
HITTING-SETS FOR LOW-DISTANCE MULTILINEAR DEPTH-3

MANINDRA AGRAWAL, ROHIT GURJAR, ARPITA KORWAR, AND NITIN SAXENA

Abstract. The depth-3 model has recently gained much importance, as it has become
a stepping-stone to understanding general arithmetic circuits. Its restriction to multi-
linearity has known exponential lower bounds but no nontrivial blackbox identity tests.
In this paper we take a step towards designing such hitting-sets. We define a notion of
distance for multilinear depth-3 circuits (say, in n variables and k product gates) that
measures how far are the partitions from a mere refinement. The 1-distance strictly sub-
sumes the set-multilinear model, while n-distance captures general multilinear depth-3.
We design a hitting-set in time poly(nδ log k) for δ-distance. Further, we give an exten-
sion of our result to models where the distance is large (close to n) but it is small when
restricted to certain variables. This implies the first subexponential whitebox PIT for
the sum of constantly many set-multilinear depth-3 circuits.

We also explore a new model of read-once algebraic branching programs (ROABP)
where the factor-matrices are invertible (called invertible-factor ROABP). We design a

hitting-set in time poly(sizew
2

) for width-w invertible-factor ROABP. Further, we could
do without the invertibility restriction when w = 2. Previously, the best result for width-2
ROABP was quasi-polynomial time (Forbes-Saptharishi-Shpilka, arXiv 2013).

The common thread in all these results is the phenomenon of low-support ‘rank con-
centration’. We exploit the structure of these models to prove rank-concentration after
a ‘small shift’ in the variables. Our proof techniques are stronger than the results of
Agrawal-Saha-Saxena (STOC 2013) and Forbes-Saptharishi-Shpilka (arXiv 2013); giv-
ing us quasi-polynomial-time hitting-sets for models where no subexponential whitebox
algorithms were known before.

Contents

1. Introduction 2
1.1. Main idea of Theorem 1 5
2. Preliminaries 5
2.1. General Approach 6
2.2. Kronecker substitution 7
3. Low-distance multilinear depth-3 circuits: Theorem 1 7
3.1. δ-distance circuits 7
3.2. True coefficients 9
3.3. Phases 9
3.4. Partial derivatives 10
3.5. `-concentration 10
4. Base sets with δ distance: Theorem 2 12
5. Sparse-Invertible Width-w ROABP: Theorem 3 13
6. Discussion 15
7. Acknowledgements 15
References 15
Appendix A. Complete proofs of Section 3 15
Appendix B. Proof of Lemma 19 (Small-Neighborhood `0 − concentration) 18

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 174 (2013)

2 AGRAWAL, GURJAR, KORWAR, AND SAXENA

Appendix C. Complete proofs of Section 4 22
Appendix D. Building the Proof of Theorem 3 24
D.1. Low Block-Support 25
D.2. Low-support concentration 27
Appendix E. Width-2 Read Once ABP 29
Appendix F. Sum of set-multilinear circuits 30

1. Introduction

The problem of Polynomial Identity Testing is that of deciding if a given polynomial is
nonzero. The complexity of the question depends crucially on the way the polynomial is
input to the PIT test. For example, if the polynomial is given as a set of coefficients of
the monomials, then we can easily check whether the polynomial is nonzero in polynomial
time. The problem has been studied for different input models. Most prominent among
them is the model of arithmetic circuits. Arithmetic circuits are arithmetic analog of
boolean circuits and are defined over a field F. They are directed acyclic graphs, where
every node is a ‘+’ or ‘×’ gate and each input gate is a constant from the field F or a
variable from x = {x1, x2, . . . , xn}. Every edge has a weight from the underlying field F.
The computation is done in the natural way: Starting with the input nodes and proceeding
towards the output node. At each step, the weight of the edge (u, v) is multiplied with the
output of the previous gate u and then input to the next gate, v. Clearly, the output gate
computes a polynomial in F[x]. We can restate the PIT problem as: Given an arithmetic
circuit C, decide if the polynomial computed by C is nonzero in time polynomial in the
circuit size. Note that, given a circuit, computing the polynomial explicitly is not possible,
as it can have exponentially many monomials. However, given the circuit, it is easy to
compute an evaluation of the polynomial by substituting the variables with constants.

Though there is no known deterministic algorithm for PIT, there are easy random-
ized algorithms, e.g. [Sch80]. These randomized algorithms are based on the theorem: A
nonzero polynomial, evaluated at a random point, gives a nonzero value with a good prob-
ability. Observe that such an algorithm does not need to see the structure of the circuit, it
just uses the evaluations; it is a blackbox algorithm. The other kind of algorithms, where
the structure of the input is used, are called whitebox algorithms. Whitebox algorithms
for PIT have many known applications. E.g. graph matching reduces to PIT. On the
other hand, blackbox algorithms (or hitting-sets) have connections to circuit lower bound
proofs. Arguably, this is currently the only concrete approach towards lower bounds, see
[Mul12]. See the surveys by Saxena [Sax09] and Shpilka & Yehudayoff [SY10] for more
applications.

The PIT problem has been studied for various restricted classes of circuits. One such
class is depth-3 circuits. A depth-3 circuit is usually defined as a ΣΠΣ circuit: the circuit
gates are in three layers, the top layer has an output gate which is +, second layer has
all × gates and last layer has all + gates. In other words, the polynomial computed by

a ΣΠΣ circuit is of the form C(x) =
∑k

i=1 ai
∏ni
j=1 `ij , where ni is the number of input

lines to the i-th product gate and `ij is a linear polynomial of the form b0 +
∑n

r=1 brxr.
An efficient solution for depth-3 PIT is still not known. Recently, it was shown by Gupta
et al. [GKKS13], that depth-3 circuits are almost as powerful as general circuits. A
polynomial time hitting-set for a depth-3 circuit implies a quasi-poly-time hitting-set for
general circuits.

LOW-DISTANCE MULTILINEAR DEPTH-3 3

On the other hand, there are exponential lower bounds for depth-3 multilinear circuits
[RY09]. Since there is a connection between lower bounds and PIT [Agr05], we can hope
that solving PIT for depth-3 multilinear circuits should also be feasible. This should also
lead to new tools for general depth-3.

A polynomial is said to be multilinear if the degree of every variable in every term
is at most 1. The circuit C(x) is a multilinear circuit if the polynomial computed at
every gate is multilinear. A polynomial time algorithm is known only for a sub-class of
multilinear depth-3 circuits, called depth-3 set-multilinear circuits. This algorithm is due
to Raz and Shpilka [RS05] and is whitebox. In a depth-3 multilinear circuit, since every
product gate computes a multilinear polynomial, a variable occurs in at most one of the
ni linear polynomials input to it. Thus, each product gate naturally induces a partition of
the variables, where each color (i.e. part) of the partition contains the variables present in
a linear polynomial `ij . Further, if the partitions induced by all the k product gates are
the same then the circuit is called a depth-3 set-multilinear circuit.

Agrawal et al. [ASS13] gave a blackbox algorithm for this class which works in quasi-
polynomial time. Their approach is to view the product D(x) := (

∏ni
j=1 `ij)

k
i=1 as a

polynomial over the Hadamard algebra of dimension k, Hk(F), and to achieve a low-
support concentration in it. Low-support concentration means that all the coefficient
vectors in D(x) are linearly dependent on low-support coefficient vectors. We define a
new class of circuits called multilinear depth-3 circuits with δ-distance. We show low-
support concentration for this model. To achieve that we use some deeper combinatorial
properties of our model. We also use an improved version of a combinatorial property of
the transfer matrix from [ASS13, Theorem 13] and we present it with a simplified proof.
Recently, Forbes et al. [FSS13] have also improved [ASS13]. But their methods apply only
to set-multilinear formulas, and not even to 1-distance circuits.

A multilinear depth-3 circuit has δ-distance if there is an ordering on the partitions
induced by the product gates, say (P1,P2, . . . ,Pk), such that for any color in the partition
Pi, there exists a set of δ − 1 other colors in Pi such that the set of variables in the union
of these δ colors are exactly partitioned in the upper partitions, i.e. {P1,P2, . . . ,Pi−1}.
Intuitively, the distance measures how far away are the partitions from a mere refinement
sequence of partitions, P1 ≤ P2 ≤ · · · ≤ Pk. Our first main result gives a blackbox test for
this class of circuits (Section 3).

Theorem 1. Let C(x) be a δ-distance depth-3, n-variate multilinear circuit with top fan-in

k. Then there is a nO(δ log k)-time hitting-set for C(x).

Note that the running time becomes quasi-polynomial when δ is poly-logarithmic in
nk. Till now, no subexponential time test was known for this class, even in the whitebox
setting. Also, observe that the set-multilinear class is strictly subsumed in the class
of 1-distance circuits. E.g. a circuit, whose product gates induce two different partitions
P1 = {{1}, {2}, . . . , {n}} and P2 = {{1, 2}, {3, 4}, . . . , {n−1, n}}, has 1-distance but is not
set-multilinear. So, poly-logarithmic δ is a significant improvement from set-multilinear.
On the other hand, general multilinear depth-3 circuits can have at most n-distance. So,
our result is also a first step towards multilinear depth-3 circuits.

Our second result further generalizes this class to multilinear depth-3 circuits having m
base sets with δ-distance. A circuit is in this class if we can partition the set of variables
into m base sets, such that when restricted to any of these base sets, the circuit has
δ-distance. E.g. consider a circuit C, whose product gates induce two partitions P1 =

4 AGRAWAL, GURJAR, KORWAR, AND SAXENA

{{1, 2}, {3, 4}, . . . , {n − 1, n}} and P2 = {{2, 3}, {4, 5}, . . . , {n, 1}}. Clearly, C is (n/2)-
distance. But, when restricted to any of the two base sets B1 = {1, 3, . . . , n − 1} and
B2 = {2, 4, . . . , n}, C|Bi has 1-distance (in fact, it is set-multilinear). We give a quasi-
polynomial time blackbox test for this class, when m and δ are poly-logarithmic and the
base sets are known (Section 4).

Theorem 2. If C(x) is a depth-3 multilinear circuit, with top fan-in k, having m base

sets (known) with δ-distance, then there is a nO(mδ log k)-time hitting-set for C.

These results generalize to suitable higher-depth circuit models. But we focus, in this
paper, only on the depth-3 case to avoid unnecessary complicated notations. Theorem 2
also implies a whitebox PIT, for the sum of c (constant) set-multilinear depth-3 circuits

(top fan-in k), with time complexity nO(n1−ε log k), where ε := 1/2c−1 (see Appendix F).
Our third result expands the realm of low-support concentration to multilinear variants

of Arithmetic Branching Programs (ABP). An ABP is another interesting model of com-
puting polynomials. It consists of a ditected acyclic graph with a source and a sink. The
edges of the graph have polynomials as their weights. The weight of a path is the product
of the weights of the edges present in the path. The polynomial computed by the ABP is
the sum of the weights of all the paths from the source to the sink. It is well known that
for an ABP, the underlying graph can seen as a layered graph such that all paths from the
source to the sink have exactly one edge in each layer. And the polynomial computed by
the ABP can be written as a matrix product, where each matrix corresponds to a layer.
The entries in the matrices are weights of the corresponding edges. The maximum number
of vertices in a layer, or equivalently, the dimension of the corresponding matrices is called
the width of the ABP. Ben-Or & Cleve [BOC92] have shown that a polynomial computed
by a formula of logarithmic depth and constant fan-in, can also be computed by a width-3
ABP. Moreover, Saha et al. [SSS09] showed that PIT for depth-3 circuits reduces to PIT
for width-2 ABP. Hence, constant width ABP is already a strong model. Our results are
for constant width ABP with some natural restrictions.

An ABP is a read once ABP (ROABP) if the entries in the different matrices come
from disjoint sets of variables. Forbes et al. [FSS13] recently gave a quasi-polynomial time
blackbox test for ROABP, when the entries in each matrix are essentially constant-degree
univariate polynomials. Their approach, too, involves low-support concentration.

Our result is for ROABP with a further restriction. We assume that all the matrices
in the matrix product, except the left-most and the right-most matrices, are invertible.
We give a blackbox test for this class of ROABP. In contrast to [FSS13], our test works
in polynomial time if the dimension of the matrices is constant; moreover, we can handle
univariate factor matrices with any degree.

Theorem 3 (Informal version). Let C(x) = DT
0 (
∏d
i=1Di)Dd+1 be a polynomial such that

D0 ∈ Fw[xj0] and Dd+1 ∈ Fw[xjd+1
] and for all i ∈ [d], Di ∈ Fw×w[xji] is an invertible

matrix (order of the variables is unknown). Let the degree bound on Di be δ for 0 ≤ i ≤
d+ 1. Then there is a poly((δn)w

2
)-time hitting-set for C(x).

The proof technique here is very different from the first two theorems (now, we show
rank concentration over a non-commutative algebra). Our algorithm works even when the
factor matrices have their entries as general sparse polynomials (still over disjoint sets of
variables) instead of univariate polynomials (see detailed version in Section 5). Running
time in this case is quasi-polynomial. We remark that the invertibility seems to restrict
the computing power of ABP. If the matrices are 2× 2, we do not need the assumption of

LOW-DISTANCE MULTILINEAR DEPTH-3 5

invertibility (see Theorem 4, Appendix E). So, for width-2 ROABP our results are strictly
stronger than [FSS13].

1.1. Main idea of Theorem 1. As mentioned earlier, the basic idea is to show low-
support concentration in D(x), but by an efficient shift (Lemma 21). While showing
low-support concentration in set-multilinear case, the key idea of [ASS13] was to identify
low degree subcircuits of D(x) which have ‘true coefficients’, i.e. each of these subcircuits
is such that, when multiplied by an appropriate constant vector, its coefficients become
the coefficients of D(x). Then they show that an efficient shift can ensure low-support con-
centration in these subcircuits. The final step is to argue that low-support concentration
in the subcircuits translates to low-support concentration in the actual circuit.

Such true subcircuits, in a general multilinear circuit, may have a high degree. In
the case of small distance circuits, there exist true subcircuits with low degree in the last
partition. But they may have many high degree monomials in the upper (other) partitions.
That is not good, because the degree of the subcircuit affects the hitting-set size.

This inspired us to prove concentration in phases, i.e. by induction on k. We divide the
coefficients into k phases (one corresponding to each partition). Phase-j coefficients are
those which have nonzero values only in the coordinates {1, 2, . . . , j}. We show concen-
tration in successive phases (Lemma 16). In each phase, the concentration in the previous
phases is assumed.

How do we isolate phase-j coefficients? We take an appropriate partial derivative of
the circuits, which ensures that the values in the coordinates {j + 1, j + 2, . . . , k} are
zero. Since the partial derivatives add to the complexity, they should be of small order
(Observation 11).

