] establishes that the tree T satisfies property (4).

Finally, the running time bound is easily verified from the description of the algorithm and the fact that
the input is a degree-d PTF with b-bit integer coefficients.

3.3 Fully polynomial deterministic approximate counting for regular degree-2 PTFs. As a special
case of the above analysis we easily obtain the following result for regular PTFs:

Theorem 55. [Deterministic approximate counting of regular degree-2 PTFs over {−1, 1}n] Let p be an
n-variable degree-2 multilinear polynomial p with b-bit integer coefficients that is O(ε9)-regular. Then the
above algorithm runs in deterministic time poly(n, b, 1/ε) and outputs a value v ∈ [0, 1] such that∣∣Prx∼{−1,1}n [p(x) ≥ 0]− v

∣∣ ≤ ε.
This is because if p is already ε9-regular then the tree-construction procedure will halt immediately at

the root.

4 A deterministic FPT approximation algorithm for absolute moments

In this section we prove Theorem 3. Note that since we are working with polynomials over the domain
{−1, 1}n, it is sufficient to consider multilinear polynomials.

We begin with the following easy observation:

Observation 56. Let q(x) be a degree-2 multilinear polynomial over {−1, 1}n that has Ex∈{−1,1}n [q(x)2] =

1. Then for all k ≥ 1 we have that the k-th raw moment Ex∈{−1,1}n [|q(x)|k] is at least c where c > 0 is
some universal constant.
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Proof. For k ≥ 2 this is an immediate consequence of the monotonicity of norms, which gives us

1 = E[|q(x)|2]1/2 ≤ E[|q(x)|k]1/k for k ≥ 2.

For k = 1 the desired statement is an easy consequence of Theorem 4.1 of [AH11].

Given an input degree-2 multilinear polynomial p(x1, . . . , xn), we may divide by ‖p‖2 to obtain a
scaled version q = p/‖p‖2 which has ‖q‖2 = 1. Observation 56 implies that an additive ±ε-approximation
to E[|q(x)|k] is also a multiplicative (1±O(ε))-approximation to E[|q(x)|k]. Multiplying the approximation
by ‖p‖k2 we obtain a multiplicative (1 ± O(ε))-approximation to E[|p(x)|k]. Thus to prove Theorem 3 it
suffices to give a deterministic algorithm which finds an additive±ε-approximation to E[|q(x)|k] for degree-
2 polynomials with ‖q‖2 = 1. We do this by proving Theorem 57 below:

Theorem 57. Let p(x) be an input multilinear degree-2 PTF with b-bit integer coefficients. Let q(x) =
p(x)/‖p‖2 so ‖q‖ = 1.

There is an algorithmAmoment that, on input k ∈ Z+, p, and ε > 0, runs in time poly
(
n, b, 2Õ((k log k log(1/ε))9k/ε9)

)
and outputs a value µ̃k such that ∣∣∣µ̃k −Ex∈{−1,1}[|q(x)|k]

∣∣∣ ≤ ε.
4.1 Proof of Theorem 57. The idea behind the theorem is very simple. Since we can estimate Prx∼{−1,1}n [q(x) ≥
t] for any t of our choosing, we can get a detailed picture of where the probability mass of the random vari-
able q(x) lies (for x uniform over {−1, 1}n), and with this detailed picture it is straightforward to estimate
the k-th moment.

We now enter into the details. For j ∈ Z let qj,∆ denote Prx∈{−1,1}n [q(x) ∈ [(j − 1)∆, j∆]].
We start with the following claim which follows immediately from Theorem 51:

Claim 58. Fix any 0 < ∆ < 1 and any degree-2 multilinear polynomial p with b-bit integer coefficients.
As above let q(x) = p(x)/‖p‖2. There is a poly(n, b, 2Õ(1/ε9))-time algorithm which, given as input p,
0 < ε < 1/2, ∆ ∈ R and j ∈ Z, outputs a value q̃j,∆ such that

q̃j,∆ ∈ [qj,∆ − ε, qj,∆ + ε].

