
Efficient deterministic approximate counting
for low-degree polynomial threshold functions

Anindya De∗

Institute for Advanced Study
Rocco A. Servedio†

Columbia University

November 11, 2013

Abstract

We give a deterministic algorithm for approximately counting satisfying assignments of a degree-d
polynomial threshold function (PTF). Given a degree-d input polynomial p(x1, . . . , xn) over Rn and a
parameter ε > 0, our algorithm approximates Prx∼{−1,1}n [p(x) ≥ 0] to within an additive ±ε in time
Od,ε(1) · poly(nd). (Since it is NP-hard to determine whether the above probability is nonzero, any sort
of efficient multiplicative approximation is almost certainly impossible even for randomized algorithms.)
Note that the running time of our algorithm (as a function of nd, the number of coefficients of a degree-
d PTF) is a fixed polynomial. The fastest previous algorithm for this problem [Kan12b], based on
constructions of unconditional pseudorandom generators for degree-d PTFs, runs in time nOd,c(1)·ε−c

for all c > 0.
The key novel contributions of this work are

• A new multivariate central limit theorem, proved using tools from Malliavin calculus and Stein’s
Method. This new CLT shows that any collection of Gaussian polynomials with small eigenvalues
must have a joint distribution which is very close to a multidimensional Gaussian distribution.

• A new decomposition of low-degree multilinear polynomials over Gaussian inputs. Roughly
speaking we show that (up to some small error) any such polynomial can be decomposed into
a bounded number of multilinear polynomials all of which have extremely small eigenvalues.

We use these new ingredients to give a deterministic algorithm for a Gaussian-space version of the
approximate counting problem, and then employ standard techniques for working with low-degree PTFs
(invariance principles and regularity lemmas) to reduce the original approximate counting problem over
the Boolean hypercube to the Gaussian version.

As an application of our result, we give the first deterministic fixed-parameter tractable algorithm
for the following moment approximation problem: given a degree-d polynomial p(x1, . . . , xn) over
{−1, 1}n, a positive integer k and an error parameter ε, output a (1±ε)-multiplicatively accurate estimate
to Ex∼{−1,1}n [|p(x)|k]. Our algorithm runs in time Od,ε,k(1) · poly(nd).

∗anindya@math.ias.edu. Work was partly done while the author was hosted by Oded Regev at NYU and partly while the
author was a fellow at the Simons Institute, Berkeley. Partly supported by NSF grants CCF-1320188.
†rocco@cs.columbia.edu. Supported by NSF grants CCF-1115703 and CCF-1319788.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 173 (2013)

1 Introduction

For decades a major research goal in computational complexity has been to understand the computational
power of randomization – and perhaps to show that randomness does not actually augment the abilities of
polynomial-time algorithms. Towards this end, an important research goal within unconditional derandom-
ization has been the development of deterministic approximate counting algorithms. This line of research
started with the work of Ajtai and Wigderson [AW85], who gave a sub-exponential time deterministic algo-
rithm to approximately count the number of satisfying assignments of a constant-depth circuit. Since this
early work many other classes of Boolean functions have been studied from this perspective, including DNF
formulas, low-degree GF [2] polynomials, linear threshold functions, and degree-2 polynomial threshold
functions [LVW93, LV96, Tre04, GMR13, Vio09, GKM+11, DDS13a, DDS13b].

In this paper we study the problem of deterministic approximate counting for degree-d polynomial
threshold functions (PTFs). A degree-d PTF is a Boolean function f : {−1, 1}n → {−1, 1} defined by
f(x) = sign(p(x)) where p : {−1, 1}n → R is a degree-d polynomial. In the special case where d = 1,
degree-d PTFs are often referred to as linear threshold functions (LTFs). While LTFs and low-degree PTFs
have been researched for decades (see e.g. [MK61, MTT61, MP68, Mur71, GHR92, Orp92, Hås94, Pod09]
and many other works), they have recently been the focus of renewed research attention in fields such as
concrete complexity theory [She08, She09, DHK+10, Kan10, Kan12c, Kan12a, KRS12], learning theory
[KKMS08, SSSS11, DOSW11, DDFS12], voting theory [APL07, DDS12] and others.

Our main result. The main contribution of this paper is to give a fixed polynomial time deterministic
approximate counting algorithm for degree-d PTFs. We prove the following theorem:

Theorem 1. There is a deterministic algorithm A with the following properties: Let A be given as input
a degree-d polynomial p over {−1, 1}n and an accuracy parameter ε > 0. Algorithm A runs in time
Od,ε(1) · poly(nd) and outputs a value ṽ ∈ [0, 1] such that

∣∣ṽ −Prx∈{−1,1}n [p(x) ≥ 0]
∣∣ ≤ ε.

Note that the above result guarantees an additive approximation to the desired probability. While addi-
tive approximation is not as strong as multiplicative approximation, one should recall that the problem of
determining whether Prx∈{−1,1}n [p(x) ≥ 0] is nonzero is well known to be NP-hard, even for degree-2
polynomials and even if all nonconstant monomials in p are restricted to have coefficients from {0, 1} (this
can be shown via a simple reduction from Max-Cut). Thus no efficient algorithm, even allowing random-
ness, can give any multiplicative approximation to Prx∼{−1,1}n [p(x) ≥ 0] unless NP ⊆ RP. Given this,
additive approximation is a natural goal.

Related work. Several previous works have given poly(nd)-time deterministic approximate counting al-
gorithms for width-d DNF formulas (see e.g. [Tre04, LV96, GMR13] as well as the approach of [AW85]
augmented with the almost t-wise independent distributions of [NN93], as discussed in [Tre04]). Degree-d
PTFs are of course a broad generalization of width-d DNF formulas, and the algorithms for width-d DNFs
referenced above do not extend to degree-d PTFs.

The d = 1 case for degree-d PTFs (i.e. LTFs) is qualitatively different from d > 1. For d = 1 the satis-
fiability problem is trivial, so one may reasonably hope for a multiplicatively (1± ε)-accurate deterministic
approximate counting algorithm. Indeed such an algorithm, running in fully polynomial time poly(n, 1/ε),
was given by Gopalan et al. and Stefankovic et al. in [GKM+11]. For d ≥ 2, however, as noted above
additive approximation is the best one can hope for, even for randomized algorithms. The only previous
deterministic approximate counting results for degree-d PTFs for general d follow from known construc-
tions of unconditional pseudorandom generators (PRGs) for degree-d PTFs. The first such construction was
given by Meka and Zuckerman [MZ10], whose PRG yielded an nOd(1)·poly(1/εd)-time deterministic approx-
imate counting algorithm. Followup works by Kane [Kan11a, Kan11b, Kan12b] improved the parameters

1

of these PRGs, with the strongest construction from [Kan12b] (for PTFs over Gaussian inputs) giving a
nOd,c(1)·ε−c-time algorithm. Thus these prior works do not give a fixed polynomial-time algorithm.

For the special case of d = 2, in separate work [DDS13a] the authors have given a deterministic ap-
proximate counting algorithm for degree-2 PTFs that runs in time poly(n, 2poly(1/ε)). In [DDS13b] the
authors extended the [DDS13a] result and gave an algorithm that does deterministic approximate counting
for any O(1)-junta of degree-2 PTFs. As we explain in detail in the rest of this introduction, much more
sophisticated techniques and analyses are required to obtain the results of the current paper for general
d. These include a new central limit theorem in probability theory based on Malliavin calculus and Stein’s
method, and an intricate new decomposition procedure that goes well beyond the decomposition approaches
employed in [DDS13a, DDS13b].

Our approach. The main step in proving Theorem 1 is to give a deterministic approximate counting al-
gorithm for the standard Gaussian distribution N(0, 1)n over Rn rather than the uniform distribution over
{−1, 1}n. The key result that gives us Theorem 1 is the following:

Theorem 2. There is a deterministic algorithm A with the following properties: Let A be given as input
a degree-d polynomial p over Rn and an accuracy parameter ε > 0. Algorithm A runs in time Od,ε(1) ·
poly(nd) and outputs a value ṽ ∈ [0, 1] such that

∣∣ṽ −Prx∼N(0,1)n [p(x) ≥ 0]
∣∣ ≤ ε.

Theorem 1 follows from Theorem 2 using the invariance principle of [MOO10] and the “regularity
lemma” for polynomial threshold functions from [DSTW10]. The arguments that give Theorem 1 from
Theorem 2 are essentially identical to the ones used in [DDS13a], so we omit them in this extended abstract
(see the full version). In the rest of this introduction we describe the main ideas behind the proof of Theorem
2; as explained below, there are two main contributions.

First contribution: A new multivariate CLT. Our first contribution is a new multidimensional central limit
theorem that we establish for r-tuples of degree-d Gaussian polynomials, i.e. r-tuples (p1(x), . . . , pr(x))
where each pi is a degree-d polynomial and x ∼ N(0, 1)n. This CLT states that if each pi has “small eigen-
values” (as defined at the start of Section 4), then the joint distribution converges to the multidimensional
Normal distribution G over Rr whose mean and covariance match (p1, . . . , pr). The closeness here is with
respect to “test functions” that have globally bounded second derivatives; see Theorem 19 for a detailed
statement of our CLT. In Section 6 we use tools from mollification to go from the aforementioned kind of
“closeness” to the kind of closeness which is required to analyze polynomial threshold functions.

Comparing with previous work, the degree-2 case [DDS13a] required a CLT for a single degree-2 Gaus-
sian polynomial. The main technical ingredient of the [DDS13a] proof was a result of Chatterjee [Cha09].
[DDS13b] established the d = 2 case of our multidimensional CLT via a relatively straightforward analysis
(requiring just basic linear algebra) of the central limit theorem from [NPR10]. We note that in the d = 2
case it is clear what is the correct notion of the eigenvalues of a degree-2 polynomial, namely the eigenvalues
of the quadratic form. In contrast, it is far from clear what is the correct notion of the eigenvalues of a degree-
d polynomial, especially since we require a notion that enables both a CLT and a decomposition as described
later. (We note that the tensor eigenvalue definitions that are employed in [FW95, CS13, Lat06] do not ap-
pear to be suitable for our purposes.) Based on discussions with experts [Lat13, Nou13, Led13, Ole13], even
the d = 2 version of our multidimensional CLT was not previously known, let alone the far more general
version of the CLT which we establish in this work.

It is instructive to consider our CLT in the context of a result of Latala [Lat06], which shows that (a
somewhat different notion of) tensor eigenvalues can be used to bound the growth of moments of degree-d
Gaussian polynomials. However, the moment bounds that can be obtained from this approach are too weak
to establish asymptotic normality [Lat13].

Like [DDS13b], in this paper we also use the central limit theorem from [NPR10] as a starting point.
However, our subsequent analysis crucially relies on the fact that there is a geometry-preserving isomor-

2

phism between the space of symmetric tensors and multivariate Gaussian polynomials. This allows us to
view Gaussian polynomials in terms of the associated tensors and greatly facilitates the use of language
and tools from tensor algebra. To establish our condition for asymptotic normality, we make significant use
of tensor identities from Malliavin calculus which were developed in the context of application to Stein’s
method (see [NP09, Nou12, NPR10]).

Second contribution: Decomposition. The second main contribution of this paper is a novel decompo-
sition that lets us transform a multilinear degree-d Gaussian polynomial p into a polynomial of the form
h(A1, . . . , Ar), where (informally)

1. p and h(A1, . . . , Ar) are ε-close (i.e. E[p] = E[h(A1, . . . , Ar)] and Var[p−h(A1, . . . , A−r)] ≤ ε);

2. For each polynomial Ai, all of its eigenvalues are extremely small (at most η for some very small η);
and

3. r = r(ε, d, η) is independent of n and depends only on the approximation parameter ε, the eigenvalue
bound η, and the degree d of p.

This decomposition is useful for the following reasons: Property (1) ensures that the distributions of p
and of h(A1, . . . , Ar) are close in cdf-distance, and thus to in order to do approximate counting of Gaus-
sian satisfying assignments for p, it suffices to do approximate counting of Gaussian satisfying assignments
for h(A1, . . . , Ar). Property (2) ensures that we may apply our new CLT to the r-tuple of polynomials
A1, . . . , Ar, and thus we may approximately count satisfying assignments to h(A1, . . . , Ar) ≥ 0 by approx-
imating the fraction of assignments that satisfy h(G1, . . . ,Gr) where G = (G1, . . . ,Gr) is the multidimen-
sional Normal distribution given by our CLT. Finally, by Property (3), approximating Pr[h(G1, . . . ,Gr) ≥ 0]
is a “constant-dimensional problem” (independent of n) so it is straightforward for a deterministic algorithm
to approximate this probability in time independent of n.

We note that there is a subtlety here which requires significant effort to overcome. As we discuss in
Remark 20, in order for our CLT to give a nontrivial bound it must be the case that the eigenvalue bound η is
much smaller than 1/r. Mimicking decomposition approaches previously used in literature [Ser07, MZ09,
DSTW10] has the problem that they will necessarily make r ≥ 1/η, thus rendering such decompositions
useless for our purposes. (One exception is the decomposition procedure from [Kan11a] where a similar
problem arises, but since the desired target conditions there are different from ours, that work uses a different
approach to overcome the difficulty; we elaborate on this below.) In our context, achieving a decomposition
such that η � 1/r requires ideas that go beyond those used in previous decompositions, and is responsible
for the large “constant-factor” overhead (captured by Od,ε(1)) in the overall running time bound.

At a very high level our decomposition is reminiscent of the regularity lemma for degree-d polynomials
over {−1, 1}n that was given in [DSTW10], in that both procedures break a given degree-d input polyno-
mial into a collection of “regular” polynomials, but as we now explain, this resemblance is a superficial
one as there are many significant differences. First, in the [DSTW10] setting the given input polynomials
are over {−1, 1}n while here the polynomials are over Gaussian space; this is a major distinction since the
geometry of Gaussian space plays a fundamental role in our proofs and techniques. Second, the notion of
“regularity” that is used is quite different between the two works; in [DSTW10] a polynomial is regular if
all variable influences are small whereas here a polynomial is “regular” if all its “tensor eigenvalues” are
small. (We subsequently refer to this new notion of regularity which is introduced and used in our work
as eigenregularity.) Third, in [DSTW10] each “atomic step” of the decomposition is simply to restrict an
individual input variable to +1 or −1, whereas in this paper the atomic “decomposition step” now involves
an eigenvalue computation (to identify two lower-degree polynomials whose product is nontrivially corre-
lated with the polynomial being decomposed). Finally, the [DSTW10] decomposition produces a decision

3

tree over input variables with restricted polynomials at the leaves, whereas in this paper we produce a single
degree-d polynomial h(A1, . . . , Ar) as the output of our decomposition.

Our decomposition has some elements that are reminiscent of a decomposition procedure described in
[Kan11a]. Kane’s procedure, like ours, breaks a degree-d polynomial into a sum of product of lower de-
gree polynomials. However, there are significant differences between the procedures. Roughly speaking,
Kane’s decomposition starts with a polynomial p and is aimed at upper bounding the higher moments of the
resulting constituent polynomials, whereas our decomposition is aimed at upper bounding the eigenregular-
ity (magnitude of the largest eigenvalues) of the constituent polynomials. To make sure that the number r
of constituent polynomials compares favorably with the moment bounds, Kane divides these polynomials
into several classes such that the number of polynomials in any class compares favorably with the moment
bounds in that class (and some desired relation holds between the number of polynomials in the different
classes). Instead, in our decomposition procedure, we want r to compare favorably with the eigenvalue
bound η; given this requirement, it does not seem possible to mimic Kane’s approach of splitting the con-
stituent polynomials into several classes. Instead, through a rather elaborate decomposition procedure, we
show that while it may not be possible to split the original polynomial p in a way so that r compares favorably
with η, it is always possible to (efficiently) find a polynomial p̃ such that p− p̃ has small variance, and p̃ can
be decomposed so that the number of constituent polynomials compare favorably with the eigenregularity
parameter.

We note that it is possible for the polynomial p− p̃ to have small variance but relatively huge moments.
Thus our decomposition procedure is not effective for the approach in [Kan11a] which is based on bounding
moments. However, because p − p̃ has small variance, the distributions of p and p̃ are indeed close in
cdf distance, which suffices for our purposes. Thus our decomposition procedure should be viewed as
incomparable to that of [Kan11a].

We also remark that our decomposition is significantly more involved than the decompositions used
in [DDS13a, DDS13b]. To see how this additional complexity arises, note that both these papers need
to decompose either a single degree-2 Gaussian polynomial or a set of such polynomials; for simplicity
assume we are dealing with a single degree-2 polynomial p. Then the [DDS13a] decomposition procedure
splits p into a sum of products of linear functions plus a degree-2 polynomial which has small eigenvalues.
Crucially, since a linear function of Gaussians is itself a Gaussian, this permits a change of basis in which
these linear functions may be viewed as the new variables. By “restricting” these new variables, one is
essentially left with a single degree-2 polynomial with a small eigenvalue. In contrast, if p has degree d
greater than 2, then the [DDS13a] decomposition will split p into a sum of products of pairs of lower degree
Gaussian polynomials plus a polynomial which has small eigenvalues. However, if d > 2 then some or all of
the new constituent lower degree polynomials may have degree greater than 1. Since a polynomial of degree
d > 1 cannot itself be viewed as a Gaussian, this precludes the possibility of “restricting” this polynomial as
was done in [DDS13a]. Thus, one has to resort to an iterative decomposition, which introduces additional
complications some of which were discussed above.

Organization. We begin in Section 2 by recording various useful preliminaries, including some basics
from the study of isonormal Gaussian processes (in the context of finite-degree Gaussian polynomials) that
are required for the rest of the paper. In Section 3 we show that it is sufficient to give an algorithm for
deterministic approximate counting of degree-d polynomials in the special case where all the polynomials
are multilinear. In Section 4 we prove our new CLT for k-tuples of degree-d Gaussian polynomials with
“small eigenvalues.” In Section 5 we describe our decomposition procedure that can be used to decompose
a k-tuple of degree-d multilinear polynomials over Gaussian inputs into an essentially equivalent k-tuple of
polynomials that have a highly structured “special form.” In Section 6 we show how the CLT from Section
4 can be combined with the highly structured polynomials from Section 5 to prove Theorem 2. In Section
7 we sketch how Theorem 1 follows from Theorem 2. We close in Section 8 by briefly describing how

4

Theorem 1 can be applied to give the first deterministic fixed-parameter tractable algorithm for the problem
of multiplicatively approximating the k-th absolute moment of a degree-d polynomial over {−1, 1}n.

2 Preliminaries

2.1 Basic Definitions, Notation and Useful Background

For A a real N × N matrix we write ‖A‖2 to denote the operator norm ‖A‖2 = max0 6=x∈RN
‖Ax‖2
‖x‖2 .

Throughout the paper we write λmax(A) to denote the largest-magnitude eigenvalue of a symmetric matrix
A.

We will need the following standard concentration bound for low-degree polynomials over independent
Gaussians.

Theorem 3 (“degree-d Chernoff bound”, [Jan97]). Let p : Rn → R be a degree-d polynomial. For any
t > ed, we have

Prx∼N(0,1)n [|p(x)−E[p(x)]| > t ·
√
Var(p(x))] ≤ de−Ω(t2/d).

We will also use the following anti-concentration bound for degree-d polynomials over Gaussians:

Theorem 4 ([CW01]). Let p : Rn → R be a degree-d polynomial that is not identically 0. Then for all
ε > 0 and all θ ∈ R, we have

Prx∼N(0,1)n

[
|p(x)− θ| < ε

√
Var(p)

]
≤ O(dε1/d).

On several occasions we will require the following lemma, which provides a sufficient condition for two
degree-d Gaussian polynomials to have approximately the same fraction of satisfying assignments:

Lemma 5. Let a(x), b(x) be degree-d polynomials over Rn. For x ∼ N(0, 1)n, if E[a(x) − b(x)] = 0,
Var[a] = 1 and Var[a− b] ≤ (τ/d)3d, then Prx∼N(0,1)n [sign(a(x)) 6= sign(b(x))] ≤ O(τ).

Proof. The argument is a straightforward consequence of Theorems 3 and 4. First note that we may assume
τ is at most some sufficiently small positive absolute constant since otherwise the claimed bound is trivial.
By Theorem 4, we have Pr[|a(x)| ≤ (τ/d)d] ≤ O(τ). Since Var[a − b] ≤ (τ/d)3d and a − b has mean
0, applying the tail bound given by Theorem 3, we get Pr[|a(x) − b(x)| > (τ/d)d] ≤ O(τ) (with room
to spare, recalling that τ is at most some absolute constant). Since sign(a(x)) can disagree with sign(b(x))
only if |a(x)| ≤ (τ/d)d or |a(x) − b(x)| > (τ/d)d, a union bound gives that Prx∼N(0,1)n′ [sign(a(x)) 6=
sign(b(x))] = O(τ), and the lemma is proved.

2.2 A linear algebraic perspective

We will often view polynomials over N(0, 1)n as elements from a linear vector space. In this subsection we
make this correspondence explicit and establish some simple but useful linear algebra background results. In
particular, we consider the finite-dimensional real vector space of all degree d polynomials over n variables.
This vector space is equipped with an inner product defined as follows: for polynomials P,Q, we have
〈P,Q〉 = Ex∼N(0,1)n [P (x) ·Q(x)]. For the rest of the paper we let V denote this vector space.

We will need to quantify the linear dependency between polynomials; it will be useful for us to do this
in the following way. Let W be a subspace of V and v ∈ V . We write v‖W to denote the projection of v on
W and v⊥W to denote the projection of v on the space orthogonal toW , so v = v‖W +v⊥W . Equipped with
this notation, we define the following (somewhat non-standard) notion of linear dependency for an ordered
set of vectors:

5

Definition 6. Let V be defined as above and let A = {v1, . . . , vm} be an ordered set of unit vectors
belonging to V . Define Ai = {v1, . . . , vi} and define V i to be the linear span of Ai. A is said to be ζ-far
from being linearly dependent if for every 1 < i ≤ m, we have ‖(vi)⊥Vi−1‖2 ≥ ζ.