Now, we identify subcircuits of this derivative polynomial, which have low degree in the
j-th coordinate. The high degree in other coordinates does not matter as we assume that
there is already concentration in the previous phases. We show low-support concentration
in these subcircuits (Lemma 19; it is the most technical part of the proof). This in turn
implies low-support concentration in the derivative polynomial (Lemma 20) by another
induction on the neighborhoods (defined in Section 3.1). To show low-support concentra-
tion in a subcircuit we need to show some combinatorial properties of the transfer matrix
(Lemma 26). Finally, the concentration in the derivative polynomial implies concentration
among the phase-j coefficients of D(x) (Lemma 18).

Carrying the argument from phase-1 to phase-k finishes the proof. The cost of this
is only quasipoly in k (because the dimension of the underlying vector space is k and
there is an implicit ‘doubling effect’ in Lemma 26), but exponential in δ (because the true
subcircuits have degree δ, which makes the Kronecker map expensive). Any improvement
in the latter would lead to the first nontrivial PIT for multilinear depth-3 circuits.

2. Preliminaries

[n] denotes the indices 1 to n. Let 2[n] denote the set of all subsets of [n]. Part(S)
denotes the set of all possible partitions of the set S. Elements in a partition are called
colors. The support of a monomial is the set of variables that have degree ≥ 1 in that
monomial. The support size of the monomial is the cardinality of its support. Fm×n
represents the set of all m × n matrices over the field F. FS×T , where S and T are sets,
represents the set of all |S| × |T | matrices over the field F, indexed by the elements of S
and T . The matrices in this paper are often indexed by subsets of [n].

6 AGRAWAL, GURJAR, KORWAR, AND SAXENA

A multilinear polynomial can be represented as
∑

S⊆[n] aSxS , where xS is the monomial∏
i∈S xi. We will sometimes use the notation S for the multilinear monomial xS .
Henceforth, we will only discuss polynomials computed by depth-3 multilinear circuits,

unless explicitly stated otherwise. The polynomial computed by a depth-3 circuit, C(x) =∑k
i=1 ai

∏ni
j=1 `ij can also be written as the inner product of the vector a = (a1, a2, . . . , ak)

T

and D(x), where D(x) is a polynomial over the k-dimensional Hadamard algebra Hk(F).
The Hadamard algebra Hk(F) is defined as (Fk,+, ?), where + and ? are coordinate-wise
addition and multiplication. The i-th coordinate of D(x) is

∏ni
j=1 `ij . Hence, C(x) =

aTD(x). Let coefD(xS) denote the coefficient of the monomial xS in the polynomial
D(x). The coefficients {coefD(xS) | S ⊆ [n]} of D(x) form a (≤ k)-dimensional vector
space over the base field F. Our rough plan is to show that this vector space is spanned
by the coefficients of the ‘low-degree’ monomials. We thus define `-concentration for a
polynomial D(x) whose coefficients are vectors from a k-dimensional vector space.

Definition 1 (`-concentration). Polynomial D(x) ∈ Hk(F)[x1, x2, . . . , xn] is `-concentrated
if rkF{coefD(xS) | S ⊆ [n], |S| < `} = rkF{coefD(xS) | S ⊆ [n]}.

The following Lemma from [ASS13] says that a polynomial C(x), with an `-concentrated
polynomial D(x), has a hitting set (for a proof, see Section A).

Lemma 2. If D(x) is `-concentrated, then there is a nO(`)-time hitting-set for C(x).

However, observe that low-support concentration does not exist in all polynomials D(x).
E.g. in the polynomial D(x) = c · x1x2 . . . xn, there are no low-support monomials. To
counter this problem, the polynomial is shifted. Each input xi to the polynomial is replaced
with xi + ti, where tis are symbolic constants adjoined to the base field F. Now, the input
field is considered to be the field of fractions F(t), where t = {t1, t2, . . . , tn}. Since after
shifting, the coefficients of high-support monomials contribute an additive term to the
coefficients of the low-support monomials, we can hope to prove `-concentration over this
field of fractions. We will use the notation D′(x) as well as D(x + t) to mean D(x1 +
t1, x2 + t2, . . . , xn + tn). For the example above, D′(x) =

∑
S⊆[n] c · tS̄xS . The dependence

of coefD(xS) over the field F(t) is given by coefD′(xS) = c · tS̄ = tS̄ coefD′(x∅). Thus, in
the above example, D′(x) is `-concentrated for ` = 1.

We conjecture that O(log n+ log k)-concentration can be proven for all multilinear cir-
cuits after an appropriate shift. Agrawal, Saha & Saxena ([ASS13]) have proven O(log k)-
concentration of set-multilinear circuits after an efficient shift. Here, we study low-support
concentration for more general models, by developing stronger techniques.

2.1. General Approach. How do we prove that the high-support coefficients of D′ are
dependent on the low-support coefficients? Do we even know that a given high-support
coefficient is dependent on other coefficients? The reason we believe such a dependency
exists is because of shifting. A monomial xS , when the circuit is shifted, contributes its
coefficient, denoted by uS , to the coefficients of all of its subsets: u′T := coefD′(xT) =∑

S⊇T uStS\T . The polynomial D′(x− t) = D(x), i.e. by shifting every variable xi by −ti
in D′(x), we get back D(x). Thus, uT =

∑
S⊇T u

′
StS\T (−1)|S\T |. This can be represented

as U = U ′ ·M, where U ∈ F[k]×2[n] and U ′ ∈ (F(t))[k]×2[n] represent the coefficients in the
polynomials D(x) and D′(x) respectively. The matrix M has (S, T)-th entry

M(S, T) =

{
tS\T (−1)|S\T | if T ⊆ S,
0 otherwise.

LOW-DISTANCE MULTILINEAR DEPTH-3 7

Equivalently, we can writeM = A−1MA, whereM(S, T) = 1 if T ⊆ S and 0 otherwise,

and A is a diagonal 2[n] × 2[n] matrix where the (T, T)-th entry is (−1)|T |t−1
T .

To analyze the dependencies among vectors in U ′ we take a dependency for the vectors
in U and lift it. Suppose a dependency for the U vectors is:

∑
T αTuT = 0, αT ∈ F. Now,

replace the coefficients uT with an equivalent expression in terms of the coefficients u′S .

We get
∑

T αT
∑

S⊇T u
′
StS\T (−1)|S\T | = 0. The coefficient of u′S in the dependency is∑

T⊆S αT tS\T (−1)|S\T |. The coefficient for each u′S is nonzero, and thus, it participates
non-trivially in a dependency.

There are two problems here. First, we do not directly get dependencies which show
that high-support coefficients are in the span of low-support coefficients. There must be
one such dependency for each high-support u′S , which shows that it is in the span of low-
support coefficients. Existence of such dependencies will be shown in the later sections,
by considering all the dependencies of the U vectors (null vectors of U) and their lifts.

The other problem is that, even if low-support concentration does exist, we are substi-
tuting (xi + ti)s instead of xis and then computing low-support coefficients (Lemma 2).
The coefficients themselves can be exponentially large polynomials in the variables t, and
thus cannot be computed efficiently. It turns out that we can substitute the shift variables
with an efficient univariate map and show low-support concentration.

2.2. Kronecker substitution. The shift variables tis are replaced with powers of a single
variable t. Let us say, the degree of the variable t is upper bounded by some function
g(n). Then the t-degree of the polynomial computed by the depth-3 multilinear circuit
is bounded by ng(n). The computation is thus efficient when the shift is univariate and
‘small’. The univariate map we use will need to separate all (≤ `) support monomials for
some small `, i.e. all (≤ `) support monomials should be mapped to distinct powers of t
(the map can be seen as acting on monomials in the natural way e.g. φ(t1t2) = φ(t1)φ(t2)).
This map will be denoted by φ`. For the time complexity of generating such maps, see
Lemma 25 (Appendix A). We now describe the effect of the shifting map on the final time
complexity. The notation D(x+φ(t)) will mean D(x1 +φ(t1), x2 +φ(t2), . . . , xn +φ(tn)).

Lemma 3 (`-Concentration to hitting-sets). If for a polynomial D(x) ∈ Hk(F)[x], there

exists a set of f(n)-many maps from t to {ti}g(n)
i=1 such that for at least one of the maps

φ, the shifted polynomial D(x + φ(t)) has `-concentration, then C(x) = aTD(x), for any

a ∈ Fk, has an nO(`)f(n)g(n)-time hitting-set. (Proof in Appendix A.)

Now that we are clear about the general technique, we can proceed to proving `-
concentration in some interesting models.

3. Low-distance multilinear depth-3 circuits: Theorem 1

The main model for which we study low-support concentration is depth-3 multilinear
circuits with ‘small distance’.

3.1. δ-distance circuits. Each product gate in a depth-3 multilinear circuit induces a
partition on the variables. Let these partitions be P1,P2, . . . ,Pk.

Definition 4 (Distance for a partition sequence, d(P1, . . . ,Pk)). Let P1,P2, . . . ,Pk ∈
Part([n]) be the k partitions of the variables {x1, x2, . . . , xn}. Then d(P1,P2, . . . ,Pk) =: δ if
∀i ∈ {2, 3, . . . , k}, ∀colors Y1 ∈ Pi, ∃Y2, Y3, . . . , Yδ′ ∈ Pi(δ′ ≤ δ) such that Y1∪Y2∪· · ·∪Yδ′
equals a union of some colors in Pj ,∀j ∈ [i− 1].

8 AGRAWAL, GURJAR, KORWAR, AND SAXENA

In other words, in every partition Pi, each color Y1 has a ‘friendly neighborhood’
{Y1, Y2, . . . , Yδ′}, consisting of at most δ colors, which is exactly partitioned in the ‘upper
partitions’. We call Pi, an upper partition relative to Pj (and Pj , a lower partition rel-
ative to Pi), if i < j. For a color Xa of a partition Pj , let nbdj(Xa) denote its friendly
neighborhood. The friendly neighborhood nbdj(xi) of a variable xi in a partition Pj is
defined as nbdj(colorj(xi)), where colorj(xi) is the color in the partition Pj that contains
the variable xi. The friendly neighborhood nbdj({xi}i∈I) of a set of variables {xi}i∈I in
a partition Pj is given by

⋃
i∈I nbdj(xi).

Definition 5 (δ-distance circuits). A multilinear depth-3 circuit C has δ-distance if
its product gates can be ordered to correspond to a partition sequence (P1, . . . ,Pk) with
d(P1,P2, . . . ,Pk) ≤ δ.

The corresponding ΠΣ circuit D(x) over Hk(F) is also said to have δ-distance.

Every depth-3 multilinear circuit is thus an n-distance circuit. A circuit with a partition
sequence, where the partition Pi is a refinement of the partition Pi+1,∀i ∈ [k− 1], exactly
characterizes a 1-distance circuit. All depth-3 multilinear circuits have distance between
1 and n. Also observe that the circuits with 1-distance subsume set-multilinear circuits.
Friendly neighborhoods - To get a better picture, we ask: Given a color Xa of a par-
tition Pj in a circuit D(x), how do we find its friendly neighborhood nbdj(Xa)? Consider
a graph Gj which has the colors of the partitions {P1,P2, . . . ,Pj}, as its vertices. For all
i ∈ [j − 1], there is an edge between the colors X ∈ Pi and Y ∈ Pj if they share at least
one variable. Observe that if any two colors Xa and Xb of partition Pj are reachable from
each other in Gj , then, they should be in the same neighborhood. As reachability is an
equivalence relation, the neighborhoods are equivalence classes of colors.

Moreover, observe that for any two variables xa and xb, if their respective colors in
partition Pj , colorj(xa) and colorj(xb) are reachable from each other in Gj then their
respective colors in partition Pj+1, colorj+1(xa) and colorj+1(xb) are also reachable from
each other in Gj+1. Hence,

Observation 6. If at some partition, the variables xa and xb are in the same neigh-
borhood, then, they will be in the same neighborhood in all of the lower partitions. I.e.
nbdj(xa) = nbdj(xb) =⇒ nbdi(xa) = nbdi(xb), ∀i ≥ j.

In other words, at the level of the variables, the neighborhoods in the upper partitions
are refinements of the neighborhoods in the lower partitions.

We now claim that any subcircuit of a δ-distance circuit D(x), also has δ-distance.

Observation 7 (Subcircuit of D(x)). Let E ∈ Hj(F)[x] be a subcircuit of a δ-distance
circuit D(x), obtained by replacing an arbitrary set of linear factors in each coordinate
of D(x) with 1, and restricting the circuit to the coordinates 1 to j. Then E is also a
δ-distance circuit.

Proof. A linear factor bi0+
∑

r birxir which is replaced with 1, can be viewed as 1+
∑

r 0·xir .
Such a subcircuit induces the same partition sequence as circuit D. When we restrict the
circuit to the coordinates 1 to j, we get a subsequence of this partition sequence. Clearly,
the subsequence also has δ-distance. �

Since there exists a set of colors (linear factors in the circuit C) in Pi (i ∈ [j]) that
exactly contain the variables of one neighborhood, nbdj(Xa), we can define the following
subcircuit of D(x).

LOW-DISTANCE MULTILINEAR DEPTH-3 9

Definition 8 (towerj(X)). For a neighborhood X in partition Pj, we define a towerj(X)
as a polynomial over Hj(F), such that its i-th coordinate (i ≤ j) is the product of exactly
those linear factors (in the i-th product gate of the circuit C) that contain the variables of
the neighborhood X .

We can define a tower over a union of neighborhoods (∪ri=1Xi) in partition Pj as
towerj(∪ri=1Xi) := towerj(X1) ? towerj(X2) ? · · · ? towerj(Xr). For any such tower E =
towerj(∪ri=1Xi), nbdj(E) will denote the union of neighborhoods (∪ri=1Xi). For a set of
variables S, towerj(S), is the tower over nbdj(S). For a neighborhood X in partition
Pj , the variables in towerj(X) are the variables in X , denoted by both var(towerj(X))
and var(X). Observe that the towers over any two neighborhoods in partition Pj are
polynomials over a disjoint set of variables.

The following observation says that the coefficient of a monomial in a product of towers
is equal to the product of its ‘support coefficients’ in the individual towers.

Observation 9. Let R and T be two sets of variables coming from two disjoint sets of
neighborhoods of partition Pj. Then, the coefficients of monomial S ⊆ R∪T in towerj(R)?
towerj(T) is given by coeftowerj(R)?towerj(T)(S) = coeftowerj(R)(S∩R)?coeftowerj(T)(S∩T).