We recall the following tail bound for polynomials in {−1, 1} random variables which follows easily
from Theorem 68:

Theorem 59. Let q be a degree-2 polynomial with ‖q‖2 = 1. For any z ≥ 0 we have

Prx∈{−1,1}n [|q(x)| ≥ z] ≤ O(1) · exp(−Ω(z)).

Fix ∆ > 0. Let γq(t) denote the probability mass function of q(x) when x is distributed uniformly over
{−1, 1}n. We may write the k-th absolute moment as

Ex∈{−1,1}n [|q(x)|k] =

∫ ∞
−∞
|t|kγq(t)dt. (11)

For R ≥ 1 we have∫ R

R−1
|t|kγq(t)dt =

∫ R

(R−1
tkγq(t)dt ≤ RkPrx∈{−1,1}n [q(x) ≥ R− 1] ≤ O(Rke−Ω(R)),
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so for integer M ≥ 1 we have ∫ ∞
t=M
|t|kγq(t)dt ≤

∞∑
R=M

O(Rke−Ω(R))

which is at most ε/8 for M = O(k log k log 1
ε ) (fix M to this value). Doing similar analysis for R ≤ −1

gives that

Ex∈{−1,1}n [|q(x)|k] =

∫ M

−M
|t|kγq(t)dt± ε′ where ε′ < ε/4.

So to approximate Ex∼{−1,1}n [|q(x)|k] to an additive ±ε, it suffices to approximate
∫M
−M |t|

kγq(t)dt to an
additive ±3ε/4.

Fix ∆ = (ε/4)1/kτ/k, and consider the interval [(j − 1)∆, j∆] where j ≥ k/τ for some 0 < τ < 1.
Recalling that qj,∆ = Prx∈{−1,1}n [q(x) ∈ [(j − 1)∆, j∆]], we have∫ j∆

(j−1)∆
|t|kγq(t)dt ∈ [((j − 1)∆)kqj,∆, (j∆)kqj,∆] = qj,∆ ·∆k · [(j − 1)k, jk].

Since

jk − (j − 1)k = jk

(
1−

(
1− 1

j

)k)
≤ jk

(
1−

(
1− τ

k

)k)
≤ τjk,

we have ∫ j∆

(j−1)∆
|t|kγq(t)dt ∈ [1− τ, 1] · |j∆|kqj,∆. (12)

A similar analysis gives that we likewise have∫ (−j+1)∆

−j∆
|t|kγq(t)dt ∈ [1− τ, 1] · |j∆|kqj,∆. (13)

Finally, we observe that ∫ (k/τ−1)∆

−(k/τ−1)∆
|t|kγq(t)dt < ((k/τ)∆)k = ε/4, (14)

where we used ∆ = (ε/4)1/kτ/k for the final step.
With the above ingredients in hand it is clear how we shall deterministically estimate the k-th moment

Ex∈{−1,1}n [|q(x)|k]. Given as input an integer k ≥ 1, a real value 0 < ε < 1, and a degree-2 multilinear
polynomial q with ‖q‖ = 1, the algorithm for estimating this moment works as follows:

1. Set M = O(k log k log 1
ε ), set τ = ε/(4Mk), and set ∆ = 1/2r where r is the largest value such that

1/2r ≤ (ε/4)1/kτ/k.

2. For j = (k/τ−1) toM/∆: compute a±τ/4-accurate additive estimate q̃j,∆ of qj,∆ (using Claim 58)
and sum the values |j∆|kq̃j,∆ to obtain E+.

Similarly, for j = −(k/τ − 1) to −M/∆: compute a ±τ/4-accurate additive estimate q̃j,∆ of qj,∆
(using Claim 58) and sum the values |j∆|kq̃j,∆ to obtain E−.

3. Output E+ + E−.
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It is easy to see that the above algorithm runs in time

(M/∆) · poly(n, b, 2Õ(1/τ9)) = poly
(
n, b, 2Õ((k log k log(1/ε))9k/ε9)

)
.