Note that viewing the vector space V as Rt (for some t), we can associate a matrix MA ∈ Rt×m withA
where the ith column of MA is vi. The smallest non-zero singular value of this matrix is another measure
of the dependency of the vectors in A. Observe that this value (denoted by σmin(MA)) can alternately be
characterized as

σmin(MA) = inf
α∈Rm:‖α‖2=1

∥∥∥∥∥
m∑
i=1

αivi

∥∥∥∥∥
2

.

We next have the following lemma which shows that if A is ζ-far from being linearly dependent, then
the smallest non-zero singular value of MA is noticeably large.

Lemma 7. If A is ζ-far from being linearly dependent (where ζ ≤ 1/4), then σmin(MA) ≥ ζ2m−2.

Proof. We will prove this by induction on m, by proving a lower bound on ‖
∑m

i=1 αivi‖2 for any unit
vector α ∈ Rm. For m = 1, the proof is obvious by definition. For the induction step, observe that∥∥∥∥∥

m∑
i=1

αivi

∥∥∥∥∥
2

≥ |αm| ·
∥∥vVm−1

m

∥∥
2

where we use the notation from Definition 6. If |αm| ≥ ζ2m−3, then we get the stated bound on ‖
∑m

i=1 αivi‖2.
In the other case, since |αm| < ζ2m−3, we have∥∥∥∥∥

m∑
i=1

αivi

∥∥∥∥∥
2

≥

∥∥∥∥∥
m−1∑
i=1

αivi

∥∥∥∥∥
2

− |αm| ≥

∥∥∥∥∥
m−1∑
i=1

αivi

∥∥∥∥∥
2

− ζ2m−3.

However, by the induction hypothesis, we get∥∥∥∥∥
m−1∑
i=1

αivi

∥∥∥∥∥
2

≥ (1− ζ2m−3)ζ2m−4 ≥ ζ2m−4

2
.

Thus, ‖
∑m

i=1 αivi‖2 ≥ ζ2m−4/2− ζ2m−3 ≥ ζ2m−2 (provided ζ ≤ 1/4).

The next simple claim says that if A is ζ-far from being linearly dependent and v lies in the linear span
of A, then we can upper bound the size of the coefficients used to represent v.

Claim 8. Let v be a unit vector which lies in the span of A and let A be ζ-far from being linearly depen-
dent. Then, if v =

∑m
i=1 βivi is the unique representation of v as a linear combination of vi’s, we have√∑m

i=1 β
2
i ≤ (1/ζ)2m−2.

Proof. Let γi = βi/
√∑m

i=1 β
2
i . Since γ is a unit vector, by Lemma 7 we have that∥∥∥∥∥

m∑
i=1

γivi

∥∥∥∥∥
2

≥ ζ2m−2.

Thus ζ2m−2 ·
√∑m

i=1 β
2
i ≤ 1, giving the claimed upper bound.

6

We will also need another simple fact which we state below.

Fact 9. LetAi be ζ-far from being linearly dependent. Let vi+1 and v be unit vectors such that |〈v, vi+1〉| ≥
ζ and v is orthogonal to Vi. Then Ai+1 is ζ-far from being linearly dependent.

Proof. Note that vi+1 = v
‖Vi
i+1 + v⊥Vii+1 where Vi = span(Ai) (following Definition 6). Hence we have

‖v⊥Vii+1 ‖2 ≥ |〈v, v
⊥Vi
i+1 〉| = |〈v, v

‖Vi
i+1〉+ 〈v, v⊥Vii+1 〉| = |〈v, vi+1〉| ≥ ζ,

where the first inequality is by Cauchy-Schwarz and the first equality uses that v is orthogonal to Vi.

2.3 The model

Throughout this paper, our algorithms will repeatedly be performing basic linear algebraic operations, in
particular SVD computation and Gram-Schmidt orthogonalization. In the bit complexity model, it is well-
known that these linear algebraic operations can be performed (by deterministic algorithms) up to additive
error ε in time poly(n, 1/ε). For example, let A ∈ Rn×m have b-bit rational entries. It is known (see
[GL96] for details) that in time poly(n,m, b, 1/ε), it is possible to compute a value σ̃1 and vectors u1 ∈ Rn,

v1 ∈ Rm, such that σ̃1 =
uT1 Av1
‖u1‖‖v1‖ and |σ̃1 − σ1| ≤ ε, where σ1 is the largest singular value of A. Likewise,

given n linearly independent vectors v(1), . . . , v(n) ∈ Rm with b-bit rational entries, it is possible to compute
vectors ũ(1), . . . , ũ(n) in time poly(n,m, b) such that if u(1), . . . , u(n) is a Gram-Schmidt orthogonalization
of v(1), . . . , v(n) then we have |u(i) · u(j) − ũ(i) · ũ(j)| ≤ 2−poly(b) for all i, j.

In this paper, we work in a unit-cost real number model of computation. This allows us to assume
that given a real matrix A ∈ Rn×m with b-bit rational entries, we can compute the SVD of A exactly in
time poly(n,m, b). Likewise, given n vectors over Rm, each of whose entries are b-bit rational numbers,
we can perform an exact Gram-Schmidt orthogonalization in time poly(n,m, b). Using high-accuracy
approximations of the sort described above throughout our algorithms, it is straightforward to translate
our unit-cost real-number algorithms into the bit complexity setting, at the cost of some additional error in
the resulting bound. Note that the final guarantee we require from Theorem 2 is only that p̃ is an additively
accurate approximation to the unknown probability. Note further that our Lemma 5 gives the following: for
p(x) a degree-d Gaussian polynomial with Var[p] = 1, and p̃(x) a degree-d polynomial so that for each
fixed monomial the coefficients of p and p̃ differ by at most κ, then taking κ = (ε3/(d3 · n))d, we have that
|Pr[p(x) ≥ 0]−Pr[p̃(x) ≥ 0]| ≤ ε.

Using these two observations, it can be shown that by making sufficiently accurate approximations at
each stage where a numerical computation is performed by our “idealized” algorithm, the cumulative er-
ror resulting from all of the approximations can be absorbed into the final O(ε) error bound. Since inverse
polynomial levels of error can be achieved in polynomial time for all of the approximate numerical computa-
tions that our algorithm performs, and since only poly(nd) many such approximation steps are performed by
poly(nd)-time algorithms, the resulting approximate implementations of our algorithms in a bit-complexity
model also achieve the guarantee of Theorem 2, at the cost of a fixed poly(nd) overhead in the running time.
Since working through the details of such an analysis is as tedious for the reader as it is for the authors, we
content ourselves with this brief discussion.

2.4 Polynomials and tensors: some basics from isonormal Gaussian processes

We start with some basic background; a more detailed discussion of the topics we cover here can be found
in [NP09, Nou12, NPR10].

Gaussian processes. A Gaussian process is a collection of jointly distributed random variables {Xt}t∈T ,
where T is an index set, such that if S ⊂ T is finite then the random variables {Xs}s∈S are distributed

7

as a multidimensional normal. Throughout this paper we will only deal with centered Gaussian processes,
meaning that E[Xt] = 0 for every t ∈ T . It is well known that a centered Gaussian process is completely
characterized by its set of covariances {E[XsXt]}s,t∈T . An easy but important observation is that the
function d : T × T → R+ defined by d(s, t) =

√
E[(Xs −Xt)2] forms a (pseudo)-metric on the set T .

Isonormal Gaussian processes. ForH any separable Hilbert space, the Gaussian process {X(h)}h∈H over
H is isonormal if it is centered and E[X(h) ·X(h′)] = 〈h, h′〉 for every h, h′ ∈ H. It is easy to see that for
an isonormal Gaussian process, the metric d induced by the process {X(h)}h∈H is the same as the metric
on the Hilbert space H, and thus there is an isomorphism between the Gaussian process {X(h)} and the
Hilbert spaceH. This isomorphism allows us to reason about the process {X(h)} using the geometry ofH.

Throughout this paper the Hilbert space H will be the n-dimensional Hilbert space Rn, and we will
consider the isonormal Gaussian process {X(h)}h∈H. This Gaussian process can be described explicitly
as follows: We equip Rn with the standard normal measure N(0, 1)n, and corresponding to every element
h ∈ Rn we define X(h) = h ·x, where x ∼ N(0, 1)n. The resulting {X(h)} is easily seen to be a Gaussian
process with the property that E[X(h) ·X(g)] = 〈h, g〉.

Tensors. We write H⊗q to denote the q-tensor product of H. Fixing a basis e1, . . . , en of H, recall that
every element ofH⊗q may be uniquely written as

f =
n∑

i1,...,iq=1

f(i1, . . . , iq) · ei1 ⊗ · · · ⊗ eiq where f(i1, . . . , iq) ∈ R. (1)

We write H�q to denote the subspace of symmetric q-tensors. These are the elements f ∈ H⊗q such
that, writing f as in (1) above, we have f(i1, . . . , iq) = f(iσ(1), . . . , iσ(q)) for every permutation σ ∈ Sq.
Given a tensor f ∈ H⊗q written as in (1), we write f̃ to denote the symmetrization of f ,

f̃
def
=

1

q!

∑
σ∈Sq

n∑
i1,...,iq=1

f(iσ(1), . . . , iσ(q)) · ei1 ⊗ · · · ⊗ eiq ,

which lies inH�q; we alternately write Sym(f) for f̃ if the latter is typographically inconvenient.
Given an element h ∈ H, we write h�q to denote the q-th tensor product of h with itself, h ⊗ · · · ⊗ h.

Note that this is a symmetric tensor; we sometimes refer to h�q as a pure symmetric q-tensor. Note that
every symmetric q-tensor can be expressed as a finite linear combination of pure symmetric q-tensors h�qi
where each hi ∈ H has ‖hi‖ = 1 (but this representation is not in general unique).

We say that a tensor f as in (1) is multilinear if f(i1, . . . , iq) = 0 whenever ia = ib for any a 6= b,
a, b ∈ [q] (i.e. all the diagonal entries of f are zero).

From tensors to Gaussian polynomials and back. We write Hq(x) to denote the qth Hermite polynomial;
this is the univariate polynomial

H0(x) ≡ 1, H1(x) = x, Hq(x) =
(−1)q

q!
ex

2/2 d
q

dxq
e−x

2/2.

Note that these have been normalized so that that Ex∼N(0,1)[Hq(x)2] = 1/q!. We writeWq to denote the
q-th Wiener chaos; this is the space spanned by all random variables of the form Hq(X(h)) (intuitively, this
is the span of all homogenous degree-q multivariate Hermite polynomials.). We note that it can be shown
(see e.g. Section 2.2 of [NP09]) that for h, g ∈ H with ‖h‖ = ‖g‖ = 1 we have

E[Hq(X(h)) ·Hq(X(g))] =
1

q!
〈h�q, g�q〉. (2)

8

The iterated Ito integral is a map which takes us from symmetric tensors to Gaussian polynomials as
follows. Given q ≥ 1 and h ∈ H which satisfies ‖h‖ = 1, we define

Iq(h
�q) = q! ·Hq(X(h)). (3)

(We define I0(c) = c for c ∈ R.) Note that with the definition of Ito integral, we can rephrase the
guarantee of (2) as saying

E[Iq(h
�q) · Iq(g�q)] = q! · 〈h�q, g�q〉.

So far, the map Iq(·) has been defined only for pure symmetric q-tensors of unit norm. However, equipped
with the fact that every x ∈ H�q can be written as a linear combination of such tensors, the map Iq can be
linearly extended to the whole space H�q. Using the multiplication formula for Ito integrals (equation (5)
below) and standard identities for Hermite polynomials, it can be shown (see again Section 2.2 of [NP09])
that such an extension is consistent and unambiguous, i.e. it does not depend on the particular linear com-
bination of the pure symmetric tensors we use to represent x ∈ H. Thus every element of H�q maps to an
element ofWq and further this mapping can be shown to be bijective. In fact, the map Iq is an isomorphism
(up to scaling) between the spaceWq of Gaussian chaoses and the Hilbert space H�q, as is shown by the
following relation: for f, g ∈ H�q, we have

E[Iq(f) · Iq(g)] = q! · 〈f, g〉

(ee Claim 11 below for a proof). This relation forges a connection between the q-th Wiener chaosWq and
the geometry of the space H�q. This connection is crucial for us as we extensively use operations in the
spaceH�q to reason about the Wiener chaosWq.

Let F = F (x1, . . . , xn) be any degree-d Gaussian polynomial over H = Rn. Since E[F 2] < ∞, the
Wiener chaos decomposition implies that there exists a unique sequence f0, . . . , fd where fq ∈ H�q such
that

F =

d∑
q=0

Iq(fq), (4)

where by convention I0(f0) = E[F]. Moreover, this decomposition is easily seen to be effective, in the
sense that given F we can deterministically construct the tensors f0, . . . , fd in time nO(d). In a bit more
detail, let Jq be the operator which maps F : Rn → R (with E[F 2] < ∞) to its projection on the space
Wq. If F is explicitly presented as a polynomial of degree d, then the action of each operator J1, . . . , Jd
can easily be computed in time nO(d), and given an explicit representation (as a polynomial) of any point Fq
in the image of Jq, it is straightforward to compute fq (in time nO(q)) such that Iq(fq) = Fq. (In the other
direction it is also straightforward, given fq ∈ H�q for q = 0, . . . , d, to output the degree-d polynomial F
satisfying (4).)

Remark 10. If F is a multilinear degree-d Gaussian polynomial over H, then it can be shown that in
the Wiener chaos decomposition F = I0(f0) + · · · + Id(fd), each fq is a multilinear symmetric tensor.
Conversely, if fq ∈ H�q is a multilinear symmetric tensor then it can be shown that Iq(fq) is a multilinear
Gaussian polynomial.

2.5 Some background results from isonormal Gaussian processes.

We begin with a simple claim about the inner product between Ito integrals:

Claim 11. [Inner product between Ito integrals.] Let f ∈ H�p and g ∈ H�q. Then

E[Ip(f) · Iq(g)] =

{
0 if p 6= q,

p! · 〈f, g〉 if p = q.

9

Proof. For p 6= q the claim follows from the fact that different levels of Wiener chaos are orthogonal to
each other. For p = q, we may write f, g in terms of pure symmetric tensors as f =

∑t
i=1 αi · f

�p
i ,

g =
∑t

j=1 βj · g
�p
j , and hence

E[Ip(f) · Ip(g)] =
t∑

i,j=1

αiβj E[Ip(f
�p
i) · Ip(g�pj)]

= (p!)2
t∑

i,j=1

αiβj E[Hp(X(fi)) ·Hp(X(gj))]

= p!
t∑

i,j=1

αiβj〈f�pi , g�pj 〉

= p!〈f, g〉,

where the first equality is by linearity of Ip(·), the second is by (3), the third is by (2), and the fourth is by
the bilinearity of 〈·, ·〉.

As a consequence of this we get the following useful fact:

Fact 12. Let f1, . . . be symmetric tensors where fi ∈ H�i. Then we have Var[
∑

i Ii(fi)] =
∑

iVar[Ii(fi)].

Proof. All the random variables Ii(fi) are centered for i ≥ 1, so it suffices to show that E[(
∑

i Ii(fi))
2] =∑

iE[Ii(fi)
2]. This follows directly from Claim 11.

Contraction products. Consider symmetric tensors f ∈ H�q and g ∈ H�r. For 0 ≤ s ≤ min{q, r} we
define the s-th contraction product f ⊗s g ∈ H⊗q+r−2s as follows:

(f ⊗s g)(t1,t2,...,tq+r−2s) =

∞∑
i1,...,is

〈f, ei1 ⊗ . . .⊗ eis〉 ⊗ 〈g, ei1 ⊗ . . .⊗ eis〉.

One way to visualize the contraction product is as a matrix multiplication. We may view f ∈ Hq as a matrix
fq−s,s where the rows of fq−s,s are identified with the elements of [n]q−s and the columns with the elements
of [n]s, and we may likewise view g ∈ Hr as an [n]s × [n]r−s matrix. A matrix multiplication between
fq−s,s and gs,r−s results in a matrix of dimension [n]q−s × [n]r−s, which can be viewed as an element of
H⊗q+r−2s; this element is the s-th contraction product f ⊗s g.

Note that the contraction product f ⊗s g of two symmetric tensors may not be a symmetric tensor. We
write f⊗̃sg to denote Sym(f ⊗s g); the resulting symmetric tensor is an element ofH�q+r−2s.

We will make heavy use of the following multiplication formula for Ito integrals (see p. 4 of [NPR10]):

Theorem 13. [Multiplication formula for Ito integrals.] If f ∈ H�p and g ∈ H�q, then

Ip(f) · Iq(g) =

min{p,q}∑
r=0

r! ·
(
p

r

)(
q

r

)
Ip+q−2r(f⊗̃rg). (5)

10

3 Dealing with non-multilinear polynomials

The decomposition procedure that we use relies heavily on the fact that the input polynomials pi are multilin-
ear. To handle general (non-multilinear) degree-d polynomials, the first step of our algorithm is to transform
them to (essentially) equivalent multilinear degree-d polynomials. This is accomplished by a simple proce-
dure whose performance is described in the following theorem.1 Note that given Theorem 14, in subsequent
sections we can (and do) assume that the polynomial p given as input in Theorem 2 is multilinear.

Theorem 14. There is a deterministic procedure Linearize with the following properties: The algorithm
takes as input a (not necessarily multilinear) variance-1 degree-d polynomial p over Rn and an accuracy
parameter δ > 0. It runs in time Od,δ(1) · poly(nd) and outputs a multilinear degree-d polynomial q over
Rn
′
, with n′ ≤ Od,δ(1) · n, such that∣∣∣Prx∼N(0,1)n [p(x) ≥ 0]−Prx∼N(0,1)n′ [q(x) ≥ 0]

∣∣∣ ≤ O(δ).

Proof. The procedure Linearize is given below. (Recall that a diagonal entry of a q-tensor f =
∑

i1,...,iq=1 f(i1, . . . , iq)·
ei1 ⊗ · · · ⊗ eiq is a coefficient f(i1, . . . , iq) that has ia = ib for some a 6= b.)

Linearize
Input: A degree-d polynomial p : Rn → R such that Var(p) = 1.
Output: A degree-d multilinear polynomial q : Rn′ → R such that∣∣∣Prx∼N(0,1)n [p(x) ≥ 0]−Prx∼N(0,1)n′ [q(x) ≥ 0]

∣∣∣ ≤ δ.
where n′ = n ·K.

1. Let p(x1, . . . , xn) =
∑d

j=0 Ij(fj) be the Wiener chaos decomposition of p. Let K =

d2 · (d/δ)3d.

2. Construct polynomial q̃ : Rn′ → R from p by replacing each xi by (yi,1 + . . .+ yi,K)/
√
K.

3. Let q̃ =
∑d

j=0 Ij(f̃j) be the Wiener chaos decomposition of q̃, where f̃j ∈ H�qn′ andHn′ = Rn′ .

4. For each 0 ≤ j ≤ d, obtain gj from f̃j by zeroing out all the diagonal entries from f̃j .

5. Output q =
∑d

j=0 Ij(gj).

It is clear that all the tensors gj are multilinear, so by Remark 10 the polynomial q that the procedure
Linearize outputs is multilinear. The main step in proving Theorem 14 is to bound the variance of q̃− q, so
we will establish the following claim:

Claim 15. Var[q̃ − q] ≤ d
K ·Var[q̃].

Proof. We first observe that

Var[q̃ − q] = Var

 d∑
j=1

(Ij(f̃j)− Ij(gj))

 =

d∑
j=1

E
[
(Ij(f̃j)− Ij(gj))2

]
, (6)

1A similar “multilinearization” procedure is analyzed in [Kan11a], but since the setting and required guarantees are somewhat
different here we give a self-contained algorithm and analysis.

11

where the first equality is because g0 = f0 and the second is by Claim 11 and and the fact that each
Ij(f̃j), Ij(gj) has mean 0 for j ≥ 1. Now fix a value 1 ≤ j ≤ d. Since each gj is obtained from f̃j by
zeroing out diagonal elements, again using Claim 11 we see that

E
[
(Ij(f̃j)− Ij(gj))2

]
= j! · ‖f̃j − gj‖2F , (7)

where the squared Frobenius norm ‖f̃j − gj‖2F equals the sum of squared entries of the tensor f̃j − gj .
Now,observe that the entry αi1,...,ij = fj(i1, . . . , ij) of the tensor fj maps to the entry

αi1,...,ij
(ei1,1 + . . .+ ei1,K)√

K
⊗ . . .⊗

(eij ,1 + . . .+ eij ,K)
√
K

= αi1,...,ij ·
∑

(`1,...,`j)∈[K]j

1

Kj/2
⊗ja=1 eia,`a

when q̃ is constructed from p. Further observe that all Kj outcomes of ⊗ja=1eia,`a are distinct. Since gj is
obtained by zeroing out the diagonal entries of f̃j , we get that

‖f̃j − gj‖2F =
∑

(i1,...,ij)∈[n]j

(αi1,...,ij)
2 · 1

Kj
· |SK,j |

where the set SK,j = {(`1, . . . , `j) ∈ [K]j : `1, . . . , `j are not all distinct}. It is easy to see that |SK,j | ≤
(j2 ·Kj)/K, so we get

‖f̃j − gj‖2F ≤
∑

(i1,...,ij)∈[n]j

(αi1,...,ij)
2 · j

2

K
.

Returning to (6) and (7), this yields

Var[q − q̃] ≤
d∑
j=1

j! ·
∑

(i1,...,ij)∈[n]j

(αi1,...,ij)
2 · j

2

K
≤ d2

K
·

 d∑
j=1

j! ·
∑

(i1,...,ij)∈[n]j

(αi1,...,ij)
2

 .

Using Fact 12 and Claim 11, we see that

Var[p] =

d∑
j=1

Var[Ij(fj)] =

d∑
j=1

E[Ij(fj)
2] =

d∑
j=1

j! ·
∑

(i1,...,ij)∈[n]j

(αi1,...,ij)
2.

It is easy to see that Var[q̃] = Var[p], which equals 1 by assumption, so we have that Var[q − q̃] ≤
d2

K ·Var[q̃] as desired.

To finish the proof of Theorem 14, observe that by our choice of K we have Var[q − q̃] ≤ (δ/d)3d ·
Var[q̃]. Since q−q̃ has mean 0 and Var[q̃] = 1 we may apply Lemma 5, and we get that |Prx∼N(0,1)n′ [q(x) ≥
0] − Prx∼N(0,1)n′ [q̃(x) ≥ 0]| ≤ O(δ). The theorem follows by observing that the two distributions
p(x)x∼N(0,1)n and q̃(x)x∼N(0,1)n′ are identical.