3.2. True coefficients. We will be proving low-support concentration in some special
subcircuits E′(x) (see Observation 7) of D′(x) (the shifted polynomial). This would
eventually prove low-support concentration of D′(x). The coefficient coefE′(xS) of the
monomial xS in the subcircuit E′(x) is given by coefD′(xS) = constE′ ? coefE′(xS), where
constE′ is the product of the constant parts of all linear factors not in E′(x). Thus, it is
enough to prove `-concentration within E′(x) since any dependency in E′(x) translates to
a dependency in D′(x) by multiplying throughout with a constant.

All the monomials which participate in a dependency, and hence, all the monomials
occurring in E′(x) should have true coefficients. I.e. each monomial should have a coeffi-
cient in E′(x) similar to that in D′(x). I.e. constE′ ? coefE′(xT) = 0 or coefD′(xT), for all
monomials T .

In the next subsection, we will study a few properties of the subcircuit E′(x), for which
we prove low-support concentration.

3.3. Phases. Since true coefficients have to be used, E′(x) has to be (roughly) a tower
over a (small) set of neighborhoods. Thus, though the lowest partition in E′(x) will
have a few linear factors, the higher partitions may have O(n) linear factors. This blows
up the support size of the monomials in E′(x). We intend to show (by induction) that
these coefficients of the high-support monomials are `-concentrated. Note that these high-
support monomials come only from the upper partitions.

We use the refinement property of neighborhoods (Observation 6) to categorize the
monomials of the polynomial D(x) into k phases. Roughly speaking, the phase of a
monomial S is the lowest partition from which S can possibly be generated. If (δ + 1)
variables of S belong to the same neighborhood of partition Pj+1, then S cannot be
generated from this partition, or the partitions below it, as we will soon see. This motivates
us to define the phase of a monomial as:

Definition 10 (Phase-j). A monomial S is in phase-j if the partition Pj is the lowest
partition with ≤ δ of its support variables in each of its neighborhoods.

A phase-j monomial can be characterized by the presence of a pivot tuple.

Observation 11 (Pivot tuple). Let j ∈ [k − 1]. A monomial S is in the j-th phase iff

10 AGRAWAL, GURJAR, KORWAR, AND SAXENA

(1) There is no neighborhood of the upper partitions {Pi}ji=1 that contributes more
than δ variables to the monomial S, and,

(2) there exist (δ+1) variables in its support (called a pivot tuple) that are in the same
neighborhood of the partition Pj+1. This pivot tuple is in the same neighborhood

of all the lower partitions {Pi}ki=j+1.

A monomial is in the k-th phase if it is not in any of the previous phases. (Proof is by
applying Observation 6 on Definition 10.)

Observation 12. A monomial S belongs to exactly one of the k phases, denoted by
phase(S).

Observation 13. A monomial S may have more than one pivot tuples. Observe that
phase(R) = phase(S), for all pivots R of a monomial S.

Since every superset of a monomial S contains its pivot tuple, pivot(S),

Observation 14. For all supersets T ⊇ S, phase(T) ≤ phase(S).

In a δ-distance circuit, a neighborhood has at most δ colors. Hence, for any phase-j
monomial, at least two of its (δ + 1) pivot variables, have the same color in the lower
partitions {Pi}ki=j+1. They come from the same linear factor of the circuit C. Thus,

Observation 15. If a monomial S is in the j-th phase, then, its coefficient vector is zero
in the coordinates {j + 1, j + 2, . . . , k}.

Since the coordinates {j+1, j+2, . . . , k} in the coefficients of phase-(≤ j) monomials are
0, they can be ignored when the linear dependencies among the coefficients of phase-(≤ j)
monomials are studied. For phase-j, we discuss the linear dependencies among coefficients
of phase-(≤ j) monomials, i.e. vectors limited to the (≤ j)-th coordinates. Coefficients of
phase-j monomials will be called phase-j coefficients.

3.4. Partial derivatives. All the monomials in phase-j are identified by the existence of
at least one pivot tuple. Consider a phase-j monomial S with a pivot R of phase-j (Obser-
vation 13). We will prove `-concentration (linear dependence on (≤ `)-support coefficients)
among the coefficients of all the monomials that include R. Since all the monomials now
include R, the (> j)-th coordinates in the polynomial D′(x) are 0 (Observations 13, 14,
15). The polynomial could be restricted to coordinates 1 to j. We prove `-concentration
after taking partial derivative with respect to xR. This is encapsulated in Observation 17.

In other words: In the linear factors of C corresponding to the partitions {Pi}ji=1 that
include the variables of R, we pick the monomial xR and its coefficient. Then, we prove
low-support concentration in the remaining polynomial.

3.5. `-concentration. We now come to the main subsection of the paper. Let `0 =
log2(k+1), ` = δ+1+`0 and D′(x) = D(x+φδ`0(t)), where D(x) ∈ Hk(F)[x] is a δ-distance
circuit and φδ`0 (defined in Subsection 2.2) is a univariate map which separates all (≤ δ`0)
support monomials. We prove `-concentration in the polynomial D′(x) (Lemma 21),

because of which, a nO(δ log k) time hitting-set exists for the δ-distance depth-3 multilinear
circuit (Theorem 1).

3.5.1. `-concentration in each phase. As already stated in Subsection 3.3, proof of `-
concentration in D′(x) is by induction on the phases. The monomials of each phase
are progressively shown to be `-concentrated: In this subsection, when we say that a
phase-i monomial is `-concentrated, we mean that its coefficient is linearly dependent on

LOW-DISTANCE MULTILINEAR DEPTH-3 11

coefficients of (< `)-support monomials of phase-(≤ i). The following lemma shows one
step of the induction.

Lemma 16 (Phase-(< j) to Phase-j). If the monomials in D′(x) of phase-(< j) are `-
concentrated, then the monomials of phase-j are `-concentrated. `-Concentration exists in
phase-1 without any preconditions.

Proof. Since phase-0 does not exist, the monomials of phase-0 are vacuously `-concentrated.
Now, when the monomials of phase-(< j) are `-concentrated, Lemma 18 proves `-concentration
in all phase-j monomials that include the phase-j pivot R. Every monomial of phase-j
has such a pivot from Observation 11. �

The following observation about D′(x) will be used in the next lemma.

Observation 17 (D′R, E
′
R and Decomposition of coefficients). For any R ⊆ [n], we define

D′R(x) ∈ Hk(F(t))[x] to be the polynomial, obtained from D′(x), where each coordinate is
the product of those linear factors, in the corresponding coordinate of D′(x), that include
the variables of R. Let E′R(x) ∈ Hk(F(t))[x] be the polynomial, obtained from D′(x), where
each coordinate is the product of those linear factors, in the corresponding coordinate of
D′(x), that do not include the variables of R. I.e. D′(x) = D′R(x) ? E′R(x). Then, for all
supersets S of R, coefD′(xS) = coefD′R(xR) ? coefE′R(xS\R).

Proof. The observation is easy for the coordinates where the linear factors that support
R and S \R are disjoint. In the coordinates where at least one variable, say xa, of S \R is
included in the linear factors in D′R(x), coefE′R(xS\R) is zero in these coordinates because

the variable xa ∈ S \ R is present in only one linear factor, which is not in E′R. Whereas
coefD′(xS) is zero in these coordinates because at least two variables of S are present in
the same linear factor in D′R. �

Lemma 18 (Concentration in monomials that include R). Let R be a phase-j monomial
such that |R| = δ + 1. If `-concentration at phase-(< j) exists, then the monomials that
include R are `-concentrated.

Proof. We show that the coefficients, whose support include R, are linearly dependent on:
The low-support coefficients, whose support include R, and phase-(< j) coefficients.

Consider the polynomial E′R(x) of D′(x), restricted to coordinates 1 to j. Lemma 20,
together with Observation 7, proves `0-concentration for the monomials in E′R(x) modulo
the coefficients in phase-(< j). I.e. ∀ monomial S′ in E′R(x),

coefE′R(xS′) =
∑

T ′:|T ′|<`0,
T ′∈phase-j of E′R

αT ′ coefE′R(xT ′) +
∑

T ′∈phase-(<j) of E′R

αT ′ coefE′R(xT ′),

where αT ∈ F(t) and the monomials are from E′R(x). Since the supports of R and S′ are
disjoint, from Observation 17, coefD′(xS′∪R) = coefD′R(xR) ? coefE′R(xS′), ∀ monomial S′

in E′R(x).
Therefore, multiplying throughout with coefD′R(xR),

coefD′(xS′∪R) =
∑

T ′:|T ′|<`0,
T ′∈phase-j of E′R

αT ′ coefD′(xT ′∪R) +
∑

T ′∈phase-(<j) of E′R

αT ′ coefD′(xT ′∪R).

Let S = S′ ∪ R and T = T ′ ∪ R. From Observation 14, even after including R, a
phase-(< j) monomial remains a phase-(< j) monomial and a phase-j monomial remains

12 AGRAWAL, GURJAR, KORWAR, AND SAXENA

a phase-(≤ j) monomial. |R| = δ + 1. Rewriting gives,

coefD′(xS) =
∑

T :|T |<`0+δ+1,

T∈phase-(≤j) of D′

αT ′ coefD′(xT) +
∑

T∈phase-(<j) of D′
αT ′ coefD′(xT).

coefD′(xS) is thus linearly dependent on: (< `) support coefficients, and the coefficients
in the upper phases. The upper phase monomials are already `-concentrated. Hence,
coefD′(xS) is also `-concentrated.

This is proven for every monomial S with R as its subset. �

3.5.2. `0-concentration in the “last” phase. Lemma 18 needed `0-concentration of E′R mod-
ulo its phase-(< j) coefficients. Similar to E′R, we can define a polynomial ER of D (Ob-
servation 17). It is easy to see that E′R = ER(x + φδ`0(t)). By Observation 7, ER is also
a δ-distance circuit. We will actually give a general result that for any δ-distance circuit
E(x) ∈ Hj [x], its shifted version E′ := E(x + φδ`0(t)) has `0-concentration modulo its
phase-(< j) coefficients. Here, phases for coefficients, neighborhoods in the partitions and
towers over the neighborhoods, are defined for E′, similar to D′. Note that j is the last
phase of E′, as it is over Hj(F(t)). For any E′(x) ∈ Hj(F(t))[x], let VE′ denote the space
spanned by the phase-(< j) coefficients of E′.

The proof is in two parts. Let ‖nbdj(E
′)‖ be the number of neighborhoods in E′

in its partition Pj . The first part is to show the result for smaller circuits E′, when
‖nbdj(E

′)‖ ≤ `0. This is done in Lemma 19. The second part is to prove it for larger
circuits using induction. This is done in Lemma 20.

Lemma 19 (Small-neighborhood `0-concentration). Let E(x) ∈ Hj(F)[x] be a δ-distance
circuit such that ‖nbdj(E

′)‖ ≤ `0. Then E′(x) = E(x + φδ`0(t)) has `0-concentration
modulo VE′. (Proof in Appendix B.)

Lemma 20 (Subcircuit-`0-concentration). Let F (x) ∈ Hj(F)[x] be a δ-distance circuit.
Then, F ′(x) = F (x+ φδ`0(t)) has `0-concentration modulo VF ′. (Proof in Appendix A.)

3.5.3. Proving Theorem 1. From Lemma 16, we directly get Lemma 21:

Lemma 21. If D ∈ Hk(F)[x] is a δ-distance circuit, then D′ has `-concentration.

We now prove the main theorem. If `-concentration exists, then a hitting-set exists.

Proof of Theorem 1. We can write C(x) = aTD(x) for some a ∈ Fk and D(x) ∈ Hk(F)[x].
From Lemma 21, D(x + φδ`0(t)) has `-concentration. Now, the map φδ`0 separates all

the monomials of support ≤ δ`0. The number of such monomials is nO(δ`0). Hence from
Lemma 25 (Appendix A), φδ`0 can be generated by trying N -many monomial maps which

have degree ≤ N logN , where N := nO(δ`0). Now, from Lemma 3 we directly get a
nO(δ log k)-time hitting-set. �

4. Base sets with δ distance: Theorem 2

In this section we further generalize the class of polynomials, for which we can give an
efficient test, beyond low-distance. Basically, it is enough to have low-distance “projec-
tions”.

Definition 22. A multilinear depth-3 circuit is said to have m-base-sets-δ-distance if there
is a partition of the variable set x into base sets {x1, x2, . . . , xm} such that for any i ∈ [m],
restriction of C on the i-th base set, i.e. C|(xj=0 ∀j 6=i) has δ-distance.

LOW-DISTANCE MULTILINEAR DEPTH-3 13

As discussed in the previous section, for a depth-3 circuit C we can write C(x) =
aT ·D(x), where a ∈ Hk(F) and D(x) ∈ Hk(F)[x]. We say a polynomial D(x) ∈ Hk(F)[x]
has m-base-sets-δ-distance if the corresponding circuit C has m-base-sets-δ-distance. We
will show that such a polynomial D(x) will also have some appropriately low-support
concentration after an efficient shift (Lemma 31, Appendix C).

From Lemma 21, we know that if a polynomial D(x) ∈ Hk(F)[x] has δ-distance then
D(x + φδ`0(t)) has `-concentration. The basic idea for a polynomial D(x) having m-
base-sets-δ-distance, is to use a different shift variable for each base set. Hence, it is
necessary that the base sets are known. Except this knowledge, the test is blackbox.
The basic argument is to view the polynomial D(x) as a polynomial over the variable
set xm and whose coefficients lie in Hk(F)[x1, x2, . . . , xm−1]. From this perspective, it
has δ-distance and hence we can achieve low-support concentration. Further, we argue
low-support concentration in its coefficients, which themselves have (m − 1)-base-sets-δ-
distance (Lemma 30). The proof is by induction on the number of base sets.

Let ti be the set of shift variables for xi for any i ∈ [m] (|ti| = |xi|). Let Ii denote the
set of indices corresponding to the variables in xi, for all i ∈ [d]. We define our shifting

map φmδ`0 as follows: ∀i ∈ m, φmδ`0 : ti 7→ {tji}∞j=0 such that for any two sets S, T ⊆ Ii with

|S|, |T | ≤ δ`0, φmδ`0(tS) 6= φmδ`0(tT) for all i ∈ [m].

Proof of Theorem 2. Let C(x) = aT · D(x) for some a ∈ Hk(F) and D(x) ∈ Hk(F)[x].
Lemma 31 (Appendix C) shows that D(x+φmδ`0(t)) has (m(`−1)+1)-concentration. Hence,

from Lemma 2, C(x + φmδ`0(t)) has nO(m`)-time hitting-set. Moreover, each evaluation of

C(x+ φmδ`0(t)) is a polynomial in {t1, t2, . . . , tm}. Let us say the individual degree bound
on this polynomial is d. Then the time taken to compute this polynomial would be
proportional to the number of monomials in it, i.e. (d+ 1)m.