To prove correctness recall that we need to show that E+ + E− is within ±3ε/4 of
∫M
−M |t|

kγq(t)dt.

Recalling (14), it suffices to show that E+ and E− are each within ±ε/4 of
∫ −(k/τ−1)∆
−M |t|kγq(t)dt and∫M

(k/τ−1)∆ |t|
kγq(t)dt respectively. Recalling our choice of τ , it follows easily from (12) that∣∣∣∣∣E+ −

∫ −(k/τ−1)∆

−M
|t|kγq(t)dt

∣∣∣∣∣ ≤ τMk = ε/4.

An identical argument works for E− and the other integral, and we are done with the proof.
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A Definitions and Background

In this section we record the preliminaries we will need.

A.1 Basic Linear Algebra Facts. In this section we record some basic facts from linear algebra that will
be crucial for our proofs.

Definition 60. (orthogonal matrix) A matrix Q ∈ Rn×n is said to be orthogonal if both its columns and its
rows comprise a set of n orthonormal unit vectors. Equivalently, a matrix Q ∈ Rn×n is orthogonal if its
transpose is equal to its inverse, i.e., QT = Q−1.

Theorem 61. (Spectral Theorem) If A ∈ Rn×n is symmetric, there exists an orthogonal Q ∈ Rn×n and
a diagonal matrix Λ ∈ Rn×n such that A = QΛQT . The diagonal entries of Λ are the eigenvalues of A
and the columns of Q are the corresponding eigenvectors. That is, we can write Λ = diag(λ1, . . . , λn),
Q = [u(1) | . . . | u(n)], with u(i) · u(j) = δij , and Au(i) = λiu

(i) for all i ∈ [n]. The expression
A = QΛQT of a symmetric matrix in terms of its eigenvalues and eigenvectors is referred to as the spectral
decomposition of A.

Definition 62. Given a degree-2 polynomial p : Rn → R defined as p(x) =
∑

1≤i≤j≤n aijxixj +∑
1≤i≤n bixi + C, we define the (symmetric) matrix A corresponding to its quadratic part as : Aij =

aij(1/2 + δij/2). With this definition, it is easy to see that xT · A · x =
∑

1≤i≤j≤n aijxixj for the vector
x = (x1, . . . , xn).
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Throughout the paper we adopt the convention that the eigenvalues λ1, . . . , λn of a real symmetric
matrix A satisfy |λ1| ≥ · · · ≥ |λn|. We sometimes write λmax(A) to denote λ1, and we sometimes write
λi(p) to refer to the i-th eigenvalue of the matrix A defined based on p as described above.

Definition 63. For a real symmetric matrix A, with (real) eigenvalues λ1, . . . , λn such that |λ1| ≥ |λ2| ≥
. . . ≥ |λn| we define:

• The Frobenius norm of A is ‖A‖F
def
=
√∑

i,j A
2
i,j .

• The trace of A is tr(A)
def
=
∑n

i=1Aii. We have that tr(A) =
∑n

i=1 λi.

We recall the following fact:

Fact 64. Let A ∈ Rn×n be symmetric with eigenvalues λ1, . . . , λn. The eigenvalues of the matrix Ak are

λk1, . . . , λ
k
n. Since ‖A‖F =

√
tr(A2), ‖A‖F =

√∑n
i=1 λ

2
i .

A.2 Basic Probabilistic Facts. Given an r-element multiset S = {s1, . . . , sr} we write DS to denote
the distribution which is uniform over the elements of S (so if an element v occurs j times in S we have
Prx∼DS [x = v] = j/r.).

Fact 65. Let P and Q be real valued random variables such that Var(P ) = α and Var(Q) = η2α. Then
(1 + 2η + η2)α ≥ Var(P −Q) ≥ (1− 2η + η2)α.

Proof.

Var(P −Q) = E[(P −Q)2]− (E[P −Q])2 = Var(P ) + Var(Q)− 2E[PQ] + 2E[P ]E[Q]

= Var(P )+ Var(Q)− 2 Cov(P,Q)

= (1 + η2)α− 2 Cov(P,Q).