4 A multidimensional CLT for low-degree Gaussian polynomials

Our goal in this section is to prove a CLT (Theorem 19 below) which says, roughly, the following: Let
F1, . . . , Fr be eigenregular low-degree Gaussian polynomials over Rn (here the meaning of “eigenregular”
is that the polynomial has “small eigenvalues”; more on this below). Then the distribution of (F1, . . . , Fr) is
close — as measured by test functions with absolutely bounded second derivatives — to the r-dimensional
Normal distribution with matching mean and covariance.

12

To make this statement more precise, let us begin by explaining what exactly is meant by the eigenvalues
of a polynomial – this is clear enough for a quadratic polynomial, but not so clear for degrees 3 and higher.

Eigenvalues of tensors and polynomials. We begin by defining the largest eigenvalue of a symmetric
tensor.

Definition 16. For any p ≥ 2 and g ∈ H�p, define λmax(g), the largest-magnitude eigenvalue of g, as
follows. Consider a partition of [p] into S and S = [p] \ S where both S and S are non-empty.2We define

λS,S(g) = sup
x∈HS ,y∈HS

〈g, x⊗ y〉
‖x‖F · ‖y‖F

and λmax(g) = max
S,S 6=∅

λS,S(g).

(Here ‖x‖F denotes the Frobenius norm of x.) For p ∈ {0, 1} and g ∈ H�p we say that λmax(g) = 0.

Fix a Gaussian polynomial F of degree d, and recall that F has a unique Wiener chaos decomposition
as F =

∑d
q=0 Iq(fq) with fq ∈ H�q. The following definition plays a crucial role in the rest of the paper.

Definition 17. We define the largest-magnitude eigenvalue of F to be

λmax(F) = max{λmax(f2), . . . , λmax(fd)}.

We say that F is ε-eigenregular if λmax(F)√
Var[F]

≤ ε, and we sometimes refer to λmax(F)√
Var[F]

as the eigenregularity

of F .

Remark 18. If F is a polynomial of degree at most 1 then we say that the polynomial F is 0-eigenregular
(and hence ε-eigenregular for every ε > 0).

Now we can give a precise statement of our new CLT:

Theorem 19. Fix d ≥ 2 and let F = (F1, . . . , Fr) be Gaussian polynomials over Rn, each of degree at
most d, such that for each i we have E[Fi] = 0, Var[Fi] ≤ 1 and Fi is ε-eigenregular. Let C denote
the covariance matrix of F , so C(i, j) = Cov(Fi, Fj) = Ex∼N(0,1)n [Fi(x)Fj(x)]. Let G be a mean-zero
r-dimensional Gaussian random variable with covariance matrix C. Then for any α : Rr → R, α ∈ C2

such that all second derivatives of α are at most ‖α′′‖∞ <∞, we have

|E[α(F1, . . . , Fr)]−E[α(G)]| < 2O(d log d) · r2 ·
√
ε · ‖α′′‖∞.

The rest of Section 4 is dedicated to the proof of Theorem 19. The proof of Theorem 19 is somewhat
involved, using Malliavin calculus in the context of Stein’s method; it builds on recent work by Nourdin,
Peccati and Réveillac [NP09, Nou12, NPR10]. In Section 4.1 we first give the necessary background in-
gredients from Malliavin calculus which will serve as the tools in our proof, and in Section 4.2 we give our
proof of Theorem 19.

Remark 20. It is clear from the statement of Theorem 19 that in order for the theorem to yield a meaningful
bound, it must be the case that the number of polynomials r is small compared to 1/

√
ε. Looking ahead,

in our eventual application of Theorem 19, the r polynomials F1, . . . , Fr will be obtained by applying
the decomposition procedure described in Section 5 to the original degree-d input polynomial. Thus it
will be crucially important for our decomposition procedure to decompose the original polynomial into r
polynomials all of which are extremely eigenregular, in particular ε-eigenregular for a value ε � 1/r2.
Significant work will be required in Section 5 to surmount this challenge.

2(Note that since we are only dealing with symmetric tensors we could equivalently have considered only partitions into
[1, . . . , k], [k + 1, . . . , p] where 1 ≤ k ≤ p− 1.)

13

4.1 Background from Malliavin calculus.

Malliavin derivatives. Let F = f(X(h1), . . . , X(hm)) where h1, . . . , hm ∈ H and f is a differentiable
function. The Malliavin derivative is aH valued random variable defined as

DF
def
=

n∑
i=1

∂f(X(h1), . . . , X(hn))

∂xi
hi.

Note that if F = f(x1, . . . , xn) (i.e. m = n and hi is the canonical basis vector ei ∈ Rn) then we have

DF =

(
∂f(x1, . . . , xn)

∂x1
, . . . ,

∂f(x1, . . . , xn)

∂xn

)
,

where as usual we have x ∼ N(0, 1)n.
Our proof of Theorem 19 will involve a lot of manipulation of inner products of Malliavin derivatives.

The following results will be useful:

Claim 21. [[NPR10]] Let q ≥ p and f ∈ H�p and g ∈ H�q. Let F = Ip(f) and G = Iq(g).

〈DF,DG〉 = pq

min{p,q}∑
r=1

(r − 1)!

(
p− 1

r − 1

)(
q − 1

r − 1

)
Ip+q−2r(f⊗̃rg)

Theorem 22. [[NPR10]] Let q ≥ p and f ∈ H�p and g ∈ H�q. Let F = Ip(f) and G = Iq(g).

E[〈DF,DG〉2] = p2q2
p∑
r=1

(r − 1)!2
(
p− 1

r − 1

)2(q − 1

r − 1

)2

(p+ q − 2r)!‖f⊗̃rg‖2 if p < q

E[〈DF,DG〉2] = p2p!2〈f, g〉2 + p4
p−1∑
r=1

(r − 1)!2
(
p− 1

r − 1

)4

(2p− 2r)!‖f⊗̃rg‖2 if p = q

E[〈DF,DG〉2] = p2q2
q∑
r=1

(r − 1)!2
(
p− 1

r − 1

)2(q − 1

r − 1

)2

(p+ q − 2r)!‖f⊗̃rg‖2 if p > q.

(The last equality above is not explicitly stated in [NPR10] but it follows easily from their proof of the
first equality; see Equation 3.12 in the proof of Lemma 3.7 of [NPR10].)

We recall (see [NPR10, NP09]) that the operator L (which is called the generator of the Ornstein-
Uhlenbeck semigroup) is defined by

LF =
∞∑
q=0

−qJq(F).

We also recall the that the pseudo-inverse of L is defined to be the operator

L−1F =
∞∑
q=1

−Jq(F)/q.

Both operators are well-defined for all finite-degree Gaussian polynomials F .
We recall the following key identity which provides the fundamental connection between Malliavin

Calculus and Stein’s method:

Claim 23 (see e.g. Equation (2.22) of [NP09]). Let h : R→ R be a continuous function with a bounded first
derivative. Let p and q be polynomials over X with E[q] = 0. Then E[qh(p)] = E[h′(p) · 〈Dp , −DL−1q〉].

Specializing to the case h(x) = x, we have

Corollary 24. Let p and q be finite degree polynomials overX with E[q] = 0. Then, E[qp] = E[〈Dp , −DL−1q〉].

14

4.2 Proof of Theorem 19

We recall the following CLT due to Nourdin and Peccati:

Theorem 25. [[NP09], see also [Nou12], Theorem 6.1] Let F = (F1, . . . , Fr) where each Fi is a Gaussian
polynomial with E[Fi] = 0. Let C be a symmetric PSD matrix in Rr×r and let G be a mean-0 r-dimensional
Gaussian random variable with covariance matrix C. Then for any α : Rr → R, α ∈ C2 such that
‖α′′‖∞ <∞, we have

|E[α(F)]−E[α(G)]| < 1

2
‖α′′‖∞ ·

 r∑
i=1

r∑
j=1

E[|C(i, j)− Y (i, j)|]


where Y (i, j) = 〈DFi,−DL−1Fj〉.

We now use Theorem 25 to prove Theorem 19.

Proof. As in Theorem 25, we write Y (a, b) to denote 〈DFa,−DL−1Fb〉. For any 1 ≤ a, b ≤ r, we have

C(a, b) = Cov(Fa, Fb) = E[FaFb] = E[Y (a, b)], (8)

where the second equality is because Fa and Fb have mean 0 and the third equality is by Corollary 24. Since
C is a covariance matrix and every covariance matrix is PSD, we may apply Theorem 25, and we get that

|E[α(F)]−E[α(G)]| < r2

2
‖α′′‖∞· max

1≤a,b≤r
E[|C(a, b)−Y (a, b)|] =

r2

2
‖α′′‖∞· max

1≤a,b≤r
E[|Y (a, b)−E[Y (a, b)]|],

where we used (8) for the equality. By Jensen’s inequality we have E[|Y (a, b)−E[Y (a, b)]|] ≤
√
Var[Y (a, b)].

Lemma 26 below gives us that Var[Y (a, b)] ≤ 2O(d log d)ε, and the theorem is proved.

So to prove Theorem 19, it remains to establish the following lemma:

Lemma 26. For each 1 ≤ a, b ≤ k, we have that Var[Y (a, b)] = 2O(d log d)εwhere Y (a, b) = 〈DFa,−DL−1Fb〉.

4.2.1 Proof of Lemma 26

We begin with the following useful facts about contraction products:

Fact 27. Let h ∈ H�q1 , g ∈ H�q2 where q1 ≥ q2. Then for 1 ≤ r ≤ min{q1 − 1, q2}, we have ‖h⊗̃rg‖ ≤
λmax(h)‖g‖.

Proof. We first observe that the range of allowed values on r ensures that the contraction product h⊗̃rg
is well defined. Next, we note that since symmetrizing can never increase the norm of a tensor, we have
‖h⊗̃rg‖2 ≤ ‖h⊗rg‖2. As mentioned in our earlier discussion about contraction products we may view h as
an [n]q1−r × [n]r matrix H and g as an [n]r × [n]q2−r matrix G with columns Gi. Since 1 ≤ r ≤ q1− 1 the
matrix H is non-degenerate (neither a single row nor a single column), and we have

‖h⊗rg‖2 = ‖HG‖2F =
∑
i

‖HGi‖22 ≤
∑
i

λmax(h)2‖Gi‖22 = λmax(h)2‖G‖22 = λmax(h)2‖g‖2

as claimed.

Fact 28. Fix a ∈ H�q1 , b ∈ H�q2 where q1 ≥ q2 and c ∈ H�q3 , d ∈ H�q4 where q3 ≥ q4. Then for
1 ≤ r1 ≤ min{q1 − 1, q2} and 1 ≤ r2 ≤ {q3 − 1, q4} satisfying q1 + q2 − 2r1 = q3 + q4 − 2r2, we have
〈a⊗̃r1b, c⊗̃r2d〉 ≤ λmax(a)λmax(c) · ‖b‖ · ‖d‖.

15

Proof. By Cauchy-Schwarz we have that

〈a⊗̃r1b, c⊗̃r2d〉 ≤ ‖a⊗̃r1b‖ · ‖c⊗̃r2d‖,

and using Fact 27 twice this is at most the claimed bound.

Fix a, b ∈ [k]. We may write

Fa =

d∑
q=1

Iq(aq) and Fb =

d∑
q=1

Iq(bq)

where each aq, bq ∈ H�q, and by assumption each 2 ≤ q ≤ d has λmax(aq), λmax(bq) ≤ ε. (Note that there
is no contribution of the form I0(a0) because by assumption we have E[Fa] = 0 and E[Iq(aq)] = 0 for
q > 0, and likewise for b.) Recall also that by assumption we have Var[Fa] ≤ 1, and hence E[F 2

a] ≤ 1.
Using Claim 11, we have that

E[F 2
a] = E

 d∑
q=1

Iq(aq)

2 =

d∑
q=1

E[Iq(aq)
2] =

d∑
q=1

q! · 〈aq, aq〉 ≤ 1,

which immediately implies that

‖aq‖2 ≤
1

q!
for all q ∈ [d] (and likewise ‖bq‖2 ≤

1

q!
). (9)

Recall that Var[Y (a, b)] = E[Y (a, b)2] − E[Y (a, b)]2. We begin by giving a compact expression for
E[Y (a, b)]2 as follows:

E[Y (a, b)]2 = E[〈DFa,−DL−1Fb〉]2 = E[FaFb]
2 (by Corollary 24)

= E

 d∑
q=1

Iq(aq)

 d∑
q=1

Iq(bq)

2

=

 d∑
q=1

q!〈aq, bq〉

2

(by linearity of expectation and Claim 11).

(10)

Thus to prove Lemma 26 it suffices to show that

E[Y (a, b)2] ≤

 d∑
q=1

q!〈aq, bq〉

2

+ 2O(d log d)ε; (11)

we do this below. We begin by writing

Y (a, b) = 〈DFa,−DL−1Fb〉 =

〈
d∑
q=1

DIq(aq),

d∑
q=1

DIq(bq)/q

〉
= X + Y, (12)

where

X =

d∑
q=1

1

q
〈DIq(aq), DIq(bq)〉 and Y =

∑
d≥q1>q2≥1

(
1

q1
+

1

q2

)
〈DIq1(aq1), DIq2(bq2)〉. (13)

Thus our goal is to upper bound E[(X + Y)2] by the RHS of (11); we do this via the following two claims.

16

Claim 29. We have

E[X2] ≤

 d∑
q=1

q!〈aq, bq〉

2

+ 2O(d log d)ε2. (14)

Claim 30. We have
E[Y 2] ≤ 2O(d log d)ε2. (15)

Given Claims 29 and 30 we have

E[(X + Y)]2 = E[X2] + 2E[XY] + E[Y 2] ≤ E[X]2 + E[Y 2] + 2
√
E[X2]E[Y]2 (16)

≤

 d∑
q=1

q!〈aq, bq〉

2

+ 2O(d log d)ε2 + 2
√
E[X2]E[Y]2. (17)

Now note that

√
E[X2]E[Y]2 =

√√√√√
 d∑

q=1

q!〈aq, bq〉

2

+ 2O(d log d)ε2

 · 2O(d log d)ε2 (by Claims 29 and 30)

≤ 2O(d log d)ε2 + 2O(d log d)ε ·
d∑
q=1

q!〈aq, bq〉 (by
√
x+ y ≤

√
x+
√
y)

≤ 2O(d log d)ε2 + 2O(d log d)ε ·
d∑
q=1

(√
q!‖aq‖

)
·
(√

q!‖bq‖
)

(by Cauchy-Schwarz)

= 2O(d log d)ε (by (9)).

Combining this with (17) we indeed get (11) as desired. Thus it remains only to prove Claims 29 and
30.

Proof of Claim 29. We may write X2 as A+B, where

A =

d∑
q=1

1

q2
〈DIq(aq), DIq(bq)〉2

and
B =

∑
d≥q1>q2≥1

2

q1q2
〈DIq1(aq1), DIq1(bq1)〉 · 〈DIq2(aq2), DIq2(bq2)〉.

First we analyze E[A]. Using Theorem 22 we have that

E[A] =
d∑
q=1

1

q2
E[〈DIq(aq), DIq(bq)〉2]

=
d∑
q=1

(q!)2〈aq, bq〉2 + q2
q−1∑
r=1

((r − 1)!)2

(
q − 1

r − 1

)4

· (2q − 2r)‖aq⊗̃rbq‖2. (18)

Now observe that for 1 ≤ r ≤ q − 1, we have

‖aq⊗̃rbq‖2 ≤ λmax(aq)
2 · ‖bq‖2 ≤ ε2/q!

17

where we have used Fact 27 for the first inequality and the eigenvalue bound and (9) for the second. Hence
from (18) we obtain

E[A] ≤
d∑
q=1

(q!)2〈aq, bq〉2 + 2O(d log d)ε2. (19)

We turn now to bound E[B]. Using Claim 21 we get

E[B] =
∑

d≥q1>q2≥1

2

q1q2
E

[(
q2

1

q1∑
r1=1

(r1 − 1)!

(
q1 − 1

r1 − 1

)2

I2q1−2r1(aq1⊗̃r1bq1)

)
·

(
q2

2

q2∑
r2=1

(r2 − 1)!

(
q2 − 1

r2 − 1

)2

I2q2−2r2(aq2⊗̃r2bq2)

)]

=
∑

d≥q1>q2≥1

2q1q2

q1∑
r1=1

q2∑
r2=1

(r1 − 1)!(r2 − 1)!

(
q1 − 1

r1 − 1

)2(q2 − 1

r2 − 1

)2

·

E[I2q1−2r1(aq1⊗̃r1bq1)I2q2−2r2(aq2⊗̃r2bq2)]. (20)

Let us fix a given outcome of q1 > q2. Recalling Claim 11, we see that the only (r1, r2) pairs that
will give a nonzero expectation are those such that 2q1 − 2r1 = 2q2 − 2r2, i.e. r2 = q2 − q1 + r1.
For such an (r1, r2) pair, by Claim 11 we get that E[I2q1−2r1(aq1⊗̃r1bq1) · I2q2−2r2(aq2⊗̃r2bq2)] equals
(2q1 − 2r1)!〈aq1⊗̃r1bq1 , aq2⊗̃r2bq2〉, which in turn satisfies

〈aq1⊗̃r1bq1 , aq2⊗̃r2bq2〉 = 〈aq1 , bq1〉 · 〈aq2 , bq2〉 if r1 = q1,

〈aq1⊗̃r1bq1 , aq2⊗̃r2bq2〉 ≤ ε2 · 1√
q1!
· 1√

q2!
if 1 ≤ r1 ≤ q1 − 1,

where the inequality follows from Fact 28, the eigenvalue bound, and (9). We thus arrive at

E[B] ≤
∑

d≥q1>q2≥1

2(q1)!(q2)!〈aq1 , bq1〉 · 〈aq2 , bq2〉

+
∑

d≥q1>q2≥1

2q1q2

q1−1∑
r1=1

(r1 − 1)!(q2 − q1 + r1 − 1)!

(
q1 − 1

r1 − 1

)2(q2 − 1

q2 − q1 + r1 − 1

)2

· ε2 · (2q1 − 2r1)!√
(q1!)(q2!)

≤
∑

d≥q1>q2≥1

2(q1)!(q2)!〈aq1 , bq1〉 · 〈aq2 , bq2〉+ 2O(d log d)ε2.

Combining this with (18), we get that

E[X2] ≤

 d∑
q=1

q!〈aq, bq〉

2

+ 2O(d log d)ε2.

This concludes the proof of Claim 29.

Proof of Claim 30. We have

E[Y 2] =
∑

d≥q1>q2≥1

∑
d≥q3>q4≥1

(
1

q1
+

1

q2

)(
1

q3
+

1

q4

)
·E[〈DIq1(aq1), DIq2(bq2)〉 · 〈DIq3(aq3), DIq4(bq4)〉]

< 4
∑

1≤q1<q2≤d

∑
1≤q3<q4≤d

√
E[〈DIq1(aq1), DIq2(bq2)〉2] ·

√
E[〈DIq3(aq3), DIq4(bq4)〉2],

18

where we have used Cauchy-Schwarz and the fact that (1
q1

+ 1
q2

)(1
q3

+ 1
q4

) is always strictly less than 4. Fix
any d ≥ q1 > q2 ≥ 1; to prove Claim 30 it suffices to show that E[〈DIq1(aq1), DIq2(bq2)〉2] ≤ 2O(d log d)ε2.
For this we use the third bound of Theorem 22, which gives

E[〈DIq1(aq1), DIq2(bq2)〉2] = (q1)2(q2)2
q2∑
r=1

((r − 1)!)2

(
q1 − 1

r − 1

)2(q2 − 1

r − 1

)2

(q1 + q2 − 2r)‖aq1⊗̃rbq2‖2.

For any 1 ≤ r ≤ q2 we have that r ≤ q1 − 1 (since q1 > q2), and hence by Fact 27, the eigenvalue
bound and (9) we get that ‖aq1⊗̃rbq2‖2 ≤ ε2/q2!. Thus each summand in the previous expression is at most
2O(q1 log q1)ε2 = 2O(d log d)ε2, as required. This concludes the proof of Claim 30, and with it the proof of
Lemma 26 and of Theorem 19.

5 Decomposing k-tuples of multilinear degree-d Gaussian polynomials

In this section we prove our main decomposition result for k-tuples of multilinear Gaussian polynomials,
Theorem 31. We begin by giving a precise statement of the result, followed by a discussion of how the result
fits into our broader context.

Theorem 31. Fix d ≥ 2 and fix any non-increasing computable function β : [1,∞) → (0, 1) that satisfies
β(x) ≤ 1/x. There is a procedure Regularize-Polyβ with the following properties. The procedure takes as
input a degree-d multilinear Gaussian polynomial p with Var[p] = 1 and a parameter τ > 0. It runs in
poly(nd) ·Od,τ (1) time and outputs a collection of polynomials {hq}q=0,...,d and {Aq,`}q=0,...,d,`=1,...,mq .

Write p(x) as
∑d

q=0 cqpq(x) where pq ∈ Wq for all q and Var[pq] = 1 for 1 ≤ q ≤ d. For 0 ≤ q ≤ d
and x ∈ Rn, let

p̃q(x) = cqhq(Aq,1(x), . . . , Aq,mq(x)), and let p̃(x) =
d∑
q=0

p̃q(x).

The following conditions hold:

1. For each q ∈ {0, . . . , d} the polynomial p̃q belongs to Wq. Moreover, for q ∈ {1, . . . , d}, each
polynomial Aq,` belongs toWj for some 1 ≤ j ≤ d and has Var[Aq,`] = 1.

2. We have
∣∣Prx∼N(0,1)n [p(x) ≥ 0]−Prx∼N(0,1)n [p̃(x) ≥ 0]

∣∣ ≤ O(τ), and moreover Varx∼N(0,1)n [p(x)−
p̃(x)] ≤ (τ/d)3d.