For the degree bound we must look at the map φmδ`0 . The map φmδ`0 separates all δ`0

support monomials. There are nO(δ`0) such monomials. From Lemma 25 (Appendix A),
we need to try N maps each with highest degree N logN to get the desired map, where
N = nO(δ`0). Hence, the total complexity is nO(m`)NO(m) = nO(mδ log k). �

5. Sparse-Invertible Width-w ROABP: Theorem 3

An ABP is a directed graph with d+ 1 layers of vertices {V0, V1, . . . , Vd} such that the
edges are only going from Vi−1 to Vi for any i ∈ [d]. As a convention, V0 and Vd have only
one node each, let the nodes be v0 and vd respectively. A width-w ABP has |Vi| ≤ w for
all i ∈ [d]. Let the set of nodes in Vi be {vi,j | j ∈ [w]}. All the edges in the graph have
weights from F[x], for some field F. For an edge e, let us denote its weight by w(e). For
a path p from v0 to vd, its weight w(p) is defined to be the product of weights of all the
edges in it, i.e.

∏
e∈pw(e). Consider the polynomial C(x) =

∑
p∈paths(v0,vd)w(p) which is

the sum of the weights of all the paths from v0 to vd. This polynomial C(x) is said to be
computed by the ABP.

It is easy to see that this polynomial is the same asDT
0 (
∏d−2
i=1 Di)Dd−1, whereD0, Dd−1 ∈

(F[x])w and Di for 1 ≤ i ≤ d− 2 is a w × w matrix such that

D0(`) = w(v0, v1,`) for 1 ≤ ` ≤ w
Di(k, `) = w(vi,k, vi+1,`) for 1 ≤ `, k ≤ w and 1 ≤ i ≤ d− 2

Dd−1(k) = w(vd−1,k, vd) for 1 ≤ k ≤ w

14 AGRAWAL, GURJAR, KORWAR, AND SAXENA

An ABP is called a read once ABP (ROABP) if the edge weights in the different layers
are polynomials in disjoint sets of variables (it is actually called oblivious ROABP, but we
drop the word oblivious from now on). More formally, there exists an unknown partition
of the variable set x into d sets {x1, x2, . . . , xd} such that in the corresponding matrix

product D0(
∏d−2
i=1 Di)Dd−1, the entries in Di−1 are polynomials in variables xi, for all

i ∈ [d]. It is read once in the sense that in the corresponding ABP, any particular variable
contributes to at most one edge on any path.

We work with the matrix representation of ABP. We will show a hitting-set for an

ROABP D0(
∏d
i=1Di)Dd+1 with Di being invertible matrices for all i ∈ [d] and all the

matrices being sparse polynomials. Hence, we name this model sparse-invertible-factor
ROABP. Like in the previous sections, we find a hitting-set by showing a low-support
concentration.

For a polynomial D, let its sparsity s(D) be the number of monomials in D with nonzero
coefficients and let µ(D) be the maximum support of any monomial in D.

Theorem 3 (restated). Let x = x0 t · · · t xd+1, with |x| = n. Let C(x) = DT
0 DDd+1 ∈

F[x] be a polynomial with D(x) =
∏d
i=1Di(xi), where D0 ∈ Fw[x0] and Dd+1 ∈ Fw[xd+1]

and for all i ∈ [d], Di ∈ Fw×w[xi] is an invertible matrix. For all i ∈ {0, 1, . . . , d + 1},
Di has degree bounded by δ, s(Di) ≤ s and µ(Di) ≤ µ. Let ` := 1 + 2 min{dlog(w2 ·
s)e, µ}. Then there is a hitting-set of size poly((nδs)`w

2
) for C(x). (For the proof, see

Appendix D.)

Remark 23. If µ = 1, i.e. each Di is univariate or linear, then we get poly-time for
constant w.

Proof Idea- Here again, we find a hitting-set by proving low-support concentration, but

with a different approach. As all the matrices in the matrix product D(x) =
∏d
i=1Di(xi)

are over disjoint sets of variables, any coefficient in the polynomial D(x) can be uniquely
written as a product of d factors, each coming from one Di. We start with the assumption
that the constant term of each polynomial Di, denoted by Di0, is an invertible matrix.
Using this we define a notion of parent and child between all the coefficients: If a coefficient
can be obtained from another coefficient by replacing one of its constant factors Di0 with
another term (with non-trivial support) from Di, then former is called a parent of the
latter. Observe that if we want to do this replacement by a multiplication of some matrix,
then Di0 should be invertible. Moreover, all the factors on its right side (or its left
side) also need to be constant terms in their respective matrices (this is because of non-
commutativity). For a coefficient, the set of matrices Di which contribute a non-trivial
factor to it, is said to form the block-support of the coefficient.

Our next step is to show that if a coefficient linearly depends on its descendants then the
dependence can be lifted to its parent (by dividing and multiplying appropriate factors)
i.e. its parent also linearly depends on its descendants. As the dimension of the matrix
algebra is constant, if we take an appropriately large (constant) child-parent chain, there
will be a linear dependence among the coefficients in the chain. As the dependencies lift
to the parent, they can be lifted all the way up. By an inductive argument it follows that
every coefficient depends on the coefficients with low-block-support. Now, this can be
translated to low-support concentration in D, if a low-support concentration is assumed
in each Di.

To achieve low-support concentration in each Di, we use an appropriate shift. The
sparsity of Di is used crucially in this step. To make Di0 invertible, again an appropriate

LOW-DISTANCE MULTILINEAR DEPTH-3 15

shift is used. Note that Di0 can be made invertible by a shift only when Di itself is
invertible, hence the invertible-factor assumption.

6. Discussion

We conjecture that for depth-3 multilinear circuits, low-support concentration can be
achieved by an efficient shift. A first question here is to remove the knowledge of the base
sets in Theorem 2.

In the case of constant width ROABP, we could show constant-support concentration,
but only after assuming that the factor matrices are invertible. It seems that the invert-
ibility assumption restricts the computing power of ABP significantly. It is desirable to
have low-support concentration without the assumption of invertibility.

7. Acknowledgements

We thank Chandan Saha for suggestions to improve this paper. Several useful ideas
about δ-distance circuits and base sets came up during discussions with him.

References

[Agr05] Manindra Agrawal. Proving lower bounds via pseudo-random generators. In FSTTCS, volume
3821 of Lecture Notes in Computer Science, pages 92–105, 2005.

[ASS13] Manindra Agrawal, Chandan Saha, and Nitin Saxena. Quasi-polynomial hitting-set for set-
depth- formulas. In STOC, pages 321–330, 2013.

[BOC92] Michael Ben-Or and Richard Cleve. Computing algebraic formulas using a constant number of
registers. SIAM J. Comput., 21(1):54–58, 1992.

[FSS13] Michael A. Forbes, Ramprasad Saptharishi, and Amir Shpilka. Pseudorandomness for multi-
linear read-once algebraic branching programs, in any order. CoRR, abs/1309.5668, 2013.

[GKKS13] Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic circuits:
A chasm at depth three. FOCS, 2013.

[Kro82] Leopold Kronecker. Grundzuge einer arithmetischen Theorie der algebraischen Grossen. Berlin,
G. Reimer, 1882.

[Mul12] Ketan Mulmuley. Geometric complexity theory V: Equivalence between blackbox derandom-
ization of polynomial identity testing and derandomization of Noether’s normalization lemma.
In FOCS, pages 629–638, 2012.

[RS05] Ran Raz and Amir Shpilka. Deterministic polynomial identity testing in non-commutative
models. Computational Complexity, 14(1):1–19, 2005.

[RY09] Ran Raz and Amir Yehudayoff. Lower bounds and separations for constant depth multilinear
circuits. Computational Complexity, 18(2):171–207, 2009.

[Sax09] Nitin Saxena. Progress on polynomial identity testing. Bulletin of the EATCS, 99:49–79, 2009.
[Sch80] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities. J.

ACM, 27(4):701–717, October 1980.
[SSS09] Chandan Saha, Ramprasad Saptharishi, and Nitin Saxena. The power of depth 2 circuits over

algebras. In FSTTCS, pages 371–382, 2009.
[SY10] Amir Shpilka and Amir Yehudayoff. Arithmetic circuits: A survey of recent results and open

questions. Foundations and Trends in Theoretical Computer Science, 5(3-4):207–388, 2010.

Appendix A. Complete proofs of Section 3

Lemma 2 (restated). If D(x) is `-concentrated, then there is a nO(`)-time hitting-set
for C(x).

Proof.

16 AGRAWAL, GURJAR, KORWAR, AND SAXENA

Claim 24. The polynomial C(x) = 0 iff all of its (< `)-support monomials have coefficient
= 0.

This claim gives an nO(`)-time hitting-set all C(x): We can isolate each of the (< `)-
support monomials and check whether their coefficient is 0. How do we isolate the (<
`)-support monomials? For each subset S of cardinality < `, set the variables in the
set S to 1 and the other variables to 0. This isolates

∑
T⊆S coefC(xT) = coefC(xS) +∑

T(S coefC(xT). If it was already known that the coefficient of the smaller subsets is
0, then

∑
T⊆S coefC(xT) = 0 =⇒ coefC(xS) = 0. Thus, starting with coefficients of

cardinality 0, we test the coefficient of each set for nonzeroness. The hitting-set thus
consists of substituting x = (b1, b2, . . . , bn), bi ∈ {0, 1} with < ` many 1s. There are∑`−1

i=0

(
n
i

)
= nO(`) such tuples.

Proof of Claim 24. The forward implication holds trivially. To prove the reverse impli-
cation, we express the coefficients of the polynomial C(x) as a linear combination of its
low-support coefficients.

C(x) = aT ·D(x)

= aT ·

∑
S⊆[n]

uSxS

 , where uS := coefD(xS)

=
∑
S⊆[n]

aTuSxS

Since D(x) is `-concentrated, the coefficients of each of its monomials can be expressed
as a linear combination of coefficients of low-support monomials, i.e. ∀S ⊆ [n], uS =∑

R⊆[n],|R|<` αR,SuR. Hence,

C(x) =
∑
S⊆[n]

 ∑
R⊆[n],|R|<`

αR,S
(
aTuR

)xS .

Let βR := coefC(xR) = aTuR. Hence,

C(x) =
∑
S⊆[n]

 ∑
R⊆[n],|R|<`

αR,SβR

xS .

This proves the claim.
�

�

Lemma 25 (Efficient Kronecker map [Kro82, Agr05]). Consider a set A of n-variate
monomials with maximum individual degree d and |A| = a. There exists a set of N -many

monomial maps φ : t→ {ti}N logN
i=1 , such that at least one of them separates the monomials

in A, where N := nda2 log(d+ 1).

Proof. Since we want to separate the n-variate monomials with maximum individual de-

gree d, we use the naive Kronecker map φ′ : ti 7→ t(d+1)i−1
for all i ∈ [n]. It can easily be

seen that there is a 1-1 correspondence between the original monomials and the substituted
monomials. But the degree of the new monomials can be very high.

LOW-DISTANCE MULTILINEAR DEPTH-3 17

Hence, we take the substitutions mod(tp− 1) for many small primes p. In other words,
the degrees are taken modulo p. Each prime p leads to a different substitution of the
variables tis. That is our set of candidate maps. We need to bound the number N of
primes that ensure that at least one substitution separates the monomials in A. We
choose the smallest N primes, say P is the set. By Prime Number Theorem, the highest
value in the set P is N logN .

To bound the numberN of primes: We want a p in the set P such that ∀i 6= j, di−dj 6≡ 0
(mod p), where dis are the degrees of t in the a monomials after the substitution φ′. I.e.
we want a p such that p -

∏
i 6=j (di − dj).

There are N such primes. Hence we want that
∏
p∈P p -

∏
i 6=j (di − dj). This can be

ensured by setting
∏
p∈P p >

∏
i 6=j (di − dj). There are (< a2) such monomial pairs and

each di < (d+ 1)nd. Also,
∏
p∈P p > 2N . Hence, N = nda2 log(d+ 1) suffices. �

Lemma 3 (restated). If for a polynomial D(x) ∈ Hk(F)[x], there exists a set of f(n)-

many maps from t to {ti}g(n)
i=1 such that for at least one of the maps φ, the shifted poly-

nomial D(x + φ(t)) has `-concentration, then C(x) = aTD(x), for any a ∈ Fk, has an

nO(`)f(n)g(n)-time hitting-set.

Proof. We need to try f(n)-many maps, such that one of them will ensure `-concentration

in D(x+φ(t)). Lemma 2 shows that `-concentration implies a hitting-set of size nO(`) for
C(x+φ(t)). But each evaluation of C(x+φ(t)) will be polynomial in t with degree at most
ng(n). This multiplies a factor of ng(n) to the running time. So, total time complexity is

nO(`)f(n)g(n). �

Lemma 20 (restated). Let F (x) ∈ Hj(F)[x] be a δ-distance circuit. Let F ′(x) =
F (x + φδ`0(t)) be its shifted version. Let VF ′ be the subspace spanned by the phase-(< j)
coefficients of F ′(x). Then, F ′(x) has `0-concentration modulo VF ′. I.e. ∀ monomial T in
F ′,

coefF ′(xT) ∈ span{coefF ′(xS) | S ⊆ monom(F ′), |S| < `0}+ VF ′ ,

where, monom(F ′) denotes the set of all possible multilinear monomials that appear in F ′.

Proof. The proof is by induction on the number of neighborhoods in F ′, ‖nbdj(F
′)‖.

We prove the theorem for intermediate subcircuits E′ of F ′. These subcircuits E′ have
progressively more neighborhoods in the partition Pj .

Base Case: Any shifted δ-distance circuit, E′ over j coordinates, with ‖nbdj(E
′)‖ ≤ `0,

has `0-concentration modulo VE′ , from Lemma 19.
Induction Hypothesis: Any shifted δ-distance circuit, E′ over j coordinates, such that

‖nbdj(E
′)‖ ≤ r (r ≥ `0), has `0-concentration modulo VE′ .

Induction Step: Let ‖nbdj(E
′)‖ = r + 1. Let E′0 be the subcircuit corresponding to

the tower over one neighborhood in nbdj(E
′). Let E′1 be the subcircuit corresponding

to the tower over the remaining neighborhoods in nbdj(E
′), i.e. ‖nbdj(E

′
1)‖ = r. Hence,

E′ = E′1 ? E
′
0.