Now the desired inequalities follow using the simple inequality |Cov(P,Q)| ≤
√

Var(P )
√

Var(Q) which
is a consequence of Cauchy-Schwarz.

We recall the Berry-Esseen theorem, which states that under suitable conditions a sum of independent
random variables converges (in Kolmogorov distance) to a normal distribution:

Theorem 66. (Berry-Esséen) Let {Xi}ni=1 be a set of independent random variables satisfying E[Xi] = 0

for all i ∈ [n],
√∑

iE[X2
i ] = σ, and

∑
iE[|Xi|3] = ρ3. Let S =

∑
iXi/σ and let F denote the cumulative

distribution function (cdf) of S. Then supx |F (x)−Φ(x)| ≤ ρ3/σ
3 where Φ denotes the cdf of the standard

gaussian random variable.

Fact 67. Let µ1, µ2 ∈ R and 0 < σ2
1 ≤ σ2

2 . Then,

dTV

(
N (µ1, σ

2
1),N (µ2, σ

2
2)
)
≤ 1

2

(
|µ1 − µ2|

σ1
+
σ2

2 − σ2
1

σ2
1

)
.
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A.3 Useful Facts about Polynomials. We view Rn as a probability space endowed with the standard n-
dimensional Gaussian measure. For a square-integrable function f : Rn → R and r ≥ 1, we let ‖f‖r denote
(Ex∼Nn [|f(x)r|])1/r. We will need a concentration bound for low-degree polynomials over independent
Gaussians.

Theorem 68 (“degree-d Chernoff bound”, [Jan97]). Let p : Rn → R be a degree-d polynomial. For any
t > ed, we have

Prx∼N (0,1)n [|p(x)−E[p(x)]| > t ·
√

Var(p(x))] ≤ de−Ω(t2/d).

The same bound holds for x drawn uniformly from {−1, 1}n.

We will also use the following anti-concentration bound for degree-d polynomials over Gaussians:

Theorem 69 ([CW01]). Let p : Rn → R be a degree-d polynomial that is not identically 0. Then for all
ε > 0 and all θ ∈ R, we have

Prx∼N (0,1)n

[
|p(x)− θ| < ε

√
Var(p)

]
≤ O(dε1/d).

Definition 70. Let f : {−1, 1}n → R. The influence of the ith coordinate on f under the uniform measure
(denoted by Infi(f)) is defined as

Infi(f) = E
xi∈{−1,1}

[Varx1,...,xi−1,xi+1,...,xn∈{−1,1} f(x1, . . . , xn)].

The total influence of a function f (denoted by Inf(f)) is defined as
∑n

i=1 Infi(f).

We now define an extension of the notion of “critical index” previously used in several works on linear
and polynomial threshold functions [Ser07, OS11, DRST09].

Definition 71. Given a pair of sequences of non-negative numbers {ci}ni=1 and {di}ni=1 where additionally
the sequence {ci}ni=1 is non-increasing, the τ -critical index of the pair is defined to be the smallest 0 ≤ i ≤
n− 1 such that

ci+1∑
j>i(cj + dj)

≤ τ.

In case there is no such number, we define the critical index to be ∞. The sequence {ci}ni=1 is called the
“main sequence” and the sequence {di}ni=1 is called the “auxiliary sequence”.

The following is a simple consequence of the definition of critical index.

Fact 72. Given a pair of sequences of non-negative numbers, {ci}ni=1 and {di}ni=1, if the τ -critical index of
a sequence is j, then

∑n
i=j+1(ci + di) < (1− τ)j · (

∑n
`=1 ci + di).