3. Each polynomial hq is a multilinear polynomial in its mq arguments. Moreover, there exist functions
Nβ(d, τ) andMβ(d, τ) such that if Coeff(hq) denotes the sum of the absolute values of the coefficients
of hq, then

∑d
q=1 Coeff(hq) ≤ Mβ(d, τ) and the number of arguments to all hq’s,

∑d
q=1mq, is at

most Nβ(d, τ). Also, the degree of the polynomial hq (for all 1 ≤ q ≤ d) is upper bounded by d.

4. Further, let Num =
∑d

q=1mq and Coeff =
∑d

q=1 Coeff(hq). Then each polynomial Aq,`(x) is
β(Num + Coeff)-eigenregular.

Discussion. Intuitively, Condition (2) means that it will be sufficient to do deterministic approximate count-
ing for the polynomial p̃ rather than the original polynomial p. Condition (4) ensures that the eigenregularity
of each polynomial Aq,` compares favorably both with the number of polynomials produced and with the
size of the coefficients in the “outer” polynomials hq. As discussed earlier, having the eigenregularity be
small relative to the number of polynomials is crucial since it is required in order for our CLT, Theorem 19,

19

to yield a good bound. We need to deal with the size of the coefficients for technical reasons – as we will see
in Section 6, we will apply our CLT where its “test function” α is a smooth approximator to the 0/1-valued
function which, on input {Aj,`}j,`, outputs 1 if and only if sign

(∑d
q=0 hq(Aq,1, . . . , Aq,mq)

)
= 1. Our

CLT’s quantitative bound depends on the second derivative of α, and to bound this we need coefficient size
bounds on the hq polynomials.

We build up to Theorem 31 in a sequence of incremental stages. In Section 5.1 we begin by describing
how to decompose a single element of a given Wiener chaos. Because of our requirement that the number
of polynomials produced in the decomposition must be very small relative to the eigenregularity that is
achieved — see Remark 20 — even this is a non-trivial task, requiring two “layers” of decomposition and
an approach that goes well beyond the decomposition techniques in previous work [DDS13a, DDS13b].
In Section 5.2 we extend this and describe how to simultaneously decompose a k-tuple of elements of
the same Wiener chaos. (See the beginning of Section 5.2 for an explanation of why we need to be able to
simultaneously decompose many polynomials at once.) In Section 5.3 we describe how to handle a k(d+1)-
tuple of elements where there are k elements from each of the d+ 1 Wiener chaosesW0, . . . ,Wd. Finally,
in Section 5.4 we specialize this decomposition for a k(d+ 1)-tuple to obtain Theorem 31.

5.1 Decomposing a single multilinear element of the q-th Wiener chaos

We begin with a useful definition and fact:

Definition 32. For S ⊆ [n], we say that a tensor

f =
n∑

i1,...,iq=1

f(i1, . . . , iq) · ei1 ⊗ · · · ⊗ eiq

is supported on S if f(i1, . . . , iq) = 0 whenever any of i1, . . . , iq do not belong to S.

Fact 33. Let f ∈ H�p be supported on S ⊆ [n] and g ∈ H�q be supported on T ⊆ [n] where S, T are
disjoint. Then for any 0 < r ≤ min{p, q} we have that the contraction product f ⊗r g equals 0.

Proof. We may write

f =
∑

j1,...,jp∈S
f(j1, . . . , jp)ej1 ⊗ . . .⊗ ejp and g =

∑
j1,...,jq∈T

g(j1, . . . , jq)ej1 ⊗ . . .⊗ ejq .

Note that
f ⊗r g =

∑
i1,...,ir∈[n]

〈f, ei1 ⊗ . . .⊗ eir〉 ⊗ 〈g, ei1 ⊗ . . .⊗ eir〉

The value 〈f, ei1 ⊗ . . .⊗ eir〉 is 0 unless all the ij’s lie in S, and likewise 〈g, ei1 ⊗ . . .⊗ eir〉 = 0 unless all
the ij’s lie in T . Since S ∩ T = ∅, the fact is proved.

As our lowest-level decomposition tool, we show that given a symmetric tensor with a large-magnitude
eigenvalue, it is possible to efficiently find two lower-dimensional symmetric tensors g1 and g2, supported
on disjoint subsets of [n], such that f is correlated with the product of g1 and g2:

Lemma 34. Fix any q ≥ 2. There is a poly(nq)-time deterministic procedure with the following properties:
Let f ∈ H�q be a multilinear symmetric tensor that has Var[Iq(f)] = 1 and λmax(f) ≥ η > 0. On input
f , the procedure outputs multilinear symmetric tensors g1 ∈ H�q1 and g2 ∈ H�q2 such that the following
conditions hold:

20

1. Var[Iq1(g1)] = Var[Iq2(g2)] = 1, and q1, q2 > 0 with q1 + q2 = q;

2. g1 and g2 are supported on disjoint sets S, T ⊂ [n];

3. E[Iq(f) · Iq1(g1) · Iq2(g2)] ≥ η/2q.

Proof. The procedure begins as follows:

1. For each partition of [q] into S and S = [q] \ S where |S|, |S| > 0, it computes the value λS,S(f) =

sup
x∈HS ,y∈HS

〈g,x⊗y〉
‖x‖‖y‖ and the associated tensors α = x/‖x‖, β = y/‖y‖.

2. For the (α, β) pair from the iteration of step (1) which achieves the largest value for λS,S(f), let
α′ = α̃/‖α̃‖ and q1 = |S1|, and let β′ = β̃/‖β̃‖ and q2 = |S2|.

Recalling the variational characterization of singular values, each iteration of Step (1) (for a given choice
of S, S) is an SVD computation and can be performed in time poly(nq). Since there are at most 2q partitions
S, S to consider, the overall running time of these first two steps is poly(nq).

We proceed to analyze these first two steps of the procedure. The fact that λmax(f) ≥ η means that
the maximizing α, β identified in Step (2) will satisfy ‖α‖2 = ‖β‖2 = 1 and 〈f, α ⊗ β〉 ≥ η. Since f is a
multilinear tensor these tensors α, β will also be multilinear (if, say, α had a nonzero diagonal entry then a
larger value of 〈f, α⊗β〉 could be obtained by zeroing out that entry and rescaling). Since f is a symmetric
tensor, it follows that

〈f, α⊗ β〉 = 〈f, α̃⊗ β〉 = 〈f, α̃⊗ β̃〉 ≥ η.

Since symmetrizing cannot increase the norm of a tensor, we have that ‖α̃‖ ≤ ‖α‖ = 1 and likewise for β.
It follows that 〈f, α′ ⊗ β′〉 ≥ η, ‖α′‖ = ‖β′‖ = 1, α′ ∈ Hq1 , and β′ ∈ Hq2 .

From this point it is not difficult to achieve conditions (1) and (3) of the lemma; to achieve condition (2)
we proceed as follows. Note that

〈f, α′ ⊗ β′〉 =
∑

S1∈[n]q1 ,S2∈[n]q2

f(S1, S2)α′(S1)β′(S2).

Now consider a randomized process that divides [n] into two sets A1 and A2 by independently assigning
each i ∈ [n] to A1 with probability 1/2 and to A2 with probability 1/2 (we will later derandomize this
process below). Given an outcome of A1 and A2, we consider ν1 ∈ H�q1 and ν2 ∈ H�q2 defined as
follows: for each S1 ∈ [n]q1 , S2 ∈ [n]q2 ,

ν1(S1) = α′(S1) · 1[S1 ⊆ A1] and ν2(S2) = β′(S2) · 1[S2 ⊆ A2],

where “Si ⊆ Ai” means that each coordinate of Si lies in Ai. We have that

E[〈f, ν1 ⊗ ν2〉] =
∑

S1∈[n]q1 ,S2∈[n]q2

f(S1, S2)α′(S1)β′(S2) · (1/2)|S1| · (1/2)|S2|, (21)

where |Si| denotes the number of distinct values that are present in the coordinates of Si. Since α′ and β′

are multilinear, the only nonzero contributions to the sum (21) are from (S1, S2) pairs with |S1| = q1 and
|S2| = q2 = q − q1. Hence we have

E[〈f, ν1 ⊗ ν2〉] =
1

2q

∑
S1∈[n]q1 ,S2∈[n]q2

f(S1, S2)α′(S1)β′(S2) ≥ η

2q
.

21

The above analysis requires only q-wise independence, so constructingA1 andA2 (and the resulting ν1, ν2)
using a q-wise independent distribution D, we get that

ED[〈f, ν1 ⊗ ν2〉] ≥
η

2q
,

and thus some outcome in the support of D must achieve at least the expected value. The third step of
the algorithm is to deterministically enumerate over all points in the support of the q-wise independent
distribution (using well-known constructions of q-wise independent distributions [ABI85] this can be done
in time poly(nq)) and to output a pair g1 = ν1√

q1!‖ν1‖
, g2 = ν2√

q2!‖ν2‖
that has 〈f, ν1 ⊗ ν2〉 ≥ η

2q .

We now verify that g1 and g2 satisfy all the required conditions. First, it is clear that g1 and g2 satisfy
g1 ∈ H�q1 , g2 ∈ H�q2 , and it is obvious from the construction that g1 and g2 are supported on dis-
joint sets A1 and A2, so condition (2) indeed holds. Turning to condition (1), since q1 > 0 we have that
Var[Iq1(g1)] = E[Iq1(g1)2], which equals 1 by Claim 11 (and similarly we get that Var[Iq2(g2)] = 1). For
Condition (3), we first show that Iq1(g1) · Iq2(g2) = Iq(Sym(g1⊗g2)) (and hence Iq1(g1) · Iq2(g2) lies in
the Wiener chaos of degree q). To see this, recall from the multiplication formula for Ito integrals (Theorem
13) that we have

Iq1(g1) · Iq2(g2) =

min{q1,q2}∑
r=0

r! ·
(
q1

r

)(
q2

r

)
Iq1+q2−2rSym(g1 ⊗r g2)).

Since g1 and g2 are supported on disjoint sets, by Fact 33 all summands with r 6= 0 vanish, and we get
Iq1(g1) · Iq2(g2) = Iq1+q2(Sym(g1 ⊗ g2)) as claimed.

With this identity in hand, we have that

E[Iq(f)Iq1(g1)Iq2(g2)] = E[Iq(f)Iq(Sym(g1 ⊗ g2))]

= q!〈f,Sym(g1 ⊗ g2)〉 (by Claim 11)

= q!〈f, g1 ⊗ g2〉 (since f is symmetric)

≥ 〈f, ν1 ⊗ ν2〉 (since ‖ν1‖ ≤ ‖α′‖ = 1 and ‖ν2‖ ≤ ‖β′‖ = 1)

≥ η

2q
,

and Lemma 34 is proved.

We are now ready to define our first algorithmic primitive, the procedure Split-One-Wiener. This pro-
cedure either certifies that its input polynomial (an element Iq(f) of the q-th Wiener chaos) is eigenregular,
or else it “splits off” a product P · Q from its input polynomial. (Here and subsequently the suffix “-One-
Wiener” indicates that the procedure applies only to one element Iq(f) belonging to one level of the Wiener
chaos.)

Lemma 35. Fix any q ≥ 2. There is a deterministic procedure Split-One-Wiener which takes as input
a polynomial Iq(f) ∈ Hq that has Var[Iq(f)] = 1 and a parameter η > 0. Split-One-Wiener runs in
deterministic poly(nq, 1/η) time and has the following guarantee:

• If λmax(f) < η, then Split-One-Wiener returns “eigenregular”.

• Otherwise, if λmax(f) ≥ η, then Split-One-Wiener outputs a quadruple (P,Q,R, c) with the follow-
ing properties:

1. P = Iq1(g1) ∈ Wq1 andQ = Iq2(g2) ∈ Wq2 where q1+q2 = q, q1, q2 > 0, and Var[Iq1(g1)] =
Var[Iq2(g2)] = 1.

22

2. The tensors g1 ∈ H�q1 and g2 ∈ H�q2 are supported on disjoint sets S, T ⊂ [n].

3. P ·Q ∈ Wq and Var[P ·Q] = 1, and all of P,Q,R are multilinear.

4. The value c
def
= E[Iq(f) · P ·Q] satisfies c ≥ η/2q.

5. R ∈ Wq and Iq(f) = cP ·Q+R and E[P ·Q ·R] = 0.

6. Var(R) = 1− c2.

Proof. Split-One-Wiener runs the procedure from Lemma 34 and checks whether the largest value λS,S(f)
achieved in Step (1) is at least η. If it is less than η then it outputs “eigenregular.” Otherwise it sets
P = Iq1(g1), Q = Iq2(g2), sets c = E[Iq(f) · P ·Q] = q!〈f, g1 ⊗ g2〉, and sets R = Iq(f) = c · P ·Q.

Lemma 34 directly gives properties (1),(2) and (4), and property (3) follows from the fact that E[Q] =
E[P] = 0 and P andQ are independent random variables (observe that by property (2) they are polynomials
over disjoint sets of variables). The first two parts of (5) are immediate; for the last part, recalling that
R = Iq(f)− cP ·Q, we have that R is simply the component of Iq(f) that is orthogonal to P ·Q. Since R
lies inWq its mean is zero, so by linear algebra we have that Var[R] = E[R2] = 1− c2 as claimed.

Building on the algorithmic primitive Split-One-Wiener, we now describe a procedure Decompose-
One-Wiener which works by iteratively executing Split-One-Wiener on the “remainder” portion R that
was “left over” from the previous call to Split-One-Wiener. Intuitively, the overall effect of this procedure
is to break its input polynomial into a sum of products of pairs of polynomials, plus a remainder term which
is either eigenregular or else has variance which is negligibly small.

(We draw the reader’s attention to the quantitative bound on coefficients given by property (6) of Lemma
36. This coefficient bound will play a crucial role in the mollification procedure of Section 6.)

Lemma 36. Fix any q ≥ 2. There is a deterministic procedure Decompose-One-Wiener which takes as
input a polynomial Iq(f) ∈ Wq that has Var[Iq(f)] = 1 and parameters η and ε. Decompose-One-Wiener
runs in poly(nq, 1/η, log(1/ε)) time and has the following guarantee:

1. It outputs a set L of triples {(ci, Pi, Qi)}mi=1 and a polynomialR such that Iq(f) =
∑m

i=1 ciPiQi+R.

2. For each i = 1, . . . ,m we have Pi ∈ Wqi,1 and Qi ∈ Wqi,2 with qi,1, qi,2 > 0 and qi,1 + qi,2 = q;
moreover Var[Pi] = Var[Qi] = Var[Pi · Qi] = 1 for all i ∈ [m], R ∈ Wq, and all Pi, Qi and R
are multilinear.

3. m ≤ O((4q/η2) log(1/ε)).

4. Either R is η-eigenregular, in which case Decompose-One-Wiener returns “eigenregular remain-
der”, or else Var[R] ≤ ε, in which case Decompose-One-Wiener returns “small remainder”.

5. E[(
∑m

j=1 cjPj ·Qj) ·R] = 0. As a consequence, we have Var[
∑m

j=1 cjPj ·Qj] + Var[R] = 1.

6.
∑m

j=1 c
2
j ≤ (2q/η)4(m−1).

Proof. The procedure Decompose-One-Wiener is defined below. It is helpful to keep the following invari-
ant in mind: At any stage during the execution of the algorithm, we let VL denote the linear subspace spanned
by {Pi ·Qi} where L = {(ci, Pi, Qi)}. The algorithm maintains the invariant that Iq(g) is orthogonal to VL
(as is clear by construction).

i. Initialize L to the empty set of triples and the index m to 0.

ii. Initialize g = f and hence Iq(g) = Iq(f).

23

iii. If Var[Iq(g)] ≤ ε, then output the set L = {(ci, Pi, Qi)}mi=1 and the polynomial R = Iq(f) −∑m
i=1 ciPi ·Qi, and return “small remainder.”

iv. Else, choose a constant ζ so that Var[Iq(ζg)] = 1.

v. Run procedure Split-One-Wiener (using parameter η) on Iq(ζg). If it returns “eigenregular”, then
stop the procedure and output the setL = {ci, Pi, Qi}mi=1 and the polynomialR = Iq(f)−

∑m
i=1 ciPi ·

Qi, and return “eigenregular remainder”.

vi. Else if the output of Split-One-Wiener is (P,Q,R, c′), then append (cm+1, Pm+1, Qm+1) to the list
L where cm+1 = c′, Pm+1 = P and Qm+1 = Q. Now, project the polynomial Iq(f) to VL and
let Iq(g) denote the part of Iq(f) that is orthogonal to VL, i.e. Iq(g) = (Iq(f))⊥VL . Recompute the
constants c1, . . . , cm+1 so that with the recomputed constants we have Iq(f) =

∑m+1
i=1 ciPiQi+Iq(g).

Increment m and go to Step [iii].

We now establish the claimed properties. The first and fourth properties are obvious. The second
property follows directly from Lemma 36. For the fifth property, note that Iq(g) is orthogonal to Iq(f) −
Iq(g) by construction. It remains to justify the third and the sixth properties. We do this using the following
claim:

Claim 37. At each stage in the execution of Decompose-One-Wiener, when L = {(ci, Pi, Qi)}i=1,...,k, the
set {Pi ·Qi}ki=1 is η/2q-far from being linearly dependent.

Proof. The proof is by induction. The claim is trivially true for k = 1. For the inductive step, observe that
by construction, just before (ck+1, Pk+1, Qk+1) is appended to the list L, we have (by property (2)) that
Pk+1 · Qk+1 is a unit vector, and that |〈Iq(ζg), Pk+1 · Qk+1〉| ≥ η/2q. Since Iq(ζg) is orthogonal to VL
(before appending (ck+1, Pk+1, Qk+1)), by Fact 9 we get the stated claim.

When the Decompose-One-Wiener procedure terminates, note that by property (5) we have that Var[
∑m

i=1 ciPi·
Qi] ≤ 1. Hence applying Claim 37 with Claim 8, we get property (6).

It remains only to establish property (3). This follows immediately from the following claim:

Claim 38. At each stage in the execution of Decompose-One-Wiener, when L = {(ci, Pi, Qi)}i=1,...,k and
Iq(g) = (Iq(f))⊥VL , we have Var[Iq(g)] ≤ (1− η2/4q)k.

Proof. As before the proof is by induction and the base claim (when k = 0) is immediate. For the inductive
step, just before appending (ck+1, Pk+1, Qk+1) to the list L in Step (vi), note that if we define Iq(h) =
Iq(g)− ck+1Pk+1Qk+1, then by the Split-One-Wiener guarantee (property (6) of Lemma 35) we have that
Var[Iq(h)] ≤ (1−η2/4q) ·Var[Iq(g)], which by the inductive hypothesis is at most (1−η2/4q)k+1. Since
the vector Iq(f) − Iq(h) lies in the linear span of VL ∪ {Pk+1 · Qk+1}, and ‖Iq(h)‖ ≤ (1 − η2/4q)k+1,
hence after appending (ck+1, Pk+1, Qk+1) to L, we have that the new polynomial Iq(g) defined in step (vi)
has ‖Iq(g)‖ ≤ (1− η/2q)k+1. This concludes the proof.

This concludes the proof of Lemma 36.

We note that the guarantees of the Decompose-One-Wiener procedure bear some resemblance to the
decomposition that is used in [DDS13a] for degree-2 Gaussian polynomials. However, in our current con-
text of working with degree-d polynomials, Decompose-One-Wiener is not good enough, for the following
reason: Suppose that Decompose-One-Wiener returns “eigenregular remainder” and outputs a decom-
position of Iq(f) as

∑m
i=1 ciPiQi +R. While the polynomial R is η-eigenregular, it is entirely possible that

the number of polynomials Pi, Qi in the decomposition (i.e. 2m) may be as large as Ω(1
η2

log(1/ε)). We
would like to apply our CLT to conclude that the joint distribution of R and the polynomials obtained from

24

the subsequent decomposition of P1, Q1, . . . , Pm, Qm is close to a normal distribution, but since the number
2m of polynomials is already too large when compared to the inverse of the eigenregularity parameter, we
cannot use our CLT (recall Remark 20). 3

We surmount this difficulty by using Decompose-One-Wiener as a tool within an improved “two-level”
decomposition procedure which we present and analyze below. This improved decomposition procedure has
a stronger guarantee than Decompose-One-Wiener in the following sense: it breaks its input polynomial
into a sum of products of pairs of polynomials plus two remainder terms Rreg (for “eigenregular”) and Rneg

(for “negligible”). The Rneg remainder term is guaranteed to have negligibly small variance, and the Rreg

remainder term is guaranteed to either be zero or else to be extremely eigenregular – in particular, for an
appropriate setting of the input parameters, its eigenregularity is much “stronger” than the number of pairs
of polynomials that are produced in the decomposition. We term this improved decomposition procedure
Regularize-One-Wiener because of this extremely strong eigenregularity guarantee.

Before giving the formal statement, we note that intuitively this procedure will be useful because it
“guarantees that we make progress” for the following reason: We can always erase the small-variance Rneg

term at the cost of a small and affordable error, and the degree-q Rreg remainder term is so eigenregular that
it will not pose an obstacle to our ultimate goal of applying the CLT. Thus we have reduced the original poly-
nomial to a sum of pairwise products of lower-degree polynomials, which can each be tackled inductively
using similar methods (more precisely, using the generalization of procedure Regularize-One-Wiener to
simultaneously decompose multiple polynomials which we describe in the next subsection).

Theorem 39. Fix any q ≥ 2. There is a procedure Regularize-One-Wiener which takes as input a poly-
nomial Iq(f) such that Var[Iq(f)] = 1 and input parameters η0 = 1 ≥ η1 ≥ . . . ≥ ηK and ε, where
K = O(1/ε · log(1/ε)). Regularize-One-Wiener runs in poly(nq, 1/ηK , 1/ε) time and has the following
guarantee:

1. Define M(i) = O(4q)
η2i

log(1/ε). Regularize-One-Wiener outputs a value 1 ≤ ` ≤ k, a set L =

{(ai,j , Pi,j , Qi,j)}i=1,...,`,j=1,...,M(i) of triples, and a pair of polynomialsRreg, Rneg such that Iq(f) =∑`
i=1

∑M(i)
j=1 ai,jPi,j ·Qi,j +Rreg +Rneg.