We will now prove `0-concentration of an arbitrary monomial T in E′. Since E′0 and E′1
are disjoint towers, the variables in their supports are disjoint. Let T0 = var(E′0) ∩ T and
T1 = var(E′1)∩T . Hence, T = T0∪T1. By the induction hypothesis, E′1 is `0-concentrated
modulo VE′1 . Hence,

coefE′1(xT1) ∈ span{coefE′1(xS) | S ∈ monom(E′1), |S| < `0}+ VE′1 ,

where, monom(E′1) denotes the set of monomials in E′1. We know that coefE′(xT) =
coefE′1(xT1)?coefE′0(xT0) from Observation 9. Multiplying the above equation with coefE′0(xT0),

18 AGRAWAL, GURJAR, KORWAR, AND SAXENA

we get,

coefE′(xT) ∈ span{coefE′1(xS) ? coefE′0(xT0) | S ∈ monom(E′1), |S| < `0}+ VE′ .

This holds because, by Observation 14, coefE′0(xT0) ? VE′1 ⊆ VE′ . By Observation 9, the
above equation is equivalent to

(1) coefE′(xT) ∈ span{coefE′(xS∪T0) | S ∈ monom(E′1), |S| < `0}+ VE′ .

We will now prove that coefE′(xS∪T0) is `0-concentrated (modulo VE′) for all monomials
S in E′1. This will prove that coefE′(xT) is `0-concentrated (modulo VE′).

Let ‖nbdj(S)‖ be the number of neighborhoods in nbdj(S). Since |S| < `0, we know
‖nbdj(S)‖ < `0. Hence, ‖nbdj(S ∪ T0)‖ ≤ `0. Let the subcircuit corresponding to
towerj(S∪T0) be E′2. Let the subcircuit E′3 be such that E′ = E′2 ?E

′
3. From Observation

9,
coefE′(xS∪T0) = coefE′2(xS∪T0) ? coefE′3(x∅).

As ‖nbdj(E
′
2)‖ ≤ `0, from Lemma 19, we have `0-concentration in E′2 modulo VE′2 .

coefE′2(xS∪T0) ∈ span{coefE′2(xR) | R ∈ monom(E′2), |R| < `0}+ VE′2 .

Multiplying throughout with coefE′3(x∅),

coefE′(xS∪T0) ∈ span{coefE′2(xR) ? coefE′3(x∅) | R ∈ monom(E′2), |R| < `0}+ VE′ .

This is because coefE′3(x∅) ? VE′2 ⊆ VE′ . The equation is equivalent to

(2) coefE′(xS∪T0) ∈ span{coefE′(xR) | R ∈ monom(E′), |R| < `0}+ VE′ .

Using Equations (1) and (2) we get that coefE′(T) is in the span of coefficients in E′ with
support < `0 modulo VE′ . Hence, we get `0-concentration of E′ modulo VE′ . �

Appendix B. Proof of Lemma 19 (Small-Neighborhood `0 − concentration)

We will now show `0-concentration in a δ-distance circuit E′ modulo its phase-(< j)
coefficients, where the number of neighborhoods in the partition Pj is ≤ `0. The basic
idea of the proof is to take dependencies among the coefficients of E and lift them to get
new dependencies of E′.

Lemma 19 (restated). Let E(x) ∈ Hj(F)[x] be a δ-distance circuit with ‖nbdj(E
′)‖ ≤ `0.

Let E′(x) = E(x + φδ`0(t)) be its shifted version. Let VE′ be the subspace spanned by the
phase-(< j) coefficients of E′(x). Then, E′(x) has `0-concentration modulo VE′. I.e. ∀
monomial T in E′,

coefE′(xT) ∈ span{coefE′(xS) | S ⊆ monom(E′), |S| < `0}+ VE′ .

Proof. Let the matrices U and U ′ ∈ F[j]×2[n] be such that their columns represent the
coefficient vectors in E and E′ respectively. Let us recall the relation between U and U ′

from Section 2.1,

(3) U = U ′M,

where M is the transfer matrix defined in Section 2.1. Let Null(U) denote the nullspace
of U . Consider a vector α ∈ Null(U), i.e. Uα = 0. Using Equation (3), U ′Mα = 0. Thus,
Mα ∈ Null(U ′).

Let us now study the dependencies we want for U ′ to show the appropriate concentra-
tion. Let S1 be the set of monomials which have support ≥ `0 and are in phase-j. Let S0

be the set of all other monomials. Let U ′0 ∈ F[j]×S0 and U ′1 ∈ F[j]×S1 be the submatrices

LOW-DISTANCE MULTILINEAR DEPTH-3 19

of U ′ consisting of coefficient vectors of monomials in S0 and S1 respectively. To prove
the lemma, we need to show that the columns of U ′1 are in the span of the columns of U ′0.

Let β ∈ F(t)2[n] be a dependency among the columns of U ′, i.e. U ′β = 0. We can break
this equation into two parts as: U ′1β1 = −U ′0β0, where β0 and β1 are the subvectors of β,
indexed by the monomials in S0 and S1 respectively. In other words,

(4) U ′1β1 ≡ 0 (mod U ′0),

where, by “mod U ′0” we mean modulo column-span(U ′0). Now, we want to show that
U ′1 ≡ 0 (mod U ′0).

Let |S1|, the number of columns in U ′1 be N∗. Suppose there exists a set of N∗ many

null-vectors of U ′. Let B ∈ F2[n]×[N∗], be the matrix with these null-vectors as its columns.
Let B1 be the submatrix of B obtained by picking the rows indexed by the monomials in
S1. Using Equation (4),

U ′1B1 ≡ 0 (mod U ′0).

If B1 is an invertible matrix then,

U ′1 ≡ 0B−1
1 (mod U ′0)

=⇒ U ′1 ≡ 0 (mod U ′0),

which is the desired result.
Now, to show the existence of such a set of null-vectors B, we will take the null-vectors

of U and lift them. Here, we will use the notation of a matrix, to also denote the set of its
column-vectors. As seen earlier, if N ∗ ⊆ Null(U), then B :=MN ∗ ⊆ Null(U ′) (by ‘⊆’ we
mean column-wise). Let M1 be the submatrix of M, obtained by picking the rows of M
indexed by the monomials in S1. We intend to show that there exists a set of N∗ many
null-vectors N ∗ ⊆ Null(U) such that B1 :=M1N ∗ is an invertible matrix.

For this, let us analyze the monomials in S1. Recall that any phase-j monomial has at
most δ support from any neighborhood in partition Pj . As ‖nbdj(E)‖ ≤ `0, any phase-j
monomial has degree at most δ`0. Hence, monomials in S1 have degree between `0 and
δ`0. It suffices to show M1N ∗ is an invertible matrix, assuming M1 has rows indexed by
all the monomials with degree between `0 and δ`0 (If this M1N ∗ is invertible, then, for

every subset M̂1 of rows of M1, there exists a subset N̂ ∗ of null-vectors N ∗ such that

M̂1N̂ ∗ is invertible). Now, we redefine N∗ to be the number of such monomials.
Recall that M1(S, T) 6= 0 only when T ⊆ S. Since the rows of M1 are indexed by the

monomials of degree at most δ`0, its columns indexed by the monomials of degree > δ`0
will be all zero. Hence, the rows of N ∗ indexed by the monomials of degree > δ`0 can be
ignored. We thus redefine M1 and N ∗ as their truncated versions.

So, we can as well assume that N ∗ ⊆ Null(Uδ`0), where Uδ`0 is the submatrix of U ,
obtained by picking the columns indexed by the monomials of degree ≤ δ`0.

Let N be the number of all n-variate monomials of degree ≤ δ`0. Let N := Null(Uδ`0).
Now, in Lemma 28 we show that for any vector-space N ⊆ FN of dimension ≥ (N −k),

there exists N ∗ ⊆ N such that M1N ∗ is invertible. As Uδ`0 has rank at most j, N has
dimension at least (N − j) ≥ (N − k) as required in Lemma 28.

This completes the proof. �

To show that there exists such a set of vectors N ∗, now we will look at some properties
of the transfer matrix. This is a simplified and improved proof of Theorem 13 in [ASS13].

Lemma 26 (Transfer matrix theorem). Consider a matrix Mn,` (` ≤ n), with rows indexed
by all possible n-variate multilinear monomials with support size ≥ ` and columns indexed

20 AGRAWAL, GURJAR, KORWAR, AND SAXENA

by all possible n-variate multilinear monomials. Let Mn,`(S, T) = 1 if T ⊆ S and 0
otherwise. Then any vector formed by a nonzero linear combination of the rows over any
field F has at least 2` nonzero entries.

Proof. Proof is by induction on the number of variables, n.
Base case: There is only one variable, x1. Then ` is 0 or 1.
When ` = 1, the matrix M1,1 has only one row, indexed by the monomial x1. The

matrix M1,1 has two columns. They are indexed by the empty set ∅ and the monomial
x1. So, M1,1 = (1 1); which clearly satisfies the lemma statement.

When ` = 0, both the rows and the columns are indexed by the empty set ∅ and the
monomial x1. The matrix M1,0 = (1 0

1 1). Since the two rows are linearly independent, any
nonzero linear combination will have at least 1 = 20 nonzero entry.

Induction Hypothesis: Assume that for number of variables = n−1 and for all ` ≤ n−1,
any nonzero linear combination of the rows has at least 2` nonzero entries.

Induction Step: We have to prove the property for Mn,` for all ` ≤ n.
The rows of the matrix Mn,` are partitioned into two sets: S1, the set of rows whose

indices do not contain xn and S2, the set of rows whose indices contain xn. The columns
of the matrix Mn,` are similarly partitioned into two sets: T1, the set of columns whose
indices do not contain xn and T2, the set of columns whose indices contain xn. Then Mn,`

is divided into four blocks: {Mn,` (Si, Tj)} , (i, j ∈ {1, 2}). Clearly,

Mn,` (S1, T1) = Mn−1,`(5)

Mn,` (S1, T2) = 0 and(6)

Mn,` (S2, T1) = Mn,` (S2, T2) .(7)

Note that, if ` = n, Equation (5) still holds, since then, S1 = ∅. Equation 7 holds because
T ∪ {n} ⊆ S ∪ {n} iff T ⊆ S ∪ {n}, where S, T ⊆ [n− 1].

We break the linear combination:
∑

S∈(S1∪S2) cSMS =
∑

S∈S1 cSMS +
∑

S∈S2 dSMS

where cS , dS ∈ F and MS is the row of Mn,` indexed by the set S.

∑
S∈(S1∪S2)

cSMS =
∑
S∈S1

cS

(
M(S, T1) M(S, T2)

)
+
∑
S∈S2

dS

(
M(S, T1) M(S, T2)

)
=

∑
S∈S1

cS

(
M(S, T1) 0

)
+
∑
S∈S2

dS

(
M(S, T1) M(S, T1)

)

=

(∑
S∈S1

cSM(S, T1) +
∑
S∈S2

dSM(S, T1)
∑
S∈S2

dSM(S, T1)

)
=

(
C +D D

)
,

where, C :=
∑

S∈S1 cS M(S, T1) and D :=
∑

S∈S2 dS M(S, T1) are row vectors in F2[n−1]
.

The second equality holds from Equations (6) and (7).
Let us first consider the case when C 6= 0. Since C is a nonzero linear combination

of rows in Mn,` (S1, T1), from Equation (5) and by the induction hypothesis, it has ≥ 2`

nonzero entries. For any index T ∈ T1, if C(T) 6= 0, but (C +D)(T) = 0, then D(T) 6= 0.
Hence,

(
C +D D

)
has at least as many nonzero entries as C, i.e. ≥ 2`.

But, we cannot use the induction hypothesis if C = 0, i.e. if S1 = ∅ or cS = 0,∀S ∈ S1.
In this case, we have to show that there are ≥ 2` nonzero entries in

(
D D

)
, i.e. that there

LOW-DISTANCE MULTILINEAR DEPTH-3 21

are ≥ 2`−1 nonzero entries in D (assuming ` ≥ 1). For this, observe that Mn,` (S2, T1) =
Mn−1,`−1. Hence, we can use the induction hypothesis.

If ` = 0, we need to show that that there are ≥ 1 nonzero entries in D. For this, observe
that Mn,0 (S2, T1) = Mn−1,0. Hence, we can use the induction hypothesis. �

Now, from this property of the transfer matrix, we will conclude linear independence
of rows of a truncated transfer matrix.

Lemma 27. Consider the matrix Mn,` described in Lemma 26. Let us mark any set of

at most 2` − 1 columns in Mn,`. Let M ′n,` denote the submatrix of Mn,` consisting of all

the unmarked columns. The rows of M ′n,` are linearly independent.

Proof. Lemma 26 shows that any nonzero linear combination of the rows of Mn,` has at

least 2` nonzero entries. M ′n,` has at most 2` − 1 columns missing from Mn,`. So, any

nonzero linear combination of the rows of M ′n,` has at least one nonzero entry. In other

words, the rows of matrix M ′n,` are linearly independent. �

Now, we are ready to prove the invertibility requirement in Lemma 19. Recall that N
denotes the number of all n-variate multilinear monomials with support size ≤ δ`0 and
N∗ denotes the number of all n-variate multilinear monomials with support size between
`0 and δ`0. The truncated transfer matrix (introduced in the proof of Lemma 19)M1 has
dimension N∗ ×N . Now, we show that the truncated transfer matrix M1 multiplied by
an appropriate set of N∗-many null-vectors gives an invertible matrix.

Lemma 28 (Transfer matrix action). Consider the truncated transfer matrix M1. Given
any space N ⊆ FN of dimension at least N − k, there exists a set of N∗ vectors in it,
denoted by N ∗N×N∗, such that M1N ∗ is an invertible matrix.

Proof. From Section 2.1, recall that M1 can be written as the product A′M1A. Here
A′N∗×N∗ and AN×N are diagonal matrices with A(T, T) = (−1)|T | 1

φδ`0 (tT) . Recall that

φδ`0 is a univariate map, which sends all monomials tT to distinct powers of t, when
|T | ≤ δ`0. Hence, φδ`0 gives a total ordering on the monomials tT . From now on, we
assume that the columns of matrix M1 are arranged in an increasing order according to
the ordering given by φδ`0 .
M1 is a matrix with columns indexed by monomials with support size ≤ δ`0 and rows

indexed by monomials with support size between `0 and δ`0. Also,

M1(S, T) =

{
1 if T ⊆ S,
0 otherwise

Take a basis of the space N of size N − k and with an abuse of notation, denote it by
N . In the matrix form N has dimension N × (N − k). The rows of matrix N are also
arranged in an increasing order according to the ordering given by φδ`0 .