As noted earlier, special cases of this definition have appeared in previous work on polynomial threshold
functions. Below, we recall the notion of the critical index of a polynomial that appeared previously in the
work of Diakonikolas et al. [DRST09]:

Definition 73. ([DRST09]) Let p : Rn → R and τ > 0. Assume the variables are ordered such that
Infi(p) ≥ Infi+1(p) for all i ∈ [n− 1]. The τ -critical index of f is defined to be the τ -critical index of the
pair of sequences {Infi(p)}ni=1 and {0}ni=1 where {0}ni=1 is the auxiliary sequence.
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B Hardness of computing absolute moments

In this section, we show that for any fixed odd k, it is #P -hard to exactly compute the kth absolute mo-
ment of a degree two multilinear polynomial with {0, 1} coefficients over the uniform distribution on the
hypercube.

Theorem 74. Given a degree two multilinear polynomial p : Rn → R with {0, 1} coefficients, it is #P -hard
(under Turing reductions) to compute Ex∈{−1,1}n [|p(x)|k], the kth absolute moment of p over the uniform
distribution on {−1, 1}n, for k = O(1).

Proof. We begin by recalling that given an undirected graph G = (V,E), it is NP -hard to find the size of
the MAX-CUT in G. In fact, if the size of the MAX-CUT in G is ν, then it is #P -hard to find the number
of cuts in G whose size is ν (see Papadimitriou [Pap94]).

Let |V | = n and |E| = m. We consider the polynomial qG,CUT : Rn → R defined as qG,CUT(x) =
(|E| −

∑
{i,j}∈E xixj)/2; recall from the introduction that on input x ∈ {−1, 1}n the value qG,CUT(x)

equals the number of edges in the cut corresponding to x. Consequently qG,CUT(x)) ∈ [0, . . . ,m] for every
x ∈ {−1, 1}n. Let ν∗G = maxx∈{−1,1}n [qG,CUT(x)] denote the size of the MAX-CUT in G. Thus, it is
#P -hard to compute the size of the following set

{x ∈ {−1, 1}n : qg,CUT(x) = ν∗G}.

We next observe that for any fixed k = O(1), there is a poly(n)-time algorithm to compute the k-th
raw moment Ex∈{−1,1}n [p(x)k] of a given degree-2 input polynomial p(x). The algorithm works simply by
expanding out p(x)k (in time nO(k)), performing multilinear reduction, and outputting the constant term; its
correctness follows from the fact that Ex∈{−1,1}n [xS ] = 0 for every S 6= ∅.

Suppose A is a poly(n)-time algorithm that, on input a degree-2 polynomial p(x), outputs the value
Ex∈{−1,1}n [|p(x)|k]. Given such an algorithm we can efficiently compute |{x ∈ {−1, 1}n : qg,CUT(x) =

ν∗G}| as follows: For ` = m,m − 1, . . . successively compute E[|` − qG,CUT(x)|k] (using algorithm A)
and E[(` − qG,CUT(x))k] (as described above). Let `∗ be the largest value in {m,m − 1, . . . , 0} such that
E[|`∗ − qG,CUT(x)|k] 6= E[(`∗ − qG,CUT(x))k]. Output the value

2n−1
(
E[|`∗ − qG,CUT(x)|k]−E[(`∗ − qG,CUT(x))k]

)
.

It is clear that the above-described algorithm runs in poly(n) time. To verify correctness, first con-
sider a value of ` such that ` ≥ ν∗G. For such an ` we have that |` − qG,CUT(x)|k = (` − qG,CUT(x))k

for all x ∈ {−1, 1}n, and hence the raw moment E[(` − qG,CUT(x))k] will equal the absolute moment
E[(` − qG,CUT(x))k]. On the other hand, for ` = ν∗G − 1, we have that all cuts of size 0, . . . , ν∗G − 1
contribute the same amount to E[|` − qG,CUT(x)|k] and to E[(` − qG,CUT(x))k], but each cut of size pre-
cisely ν∗G contributes 1/2n to the absolute moment and −1/2n to the raw moment. As a result, we get
that 2n−1

(
E[|`− qG,CUT(x)|k]−E[(`− qG,CUT(x))k]

)
is precisely the number of cuts of size ν∗G, and the

theorem is proved.
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