2. For each i, j we have Pi,j ∈ Wqi,j,1 and Qi,j ∈ Wqi,j,2 with qi,j,1, qi,j,2 > 0 and qi,j,1 + qi,j,2 = q
and Var[Pi,j] = Var[Qi,j] = Var[Pi,j ·Qi,j] = 1; moreover, Pi,j and Qi,j are over disjoint sets of
variables. In addition, Rreg, Rneg ∈ Wq and all of Pi,j , Qi,j , Rreg, Rneg are multilinear.

3. The polynomial Rneg satisfies Var[Rneg] ≤ ε and the polynomial Rreg is η`+1-eigenregular, where
we define ηK+1 = 0.

4. For 1 ≤ i ≤ ` we have
∑M(i)

j=1 (ai,j)
2 ≤ (2q/ηi)

4(M(i)−1).

We stress that it is crucially important that condition 3 provides η`+1-eigenregularity rather than η`-
eigenregularity.

Proof. The procedure Regularize-One-Wiener is given below. We note that it maintains the invariant
Iq(f) =

∑
(a,P,Q)∈L a · P ·Q+ Iq(gi) throughout its execution (this is easily verified by inspection).

i. Initialize L to the empty set of triples.
3Note that the reason this problem did not arise in the degree-2 polynomial decompositions of [DDS13a] is because each

polynomial Pi, Qi obtained from Decompose-One-Wiener in that setting must have degree 1 (the only way to break the number
2 into a sum of non-negative integers is as 1+1). Degree-1 polynomials may be viewed as having “perfect eigenregularity” (note
that any degree-1 polynomial in Gaussian variables is itself distributed precisely as a Gaussian) and so having any number of such
degree-1 polynomials did not pose a problem in [DDS13a].

25

ii. Initialize g1 = f , so Iq(g1) = Iq(f).

iii. For i = 1 to K do the following:

iii(a). If Var[Iq(gi)] ≤ ε then set Rneg = Iq(g), set Rreg = 0, output L, Rreg and Rneg, and exit.

iii(b). Otherwise, run Decompose-One-Wiener with parameters ηi and ε on the polynomial Iq(λig),
where λi is chosen so that Var[Iq(λig)] = 1. Let Li = {(ci,j , Pi,j , Qi,j)} be the set of (at most
M(i) many, by Lemma 36) triples and Ri be the polynomial that it outputs.

iii(c). If the call to Decompose-One-Wiener in step iii(b) returned “small remainder” then set L to
L ∪ L′i where L′i = {(ci,jλi , Pi,j , Qi,j)}(ci,j ,Pi,j ,Qi,j)∈Li , set Rneg to Ri/λi, set Rreg to 0, output
L, Rreg and Rneg, and exit.

iii(d). Otherwise it must be the case that Decompose-One-Wiener returned “eigenregular remain-
der.” In this case, if Var[

∑M(i)
j=1 ci,jPi,j · Qi,j] ≤ ε, then set Rneg to

∑
(ci,j ,Pi,j ,Qi,j)∈Li

ci,j
λi
·

Pi,j ·Qi,j and Rreg to Ri/λi, output L, Rreg and Rneg, and exit.

iii(e). Otherwise, set gi+1 to satisfy Iq(gi+1) = Ri/λi, setL toL∪L′i whereL′i = {(ci,jλi , Pi,j , Qi,j)}(ci,j ,Pi,j ,Qi,j)∈Li ,
increment i, and go to the next iteration of step (iii).

For Property (1), we observe that the claimed bound on M(i) follows immediately from part (3) of
Lemma 36). The rest of Property (1) follows from the invariant and inspection of steps iii(c) and iii(d).
Property (2) follows directly from part (2) of Lemma 36.

To establishing the remaining properties we will use the following claim:

Claim 40. For each i we have Var[Iq(gi)] ≤ (1− ε)i−1.

Proof. The proof is by induction on i. The claim clearly holds for i = 1. For the inductive step, observe
that the only way the procedure reaches step iii(e) and increments i is if the execution of Decompose-One-
Wiener on Iq(λig) returned “eigenregular remainder” and the decomposition Iq(λig) =

∑
ci,jPi,jQi,j+

Ri has Var[
∑
ci,jPi,jQi,j] > ε, and hence (by part (5) of Lemma 36) Var[Ri] ≤ (1 − ε)Var[Iq(λigi)].

Consequently in this case we have Var[Iq(gi+1)] = Var[Ri/λi] ≤ (1− ε)Var[Iq(gi)], which inductively
is at most (1− ε)i as desired.

Note that this claim immediately gives that λi ≥ 1 for all i, which together with part (6) of Lemma (36)
gives Property (4).

It remains only to establish Property (3). Note that by Claim 40 it must be the case that the algorithm
halts and exits at some iteration of either step iii(a), iii(c), or iii(d) — if it has not already exited by the time
i reaches K, since Var[Iq(gi)] ≤ (1− ε)i−1 once it reaches i = K it will exit in step iii(a). We consider the
three possibilities in turn. If it exits at Step iii(a) then clearly Property (3) is satisfied. If it exits at Step iii(c)
then by Lemma (36) we have that Var[Ri] ≤ ε; since λi ≥ 1 this means that Var[Rneg] = Var[Ri/λi] ≤ ε
and again Property (3) holds. Finally, if it exits at Step iii(d) during the i-th iteration of the loop then observe
that the value of ` is i− 1 (since Li is not added on to L). Lemma (36) guarantees that Ri (and hence Rreg)
is ηi-eigenregular, i.e. η`+1-eigenregular, and as above the fact that λi ≥ 1 ensures that Var[Rneg] ≤ ε, and
Property (3) holds in this case as well. This concludes the proof of Theorem 39.

5.2 Decomposing a k-tuple of multilinear elements of the q-th Wiener chaos

In this section we generalize the Regularize-One-Wiener procedure to simultaneously decompose multi-
ple polynomials that all belong to Wq. Even though our ultimate goal is to decompose a single degree-d
Gaussian polynomial, we require a procedure that is capable of handling many polynomials because even

26

decomposing a single degree-d polynomial using Regularize-One-Wiener will give rise to many lower-
degree polynomials which all need to be decomposed in turn. (This is also the reason why we must prove
Theorem 43, which deals with k Gaussian polynomials, in order to ultimately obtain Theorem 31, which
decomposes a single Gaussian polynomial.)

A natural approach to decompose r polynomials Iq(f1), . . . , Iq(fr) ∈ Wq is simply to run Regularize-
One-Wiener r separate times. However, this simpleminded approach could well result in different values
`1, . . . , `r being obtained from the r calls, and hence in different levels of eigenregularity for the r “remain-
der” polynomials R1,reg, . . . , Rr,reg that are constructed. This is a problem because some of the calls may
yield a relatively large eigenregularity parameter, while other calls may generate very many polynomials
(and a much smaller eigenregularity parameter). Since the CLT can only take advantage of the largest eigen-
regularity parameter, the key advantage of Regularize-One-Wiener — that the number of polynomials it
produces compares favorably with the eigenregularity of these polynomials — is lost.

We get around this with the MultiRegularize-One-Wiener procedure that is presented and analyzed
below. It augments the Regularize-One-Wiener procedure with ideas from the decomposition procedure
for k-tuples of degree-2 polynomials that was presented and analyzed in [DDS13b] (and which in turn built
on ideas from the decomposition of [GOWZ10] for simultaneously dealing with multiple degree-1 poly-
nomials, using a different notion of “eigenregularity”). Crucially, it guarantees that the overall number of
polynomials that are produced from all the r decompositions compares favorably with the overall eigenreg-
ularity parameter that is obtained.

Theorem 41. Fix any q ≥ 2. There is a procedure MultiRegularize-One-Wiener which takes as input
an r-tuple of polynomials (Iq(f1), . . . , Iq(fr)) such that Var[Iq(fi)] = 1 for all i, and input parameters
η0 = 1 ≥ η1 ≥ . . . ≥ ηK and ε, where K = O(r/ε · log(1/ε)). MultiRegularize-One-Wiener runs in
poly(nq, 1/ηK , r/ε) time and has the following guarantee:

1. Define M(i) = O(4q

η2i
log(1/ε)). MultiRegularize-One-Wiener outputs an index t with 0 ≤ t ≤

K and for each s ∈ [r] a set Ls of triples {(as,i,j , Ps,i,j , Qs,i,j)}i=1,...,t,j=1,...,M(i) and a pair of
polynomials Rs,reg, Rs,neg, such that

Iq(fs) =
t∑
i=1

M(i)∑
j=1

as,i,jPs,i,j ·Qs,i,j + as,reg ·Rs,reg +Rs,neg. (22)

2. For each s, i, j we have Ps,i,j ∈ Wqs,i,j,1 and Qs,i,j ∈ Wqs,i,j,2 with qs,i,j,1, qs,i,j,2 > 0 and qs,i,j,1 +
qs,i,j,2 = q and Var[Ps,i,j] = Var[Qs,i,j] = Var[Ps,i,j ·Qs,i,j] = 1. Similarly we haveRs,reg, Rs,neg ∈
Wq, and Var[Rs,reg] = 1. Moreover Ps,i,j and Qs,i,j are over disjoint sets of variables, and all of
Ps,i,j , Qs,i,j , Rs,reg and Rs,neg are multilinear.

3. For each s we have that Var[Rs,neg] ≤ ε and that as,reg ·Rs,reg is ηt+1-eigenregular, where we define
ηK+1 = 0.

4. For 1 ≤ s ≤ r and 1 ≤ i ≤ t we have
∑M(i)

j=1 (as,i,j)
2 ≤ (2q/ηi)

4(M(i)−1).

Proof. Similar to Regularize-One-Wiener, the procedure MultiRegularize-One-Wiener maintains the
invariant that for each s ∈ [r], we have Iq(fs) =

∑
(a,P,Q)∈Ls a · P ·Q+ Iq(gs,i) throughout its execution.

Before giving the detailed description we provide some useful points to keep in mind. The set [r] \ live
contains the indices of those polynomials for which the desired decomposition has already been achieved,
while live contains those polynomials that are still being decomposed. The variable hits maintains the
number of times that the decomposition procedure Decompose-One-Wiener has been applied to Iq(gs,i)
for some i.

Here is the procedure MultiRegularize-One-Wiener:

27

i. For all s ∈ [r] initialize hits to be 0, initializeLs to be the empty set of triples, and initialize gs,1 = fs,
so Iq(gs,1) = Iq(fs). Initialize the set live to be [s].

ii. For i = 1 to K do the following:

ii(a). For each s ∈ live, if Var[Iq(gs,i)] ≤ ε then set Rs,neg = Iq(gs,i), set as,reg = 0 and set Rs,reg

to be any unit variance element ofWq (the choice of Rs,reg is immaterial), and remove s from
live.

ii(b). If live is empty then for each s ∈ [r] output the set Ls and the pair Rs,reg, Rs,neg, and exit.
Otherwise, for each s ∈ live, run Decompose-One-Wiener with parameters ηi and ε on
the polynomial Iq(λs,igs), where λs,i is chosen so that Var[Iq(λs,igs)] = 1. Let Ls,i =
{(cs,i,j , Ps,i,j , Qs,i,j)} be the set of (at most M(i) many, by Lemma 36) triples and Rs,i be
the polynomial that it outputs.

ii(c). If the call to Decompose-One-Wiener returned “small remainder” for any polynomial Iq(λs,igs),
then for each such s setLs toLs∪L′s,i whereL′s,i = {(cs,i,jλs,i

, Ps,i,j , Qs,i,j)}(cs,i,j ,Ps,i,j ,Qs,i,j)∈Ls,i ,
setRs,neg toRs,i/λs,i, set as,reg = 0 andRs,reg to be any unit variance element ofWq (as before,
the choice of Rs,reg is immaterial), and remove s from live.

ii(d). If for every s ∈ live it is the case that Var[
∑

(cs,i,j ,Ps,i,j ,Qs,i,j)∈Ls,i cs,i,jPs,i,j ·Qs,i,j] ≤ ε, then

set Rs,neg to
∑

(cs,i,j ,Ps,i,j ,Qs,i,j)∈Ls,i
cs,i,j
λs,i

Ps,i,j · Qs,i,j . Also, set as,reg =
√

Var(Rs,i/λs,i)

and and Rs,reg = Rs,i/(λs,i · as,reg). For each s ∈ [r] output the set Ls, and the triple
as,reg, Rs,reg, Rs,neg, and exit.

ii(e). Otherwise, for each s ∈ live such that Var[
∑

(cs,i,j ,Ps,i,j ,Qs,i,j)∈Ls,i cs,i,jPs,i,j · Qs,i,j] > ε,
increase hits by 1, set Ls to Ls∪L′s,i where L′s,i = {(cs,i,jλs,i

, Ps,i,j , Qs,i,j)}(cs,i,j ,Ps,i,j ,Qs,i,j)∈Ls,i ,
and set gs,i+1 to satisfy Iq(gs,i+1) = Rs,i/λs,i. Increment i and go to the next iteration of step
(ii).

Property (1) follows from the discussion preceding the algorithm description and inspection of step ii(d).
Property (2) follows directly from part (2) of Lemma 36 (Note that the algorithm ensures thatRs,reg has unit
variance).

We have the following analogue of Claim 40:

Claim 42. At each stage in the execution of the algorithm, for each s ∈ live we have Var[Iq(gs,i)] ≤
(1− ε)hits .

Proof. The proof is an easy adaptation of the proof of Claim 40, using the criterion for incrementing hits
that is employed in step ii(e).

Claim 42 implies that for each s ∈ live we have λs,i ≥ 1, so as in the proof of Claim 40 we get that
Property (4) holds.

Observe that if an index s is removed from live (either in Step ii(a) or Step ii(c)), then the polynomial
Rs,reg is 0-eigenregular, and since λs,i ≥ 1, the polynomial Rs,neg has Var[Rs,neg] ≤ ε. Hence as a
consequent of the above-mentioned invariant, it is easily verified that each s ∈ [r] \ live satisfies (22).

The last step is to establish Property (3). The key observation is that each time the algorithm increments
i in step ii(e) and returns to step ii(a), at least one s ∈ [r] must have had hits incremented. Once a given
value of s has hits reach O(1/ε · log(1/ε)), by Claim 42 it will be the case that s is removed from live in
Step ii(a). Since K = O(r/ε · log(1/ε)), it follows that the algorithm must halt and exit in some iteration of
step ii(b) or ii(d). If the algorithm exits in step ii(b) then it is clear from the above discussion that Property
(3) holds. Finally, if the algorithm exits in step ii(d), then similar to the final paragraph of the proof of

28

Theorem 39, the value of t is i − 1 (since for the elements s ∈ live at the start of that execution of step
ii(d), the elements of Ls,i are not added on to Ls). Similar to before we get that Lemma (36) guarantees
that Rs,i (and hence Rs,reg) is ηi-eigenregular, i.e. ηt+1-eigenregular, the fact that λs,i ≥ 1 ensures that
Var[Rs,neg] ≤ ε, and hence Property (3) holds. The proof is complete.

5.3 Beyond the homogeneous case: handling multiple levels of Wiener chaos

In this subsection we describe and analyze our most involved decomposition procedure, MultiRegularize-
Many-Wieners, for decomposing a k(d+ 1)-tuple consisting of k elements from the j-th Wiener chaos for
each j = 0, . . . , d. We will obtain Theorem 31 in the following subsection using MultiRegularize-Many-
Wieners.

An informal “top-down” description. We begin with an informal description of how the decomposition
procedure works. Let p1, . . . , pk be k degree-d multilinear Gaussian polynomials. Each pi has a unique
expansion in terms of symmetric q-tensors fi,q ∈ H�q as pi =

∑d
q=0 pi,q, where pi,q = Iq(fi,q). For

2 ≤ q ≤ d let OLDq denote the set of polynomials {Iq(fi,q)}i=1,...,k.
The high-level idea of the decomposition is to “work downward” from higher to lower levels of the

Wiener chaos in successive stages, at each stage using MultiRegularize-One-Wiener to simultaneously
decompose all of the polynomials at the current level. By carefully choosing the eigenregularity parameters
at each stage we can ensure that at the end of the decomposition we are left with a collection of “not too
many” polynomials (the Ai,j,`’s of Theorem 31) all of which are highly eigenregular.

In a bit more detail, in the first stage we simultaneously decompose the k degree-d polynomials Id(f1,d), . . . , Id(fk,d)

using the MultiRegularize-One-Wiener algorithm with parameters 1 = η
(d)
0 � · · · � η

(d)

K(d) and ε(d). This
generates:

• k polynomials in Wd that are each η
(d)

t(d)+1
-eigenregular, for some 1 ≤ t(d) ≤ K(d) − 1 where

K(d) ≤ O(k/ε(d) · log(1/ε(d))) (intuitively, these should be thought of as “extremely eigenregu-
lar” polynomials); these are the Rs,reg polynomials. Let REGd denote this set of polynomials. It also
generates

• For each 1 ≤ q ≤ d−1, “not too many” (at most k ·O((k/ε(d)) log(1/ε(d))) ·(1/(η(d)

t(d)
)2) log(1/ε(d)))

new polynomials inWq; these are the Ps,i,j and Qs,i,j polynomials that lie inWq. Let NEWq denote
this set of polynomials.

Let ALLd−1 denote the union of OLDd−1 and NEWd−1. Note that every element of ALLd−1 belongs
toWd−1, and that the size of |ALLd−1| is upper bounded by

k ·O((k/ε(d)) log(1/ε(d))) · (1/(η(d)

t(d)
)2) log(1/ε(d)).

The key qualitative point is that after this first stage of decomposition, the number of eigenregular
polynomials that have been produced is |REGd| ≤ k, and each such polynomial is η(d)

t(d)+1
-eigenregular,

while the number of polynomials of lower degree that remain to be dealt with (the pieces that came from
the original polynomial plus the elements of NEW2 ∪ · · · ∪NEWd−1) is upper bounded in terms of k, ε(d)

and η(d)

t(d)
.

In the second stage we simultaneously decompose all the elements ofALLd−1 by applying the MultiRegularize-
One-Wiener algorithm to those |ALLd−1| polynomials, using input parameters 1 = η

(d−1)
0 ≥ η

(d−1)
1 ≥

· · · ≥ η(d−1)

K(d−1) where K(d−1) = O(|ALLd−1|/ε(d−1) · log(1/ε(d−1))) and ε(d−1). This generates

29

• at most |ALLd−1| polynomials inWd−1 that are each η(d−1)

t(d−1)+1
-eigenregular, for some 1 ≤ t(d−1) ≤

K(d−1) − 1 (intuitively, these should be thought of as “extremely eigenregular” polynomials); these
are the Rs,reg polynomials. Let REGd−1 denote this set of polynomials. It also generates

• For each 1 ≤ q ≤ d−2, “not too many” (at most |ALLd−1|·K(d−1)(1/(η
(d−1)

t(d−1))
2) log(1/ε(d−1))) new

polynomials inWq; these are the Ps,i,j and Qs,i,j polynomials that lie inWq. Add these polynomials
to the set NEWq.

Similar to above, the key qualitative point to observe is that the number of eigenregular polynomials
that have been produced is |REGd|+ |REGd−1|, which is a number depending only on k, ε(d), ε(d−1), and
1/η

(d)

t(d)
, while the eigenregularity of each such polynomial is at most max{η(d)

t(d)+1
, η

(d−1)

t(d−1)+1
},where the first

expression inside the max comes from the polynomials in |REGd| and the second from the polynomials in
|REGd−1|. By setting the η-parameters so that η(d)

t(d)+1
and η(d−1)

t(d−1)+1
are both much smaller than η(d)

t(d)
, we

can ensure that the number of polynomials that are produced compares favorable with their eigenregularity.
Continuing in this fashion, the crux of the analysis is to argue that this can be done “all the way down,”

so that the total number of polynomials that are ever produced in the analysis is far smaller than 1/η, where
η is the largest eigenregularity of any of these polynomials. However, it is somewhat awkward to argue
this using the “top-down” view on the decomposition procedure that we have adopted so far. Instead, in the
formal proof which we give below, we take a “bottom-up” view of the decomposition procedure: we first
show that it can be successfully carried out for low-degree polynomials, and use this fact to show that it can
be successfully carried out for higher-degree polynomials.

5.3.1 The MultiRegularize-Many-Wieners procedure and its analysis

Now we present and analyze the actual MultiRegularize-Many-Wieners procedure. Theorem 43 gives a
performance bound on the procedure. Its proof will be by induction on the degree: we first establish the
result for degree 2 and then use the fact that the theorem holds for degrees 2, . . . , d − 1 to prove the result
for degree d.

Theorem 43. Fix d ≥ 2 and fix any non-increasing computable function β : [1,∞) → (0, 1) that satisfies
β(x) ≤ 1/x. There is a procedure MultiRegularize-Many-Wienersd,β with the following properties. The
procedure takes as input the following:

• It is given k lists of d + 1 multilinear Gaussian polynomials; the s-th list is ps,0, . . . , ps,d where
ps,q ∈ Wq and Var[ps,q] = 1 for 1 ≤ q ≤ d.

• It also takes as input a parameter τ > 0.

The procedure runs in poly(nd) ·Ok,d,τ (1) time and outputs, for each input polynomial ps,q, a polyno-
mial Out(ps,q) and a collection of polynomials that we denote {In(ps,q)`}`=1,...,num(ps,q); here num(ps,q)
is the number of arguments of the polynomial Out(ps,q). (“Out” stands for “outer” and “In” stands for
“inner”.)

For s = 1, . . . , k, 0 ≤ q ≤ d and x ∈ Rn, let

p̃s,q(x) = Out(ps,q)
(
In(ps,q)1(x), . . . , In(ps,q)num(ps,q)(x)

)
(23)

(Intuitively, each p̃s,q is a polynomial that has been decomposed into constituent sub-polynomials
In(ps,q)1, . . . , In(ps,q)num(ps)q ; p̃s,q is meant to be a good approximator for ps,q. The following conditions
make this precise.)

The following conditions hold:

30

1. For each s ∈ [k], 0 ≤ q ≤ d the polynomial p̃s,q(x) belongs to the q-th Wiener chaosWq. Addition-
ally, each polynomial In(ps,q)` with q ≥ 1 lies inWj for some 1 ≤ j ≤ d and has Var[In(ps,q)`] = 1.