Any linear combination of the basis vectors remains in the same space. Hence, we can
do column operations in the matrix N . We can assume that after the column operations
N has a lower triangular form. To be more precise, we can assume that in any column
of N the first nonzero entry is 1. And if ij denotes the index of the first nonzero entry
in j-th column, then i1 < i2 < · · · < iN−k. Clearly, the rows of N , given by the indices
I := {i1, i2, . . . , iN−k}, are independent. The other rows corresponding to the indices
I ′ := [N]− I are dependent on the I rows. Mark the columns in M1 corresponding to the
indices in I ′. We know |I ′| = k ≤ 2`0 − 1. Now, we apply Lemma 27 to the matrix M1.

22 AGRAWAL, GURJAR, KORWAR, AND SAXENA

Note that in Lemma 27, the matrix Mn,` has columns corresponding to all the multilinear
monomials while our matrix M1 has columns only corresponding to monomials of support
size ≤ δ`0. So, we cannot directly apply Lemma 27 to M1. However, note that M1 has
rows corresponding to monomials of support size between `0 and δ`0. Hence, any column
with monomial support size > δ`0 will be a zero column. So, we can ignore the zero
columns, and Lemma 27 implies: the rows of M ′1 are linearly independent, where M ′1
denotes the matrix formed by the unmarked columns of M1. In other words, there exists a
set of N∗ unmarked columns in M1, which are linearly independent. Let the set of indices
corresponding to these columns be I∗.

Recall that I∗ ⊆ I. So, we can choose a set of N∗ columns from N such that the set
of their first nonzero indices is I∗. Let the matrix corresponding to these columns be
N ∗N×N∗ . Now, we consider the square matrix given by RN∗×N∗ := M1AN ∗. We claim
that det(R) 6= 0. To prove the claim we look at the lowest degree term in det(R). Let
Rj be the j-th column of R for 1 ≤ j ≤ N∗. Viewing Rj as a polynomial in FN∗ [t], let
Rj0 be the coefficient of lowest degree term in Rj . Let us define a matrix R0 whose j-th
column is Rj0 for 1 ≤ j ≤ N∗. Clearly, det(R0) is the coefficient of the lowest degree term
in det(R), in the case when det(R0) 6= 0. We claim that det(R0) 6= 0.

We know that Rj = M1AN ∗j , where N ∗j is the j-th column of N ∗. Let ij be the index
of the first nonzero entry in N ∗j . As the entries in AN ∗j have powers of t in an strictly
increasing order, the coefficient of the least term in M1AN ∗j is clearly ±Mij , where Mij

is the ij-th column of M1. So, Rj0 = ±Mij and hence R0 = MI∗ (upto a multiplicative
factor of (−1) to the columns), where MI∗ is the submatrix of M1 corresponding to I∗

columns. As these columns are linearly independent, we get that det(R0) 6= 0. Which
in turn implies that det(R) 6= 0. Hence, the product matrix A′M1AN ∗ = M1N ∗ is
invertible. �

Appendix C. Complete proofs of Section 4

Lemma 29 (Circuits to coefficients). Let D0(x), D1(x), . . . , Dh(x) be multilinear polyno-
mials in Hk(F)[x] for some field F, where x = {x1, x2, . . . , xn}. Let Di(x) =

∑
S⊆[n] uiSxS,

∀i ∈ {0, 1, . . . , h}, where uiS ∈ Hk(F). If D0(x) ∈ spanF(x){Di(x) | i ∈ [h]} then

{u0S | S ⊆ [n]} ∈ spanF{uiS | i ∈ [h], S ⊆ [n]}.

Proof. Let us define a field F′ := F(x). D0 ∈ spanF′{Di | i ∈ [h]} implies that any
null-vector for the vectors D1, D2, . . . , Dh is also a null-vector for D0, i.e.

{α ∈ Hk(F′) | αT ·Di = 0, ∀i ∈ [h]} ⊆ {α ∈ Hk(F′) | αT ·D0 = 0}.

So, the statement is also true when the vector α coming from Hk(F), i.e.

(8) {α ∈ Hk(F) | αT ·Di = 0, ∀i ∈ [h]} ⊆ {α ∈ Hk(F) | αT ·D0 = 0}.

It is easy to see that the set of null-vectors for a vector Di ∈ Hk(F′), which are coming
from Hk(F), is the same as the intersection of the sets of null-vectors of the coefficient
vectors in Di, i.e.

(9) {α ∈ Hk(F) | αT ·Di = 0} = {α ∈ Hk(F) | αT · uiS = 0, ∀S ∈ [n]}.

Using Equations (8) and (9), we can write,

{α ∈ Hk(F) | αT · uiS = 0, ∀i ∈ [h], ∀S ⊆ [n]} ⊆ {α ∈ Hk(F) | αT · u0S = 0, ∀S ⊆ [n]}.

LOW-DISTANCE MULTILINEAR DEPTH-3 23

Hence, we can write, for any T ⊆ [n],

{α ∈ Hk(F) | αT · uiS = 0, ∀i ∈ [h], ∀S ⊆ [n]} ⊆ {α ∈ Hk(F) | αT · u0T = 0}.

This clearly implies, by linear algebra, that for any T ⊆ [n],

u0T ∈ spanF{uiS | i ∈ [h], S ⊆ [n]}.

�

Lemma 30. Let D(x) has m-base-sets-δ-distance with base sets {x1, x2, . . . , xm}. Let
us write D(x) =

∑
S⊆Im uSxS, where Im denotes the set of indices corresponding to the

variable set xm and for all S ⊆ Im, uS ∈ Hk(F)[x1, x2, . . . , xm−1]. Then for any S ⊆ Im,
uS has (m− 1)-base-sets-δ-distance with base sets {x1, x2, . . . , xm−1}.

Proof. It is easy to see that uS is an evaluation of a derivative of D. To be more precise,
uS = ∂D

∂xS
|(xj=0, ∀j∈Im−S), where ∂

∂xS
:= ◦j∈S ∂

∂xj
.

Now, D is a multilinear polynomial computed by a ΠΣ circuit over Hk(F), hence for
each product gate, a variable occurs in at most one of its input wires. If we take the
derivative with respect to that variable, the corresponding wire vanishes from the circuit.
So, the circuit for uS is essentially the same as that of D except some input wires to the
product gates are missing and also some variables are replaced with 0. Hence, uS when
restricted to any variable set xi, still has δ distance, ∀i ∈ [m− 1]. Moreover, the variables
from xm are not present in uS . Hence, uS has (m− 1)-base-sets-δ-distance with base sets
{x1, x2, . . . , xm−1}. �

Lemma 31. Let a polynomial D(x) ∈ Hk(F)[x] have m-base-sets-δ-distance with base
sets being {x1, x2, . . . , xm}. Then, D(x+ φmδ`0(t)) has (m(`− 1) + 1)-concentration, where
` = log(k + 1) + δ + 1.

Proof. We will prove the theorem by induction on m, i.e. we first show the effect of shift
in xm variables and next invoke induction for the shift in ∪m−1

i=1 xi variables.
Base case: When m = 1, D(x) = D(x1) is simply a polynomial with δ-distance. So,

D(x1 + φmδ`0(t1)) has `-concentration from Lemma 21.
Induction hypothesis: Assume that the statement is true for m− 1 base sets.
Induction step: We will view the polynomial D(x) as a polynomial on xm variables

with coefficients coming from Hk(F)[x1, x2, . . . , xm−1]. Let Ii denote the set of indices
corresponding to the variables in xi. Then we can write D =

∑
S⊆Im uSxS , where uS ∈

Hk(F)[x1, x2, . . . , xm−1] for each S ⊆ Im. Let us define

D′ := D(x1 + φmδ`0(t1), x2 + φmδ`0(t2), . . . , xm + φmδ`0(tm)).

Also define

ũS := uS(x1 + φmδ`0(t1), x2 + φmδ`0(t2), . . . , xm−1 + φmδ`0(tm−1))

and

D̃ :=
∑
S⊆Im

ũSxS .

Let F̃ := F(x1, x2, . . . , xm−1, t1, t2, . . . , tm−1). It is easy to see that D̃, as a polynomial

in Hk(F̃)[xm], has δ-distance. Hence, from Lemma 21, D′ = D̃(xm + φmδ`0(tm)) has `-

concentration over F̃(tm). Note that our working field F̃ having variables {x1, x2, . . . , xm−1}

24 AGRAWAL, GURJAR, KORWAR, AND SAXENA

and {t1, t2, . . . , tm−1} is not a problem as tm is a new variable. `-Concentration of
D′ =

∑
S⊆Im u

′
SxS means that for any T ⊆ Im,

(10) u′T ∈ spanF̃(tm) {u
′
S | S ⊆ Im, |S| < `}.

Next, we will show this kind of dependence among their coefficient vectors. Let us define
a field Ft := F(t1, t2, . . . , tm). Also define F′ := F̃(tm) = Ft(x1, x2, . . . , xm−1). Let I[m−1]

denote the indices corresponding to the variables in the set x \ xm. Now for any T ⊆ Im,
the vector u′T ∈ Hk(F′) can be seen as a polynomial over x \ xm variables, i.e. u′T =∑

U⊆I[m−1]
u′T,UxU , where u′T,U ∈ Hk(Ft) for all U ∈ I[m−1]. From Lemma 29, we know

that dependence among polynomial vectors implies a dependence among their coefficients
over the base field. So, Equation (10) together with Lemma 29 implies that for any
T ⊆ Im, V ⊆ I[m−1],

(11) u′T,V ∈ spanFt{u
′
S,U | S ⊆ Im, |S| < `, U ⊆ I[m−1]}.

Let us view D′ again as a polynomial in Hk(Ft)[x1, x2, . . . , xm]. Equation (11) shows
that in D′, the rank is concentrated on the coefficients corresponding to the monomials
which have low-support from xm. Next, we will argue that the rank is actually concen-
trated on the coefficients corresponding to the monomials which have low-support from
all the xis.

To show that, we will show low-support concentration in the circuit u′S for any S ∈ Im.
Let us define a polynomial

D̂ := D(x1, x2, . . . , xm−1, xm + φmδ`0(tm)).

Viewing D̂ as a polynomial in xm variables, we can write D̂ =
∑

S⊆Im ûSxS . We know
that D has m-base-sets-δ-distance. It is easy to see that shifting a polynomial in some

variables preserves this property. Hence, D̂ has m-base-sets-δ-distance with base sets
being x1, x2, . . . , xm. Now, ûS ∈ Hk(F(tm))[x1, x2, . . . , xm−1] is the coefficient of xS
in D̂. So, from Lemma 30, ûS will have (m − 1)-base-sets-δ-distance, with base sets
being x1, x2, . . . , xm−1. Now, by our induction hypothesis, ûS will have low-support
concentration after appropriate shifting. To be precise, u′S = ûS(x1 + φmδ`0(t1), x2 +

φmδ`0(t2), . . . , xm−1 + φmδ`0(tm−1)) has ((m− 1)(`− 1) + 1)-concentration. This means that
for any S ⊆ Im, V ⊆ I[m−1],

(12) u′S,V ∈ spanFt{u
′
S,U | U ⊆ I[m−1], |U | < (m− 1)(`− 1) + 1}.

Combining Equation (11) and (12) we get that for any T ⊆ Im, V ⊆ I[m−1],

(13) u′T,V ∈ spanFt{u
′
S,U | S ⊆ Im, |S| < `, U ⊆ I[m−1], |U | < (m− 1)(`− 1) + 1}.

Now, let us define I[m] := Im ∪ I[m−1]. Viewing at D′ as a polynomial in variable set x let
us write D′ =

∑
S⊆I[m]

u′SxS . From Equation (13), we can say that for any T ⊆ I[m],

u′T ∈ spanFt{u
′
S | S ⊆ I[m], |S| < m(`− 1) + 1}.

Hence, D′ has (m(`− 1) + 1)-concentration. �

Appendix D. Building the Proof of Theorem 3

Our first focus will be on the matrix productD(x) :=
∏d
i=1Di which belongs to Fw×w[x].

We will show low-support concentration in D(x) over the matrix algebra Fw×w (which is
non-commutative!).

LOW-DISTANCE MULTILINEAR DEPTH-3 25

D.1. Low Block-Support. Let the matrix product D(x) :=
∏d
i=1Di correspond to an

ROABP such that Di ∈ Fw×w[xi] for all i ∈ [d]. Let ni be the cardinality of xi and

let n =
∑d

i=1 ni. For an exponent e = (e1, e2, . . . , em) ∈ Nm, and for a set of variables
y = {y1, y2, . . . , ym}, ye will denote y1

e1y2
e2 . . . ym

em .
Viewing Di as belonging to Fw×w[xi], one can write Di :=

∑
e∈Nni Diex

e
i . In particular

Di0 refers to the constant part of the polynomial Di.
For any e ∈ Nn, support of the monomial xe is defined as S(e) := {i ∈ [n] | ei 6= 0} and

support size is defined as s(e) := |S(e)|. In this section, we will also define block-support

of a monomial. Any monomial xe for e ∈ Nn, can be seen as a product
∏d
i=1 xi

ei , where
ei ∈ Nni for all i ∈ [d], such that e = (e1, e2, . . . , ed). We define block-support of e, bS(e)
as {i ∈ [d] | ei 6= 0} and block-support size of e, bs(e) = |bS(e)|.

Next, we will show low block-support concentration of D(x) when each Di0 is invertible.
As each Di is a polynomial over a different set of variables, we can easily see that the

coefficient of any monomial xe =
∏d
i=1 xi

ei in D(x) is

(14) De :=
d∏
i=1

Diei .

Now, we will define a relation of parent and children between these coefficients.

Definition 32. For e∗, e ∈ Nn, De∗ is called a parent of De if ∃j ∈ [d], j > max bS(e) or
j < min bS(e), such that bS(e∗) = bS(e) ∪ {j} and e∗i = ei, ∀i ∈ [d] with i 6= j.

If De∗ is a parent of De then De is a child of De∗ . Note that any coefficient has
at most two children, on the other hand it can have many parents. In the case when
j > max{bS(e)} we call e, the left child of e∗ and in the other case we call it the right
child.

To motivate this definition, observe that if j > max bS(e) then by Equation (14) we

can write De∗ = DeA
−1B, where A :=

∏d
i=j Di0 and B := Dje∗j

∏d
i=j+1Di0. We will

denote the product A−1B as De−1e∗ . Similarly, if j < min{bS(e)} then one can write

De∗ = BA−1De, where A :=
∏j
i=1Di0 and B :=

(∏j−1
i=1 Di0

)
Dje∗j

. In this case we will

denote the product BA−1 as De∗e−1 . Note that the invertibility of Di0s is crucial here.
We also define descendants of a coefficient De as descend(De) := {Df | f ∈ Nn, bS(f) ⊂

bS(e)}. Now, we will view the coefficients as F-vectors and look at the linear dependence
between them. The following lemma shows how these dependencies lift to the parent.

Lemma 33 (Child to parent). Let De∗ be a parent of De. If De is linearly dependent on
its descendants, then De∗ is linearly dependent on its descendants.

Proof. Let De be the left child of De∗ (the other case is similar). So, we can write

(15) De∗ = DeDe−1e∗ .

Let the dependence of De on its descendants be the following:

De =
∑
f

bS(f)⊂bS(e)

αfDf .

Using Equation (15) we can write,

De∗ =
∑
f

bS(f)⊂bS(e)

αfDfDe−1e∗ .

26 AGRAWAL, GURJAR, KORWAR, AND SAXENA

Now, we just need to show that for any Df with bS(f) ⊂ bS(e), DfDe−1e∗ is a valid
coefficient of some monomial in D(x) and also that it is a descendant of De∗ . Recall

that De−1e∗ = A−1B, where A :=
∏d
i=j Di0 and B := Dje∗j

∏d
i=j+1Di0 and bS(e∗) =

bS(e) ∪ {j}. We know that j > max{bS(e)}. Hence, j > max{bS(f)} as bS(f) ⊂ bS(e).

So, it is clear that DfDe−1e∗ is the coefficient of xf
∗

:= xfxj
e∗j . It is easy to see that

bS(f∗) = bS(f) ∪ {j} ⊂ bS(e∗). Hence, Df∗ = DfDe−1e∗ is a descendant of De∗ .
�

Note that, the set of descendants of a coefficient strictly contains its children, grand-
children, etc. Clearly, if the descendants are more than dimF Fw×w, then there will be a
linear dependence among them. So,

Lemma 34. Any coefficient De, with bs(e) = w2, F-linearly depends on its descendants.

Proof. First of all, we show that if a coefficient Df∗ is nonzero then so are its children.
Let us consider its left child Df (the other case is similar). Recall that we can write
Df∗ = DfDf−1f∗ . Hence if Df is zero, so is Df∗ .

Let k := w2. Now, consider a chain of coefficients De0 , De1 , . . . , Dek = De, such that for
any i ∈ [k], Dei−1 is a child of Dei . Clearly, bs(ei) = i for 0 ≤ i ≤ k. All the vectors in this
chain are nonzero because of our above argument, as De is nonzero (The case of De = 0 is
trivial). These k+ 1 vectors lie in Fk, hence, there exists an i ∈ [k] such that Dei is linear
dependent on {De0 , . . . , Dei−1}. As descendants include children, grand-children, etc., we
can say that Dei is linearly dependent on its descendants. Now, by applying Lemma 33
repeatedly, we conclude Dek = De is dependent on its descendants. �

Note that, for a coefficient De with bs(e) = i, its descendants have block-support strictly
smaller than i. So, Lemma 34 means that coefficients with block-support w2 depend on
coefficients with block-support ≤ w2 − 1. Now, we show w2-block-support-concentration
in D(x), i.e. any coefficient is dependent on the coefficients with block-support ≤ w2 − 1.

Lemma 35 (w2-Block-concentration). Let D(x) =
∏d
i=1Di(xi) ∈ Fw×w[x] be a polyno-

mial with Di0 being invertible for each i ∈ [d]. Then D(x) has w2-block-support concen-
tration.

Proof. Let k := w2. We will actually show that for any coefficient De with bs(e) ≥ k (the
case when bs(e) < k is trivial),

De ∈ span{Df | f ∈ Nn, bS(f) ⊂ bS(e) and bs(f) ≤ k − 1}.
We will prove the statement by induction on the block-support of De, bs(e).

Base case: When bs(e) = k, it has been already shown in Lemma 34.
Induction Hypothesis: For any coefficient De with bs(e) = i− 1 for i− 1 ≥ k,

De ∈ span{Df | f ∈ Nn, bS(f) ⊂ bS(e) and bs(f) ≤ k − 1}.
Induction step: Let us take a coefficient De with bs(e) = i. Consider any child of De,

denoted by De′ . As bs(e′) = i− 1, by our induction hypothesis, De′ is linearly dependent
on its descendants. So, from Lemma 33, De is linearly dependent on its descendants. In
other words,

(16) De ∈ span{Df | bS(f) ⊂ bS(e) and bs(f) ≤ i− 1}.
Again, by our induction hypothesis, for any coefficient Df , with bs(f) ≤ i− 1,

(17) Df ∈ span{Dg | bS(g) ⊂ bS(f) and bs(g) ≤ k − 1}.

LOW-DISTANCE MULTILINEAR DEPTH-3 27

Combining Equations (16) and (17), we get

De ∈ span{Dg | bS(g) ⊂ bS(e) and bs(g) ≤ k − 1}.
�

Now, we show low block-support concentration in the actual polynomial computed by

an ROABP, i.e. in C(x) = DT
0 (
∏d
i=1Di)Dd+1, where D0, Dd+1 ∈ Fw[x].

Corollary 36. Let x = x0 tx1 t · · · txd+1. Let D(x) ∈ Fw×w[x1, . . . , xd] be a polynomial
described in Lemma 35. Let C(x) = DT

0 DDd+1 ∈ F[x] be a polynomial with D0 ∈ Fw[x0],
Dd+1 ∈ Fw[xd+1]. Then C(x) has (w2 + 2)-block-support concentration.

Proof. Let k := w2. Lemma 35 shows that D(x) has k-block-support concentration. The

coefficient of xe in C is Ce := D0e0

∏d
i=1DieiD(d+1)ed+1

, where e = (e0, e1, . . . , ed, ed+1).

Let De :=
∏d
i=1Diei . By k-block-support concentration of D(x),

De ∈ span{Df | bs(f) ≤ k − 1}.
Which implies,

Ce ∈ span{D0e0DfD(d+1)ed+1
| bs(f) ≤ k − 1}.

Clearly, D0e0DfD(d+1)ed+1
is the coefficient of the monomial xe00 x

f1
1 · · ·x

fd
d x

ed+1

d+1 . Hence,
Ce ∈ span{Cf | bs(f) ≤ k + 1}. �

D.2. Low-support concentration. Now, we argue that if D(x) =
∏d
i=1Di(xi) has low

block-support concentration and moreover if each Di has low-support concentration then
D(x) has an appropriate low-support concentration.

Lemma 37 (Composition). If a polynomial D(x) =
∏d
i=1Di(xi) ∈ Fw×w[x] has `-block-

support concentration and Di(xi) has `′-support concentration for all i ∈ [d] then D(x)
has ``′-support concentration.

Proof. Recall that as Di’s are polynomials over disjoint sets of variables, any coefficient Df

in D(x) can be written as
∏d
i=1Difi , where f = (f1, f2, . . . , fd) and Difi is the coefficient

corresponding to the monomial xfii in Di. From the definition of bS(f), we know that
fi = 0, for any i /∈ bS(f). From `′-support concentration of Di(xi), we know that for any
coefficient Difi ,

Difi ∈ span{Digi | gi ∈ Nni , s(gi) ≤ `′ − 1}.
Using this, we can write

Df ∈ span

{
d∏
i=1

Digi | gi ∈ Nni , s(gi) ≤ `′ − 1, ∀i ∈ [d] and gi = 0, ∀i /∈ bS(f)

}
.

Note that the product
∏
i∈[d]Digi will be the coefficient of a monomial xg such that

bS(g) ⊆ bS(f) because gi = 0, ∀i /∈ bS(f). Clearly, if s(gi) ≤ `′ − 1, ∀i ∈ bS(f) then
s(g) ≤ (`′ − 1) bs(f). So, one can write

(18) Df ∈ span{Dg | g ∈ Nn, s(g) ≤ (`′ − 1) bs(f)}.
From `-block-support concentration of D(x), we know that for any coefficient De of D(x),

(19) De ∈ span{Df | f ∈ Nn, bs(f) ≤ `− 1}.
Using Equations (18) and (19), we can write for any coefficient De of D(x),

De ∈ span{Dg | g ∈ Nn, s(g) ≤ (`′ − 1)(`− 1)}.

28 AGRAWAL, GURJAR, KORWAR, AND SAXENA

Hence, D(x) has ((`− 1)(`′− 1) + 1)-support concentration and hence ``′-support concen-
tration. �

Now, we just need to show low-support concentration of each Di. To achieve that we
will use some efficient shift. Shifting will serve a dual purpose. Recall that for Lemma 35,
we need invertibility of the constant term in Di, i.e. Di0, for all i ∈ [d]. In case Di0

is not invertible for some i ∈ [d], after a shift it might become invertible, since Di is
assumed invertible in the sparse-invertible model. For the shifted polynomial D′i(xi) :=
Di(xi + φ(ti)), its constant term D′i0 is just an evaluation of Di(x), i.e. Di|xi=φ(ti)

. Now,

we want a shift for Di which would ensure that det(D′i0) 6= 0 and that D′i has low-support
concentration. For both the goals we use the sparsity of the polynomial.

For a polynomial D, let its sparsity set S(D) be the set of monomials in D with nonzero
coefficients and s(D) be its sparsity, i.e. s(D) = |S(D)|. Let, for a polynomial D(x) ∈
Fw×w[x], S = S(D) and s = |S|. Then it is easy to see that for its determinant polynomial
S(det(D)) ⊆ Sw, where Sw := {m1m2 · · ·mw | mi ∈ S, ∀i ∈ [w]}. Hence s(det(D)) ≤ sw.
Now, suppose det(D) 6= 0. We will describe an efficient shift which will make the constant
term, of the shifted polynomial, invertible. Let φ : t→ {ti}∞i=0 be a monomial map which
separates all the monomials in det(D(t)), i.e. for any two t

e1 , t
e2 ∈ S(det(D(t))), φ(t

e1) 6=
φ(t

e2). It is easy to see that if we shift each xi by φ(ti) to get D′(x) = D(x + φ(t)) then
det(D′i0) = det(D|x=φ(t)) 6= 0.

For sparse polynomials, Agrawal et al. [ASS13, Lemma 16] have given an efficient shift
to achieve low-support concentration. Here, we rewrite their lemma. The map φ`′ : t →
{ti}∞i=0 is said to be separating `′-support monomials of degree δ, if for any two monomials
t
e1 and t

e2 which have support bounded by `′ and degree bounded by δ, φ`′(t
e1) 6= φ`′(t

e2).
For a polynomial D(x), let µ(D) be the maximum support of a monomial in D, i.e.
µ(D) := max

xe∈S(D)
s(e).

Lemma 38 ([ASS13]). Let V be a F-vector space of dimension k. Let D(x) ∈ V [x] be
a polynomial with degree bound δ. Let ` := 1 + 2 min{dlog(k · s(D))e, µ(D)} and φ` be
a monomial map separating `-support monomials of degree δ. Then D(x + φ`(t)) has
`-concentration over F(t).

The [ASS13] version of the Lemma 38 gave a concentration result about sparse polyno-
mials over Hk(F). But observe that the process of shifting and the definition of concen-
tration only deal with the additive structure of Hk(F), and the multiplication structure is
irrelevant. Hence, the result is true over any F-vector space, in particular, over the matrix
algebra. By combining these observations, we have the following.

Lemma 39. Let D(x) =
∏d
i=1Di(xi) be a polynomial in Fw×w[x] with det(D) 6= 0 such

that for all i ∈ [d], Di has degree bounded by δ, s(Di) ≤ s and µ(Di) ≤ µ. Let ` := 1 +
2 min{dlog(w2 ·s)e, µ} and M := poly(sw(nδ)`). Then there is a set of M monomial maps
with degree bounded by M logM such that for at least one of the maps φ, D′ := D(x+φ(t))
has `w2-concentration.

Proof. Let φ : t→ {ti}∞i=0 be a map such that it separates all the monomials in S(det(Di(ti))),
for all i ∈ [d]. There are ds2w such monomial pairs. Also assume that φ separates all mono-

mials of support bounded by `. There are (nδ)O(`) such monomials. Hence, total number

of monomial pairs which need to be separated are sO(w) + (nδ)O(`). From Lemma 25, we
know that there is a set of M monomial maps with highest degree M logM such that at
least one of the maps φ separates the desired monomials, where M = poly(sw(nδ)`). As

LOW-DISTANCE MULTILINEAR DEPTH-3 29

the map φ separates all the monomials in S(det(Di(ti))), det(Di(φ(ti))) 6= 0 and hence, D′i0
is invertible for all i ∈ [d]. So, D′(x) has w2-block-support concentration from Lemma 35.

From Lemma 38, D′i(xi) has `-concentration for all i ∈ [d]. Hence, from Lemma 37,
D′(x) has `w2-concentration. �

Now, we come back to the proof of Theorem 3 (restated in Section 5). We want
to find a hitting set for C(x) = DT

0 DDd+1, where D ∈ Fw×w[x] is the polynomial as
described in Lemma 39 and D0 ∈ Fw[x0], Dd+1 ∈ Fw[xd+1]. Using (w2 + 2)-block-support
concentration of C(x) from Corollary 36, and arguing as in the proof of Lemma 39, we
show `(w2 + 2)-concentration of C(x + φ(t)), where φ is a map which needs to separate

sO(w) + (nδ)O(`)-many monomials pairs. From Lemma 25, there is set of poly(sw(nδ)`)-
many shifting maps with highest degree poly(sw(nδ)`) such that one of them is the desired
map. Similar to Lemma 2, we can show that if C(x + φ(t)) has `(w2 + 2)-concentration

and has degree bound δO(1) then there is a hitting-set of size (nδ)O(`w2). Each of these
evaluations will be a polynomial in t with highest degree poly(sw(nδ)`). Hence, total time

complexity becomes poly(sw(nδ)`w
2
).

Note that for constant width ROABP, when µ(Di) is bounded by a constant for each
0 ≤ i ≤ d+ 1, in particular when each Di is univariate, the parameter ` becomes constant
and the hitting-set becomes polynomial-time.

Appendix E. Width-2 Read Once ABP

In Section 5, the crucial part in finding a hitting-set for an ROABP, is the assumption
that the matrix product D(x) is invertible. Now, we will show that for width-2 ROABP
this assumption is not required. Via a factorization property of 2×2 matrices, we will show
that PIT for width-2 sparse-factor ROABP reduces to PIT for width-2 sparse-invertible-
factor ROABP.

Lemma 40 (2×2 invertibility). Let C(x) = DT
0

(∏d
i=1Di

)
Dd+1 be a polynomial computed

by a width-2 sparse-factor ROABP. Then we can write α(x)C(x) = C1(x)C2(x) · · ·Cm+1(x),
for some nonzero α ∈ F[x] and some m ≤ d, where Ci(x) is a polynomial computed by a
width-2 sparse-invertible-factor ROABP, for all i ∈ [m+ 1].