2. For each s ∈ [k], 0 ≤ q ≤ d, we have Var[ps,q − p̃s,q] ≤ τ.

3. Each polynomial Out(ps,q) is a multilinear polynomial in its num(ps,q) arguments. Moreover,there
existsN = Nβ(k, d, τ) andM = Mβ(k, d, τ) such that if Coeff(ps,q) denotes the sum of the absolute
values of the coefficients of Out(ps,q), then

∑
s,q Coeff(ps,q) ≤M and

∑
s,q num(ps,q) ≤ N .

4. Further, let Num =
∑

s=1,...,k,q=0,...,d num(ps,q) and Coeff =
∑

s=1,...,k,q=0,...,d Coeff(ps,q). Then,
each polynomial In(ps,q)` is β(Num + Coeff)-eigenregular.

After proving Theorem 43, in the next subsection we will obtain Theorem 31 from it as a special case,
by writing the degree-d polynomial p as

∑d
q=0 pq where q ∈ Wq and applying Theorem 43 to (p0, . . . , pd).

Base case: Proof of Theorem 43 in the case d = 2. Fix any non-increasing function β : [1,∞)→ (0, 1)
that satisfies β(x) ≤ 1/x. The main step is to use the MultiRegularize-One-Wiener procedure on the
vector of (at most k) polynomials {ps,2}s∈[k]; we now specify precisely how to set the parameters of this
procedure. Fix ε = τ and let K = O(k/ε · log(1/ε)) as in the statement of Theorem 41. We define the
parameters 1 = η0 ≥ η1 · · · ≥ ηK > nK+1 = 0 as follows: for t = 0, . . . ,K − 1, we have

ηt+1 := β

(
C
k2

ε
· 1

η2
t

· (log 1/ε)2 + C ′ · k3 ·
(

4

ηt

)C′· 1
η2t
·log(1/ε)

)
(24)

where C,C ′ ≥ 1 are absolute constants defined below (see (27) and (28); intuitively, the first term corre-
spond to an upper bound on Num whereas the second term corresponds to an upper bound on Coeff). (Note
the assumption that β(x) ≤ 1/x implies that indeed ηt+1 ≤ ηt.) When called with these parameters on the
vector of polynomials {ps,2}s∈[k], by Theorem 41 MultiRegularize-One-Wiener outputs an index t with
0 ≤ t ≤ K and a decomposition of each ps,2 as

ps,2 =

t∑
i=1

M(i)∑
j=1

as,i,jPs,i,j ·Qs,i,j + as,reg ·Rs,reg +Rs,neg, (25)

(recall that M(i) = 1
η2i

log(1/ε)), where for each s ∈ [k],

1. Var[Rs,neg] ≤ ε = τ ,

2. each as,reg ·Rs,reg is ηt+1-eigenregular, Rs,reg has variance 1, and

3. For each s, i, j, the polynomials Ps,i,j and Qs,i,j are both inW1 and are defined over disjoint sets of
variables and have Var[Ps,i,j] = Var[Qs,i,j] = 1. Moreover Rs,neg and Rs,reg both lie inW2.

We now describe the polynomials In(ps,2) and Out(ps,2), whose existence is claimed in Theorem 43,
for each s ∈ [k]. For each s ∈ [k], the polynomials In(ps,2)` include all of the polynomials Ps,i,j , Qs,i,j
from (25). Furthermore, Rs,reg belongs to In(ps,2)` if and only if as,reg 6= 0. The polynomial p̃s,2(x) is
ps,2 −Rs,neg, and we have

p̃s,2(x) = Out(ps,2)({In(ps,2)`}) =

t∑
i=1

M(i)∑
j=1

as,i,j · Ps,i,j ·Qs,i,j + as,reg ·Rs,reg. (26)

31

Further, by the guarantee from Theorem 41, we get that for any s, i, j, Ps,i,j and Qs,i,j are on disjoint sets
of variables. The degree-1 and degree-0 portions are even simpler: for each s ∈ [k] we have

p̃s,1(x) = Out(ps,1)(ps,1) = ps,1 and p̃s,0(x) = Out(ps,0)(ps,0) = ps,0.

It is clear from this description that property (1) holds (for each s, q, the polynomial p̃s,q indeed belongs to
Wq).

Next, we show that Condition 2 holds. This is immediate for q = 0, 1 since the polynomials ps,0 and
ps,1 are identical to p̃s,0 and p̃s,1 respectively. For q = 2 given any s ∈ [k], we have that ps,2 − p̃s,2 =
Rs,neg, and hence by the upper bound on Var[Rs,neg] (see Item (1) above) we have that Var[ps,2 − p̃s,2] =
Var[Rs,neg] ≤ τ as required by Condition (2).

For Condition (3), the multilinearity of each Out(ps,q) is easily seen to hold as a consequence of Theo-
rem 41. To check the remaining part of Condition (3), note that for q = 0, 1 the polynomial p̃s,q is simply
the identity polynomial x 7→ x. For q = 2, Equation (26) immediately gives that

num(ps,2) ≤ 2t ·M(t) + 1 ≤ 2K ·M(t) + 1

Observe that since Out(ps,0)(·) and Out(ps,1)(·) is simply the identity map x 7→ x. Thus,

2∑
q=0

num(ps,q) ≤ 2K ·M(t) + 3.

As s ∈ [k],

Num =
∑
s∈[k]

2∑
q=0

num(ps,q) ≤ 2K · k ·M(t) + 3k.

Note that we can choose C to be a sufficiently large constant (independent of t) so that

Num ≤ 2K · k ·M(t) + 3k ≤ C · k
2

ε
log2 1

ε
· 1

η2
t

. (27)

We next upper bound the sum of the absolute values of the coefficients appearing in Out(ps,q). We
begin by observing that Out(ps,1) and Out(ps,0) are just the identity function and hence the absolute values
of the coefficients is just 1. For Out(ps,2), note that Item (4) of Theorem 41, gives that

t∑
i=1

M(i)∑
j=1

a2
s,i,j ≤

t∑
i=1

(
4

ηi

)4(M(i)−1)

≤ t ·
(

4

ηt

)4(M(t)−1)

.

Thus, summing over all s ∈ [k], we get

∑
s∈[k]

t∑
i=1

M(i)∑
j=1

a2
s,i,j ≤ k · t ·

(
4

ηt

)4(M(t)−1)

.

Recalling that
∑

s∈[k]

∑t
i=1M(i) ≤ 2K · k ·M(t) + 3k and applying Cauchy-Schwarz, we get

∑
s∈[k]

t∑
i=1

|as,i,j | ≤

(
t ·
(

4

ηt

)4(M(t)−1)
)
· (2K · k ·M(t) + 3k)

32

Thus, we can choose a sufficiently large constant C ′ (independent of t) such that

Coeff =
∑
s∈[k]

t∑
i=1

|as,i,j | ≤ C ′ · k3 ·
(

4

ηt

)C′· 1
η2t
·log(1/ε)

(28)

Using (28) and (27), the recursive definition of ηt from (24) and t ≤ K, there exists N = Nβ(k, d, τ) and
M = Mβ(k, d, τ) such that Num ≤ N and Coeff ≤M .

It remains only to bound the eigenregularity of the In(ps,q)` polynomials. Each such polynomial is either
a degree-0 polynomial ps,0, a degree-1 polynomial ps,1 or Ps,i,j or Qs,i,j (from (26)), or a degree-2 polyno-
mial Rs,reg for which as,reg 6= 0. Since degree-0 and degree-1 polynomials are 0-eigenregular, it remains
only to bound the eigenregularity of each Rs,reg. Since each Rs,reg is ηt+1-eigenregular, our choice of the
sequence 1 = η0 ≥ · · · ≥ ηK (see (24)) implies that each Rs,reg is indeed β(Num + Coeff)-eigenregular as
required by Condition (4). This concludes the proof of the degree-2 base case of the induction for Theorem
43.

Inductive step: Proof of 43. Fix a value d ≥ 3; with the base case in hand from above, we may assume
that Theorem 43 holds for degrees 2, . . . , d− 1. Similar to the degree-2 base case, the first main step of the
algorithm is to use the MultiRegularize-One-Wiener procedure on the vector of polynomials (ps,d)s∈[k];
we now specify how to set the parameters of MultiRegularize-One-Wiener. Fix ε = τ/8 and let K =
O(k/ε · log(1/ε)) as in the statement of Theorem 41. We define the parameters 1 = η0 ≥ η1 · · · ≥ ηK >
nK+1 = 0 as follows: for t = 0, . . . ,K − 1, we have

ηt+1 := β

Nβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

)2

+Mβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

)2

· LLtt + 2k + LLtt

 ,

(29)

where Lt
def
= C ′ · k

2d

ε
· 1

η2
t

· (log 1/ε)2,

and C ′ > 0 is an absolute constant defined below and β∗t is defined in (31). The reader can verify that the
sequence {ηt} is defined consistently. As before, intuitively, the first term in the argument to β corresponds
to an upper bound on Num whereas the second term corresponds to an upper bound on Coeff . (Note that
from the recursive definition (29), for all t = 1, . . . ,K we have that ηt = κt(k, τ, d) for some function κt;
this will be useful later.) When called with these parameters on the vector of polynomials (ps,d)s∈[k], by
Theorem 41 MultiRegularize-One-Wiener outputs an index t with 0 ≤ t ≤ K and a decomposition of
each ps,d as

ps,d =
t∑
i=1

M(i)∑
j=1

as,i,jPs,i,j ·Qs,i,j + as,reg ·Rs,reg +Rs,neg, (30)

(recall that M(i) = 1
η2i

log(1/ε)), where for each s ∈ [k],

• Var[Rs,neg] ≤ ε = τ/8,

• each as,reg ·Rs,reg is ηt+1-eigenregular, Rs,reg has variance 1, and

• For each s, i, j, the polynomial Ps,i,j belongs to Wqs,i,j,1 and Qs,i,j belongs to Wqs,i,j,2 where 0 <
qs,i,j,1, qs,i,j,2, qs,i,j,1 + qs,i,j,2 = d, and Ps,i,j , Qs,i,j are defined over disjoint sets of variables and
have Var[Ps,i,j] = Var[Qs,i,j] = 1. Moreover Rs,neg and Rs,reg both lie inWd.

33

Define the function β∗t : [1,∞)→ (0, 1), β∗t (x) ≤ 1/x, as

β∗t (x) := β(x2 · k · LLtt + k + LLtt). (31)

The second main step of the algorithm is to run the procedure MultiRegularize-Many-Wienersd−1,β∗t
with its inputs set in the following way:

• There are k lists of d multilinear polynomials ps,0, . . . , ps,d−1 as s ranges from 1 to k. Additionally,
for each of the Ps,i,j and Qs,i,j polynomials that are obtained from (30), there is a list of d multilinear
polynomials in W0, . . . ,Wd−1. In each such list all the polynomials are 0 except for the Ps,i,j or
Qs,i,j polynomial. (Note that each of these polynomials indeed belongs to a single specific layerWq

of the Wiener chaos for some 1 ≤ q ≤ d−1, as required by MultiRegularize-Many-Wienersd−1,β∗t
;

note further that since the variance of each Ps,i,j and Qs,i,j polynomial is 1, the variance condition in
the first bullet of Theorem 43 is satisfied. Finally, we emphasize that the Rs,reg polynomial, which
lies inWd, is not used here.) Thus, note that we can choose C ′ to be a sufficiently large constant so
that the total number of input polynomials that are given to the procedure is at most

Lt
def
= C ′ · k

2d

ε
· 1

η2
t

· (log 1/ε)2. (32)

Note that Lt = κ1(k, τ, d) for some function κ1; this will be useful later. Another thing that will be
useful is the following. Define

Ad = (
∑
s∈[k]

t∑
i=1

M(i)∑
j=1

|as,i,j |)2. (33)

Note that mimicking the calculations preceding (28), it can be shown that C ′ can be chosen so that
Ad ≤ LLtt .

• The “τ” parameter of the procedure is set to τ

16·Lt·LLtt
.

By the inductive hypothesis, when invoked this way, the procedure MultiRegularize-Many-Wienersd−1,β∗t
returns the following:

• For each Ps,i,j and Qs,i,j from (30), outer polynomials Out(Ps,i,j) and Out(Qs,i,j), and likewise
for each ps,q (1 ≤ s ≤ k, 0 ≤ q ≤ d − 1) an outer polynomial Out(ps,q)

(d−1); the “(d − 1)”
superscript here is to emphasize that this polynomial is obtained from the call to MultiRegularize-
Many-Wienersd−1,β∗t

.

• For each Ps,i,j and Qs,i,j from (30), a collection of “inner polynomials”

{In(Ps,i,j)`}`=1,...,num(Ps,i,j) and {In(Qs,i,j)`}`=1,...,num(Qs,i,j) (34)

and likewise for each ps,q (1 ≤ s ≤ k, 0 ≤ q ≤ d− 1) a collection of inner polynomials

{In(ps,q)
(d−1)
` }`=1,...,num(ps,q); (35)

similar to above, the “(d − 1)” superscript here is to emphasize that these polynomials are obtained
from a call to MultiRegularize-Many-Wienersd−1,β∗t

.

34

For each ps,q with 1 ≤ s ≤ k, 0 ≤ q ≤ d−1, let us write p̃(d−1)
s,q to denote Out(ps,q)

(d−1)({In(ps,q)
(d−1)
` }).

The pieces are now in place for us to describe the polynomials Out(ps,q) and {In(ps,q)`}`=1,...,num(ps,q)

whose existence is asserted by Theorem 43.
Fix any s ∈ [k]. We begin with the easy case of q < d; so fix any 0 ≤ q < d. The polynomial Out(ps,q)

is simply Out(ps,q)
(d−1), and the polynomials {In(ps,q)`} are simply the polynomials {In(ps,q)

(d−1)
` }.

Now we turn to the more involved case of q = d. Fix any s ∈ [k]. Recall the decomposition of ps,d given
by (30). Fix any i ∈ [t], j ∈ [M(i)] and consider first the polynomial Ps,i,j from (30). By the inductive
hypothesis, the call to MultiRegularize-Many-Wienersd−1,β∗t

yields a polynomial P̃s,i,j which is defined
via (23) in terms of the Out(Ps,i,j) and In(Ps,i,j)` polynomials, namely

P̃s,i,j = Out(Ps,i,j)(In(Ps,i,j)1, . . . , In(Ps,i,j)num(Ps,i,j)). (36)

Similarly, considering the polynomialQs,i,j from (30), the call to MultiRegularize-Many-Wienersd−1,β∗t

also yields a polynomial Q̃s,i,j which is defined via (23) in terms of the Out(Qs,i,j) and In(Qs,i,j)` polyno-
mials, namely

Q̃s,i,j = Out(Qs,i,j)(In(Qs,i,j)1, . . . , In(Qs,i,j)num(Qs,i,j)). (37)

The polynomials {In(ps,d)`} are the elements of t⋃
i=1

M(i)⋃
j=1

(
{In(Ps,i,j)`′}`′=1,...,num(Ps,i,j) ∪ {In(Qs,i,j)`′′}`′′=1,...,num(Qs,i,j)

) ∪ {Rs,reg : as,reg 6= 0} (38)

and the polynomial Out(ps,d) is given by

Out(ps,d)({In(ps,d)`}) =

t∑
i=1

M(i)∑
j=1

as,i,jP̃s,i,j · Q̃s,i,j + as,reg ·Rs,reg. (39)

Recalling (23), (36) and (37), we may write this more explicitly as

p̃s,d =

t∑
i=1

M(i)∑
j=1

as,i,j · (Out(Ps,i,j)({In(Ps,i,j)`})) · (Out(Qs,i,j)({In(Qs,i,j)`′})) + as,reg ·Rs,reg. (40)

This concludes the specification of the Out(ps,q), {In(ps,q)`} and p̃s,q polynomials; it remains to show
that these polynomials satisfy all of the claimed Conditions (1)-(4).

First we consider Condition (1), that for each s, q the polynomial p̃s,q belongs to the q-th Wiener chaos
Wq and each polynomial In(ps,q)` has Var[In(ps,q)`] = 1. For q < d this follows from the inductive
hypothesis. For q = d, consider (30) and (39). Part (2) of Theorem 41 ensures that Rs,reg and each
Ps,i,j · Qs,i,j all lie in Wd and that Ps,i,j and Qs,i,j are on disjoint sets of variables. Using the inductive
hypothesis applied to each Ps,i,j and Qs,i,j and the fact Ps,i,j and Qs,i,j are on disjoint sets of variables,
each product P̃s,i,j · Q̃s,i,j also must lie inWd. Since Rs,reg lies inWd andWd is a subspace, we get that
p̃s,d ∈ Wd for all s ∈ [k]. To see that each polynomial in {In(Ps,i,j)`} and {In(Qs,i,j)`′} has variance 1,
we use the induction hypothesis. Also, note that by Theorem 41, Var(Rs,reg) = 1. This shows that all
elements of {In(ps,q)`} have variance 1 as claimed.

Next let us consider Condition (2), i.e. we must upper bound each Var[p̃s,q − ps,q]. Fix any s ∈ [k] and
first consider some 1 ≤ q ≤ d− 1. In this case we have that

p̃s,q = Out(ps,q)
(
In(ps,q)1(x), . . . , In(ps,q)num(ps,q)(x)

)
= Out(ps,q)

(d−1)
(

In(ps,q)
(d−1)
1 (x), . . . , In(ps,q)

(d−1)
num(ps,q)

(x)
)

= p̃(d−1)
s,q

35

so we get the desired bound on Var[p̃s,q− ps,q] from the inductive hypothesis, recalling that the “τ” param-
eter that was provided to MultiRegularize-Many-Wienersd−1,β∗t

was set to τ/(16 · Lt · LLtt) ≤ τ.
Next, consider the case q = d. In this case,

ps,d − p̃s,d = Rs,neg +

t∑
i=1

M(i)∑
j=1

as,i,j(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j)

We will record the following fact which will be used a couple of times.

Fact 44. Var[X1 + . . .+Xm] ≤
∑m

i=1m ·Var[Xi].

First, applying Fact 44, we can say that

Var[ps,d − p̃s,d] ≤ 2Var[Rs,neg] + 2Var

 t∑
i=1

M(i)∑
j=1

as,i,j(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j)

 .
We recall that Var[Rs,neg] ≤ τ/8. To bound the second term, define

κmax = max
i,j

Var(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j).

Then, we have that

Var

 t∑
i=1

M(i)∑
j=1

as,i,j(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j)


≤

(
t∑
i=1

M(i)

)
·

 t∑
i=1

M(i)∑
j=1

a2
s,i,j Var(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j)


≤

(
t∑
i=1

M(i)

)
·

 t∑
i=1

M(i)∑
j=1

a2
s,i,j

 · κmax

≤

(
t∑
i=1

M(i)

)
·

 t∑
i=1

M(i)∑
j=1

|as,i,j |

2

· κmax

≤ Lt ·Ad · κmax ≤ Lt · LLtt · κmax

In the above, the first inequality uses Fact 44, the fourth inequality uses (32) and (33) and the fifth inequality
uses the bound on Ad. It remains to bound κmax. However, note that for any 1 ≤ i ≤ t and 1 ≤ j ≤M(i),
we have that

Var(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j) ≤ 2 ·Var(Qs,i,j · (P̃s,i,j − Ps,i,j)) + 2 ·Var(P̃s,i,j · (Q̃s,i,j −Qs,i,j))
≤ 2Var(Qs,i,j) ·Var(P̃s,i,j − Ps,i,j) + 2 ·Var(P̃s,i,j) ·Var(Q̃s,i,j −Qs,i,j))

≤ 2Var(P̃s,i,j − Ps,i,j) + 4Var(Q̃s,i,j −Qs,i,j)) ≤
3 · τ

8 · Lt · LLtt
.

In the above, the first inequality uses Fact 44 and the second inequality uses that Ps,i,j and Qs,i,j are on
disjoint sets of variables. The third inequality uses that Var(Qs,i,j) = 1 and that Var(P̃s,i,j) ≤ 2 and the
fourth one follows from the choice of the “τ” parameter in the recursive procedure. Hence, we get that

Var

 t∑
i=1

M(i)∑
j=1

as,i,j(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j)

 ≤ 3τ

8
.

36

As a consequence, we get

Var(ps,d − p̃s,d) ≤ 2Var(Rs,neg) + 2Var

 t∑
i=1

M(i)∑
j=1

as,i,j(P̃s,i,j · Q̃s,i,j − Ps,i,j ·Qs,i,j)

 ≤ τ
.

For Condition (3), the multilinearity of each Out(ps,q) follows easily from the inductive hypothesis and
from (39), using the fact that each Rs,reg is multilinear and that for each (s, i, j) triple the two multilinear
polynomials Ps,i,j and Qs,i,j are defined over disjoint sets of variables.

To finish establishing condition (3), we now bound the overall number of inner polynomials produced in
these decompositions. We start by bounding the total number of inner polynomials that MultiRegularize-
Many-Wienersd,β produces. Recall first that the number of polynomials that are input to the call to
MultiRegularize-Many-Wienersd−1,β∗t

isLt = κt(k, τ, d) (see 32). From the specification of the {In(ps,q)`}
polynomials given earlier, all but precisely k of these inner polynomials returned by MultiRegularize-
Many-Wienersd,β are simply the inner polynomials that are returned from the call to MultiRegularize-
Many-Wienersd−1,β∗t

, and the other k polynomials are R1,reg, . . . , Rk,reg. Since the MultiRegularize-
Many-Wienersd−1,β∗t

, procedure is called on Lt many polynomials, by the inductive hypothesis the total
number of inner polynomials returned by this procedure call is some value

Nβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

)
= Ok,τ,d(1). (41)

Consequently the total number of all inner polynomials {In(ps,q)`} returned by MultiRegularize-Many-

Wienersd,β is bounded by Nβ∗t

(
Lt, d− 1, τ

16·Lt·LLtt

)
+ k. Noting that Lt ≤ LK , we have that the total

number of inner polynomials returned by MultiRegularize-Many-Wienersd,β is bounded by

Nβ∗K

(
LK , d− 1,

τ

16 · LK · LLKK

)
+ k,

which we define to be Nβ(k, d, τ).
The next task is to upper bound

∑
s,q Coeff(ps,q). The main step is to bound the contribution from

q = d. Recalling (40), we have

p̃s,d =

t∑
i=1

M(i)∑
j=1

as,i,j · (Out(Ps,i,j)({In(Ps,i,j)`})) · (Out(Qs,i,j)({In(Qs,i,j)`′})) + as,reg ·Rs,reg

and thus,

Coeff(ps,d) ≤ 1 +

t∑
i=1

M(i)∑
j=1

|as,i,j | · Coeff(Ps,i,j) · Coeff(Qs,i,j).