Proof. Let us say, for some i ∈ [d], Di(xi) is not invertible. Let Di =
[
ai bi
ci di

]
with

ai, bi, ci, di ∈ F[xi] and aidi = bici. Without loss of generality, at least one of {ai, bi, ci, di}
is nonzero. Let us say ai 6= 0 (other cases are similar). Then we can write,[

ai bi
ci di

]
=

1

ai

[
ai
ci

] [
ai bi

]
.

In other words, we can write αiDi = AiB
T
i , where Ai, Bi ∈ F2[xi] and 0 6= αi ∈

{ai, bi, ci, di}. Note that s(αi), s(Ai), s(Bi) ≤ s(Di). Let us say the set of non-invertible
Dis is {Di1 , Di2 , . . . , Dim}. Writing all of them in the above form we get,

C(x)

m∏
j=1

αij =
m+1∏
j=1

Cj ,

30 AGRAWAL, GURJAR, KORWAR, AND SAXENA

where

Cj :=

DT

0

(∏i1−1
i=1 Di

)
Ai1 if j = 1,

BT
ij−1

(∏ij−1
i=ij−1+1Di

)
Aij if 2 ≤ j ≤ m,

BT
im

(∏d
i=im+1Di

)
Dd+1 if j = m+ 1.

Clearly, for all j ∈ [m+ 1], Cj can be computed by a sparse-invertible-factor ROABP. �

Now, from the above lemma it is easy to construct a hitting-set. First we show a general
result about hitting-sets for a product of polynomials from some class.

Lemma 41 (Lagrange interpolation). Suppose H is a hitting-set for a class of polynomials
C. Let C(x) = C1(x)C2(x) · · ·Cm(x), where Ci ∈ C and has degree bounded by δ, for all
i ∈ [m]. There is a hitting-set of size mδ|H|+ 1 for C(x).

Proof. Let h = |H| and H = {α1, α2, . . . , αh}. Let B := {βi}hi=1 be a set of constants.
The Lagrange interpolation α(u) of the points in H is defined as follows

α(u) :=
h∑
i=1

∏
j 6=i(u− βj)∏
j 6=i(βi − βj)

αi.

The key property of the interpolation is that when we put u = βi, α(βi) = αi for all
i ∈ [h]. For any a ∈ [m], we know that Ca(αi) 6= 0, for some i ∈ [h]. Hence, Ca(α(u)) as a
polynomial in u is nonzero because Ca(α(βi)) = Ca(αi) 6= 0. So, we can say C(α(u)) 6= 0
as a polynomial in u. Degree of α(u) is h. So, degree of C(α(u)) in u is bounded by mδh.
We can put (mδh+ 1)-many distinct values of u to get a hitting-set for C(α(u)). �

Note that a hitting-set for α(x)C(x) is also a hitting-set for C(x) if α is a nonzero polyno-
mial. Recall that we get a hitting-set for invertible ROABP from Theorem 3 (Section 5).
Lemma 40 tells us how to write a width-2 ROABP as a product of width-2 invertible
ROABPs. Combining these results with Lemma 41 we directly get the following.

Theorem 4. Let C(x) = DT
0 (x0)(

∏d
i=1Di(xi))Dd+1(xd+1) be a polynomial in F[x] com-

puted by a width-2 ROABP such that for all 0 ≤ i ≤ d + 1, Di has degree bounded by δ,
s(Di) ≤ s and µ(Di) ≤ µ. Let ` := 1 + 2 min{dlog(4 · s)e, µ} Then there is a hitting-set of
size poly((nδs)`).

We remark again that when all Dis are constant-variate or linear polynomials, the
hitting-set is polynomial-time.

Appendix F. Sum of set-multilinear circuits

In this section, we will reduce the PIT for sum of constantly many set-multilinear
depth-3 circuits, to the PIT for depth-3 circuits with m base sets having δ distance,
where mδ = o(n). Thus, we get a subexponential time whitebox algorithm for this class
(from Theorem 2). Note that a sum of constantly many set-multilinear depth-3 circuits
is equivalent to a depth-3 multilinear circuit such that the number of distinct partitions,
induced by its product gates, is constant.

We first look at the case of two partitions. For a partition P of [n], let P|B denote the
restriction of P on a base set B ⊆ [n]. For example, if P = {{1, 2}, {3, 4}, {5, 6, . . . , n}}
and B = {1, 3, 4} then P|B = {{1}, {3, 4}}. Recall that d(P1,P2, . . . ,Pc) denotes the
distance of the partition sequence (P1,P2, . . . ,Pc) (Definition 4). For a partition sequence
(P1,P2, . . .Pc), and a base set B ⊆ [n], let dB(P1,P2, . . . ,Pc) denote the distance of the
partition sequence when restricted to the base set B, i.e. d(P1|B,P2|B, . . . ,Pc|B).

LOW-DISTANCE MULTILINEAR DEPTH-3 31

Lemma 42. For any two partitions {P1,P2} of the set [n], there exists a partition of [n],
into at most 2

√
n base sets {B1, B2, . . . , Bm} (m < 2

√
n), such that for any i ∈ [m], either

dBi(P1,P2) = 1 or dBi(P2,P1) = 1.

Proof. Let us divide the set of colors in the partition P1, into two types of colors: One
with at least

√
n elements and the other with less than

√
n elements. In other words,

P1 = {X1, X2, . . . , Xr} ∪ {Y1, Y2, . . . , Yq} such that |Xi| ≥
√
n and |Yj | <

√
n, for all i ∈

[r], j ∈ [q]. Let us make each Xi a base set, i.e. Bi = Xi, ∀i ∈ [r]. As |Xi| ≥
√
n, ∀i ∈ [r],

we get r ≤
√
n. Now, for any i ∈ [r], P1|Bi has only one color. Hence, irrespective of what

colors P2|Bi has, dBi(P2,P1) = 1, for all i ∈ [r].
Now, for the other kind of colors, we will make base sets which have exactly one element

from each color Yj . More formally, let Yj = {yj,1, yj,2, . . . , yj,rj}, for all j ∈ [q]. Let

r′ = max{r1, r2, . . . , rq} (r′ <
√
n). Now define base sets B′1, B

′
2, . . . , B

′
r′ such that for

any a ∈ [r′], B′a = {yj,a | j ∈ [q], |Yj | ≥ a}. In other words, all those Yjs which
have at least a elements, contribute their a-th element to B′a. Now for any a ∈ [r′],
P1|B′a = {{yj,a} | j ∈ [q], |Yj | ≥ a}, i.e. it has exactly one element in each color. Clearly,
irrespective of what colors P2|B′a has, dB′a(P1,P2) = 1, for all a ∈ [r′].
{B1, B2, . . . , Br} ∪ {B′1, B′2, . . . , B′r′} is our final set of base sets. Clearly, they form a

partition of [n]. The total number of base sets, m = r + r′ < 2
√
n.

�

Now, we generalize this to any constant number of partitions, by induction.

Lemma 43. For any c partitions {P1,P2, . . . ,Pc} of the set [n], there exists a partition of

[n], into m base sets {B1, B2, . . . , Bm} with m < 2c−1 ·n1−(1/2c−1) such that for any i ∈ [m],
there exists a permutation of the partitions, (Pi1 ,Pi2 , . . . ,Pic) with dBi(Pi1 ,Pi2 , . . . ,Pic) =
1.

Proof. Let f(c, n) := 2c−1 · n1−(1/2c−1). The proof is by induction on the number of
partitions.

Base case: For c = 2, f(c, n) becomes 2
√
n. Hence, the statement follows from

Lemma 42.
Induction hypothesis: The statement is true for any c− 1 partitions.
Induction step: Like in Lemma 42, we divide the set of colors in P1 into two types of

colors. Let P1 = {X1, X2, . . . , Xr} ∪ {Y1, Y2, . . . , Yq} such that |Xi| ≥
√
n and |Yj | <

√
n,

for all i ∈ [r], j ∈ [q]. Let us set Bi = Xi and let ni := |Bi|, ∀i ∈ [r] . Our base sets
will be further subsets of these Bis. For a fixed i ∈ [r], let us define P′h = Ph|Bi , as a
partition of the set Bi, for all h ∈ [c]. Clearly, P′1 has only one color. Now, we focus
on the partition sequence (P′2,P′3, . . . ,P′c). From the inductive hypothesis, there exists a
partition of Bi into mi base sets {Bi,1, Bi,2, . . . , Bi,mi} (mi ≤ f(c − 1, ni)) such that for
any u ∈ [mi], there exists a permutation of (P′2,P′3, . . . ,P′c), given by (P′i2 ,P

′
i3
, . . . ,P′ic),

with dBi,u(P′i2 ,P
′
i3
, . . . ,P′ic) = 1. As P′1 has only one color, so does P′1|Bi,u . Hence,

dBi,u(P′i2 ,P
′
i3
, . . . ,P′ic ,P

′
1) is also 1. From this, we easily get dBi,u(Pi2 ,Pi3 , . . . ,Pic ,P1) = 1.

The above argument can be made for all i ∈ [r].
Now, for the other colors, we proceed as in Lemma 42. Let Yj = {yj,1, yj,2, . . . , yj,rj},

for all j ∈ [q]. Let r′ = max{r1, r2, . . . , rq} (r′ <
√
n). Now define sets B′1, B

′
2, . . . , B

′
r′

such that for any a ∈ [r′], B′a = {yj,a | j ∈ [q], |Yj | ≥ a}. In other words, all
those Yjs which have at least a elements, contribute their a-th element to B′a. Let
n′a := |B′a|, for all a ∈ [r′]. Our base sets will be further subsets of these B′as. For a
fixed a ∈ [r′], let us define P′h = Ph|B′a , as a partition of the set B′a, for all h ∈ [c].

32 AGRAWAL, GURJAR, KORWAR, AND SAXENA

Clearly, P′1 has exactly one element in each of its colors. Now, we focus on the par-
tition sequence (P′2,P′3, . . . ,P′c). From the inductive hypothesis, there exists a parti-
tion of B′a into m′a base sets {B′a,1, B′a,2, . . . , B′a,m′a} (m′a ≤ f(c − 1, n′a)) such that for

any u ∈ [m′a], there exists a permutation of (P′2,P′3, . . . ,P′c), given by (P′i2 ,P
′
i3
, . . . ,P′ic),

with dB′a,u(P′i2 ,P
′
i3
, . . . ,P′ic) = 1. As P′1 has exactly one element in each of its colors,

so does P′1|B′a,u . Hence, dB′a,u(P′1,P′i2 ,P
′
i3
, . . . ,P′ic) is also 1. From this, we easily get

dB′a,u(P1,Pi2 ,Pi3 , . . . ,Pic) = 1. The above argument can be made for all a ∈ [r′].

Our final set of base sets will be {Bi,u | i ∈ [r], u ∈ [mi]} ∪ {B′a,u | a ∈ [r′], u ∈ [m′a]}.
As argued above, when restricted to any of these base sets, the given partitions have a
sequence, which has distance 1. Now, we need to bound the number of these base sets,

m =
∑
i∈[r]

mi +
∑
a∈[r′]

m′a.

From the bounds on mi and m′a, we get

m ≤
∑
i∈[r]

f(c− 1, ni) +
∑
a∈[r′]

f(c− 1, n′a).

Recall that ni ≥
√
n. We break the second sum, in the above equation, into two parts.

Let R1 = {a ∈ [r′] | n′a ≥
√
n} and R2 = {a ∈ [r′] | n′a <

√
n}.

(20) m ≤
∑
i∈[r]

f(c− 1, ni) +
∑
a∈R1

f(c− 1, n′a) +
∑
a∈R2

f(c− 1, n′a).

Let us first focus on the third sum. Note that |R2| ≤ r′ <
√
n. For a ∈ R2, n′a <

√
n

and hence f(c− 1, n′a) < f(c− 1,
√
n) = 2c−2 · n1/2−(1/2c−1). So,

(21)
∑
a∈R2

f(c− 1, n′a) <
√
n · 2c−2 · n1/2−(1/2c−1) = 2c−2 · n1−(1/2c−1).

Now, we focus on first two sums in Equation 20. As, ni ≥
√
n, ∀i ∈ [r] and n′a ≥√

n, ∀a ∈ R1, we combine these two sums (with an abuse of notation) and write the sum
as follows, ∑

i∈[r′′]

f(c− 1, ni),

where r′′ = r + |R1|, and ni ≥
√
n, ∀i ∈ [r′′]. As each ni ≥

√
n, we know r′′ <

√
n (as∑

ni ≤ n).
Observe that f(c − 1, z), as a function of z, is a concave function (its derivative is

monotonically decreasing, when z > 0). From the properties of a concave function, we
know,

1

r′′

∑
i∈[r′′]

f(c− 1, ni) ≤ f

c− 1,
1

r′′

∑
i∈[r′′]

ni

 .

Now,
∑

i∈[r′′] ni ≤ n and f(c− 1, z) is an increasing function (when z > 0). Hence,

1

r′′

∑
i∈[r′′]

f(c− 1, ni) ≤ f
(
c− 1,

1

r′′
n

)
.

Equivalently,

LOW-DISTANCE MULTILINEAR DEPTH-3 33

∑
i∈[r′′]

f(c− 1, ni) ≤ r′′ · 2c−2 · (n/r′′)1−(1/2c−2)

= 2c−2 · n1−(1/2c−2) · (r′′)1/2c−2

< 2c−2 · n1−(1/2c−2) · n1/2c−1

= 2c−2 · n1−(1/2c−1)

Using this with Equation 21 and substituting in Equation 20, we get

m < 2c−1 · n1−(1/2c−1).

�

Now, we combine these results with our hitting-sets for depth-3 circuits having m base
sets with δ-distance.

Theorem 5. Let C(x) be a n-variate polynomial, which is a sum of c set-multinear depth-

3 circuits, each having top fan-in k. Then there is a nO(2c−1n1−ε log k)-time whitebox test
for C, where ε := 1/2c−1.

Proof. As mentioned earlier, the polynomial C(x) can be viewed as computed by a depth-3
multilinear circuit, such that its product gates induce at most c-many distinct partitions.
From Lemma 43, we can partition the variable set into m base sets, such that for each of
these base sets, the partitions can be sequenced to have distance 1, where m := 2c−1n1−ε.
Hence, the polynomial C has m base sets with 1-distance and top fan-in ck. Moreover,
from the proof of Lemma 43, it is clear that such base sets can be computed in nO(c)-time.
From Theorem 2, we know there is nO(m log(ck))-time whitebox test for such a circuit.
Substituting the value of m, we get the result. �

Indian Institute of Technology, Kanpur, India
E-mail address: manindra@cse.iitk.ac.in

IIT Kanpur
E-mail address: rgurjar@iitk.ac.in

IIT Kanpur
E-mail address: arpk@cse.iitk.ac.in

IIT Kanpur
E-mail address: nitin@cse.iitk.ac.in

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