Note that
∑

s∈[k]

∑t
i=1

∑M(i)
j=1 |as,i,j | ≤ L

Lt
t and |as,reg| ≤ 1. Further, by induction hypothesis,

∑
s∈[k]

t∑
i=1

M(i)∑
j=1

(Coeff(Ps,i,j) + Coeff(Qs,i,j)) +
∑
s∈[k]

d−1∑
q=1

Coeff(ps,q) ≤Mβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

)
.

37

Hence, ∑
s∈[k]

d∑
q=1

Coeff(Out(ps,q)) ≤ k + LLtt ·

(
Mβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

))2

.

By definition,

LLtt ·

(
Mβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

))2

≤ LLKK ·

(
Mβ∗K

(
LK , d− 1,

τ

16 · LK · LLKK

))2

.

AsK = O(k/ε) log(1/ε), we can define the quantity on the right hand side to beMβ(k, d, τ) which verifies
condition (3).

Our last task is to bound the eigenregularity of the In(ps,q)` polynomials. As noted above these polyno-
mials are of two types: the k polynomials R1,reg, . . . , Rk,reg and the inner polynomials {In(ps,q)

(d−1)
` } that

were returned from the call to MultiRegularize-Many-Wienersd−1,β∗t
on its Lt input polynomials.

We first tackle the {In(ps,q)
(d−1)
` } polynomials. Define Coeffrec as

Coeffrec =
∑
s∈[k]

t∑
i=1

M(i)∑
j=1

(Coeff(Ps,i,j) + Coeff(Qs,i,j)) +
∑
s∈[k]

d−1∑
q=1

Coeff(ps,q),

the sum of the absolute values of the coefficients of the outer polynomials returned by the recursive call.
Likewise, define Numrec as

Numrec =

∣∣∣∣∣∣
 ⋃
s∈[k],q∈[1,...,d−1]

In(ps,q) ∪
t⋃
i=1

M(i)⋃
j=1

(
{In(Ps,i,j)`′}`′=1,...,num(Ps,i,j) ∪ {In(Qs,i,j)`′′}`′′=1,...,num(Qs,i,j)

)
∣∣∣∣∣∣ ,

the total number of inner polynomials returned by the recursive call. Then, note that Coeff ≤ Coeff2
rec·L

Lt
t +

k and Num = Numrec + k. By inductive hypothesis, the polynomials {In(ps,q)
(d−1)
` } are β∗t (Numrec +

Coeffrec)-eigenregular. However, note that

β∗t (Numrec + Coeffrec) = β((Numrec + Coeffrec)
2 · k · LLtt + k + LLtt)

≤ β(Coeff2
rec · LLtt + k + Numrec + k) ≤ β(Num + Coeff).

Here the inequality uses the fact that β∗t is a non-increasing function. This shows that the polynomials
{In(ps,q)

(d−1)
` } polynomials are β(Num + Coeff)-eigenregular.

Next, note that Rs,reg is ηt+1-eigenregular. We have

ηt+1 = β

Nβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

)2

+Mβ∗t

(
Lt, d− 1,

τ

16 · Lt · LLtt

)2

· LLtt + 2k + LLtt


≤ β

(
Num2

rec + Coeff2
rec · L

Lt
t + 2k + LLtt

)
≤ β (Num + Coeff) .

This implies that Rs,reg is β(Num + Coeff)-eigenregular for all s ∈ [k] verifying Condition (4). This
concludes the proof of the inductive degree-d case, and thus concludes the proof of Theorem 43.

38

5.4 Proof of Theorem 31

With Theorem 31 in hand it is straightforward to prove Theorem 43. As in the statement of Theorem 43, let
us write p(x) as

∑d
q=0 cqpq(x) where pq ∈ Wq for all q and Var[pq] = 1 for 1 ≤ q ≤ d. Since Var[p] = 1,

by Fact 12 we have that
∑d

q=1 c
2
q = 1. The procedure Regularize-Polyβ calls MultiRegularize-Many-

Wienersd,β on the d + 1 polynomials p0, p1, . . . , pd with the “τ” parameter of MultiRegularize-Many-
Wienersd,β set to be 1

d · (τ/d)3d. This call to MultiRegularize-Many-Wienersd,β returns polynomials
Out(p0), . . . ,Out(pd) (these are the polynomials h0, . . . , hd) and {In(p0)`}`=1,...,m0 , . . . , {In(pd)`}`=1,...,md

(these are the polynomials {Aq,`}q=0,...,d,`=1,...,mq).
Condition (1) of Theorem 31 follows directly from Condition (1) of Theorem 43. Condition (2) of

Theorem 43 implies that each q ∈ {0, . . . , d} has Var[pq − Out(pq)({In(pq)}`)] ≤ (1/d) · (τ/d)3d.
Observing that pq −Out(pq)({In(pq)}`) lies inWq, using Fact 12, we have Var[p− p̃] ≤ (τ/d)3d. Using
Lemma 5, we get that ∣∣Prx∼N(0,1)n [p(x) ≥ 0]−Prx∼N(0,1)n [p̃(x) ≥ 0]

∣∣ ≤ O(τ).

This concludes the verification of Condition (2). Conditions (3) and (4) in Theorem 31 follow from the
respective conditions in Theorem 43.

6 Proof of Theorem 2: Deterministic approximate counting for degree-d
PTFs over N(0, 1)n

In this section we combine the tools developed in the previous sections to prove Theorem 2. We do this in
two main steps. First we use the CLT from Section 4 and the decomposition procedure from Section 5 to
reduce the original problem (of ε-approximately counting satisfying assignments of a degree-d PTF under
N(0, 1)n) to the problem of ε-approximating an expectation EG∼N(0r,Σ)[g̃c(G)], whereN(0r,Σ) is a mean-
0 r-dimensional Gaussian with covariance matrix Σ, and g̃c : Rr → [0, 1] is a particular explicitly specified
function. The key points here are that the value of r, the description length (bit complexity) of g̃c, and
the bit complexity of each entry of the covariance matrix Σ are all Od,ε(1) (completely independent of n).
Next, we describe how an Od,ε(1)-time deterministic algorithm can ε-approximate the desired expectation
EG∼N(0r,Σ)[g̃c(G)].

Theorem 2 follows directly from Theorems 45 and 50, the main results of Sections 6.1 and 6.2 respec-
tively.

Our approach is based on mollification (so that we can apply our CLT); we will need the following
definitions from [DKN10]. We first define the bump function b : Rr → R as follows:

b(x) =

{√
Cr(1− ‖x‖22) if ‖x‖2 ≤ 1

0 if ‖x‖2 > 1,

where the constant Cr is chosen so that
∫
x∈Rr b

2(x)dx = 1. We let b̂ denote the Fourier transform of b, so

b̂(x) =
1

(2π)r/2
·
∫
y∈Rr

b(y) · exp(−i〈x, y〉)dy.

For c > 0 we define Bc : Rr → R as
Bc(x) = cr · b̂(c · x)2.

Using Parseval’s identity, it is easy to see that Bc(x) is non-negative and
∫
xBc(x) = 1, so Bc is a density

function. We observe that ‖b̂‖∞ is upper bounded by Or(1) and hence ‖Bc‖∞ = Oc,r(1). Finally, for

39

g : Rr → [0, 1] and c > 0, g̃c : Rr → [0, 1] is defined as

g̃c(x) =

∫
y∈Rr

g(x− y) ·Bc(y)dy. (42)

6.1 Reducing to an Od,ε(1)-dimensional problem

In this subsection we prove the following. (The function sign0,1(z) below outputs 1 if z ≥ 0 and outputs 0
otherwise.)

Theorem 45. There is an Od,ε(1) · poly(nd)-time deterministic algorithm with the following performance
guarantee: Given as input a degree-d real polynomial p(x1, . . . , xn) and a parameter ε > 0, it outputs
an integer r, a matrix of covariances Σ ∈ Rr×r (whose diagonal entries are all 1), and a description of a
function g̃c : Rr → [0, 1], such that∣∣Prx∼N(0,1)n [p(x) ≥ 0]−EG∼N(0r,Σ)[g̃c(G)]

∣∣ ≤ O(ε). (43)

Moreover, g̃c is of the form given in (42), where g = sign0,1(φ) and φ : Rr → R is a degree-d polynomial
whose coefficients are rational numbers with numerator and denominator that are each integers of magni-
tude Od,ε(1). Also, r is Od,ε(1), and hence the description length of g̃c is Od,ε(1) bits. Finally, each entry of
Σ is a rational number whose numerator and denominator are both integers of magnitude Od,ε(1).

The following lemma will be useful for us.

Lemma 46. Let a : Rr → [0, 1] be a c-Lipschitz function. Let Σ,Σ′ ∈ Rr×r be two psd matrices such that
‖Σ− Σ′‖2 ≤ δ. Then

∣∣EG∼N(0r,Σ)[a(G)]−EG′∼N(0r,Σ′)[a(G′)]
∣∣ ≤ cr(δ + 3

√
δ‖Σ‖2).

Proof. Let Z ∼ N(0r,Σ) and Z ′ ∼ N(0r,Σ′). It is shown in [DL82] that we have

dW,2(Z,Z ′)2 = Tr(Σ + Σ′ − 2(Σ1/2Σ′Σ1/2)1/2),

where dW,2(·, ·) denotes the Wasserstein distance between two distributions in the `2 metric. Further, it is
known [Bha00] that if A and B are psd matrices, then

‖A1/2 −B1/2‖2 ≤
√
‖A−B‖2.

Observe that both Σ + Σ′ and 4Σ1/2Σ′Σ1/2 are psd. As a consequence,

‖Σ + Σ′ − 2(Σ1/2Σ′Σ1/2)1/2‖2 ≤
√
‖(Σ + Σ′)2 − 4Σ1/2Σ′Σ1/2‖2.

However, note that if we let ∆ = Σ′ − Σ so that ‖∆‖2 ≤ δ, then it is easy to see that√
‖(Σ + Σ′)2 − 4Σ1/2Σ′Σ1/2‖2 ≤ δ + 3

√
δ‖Σ‖2.

Hence we have Tr(Σ+Σ′−2(Σ1/2Σ′Σ1/2)1/2) ≤ r(δ+3
√
δ‖Σ‖2)2, so dW,2(Z,Z ′) ≤

√
r(δ+3

√
δ‖Σ‖2).

Using Cauchy-Schwarz, we get
dW,1(Z,Z ′) ≤ r(δ + 3

√
δ‖Σ‖2).

Using the fact that a is c-Lipschitz and recalling the coupling interpretation of the Wasserstein distance, we
get the stated result.

40

Now we turn to the proof of Theorem 45. We first recall that by Theorem 14 we may assume without
loss of generality that the polynomial p(x1, . . . , xn) is multilinear. By rescaling we may further assume that
Var[p] = 1.

The algorithm begins by running the procedure Decompose-Polyβ on p with its “τ” parameter set to ε
and the β function set to be

β(x) =
(ε

C · d · x

)Cd2
(44)

where C is a sufficiently large absolute constant (we discuss the choice of C below; see (53)). By Theorem
31, Decompose-Poly outputs a polynomial

p̃(x) =
d∑
j=0

hj(Aj,1, . . . , Aj,mj (x))

that satisfies |Prx∼N(0,1)n [p(x) ≥ 0] −Prx∼N(0,1)n [p̃(x) ≥ 0]| ≤ ε. Furthermore, for each j ∈ [1, . . . , d]

and k ∈ [1, . . . ,mj] we have that Var(Aj,k) = 1, Aj,k ∈ Wq for some q ∈ [1, j],
∑d

j=1mj ≤ r = r(d, τ),
and the sum of squared coefficients of hj is bounded by S = S(d, τ). We moreover have that Var[p̃] ∈
[1/2, 3/2], that each hj is a multilinear polynomial of degree at most d, and that each hj(Aj,1, . . . , Aj,mj (x))
lies in the j-th Wiener chaos (and hence has expectation zero). Furthermore, if Aj,i1 and Aj,i2 appear in a
monomial of hj together, then they contain disjoint sets of variables.

Since each hj has at most rd coefficients, if we round each coefficient of each hj to the nearest integer
multiple of

√
(ε/d)3d/(drd) and call the resulting polynomial hnew,j , and subsequently define

p̃new(x)
def
= E[p] +

d∑
j=1

hnew,j(Aj,1(x), . . . , Aj,mj (x)),

then using Fact 44 we have that

Var[p̃new(x)− p̃(x)] ≤ (drd) · ((ε/d)3d/(drd)) = (ε/d)3d.

Since p̃ and p̃new have the same mean we may apply Lemma 5 and we get that |Prx∼N(0,1)n [p̃new(x) ≥
0]−Prx∼N(0,1)n [p̃(x) ≥ 0]| ≤ O(ε). From now on, we will work with the polynomial p̃new.

At a high level, the plan is as follows: Prx∼N(0,1)n [p̃new(x) ≥ 0] is equal to

Ex∼N(0,1)n

sign0,1

E[p̃] +

d∑
j=1

hnew,j(Aj,1(x), . . . , Aj,mj (x))

 . (45)

Since the sign0,1 function is discontinuous, we cannot apply our CLT from Section 4 to (45) directly (recall
that the CLT only applies to functions with bounded second derivatives). To get around this we define a
“mollified” version (a version that is continuous and has bounded second derivative) of the relevant function
and show that the expectation (45) is close to the corresponding expectation of the mollified function. This
allows us to apply the CLT to the mollified function. A final step is that we will round the covariance matrix
Σ′ obtained from the CLT to Σ so that all its entries have bounded bit complexity; Lemma 46 will ensure
that we can do this and only incur an acceptable increase in the error.

We now enter into the details. Let φ : Rr → R be defined as

φ(x1,1, . . . , x1,m1 , . . . , xd,1, . . . , xd,md) = E[p] +

d∑
j=1

hnew,j(xj,1, . . . , xj,mj),

41

and let g : Rr → {0, 1} be defined as g(x) = sign0,1(φ(x)). In the subsequent discussion, for any function
F : Rr → R, we write F (k) : Rr → Rm (wherem =

(
r+k−1
k

)
) to denote the function whose coordinates are

all k-th order partial derivatives of F , so ‖F (k)‖∞ denotes the supremum of all values achieved by any k-th
order partial derivative at any input in Rr. Intuitively, our goal is to construct a mollification g̃ : Rr → R
for g such that ‖g̃(2)‖∞ < ∞ and g̃ is a “good approximation” to g at most points in Rr. There are many
different mollification constructions that could potentially be used; we shall use the following theorem from
[DKN10]:

Theorem 47. [DKN10] For any region R ⊆ Rr and any c > 0, the mollification ĨR,c : Rr → [0, 1] of the

{0, 1}-valued function IR(x)
def
= 1x∈R has the property that for every point x ∈ Rr,∣∣∣IR(x)− ĨR,c(x)

∣∣∣ ≤ min

{
1, O

(
r2

c2 · dist(x, ∂R)2

)}
,

where dist(x, ∂R) denotes the Euclidean distance between x and the boundary of R. Moreover, this molli-
fication satisfies ‖Ĩ(1)

R,c‖∞ ≤ 2c and ‖Ĩ(2)
R,c‖∞ ≤ 4c2.

Applying Theorem 47 to the region R def
= {x ∈ Rr : g(x) = 1}, we get that for any c > 0 there is a

mollified function g̃c : Rr → [0, 1] such that ‖g̃(2)
c ‖∞ ≤ 4c2, ‖g̃(1)

c ‖∞ ≤ 2c, and

|g(x)− g̃c(x)| ≤ min

{
1, O

(
r2

c2 · dist(x, ∂R)2

)}
. (46)

The following lemma ensures that for a suitable choice of c, the mollification g̃c is indeed a useful proxy
for g for our purposes:

Lemma 48. For c as specified in (51) below, we have that the function g̃c : Rr → [0, 1] described above
satisfies

Ex∼N(0,1)n [|g(A1,1(x), . . . , Ad,md(x))− g̃c(A1,1(x), . . . , Ad,md(x))|] ≤ O(ε). (47)

Proof. We will use the following claim:

Claim 49. Let x, y ∈ Rr and ‖x‖∞ ≤ B. If ‖x− y‖2 ≤ δ ≤ B, then |φ(x)−φ(y)| ≤ d(2B)drd/2 ·
√
S · δ.

Proof. Recall that φ(x) is a multilinear degree-d polynomial in r variables for which the sum of squares of
coefficients is at most S. Let us write φ as

φ(x) =
∑
A∈([r]

≤d)

cAxA

where xA represents the monomial
∏
i∈A xi corresponding to the set A, so we have

∑
A(cA)2 ≤ S. For

any fixed A ∈
([r]
≤d
)
, a simple application of the triangle inequality across the (at most) d elements of A

gives that
|xA − yA| ≤ d · (2B)d · δ.

Since the number of monomials in φ(x) is at most rd, using Cauchy-Schwarz we get that

|φ(x)− φ(y)| =

∣∣∣∣∣∑
A
cA(xA − yA)

∣∣∣∣∣ ≤
√∑
A

(cA)2 ·
√∑
A

(xA − yA)2 ≤
√
S · rd/2 · d · (2B)d · δ,

the claimed bound.

42

By Claim 49, we have that if x ∈ Rr has ‖x‖∞ ≤ B and |φ(x)| > d(2B)drd/2 ·
√
S · δ, where δ ≤ B,

then ‖dist(x, ∂R)‖2 > δ. By (46), if dist(x, ∂R) > δ then |g(x)− g̃c(x)| ≤ O(r2

c2δ2
). Hence provided that

we take δ ≤ B, we may upper bound Ex∼N(0,1)n [|g(A1,1(x), . . . , Ad,md(x))− g̃c(A1,1(x), . . . , Ad,md(x))|]
(the LHS of (47) by

Prx∼N(0,1)n

[
max

i∈[1,...,d],j∈[1,...,m(i)]
|Ai,j(x)| > B

]
+Prx∼N(0,1)n [|φ(A1,1(x), . . . , Ad,md(x))| ≤ d(2B)drd/2 ·

√
S · δ] +O

(
r2

c2δ2

)
. (48)

To bound the second summand above, we recall that φ(A1,1(x), . . . , Ad,md(x)) is a multilinear degree-d
polynomial whose variance is at least 1/2. By the anti-concentration bound Theorem 4, we get that

Prx∼N(0,1)n [|φ(A1,1(x), . . . , Ad,md(x))| ≤ d · (2B)drd/2 ·
√
S · δ] ≤ O

(
d ·B ·

√
r · S1/2d · δ1/d

)
.

To bound the first summand, we observe that since eachAi,j is a mean-0 variance-1 degree-d polynomial, by
the degree-d Chernoff bound (Theorem 3) and a union bound over the r polynomials Ai,j , for any B > ed

we have that

Prx∼N(0,1)n

[
max

i∈[1,...,d],j∈[1,...,m(i)]
|Ai,j(x)| > B

]
≤ r · d · e−Ω(B2/d). (49)

Thus we get that (48) is at most

r · d · e−Ω(B2/d) +O
(
d ·B ·

√
r · S1/2d · δ1/d

)
+O

(
r2

c2δ2

)
. (50)

Choosing

B =

(
Ω(1) · ln rd

ε

)d/2
, δ =

(
ε

d ·B ·
√
r · S1/2d

)d
, and c =

r

δ
√
ε

(51)

(note that these choices satisfy the requirements that B ≥ ed and δ ≤ B), we get that each of the three
summands constituting (50) is O(ε), and Lemma 48 is proved.

Using Condition (4) of Theorem 31, we have that eachAj,k is η-eigenregular where η ≤ β(r+S). Now
since ‖g̃(2)

c ‖∞ ≤ 4c2 and each Aj,k(x) is a mean-0, degree-d Gaussian polynomial with Var[Aj,k(x)] = 1,
we may apply our CLT, Theorem 19, and we get that∣∣Ex∼N(0,1)n [g̃c(A1,1(x), . . . , Ad,md(x))]−EG′∼N(0r,Σ′)[g̃c(G

′)]
∣∣ ≤ 2O(d log d) ·r2 ·

√
β(r + s)·4c2, (52)

where Σ′ ∈ Rr×r is the covariance matrix corresponding to the Aj,k’s (note that the variance bound on each
Aj,k ensures that the diagonal entries are indeed all 1 as claimed). It is easy to see that there exists a choice
of C in our definition of the function β (see (44)) which has the property

β(r + s) ≤ ε2

2O(d log d)r4c4
. (53)

As a result, the triangle inequality applied to (52) and Lemma 48 gives that∣∣Prx∼N(0,1)n [p̃(x) ≥ 0]−EG′∼N(0r,Σ′)[g̃c(G
′)]
∣∣ ≤ O(ε).

We are almost done; it remains only to pass from Σ′ to Σ, which we do using Lemma 46. By Theorem 47
we have that ‖g̃(1)

c ‖∞ ≤ 2c and hence g̃c is 2c-Lipschitz. Observing that each entry of Σ′ is in [−1, 1], we
have that ‖Σ′‖2 = Od,ε(1). Hence by taking Σ ∈ Rr×r to be a psd matrix that is sufficiently close to Σ′ with
respect to ‖ · ‖2, we get that Σ has all its coefficients rational numbers with numerator and denominator of
magnitude Od,ε(1), and from Lemma 46 we get that |EG∼N(0r,Σ)[g̃c(G)]− EG′∼N(0r,Σ′)[g̃c(G

′)] ≤ O(ε).
Thus Theorem 45 is proved.

43

6.2 Solving the Od,ε(1)-dimensional problem in Od,ε(1) time

The last step is to establish the following:

Theorem 50. There is a deterministic Od,ε(1)-time algorithm which, given as input the output r,Σ, g̃c of
Theorem 45 and the value of ε > 0, outputs a value ν such that∣∣ν −E(G1,...,Gr)∼N(0r,Σ)[g̃c(G1, . . . , Gr)]

∣∣ ≤ ε.
We only sketch the proof since the details of the argument are tedious and we are content with an

Od,ε(1) time bound. The first observation is that since each entry of the covariance matrix Σ is at most 1 in
magnitude and g̃c is everywhere bounded in [0, 1], it suffices to estimate the expected value conditioned on
(G1, . . . , Gr) ∼ N(0r,Σ) lying in an origin-centered cube [−Z,Z]r for some Z = Od,ε(1). Given this, it is
possible to simulate this conditional normal distribution with a discrete probability distributionX supported
on a finite set of points in [−Z,Z]r. Recall that Σ has entries as specified in Theorem 45 (rational numbers
of magnitude Od,ε(1)). Since g̃c is 2c-Lipschitz as noted earlier, by using a sufficiently fine grid of Od,ε(1)
points in [−Z,Z]r and (deterministically) estimating the probability thatN(0r,Σ) assigns to each grid point
to a sufficiently small 1/Od,ε(1) additive error, Theorem 50 reduces to the following claim:

Claim 51. Given any point x ∈ [−Z,Z]r and any accuracy parameter ξ > 0, the function g̃c(x) can be
computed to within additive accuracy ±ξ in time Od,ε,ξ(1).

Proof. We only sketch the proof of Claim 51 here as the argument is routine and the details are tedious.
We first note that (as can be easily verified from the description of Bc given earlier) there is an (easily
computed) value W = Od,ε(1) such that if S = {x ∈ Rr : ‖x‖∞ > W}, then we have

∫
z∈S Bc(z) ≤ ξ/2.

As a consequence, since g is everywhere bounded in [0, 1], we get that∣∣∣∣∣
∫
y∈Rr

g(x− y) ·Bc(y)dy −
∫
y∈(Rr\S)

g(x− y) ·Bc(y)dy

∣∣∣∣∣ ≤ ξ/2, (54)

and hence it suffices to estimate ∫
y∈[−W,W]r

g(x− y) ·Bc(y)dy (55)

to within an additive ±ξ/2. Now observe that ‖Bc‖∞ = Od,ε(1) and ‖B(1)
c ‖∞ = Od,ε(1). It follows that

given any y ∈ [−W,W]r and any accuracy parameter ρ > 0, we can compute Bc(y) to additive accuracy
±ρ in time Od,ε,ρ(1). Recalling that g(x) = sign0,1(φ(x)) where φ(x) is a degree-d polynomial whose
coefficients are Od,ε(1)-size rational numbers, it follows that by taking a sufficiently fine grid of Od,ε,ξ,W (1)
points in [−W,W]r, we can use such a grid to estimate (55) to an additive ±ξ/2 in Od,ε,ξ,W (1) time as
desired.

7 Deterministic approximate counting for degree-d polynomials over {−1, 1}n

In this section we use Theorem 2 to prove Theorem 1. Since the arguments here are identical to those
used in [DDS13a] (where an algorithm for deterministic approximate counting of degree-2 PTF satisfying
assignments over N(0, 1)n is used to obtain an algorithm for satisfying assignments over {−1, 1}n), we
only sketch the argument here.

We recall the “regularity lemma for PTFs” of [DSTW10]. This lemma says that every degree-d PTF
sign(p(x)) over {−1, 1}n can be expressed as a shallow decision tree with variables at the internal nodes
and degree-d PTFs at the leaves, such that a random path in the decision tree is quite likely to reach a leaf
that has a “close-to-regular” PTF. As explained in [DDS13a], the [DSTW10] proof actually provides an

44

efficient deterministic procedure for constructing such a decision tree given p as input, and thus we have the
following lemma (see Theorem 36 of [DDS13a] for a detailed explanation of how Theorem 52 follows from
the results of [DSTW10]):

Theorem 52. Let p(x1, . . . , xn) be a multilinear degree-d PTF. Fix any τ > 0. There is an algorithm
AConstruct−Tree which, on input p and a parameter τ > 0, runs in poly(n, 2depth(d,τ)) time and outputs a
decision tree T of depth

depth(d, τ) :=
1

τ
·
(
d log

1

τ

)O(d)

,

where each internal node of the tree is labeled with a variable and each leaf ρ of the tree is labeled with a
pair (pρ, label(ρ)) where label(ρ) ∈ {+1,−1,“fail”,“regular”}. The tree T has the following properties:

1. Every input x ∈ {−1, 1}n to the tree reaches a leaf ρ such that p(x) = pρ(x);

2. If leaf ρ has label(ρ) ∈ {+1,−1} then Prx∈{−1,1}n [sign(pρ(x)) 6= label(ρ)] ≤ τ ;

3. If leaf ρ has label(ρ) = “regular” then pρ is τ -regular; and

4. With probability at most τ , a random path from the root reaches a leaf ρ such that label(ρ) = “fail”.

Proof of Theorem 1: The algorithm for approximating Prx∈{−1,1}n [p(x) ≥ 0] to ±ε works as follows. It
first runsAConstruct−Tree with its “τ” parameter set to Θ((ε/d)4d+1) to construct the decision tree T . It then
iterates over all leaves ρ of the tree. For each leaf ρ at depth dρ that has label(ρ) = +1 it adds 2−dρ to v
(which is initially zero), and for each leaf ρ at depth dρ that has label(ρ) = “regular” it runs the algorithm of
Theorem 2 on pρ (with its “ε” parameter set to Θ((ε/d)4d+1)) to obtain a value vρ ∈ [0, 1] and adds vρ ·2−dρ
to v. It outputs the value v ∈ [0, 1] thus obtained.

Theorems 52 and 2 imply that the running time is as claimed. To establish correctness of the algorithm
we will use the “invariance principle” of [MOO10] (see Theorem 2.1):

Theorem 53 ([MOO10]). Let p(x) =
∑

S⊆[n],|S|≤d pSxS be a degree-dmultilinear polynomial over {−1, 1}n
with Var[p] = 1. Suppose each coordinate i ∈ [n] has Inf i(p) ≤ τ . Then

sup
t∈R
|Prx[p(x) ≤ t]−PrG∼N(0,1)n [p(G) ≤ t]| ≤ O(dτ1/(4d+1)).

By Theorem 52, the leaves of T that are marked +1, −1 or “fail” collectively contribute at most
Θ((ε/d)4d+1) ≤ ε/2 to the error of the output value v. Theorem 53 implies that each leaf ρ at depth
dρ that is marked “regular” contributes at most 2−dρ · ε/2 to the error, so the total contribution from all such
leaves is at most ε/2. This concludes the proof of Theorem 1.

8 Application of Theorem 1: A fixed-parameter deterministic multiplicative
approximation algorithm for absolute moments

Consider the following computational problem, which we call ABSOLUTE-MOMENT: Given a degree-d
polynomial p(x1, . . . , xn) and an integer parameter k ≥ 1, compute the value Ex∈{−1,1}n [|p(x)|k] of the
k-th absolute moment of p. It is clear that the raw moment E[p(x)k] can be computed in roughly nk time
by expanding out the polynomial p(x)k, performing multilinear reduction, and outputting the constant term.
Since the k-th raw moment equals the k-th absolute moment for even k, this gives an nk time algorithm
for ABSOLUTE-MOMENT for even k. However, as shown in [DDS13a], even for d = 2 the ABSOLUTE-
MOMENT problem is #P-hard for any odd k ≥ 1, and thus it is natural to seek approximation algorithms.

45

Using the hypercontractive inequality [Bon70, Bec75] it is not difficult to show that the obvious random-
ized algorithm (draw uniform points from {−1, 1}n and use them to empirically estimate Ex∈{−1,1}n [|p(x)|k])
with high probability gives a (1±ε)-accurate estimate of the k-th absolute moment of p in in poly(nd, 2dk log k, 1/ε)
time. In this section we observe that Theorem 1 yields a deterministic fixed-parameter-tractable (1 ± ε)-
multiplicative approximation algorithm for ABSOLUTE-MOMENT:

Theorem 54. There is a deterministic algorithm which, given any degree-d polynomial p(x1, . . . , xn) over
{−1, 1}n, any integer k ≥ 1, and any ε > 0, runs in Od,k,ε(1) · poly(nd) time and outputs a value v that
multiplicatively (1± ε)-approximates the k-th absolute moment:

v ∈
[
(1− ε)Ex∈{−1,1}n [|p(x)|k], (1 + ε)Ex∈{−1,1}n [|p(x)|k]

]
.

Theorem 54 is a generaliation of the d = 2 special case which was proved in [DDS13a] (using the
deterministic approximate counting result for degree-2 PTFs which is the main result of that paper). The
proof is closely analogous to the degree-2 case so we only sketch it below; see [DDS13a] for a detailed
argument.

The first step is the following easy observation:

Observation 55. Let p(x) be a degree-d polynomial over {−1, 1}n that has Ex∈{−1,1}n [p(x)2] = 1. Then
for all k ≥ 1 we have that the k-th absolute moment Ex∈{−1,1}n [|p(x)|k] is at least cd where cd > 0 is some
universal constant (depending only on d).

Given an input degree-d polynomial p(x1, . . . , xn), we may divide by ‖p‖2 to obtain a scaled version
q = p/‖p‖2 which has ‖q‖2 = 1. Observation 55 implies that an additive±ε-approximation to E[|q(x)|k] is
also a multiplicative (1 ± Od(ε))-approximation to E[|q(x)|k]. Multiplying the approximation by ‖p‖k2 we
obtain a multiplicative (1±Od(ε))-approximation to E[|p(x)|k]. Thus to prove Theorem 54 it suffices to give
a deterministic algorithm which finds an additive ±ε-approximation to E[|q(x)|k] for degree-d polynomials
with ‖q‖2 = 1. This follows from Theorem 56 below:

Theorem 56. Let q(x) be an input degree-d polynomial over {−1, 1}n with E[q(x)2] = 1. There is an
algorithm Amoment that, on input k ∈ Z+, q, and ε > 0, runs in time Ok,d,ε(1) · poly(nd) and outputs a
value µ̃k such that ∣∣∣µ̃k −Ex∈{−1,1}[|q(x)|k]

∣∣∣ ≤ ε.
The idea behind the proof of Theorem 56 is simple. By Theorem 1, we can estimate Prx∼{−1,1}n [q(x) ≥

t] to high accuracy for any t of our choosing. Doing this repeatedly for different choices of t, we can get a de-
tailed picture of where the probability mass of the random variable q(x) lies (for x uniform over {−1, 1}n),
and with this detailed picture it is straightforward to estimate the k-th moment.

In a bit more detail, let γq(t) denote the probability mass function of q(x) when x is distributed uni-
formly over {−1, 1}n. We may write the k-th absolute moment of q as

Ex∈{−1,1}n [|q(x)|k] =

∫ ∞
−∞
|t|kγq(t)dt. (56)

Using standard tail bounds on polynomials over {−1, 1}n, for a suitable choice of M = Ok,d,ε(1) we
have that

Ex∈{−1,1}n [|q(x)|k] ∈
[∫ M

−M
|t|kγq(t)dt,

∫ M

−M
|t|kγq(t)dt+ ε/4

]
,

and hence to approximate Ex∼N(0,1)n [|q(x)|k] to an additive ±ε, it suffices to approximate
∫M
−M |t|

kγq(t)dt
to an additive ±3ε/4.

46

We may write
∫M
−M |t|

kγq(t)dt as

M/∆∑
j=1−M/∆

∫ j∆

(j−1)∆
|t|kγq(t)dt

(here ∆ should be viewed as a small positive value). When |j| is small the summand
∫ j∆

(j−1)∆ |t|
kγq(t)dt

may be well-approximated by zero, and when |j| is not small the summand
∫ j∆

(j−1)∆ |t|
kγq(t)dt may be

well-approximated by |j∆|kqj,∆, where

qj,∆
def
= Prx∈{−1,1}n [q(x) ∈ [(j − 1)∆, j∆).

Using Theorem 1 twice we may approximate qj,∆ to high accuracy. With a suitable choice of ∆ = Ok,d,ε(1)

and the cutoff for j being “small,” it is possible to approximate
∫M
−M |t|

kγq(t)dt to an additive ±3ε/4,
and thus obtain Theorem 56, following this approach. We leave the detailed setting of parameters to the
interested reader.

Acknowledgement. We thank Ilias Diakonikolas for his contributions in the early stages of this project. We
also thank Rafal Latala, Michel Ledoux, Elchanan Mossel, Ivan Nourdin and Krzysztof Oleszkiewicz for
answering questions about the CLT. Part of this work was done when A.D. was hosted by Oded Regev and
the Simons Institute. A.D. would like to thank them for their kind hospitality and support.

References

[ABI85] N. Alon, L. Babai, and A. Itai. A fast and simple randomized algorithm for the maximal
independent set problem. J. of Algorithms, 7:567–583, 1985.

[APL07] H. Aziz, M. Paterson, and D. Leech. Efficient algorithm for designing weighted voting games.
In IEEE Intl. Multitopic Conf., pages 1–6, 2007.

[AW85] M. Ajtai and A. Wigderson. Deterministic simulation of probabilistic constant depth circuits.
In Proc. 26th IEEE Symposium on Foundations of Computer Science (FOCS), pages 11–19,
1985.

[Bec75] W. Beckner. Inequalities in Fourier analysis. Annals of Mathematics, 102:159–182, 1975.

[Bha00] Rajendra Bhatia. Matrix Analysis. Springer Verlag, Basel, 2000.

[Bon70] A. Bonami. Etude des coefficients Fourier des fonctiones de Lp(G). Ann. Inst. Fourier (Greno-
ble), 20(2):335–402, 1970.

[Cha09] S. Chatterjee. Fluctuations of eigenvalues and second-order Poincaré inequalities. Probability
Theory and Related Fields, 143:1–40, 2009.

[CS13] D. Cartwright and B. Sturmfels. The number of eigenvalues of a tensor. Linear algebra and its
applications, 432(2):942–952, 2013.

[CW01] A. Carbery and J. Wright. Distributional and Lq norm inequalities for polynomials over convex
bodies in Rn. Mathematical Research Letters, 8(3):233–248, 2001.

[DDFS12] A. De, I. Diakonikolas, V. Feldman, and R. Servedio. Near-optimal solutions for the Chow Pa-
rameters Problem and low-weight approximation of halfspaces. In Proc. 44th ACM Symposium
on Theory of Computing (STOC), pages 729–746, 2012.

47

[DDS12] Anindya De, Ilias Diakonikolas, and Rocco A. Servedio. The inverse shapley value problem.
In ICALP (1), pages 266–277, 2012.

[DDS13a] A. De, I. Diakonikolas, and R. Servedio. Deterministic approximate counting for degree-2
polynomial threshold functions. manuscript, 2013.

[DDS13b] A. De, I. Diakonikolas, and R. Servedio. Deterministic approximate counting for juntas of
degree-2 polynomial threshold functions. manuscript, 2013.

[DHK+10] Ilias Diakonikolas, Prahladh Harsha, Adam Klivans, Raghu Meka, Prasad Raghavendra,
Rocco A. Servedio, and Li-Yang Tan. Bounding the average sensitivity and noise sensitivity of
polynomial threshold functions. In STOC, pages 533–542, 2010.

[DKN10] Ilias Diakonikolas, Daniel M. Kane, and Jelani Nelson. Bounded independence fools degree-
2 threshold functions. In Proc. 51st IEEE Symposium on Foundations of Computer Science
(FOCS), pages 11–20, 2010.

[DL82] D.C Dowson and B.V Landau. The frechet distance between multivariate normal distributions.
Journal of Multivariate Analysis, 12(3):450 – 455, 1982.

[DOSW11] I. Diakonikolas, R. O’Donnell, R. Servedio, and Y. Wu. Hardness results for agnostically
learning low-degree polynomial threshold functions. In SODA, pages 1590–1606, 2011.

[DSTW10] I. Diakonikolas, R. Servedio, L.-Y. Tan, and A. Wan. A regularity lemma, and low-weight
approximators, for low-degree polynomial threshold functions. In CCC, pages 211–222, 2010.

[FW95] J. Friedman and A. Wigderson. On the Second Eigenvalue of Hypergraphs. Combinatorica,
15(1):43–65, 1995.

[GHR92] M. Goldmann, J. Håstad, and A. Razborov. Majority gates vs. general weighted threshold gates.
Computational Complexity, 2:277–300, 1992.

[GKM+11] Parikshit Gopalan, Adam Klivans, Raghu Meka, Daniel Stefankovic, Santosh Vempala, and
Eric Vigoda. An fptas for #knapsack and related counting problems. In FOCS, pages 817–826,
2011.

[GL96] Gene Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins University
Press, Baltimore, MD, 1996.

[GMR13] P. Gopalan, R. Meka, and O. Reingold. DNF sparsification and a faster deterministic counting
algorithm. Computational Complexity, 22(2):275–310, 2013.

[GOWZ10] P. Gopalan, R. O’Donnell, Y. Wu, and D. Zuckerman. Fooling functions of halfspaces under
product distributions. In IEEE Conf. on Computational Complexity (CCC), pages 223–234,
2010.

[Hås94] J. Håstad. On the size of weights for threshold gates. SIAM Journal on Discrete Mathematics,
7(3):484–492, 1994.

[Jan97] S. Janson. Gaussian Hilbert Spaces. Cambridge University Press, Cambridge, UK, 1997.

[Kan10] D.M. Kane. The Gaussian surface area and noise sensitivity of degree-d polynomial threshold
functions. In CCC, pages 205–210, 2010.

48

[Kan11a] Daniel M. Kane. k-independent gaussians fool polynomial threshold functions. In IEEE Con-
ference on Computational Complexity, pages 252–261, 2011.

[Kan11b] Daniel M. Kane. A small prg for polynomial threshold functions of gaussians. In FOCS, pages
257–266, 2011.

[Kan12a] Daniel M. Kane. The correct exponent for the gotsman-linial conjecture. CoRR, abs/1210.1283,
2012.

[Kan12b] Daniel M. Kane. A pseudorandom generator for polynomial threshold functions of gaussian
with subpolynomial seed length. CoRR, abs/1210.1280, 2012.

[Kan12c] Daniel M. Kane. A structure theorem for poorly anticoncentrated gaussian chaoses and appli-
cations to the study of polynomial threshold functions. In FOCS, pages 91–100, 2012.

[KKMS08] A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces. SIAM
Journal on Computing, 37(6):1777–1805, 2008.

[KRS12] Zohar Shay Karnin, Yuval Rabani, and Amir Shpilka. Explicit dimension reduction and its
applications. SIAM J. Comput., 41(1):219–249, 2012.

[Lat06] R. Latala. Estimates of moments and tails of gaussian chaoses. Annals of Probability,
34(6):2315–2331, 2006.

[Lat13] R. Latala. Personal communication, 2013.

[Led13] M. Ledoux. Personal communication, 2013.

[LV96] M. Luby and B. Velickovic. On deterministic approximation of DNF. Algorithmica,
16(4/5):415–433, 1996.

[LVW93] Michael Luby, Boban Velickovic, and Avi Wigderson. Deterministic approximate counting of
depth-2 circuits. In Proceedings of the 2nd ISTCS, pages 18–24, 1993.

[MK61] J. Myhill and W. Kautz. On the size of weights required for linear-input switching functions.
IRE Trans. on Electronic Computers, EC10(2):288–290, 1961.

[MOO10] E. Mossel, R. O’Donnell, and K. K. Oleszkiewicz. Noise stability of functions with low influ-
ences: Invariance and optimality. Annals of Mathematics, 171:295–341, 2010.

[MP68] M. Minsky and S. Papert. Perceptrons: an introduction to computational geometry. MIT Press,
Cambridge, MA, 1968.

[MTT61] S. Muroga, I. Toda, and S. Takasu. Theory of majority switching elements. J. Franklin Institute,
271:376–418, 1961.

[Mur71] S. Muroga. Threshold logic and its applications. Wiley-Interscience, New York, 1971.

[MZ09] R. Meka and D. Zuckerman. Pseudorandom Generators for Polynomial Threshold Functions.
Available at http://arxiv.org/abs/0910.4122, 2009.

[MZ10] Raghu Meka and David Zuckerman. Pseudorandom generators for polynomial threshold func-
tions. In STOC, pages 427–436, 2010.

49

[NN93] J. Naor and M. Naor. Small-bias probability spaces: efficient constructions and applications.
SIAM J. on Comput., 22(4):838–856, 1993. Earlier version in STOC’90.

[Nou12] I. Nourdin. Lectures on gaussian approximations with malliavin calculus. Technical Report
http://arxiv.org/abs/1203.4147v3, 28 June 2012.

[Nou13] I. Nourdin. Personal communication, 2013.

[NP09] I. Nourdin and G. Peccati. Stein’s method meets malliavin calculus: a short survey with new
estimates. Technical Report http://arxiv.org/abs/0906.4419v2, 17 Sep 2009.

[NPR10] I. Nourdin, G. Peccati, and A. Réveillac. Multivariate normal approximation using Stein’s
method and Malliavin calculus. Ann. Inst. H. Poincaré Probab. Statist., 46(1):45–58, 2010.

[Ole13] K. Oleszkiewicz. Personal communication, 2013.

[Orp92] P. Orponen. Neural networks and complexity theory. In Proceedings of the 17th International
Symposium on Mathematical Foundations of Computer Science, pages 50–61, 1992.

[Pod09] V. V. Podolskii. Perceptrons of large weight. Problems of Information Transmission, 45(1):46–
53, 2009.

[Ser07] R. Servedio. Every linear threshold function has a low-weight approximator. Comput. Com-
plexity, 16(2):180–209, 2007.

[She08] Alexander A. Sherstov. Halfspace matrices. Computational Complexity, 17(2):149–178, 2008.

[She09] A. Sherstov. The intersection of two halfspaces has high threshold degree. In Proc. 50th IEEE
Symposium on Foundations of Computer Science (FOCS), 2009.

[SSSS11] Shai Shalev-Shwartz, Ohad Shamir, and Karthik Sridharan. Learning kernel-based halfspaces
with the 0-1 loss. SIAM J. Comput., 40(6):1623–1646, 2011.

[Tre04] L. Trevisan. A note on approximate counting for k-DNF. In Proceedings of the Eighth Inter-
national Workshop on Randomization and Computation, pages 417–426, 2004.

[Vio09] E. Viola. The Sum of d Small-Bias Generators Fools Polynomials of Degree d. Computational
Complexity, 18(2):209–217, 2009.

50

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

