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Abstract. We give a length-efficient puncturing of Reed-Muller codes which preserves its
distance properties. Formally, for the Reed-Muller code encoding n-variate degree-d polyno-
mials over Fq with q & d/δ, we present an explicit (multi)-set S ⊆ Fn

q of size N = poly(nd/δ)
such that every nonzero polynomial vanishes on at most δN points in S. Equivalently,
we give an explicit hitting set generator (HSG) for degree-d polynomials of seed length
logN = O(d logn + log(1/δ)) with “density” 1 − δ (meaning every nonzero polynomial is
nonzero with probability at least 1−δ on the output of the HSG). The seed length is optimal
up to constant factors, as is the required field size Ω(d/δ).

Plugging our HSG into a construction of Bogdanov (STOC’05) gives explicit pseudoran-
dom generators for n-variate degree-d polynomials with error ε and seed length O(d4 logn+
log(1/ε)) whenever the field size satisfies q & d6/ε2.

Our approach involves concatenating previously known HSGs over large fields with mul-
tiplication friendly codes based on algebraic curves. This allows us to bring down the field
size to the optimal bounds. Such multiplication friendly codes, which were first introduced
to study the bilinear complexity of multiplication in extension fields, have since found other
applications, and in this work we give a new use of this notion in algebraic pseudorandom-
ness.

1. Introduction

The Reed-Muller codeRM(q, d, n) consists of the evaluations of n-variate polynomials over
Fq of total degree at most d at all points in Fnq , where Fq denotes the field with q elements.
It is one of classic families of algebraic codes; the binary (q = 2) case was introduced back
in 1954 and has been extensively studied in the coding theory literature. Reed-Muller codes
over large fields (q > d) have found many fascinating applications in complexity theory due
to their rich algebraic structure, which endows them with valuable local testability, self-
correctability, and list-decodability properties (see [17] for a survey). When d < q, which
is the parameter regime of focus in this paper, the Reed-Muller code is a linear code with
dimension

(
n+d
d

)
and relative distance 1− d/q. For d � q, the relative distance is excellent;

however, the rate of the code is rather poor as roughly nd message symbols get encoded into
qn codeword symbols.

Standard probabilistic arguments show that one can improve the rate of the Reed-Muller
code by “puncturing” it to a subset S ⊆ Fnq of ≈ nd/δ positions so that the resulting code
still has relative distance at least 1− δ, for δ & d/q. Said differently, let Pq(n, d) denote the
set of n-variate polynomials over Fq of total degree at most d. One can have a hitting set
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generator (HSG) G : {1, 2, . . . , N} → Fnq with seed length logN 6 O(d log n+ log(1/δ)) such
that for every nonzero f ∈ Pq(n, d), Pri∈[N ][f(G(i)) = 0] 6 δ. We say that such a map G is a
HSG of density 1− δ.

As is typical in pseudorandomness, the challenge is to match this performance with a de-
terministically constructed puncturing S of the Reed-Muller code (or equivalently, an explicit
HSG). For simplicity of description below, let us assume that n > q. As δ > d/q, we can
restrict attention to HSGs with seed length O(d log n) of density 1−O(d/q), or equivalently a

punctured version of the Reed-Muller code with code length nO(d) that has relative distance
1 − O(d/q) (i.e., nearly as large as the original 1 − d/q bound). Note that when d = 1, we
are simply asking for a linear code with relative distance close to 1 − 1/q, and many such
explicit codes with good rate are known – one can have a relative distance of 1− 1/q − ε for

any desired ε > 0 with code length poly(n/ε) or even n/εO(1) (see, for instance, [14, 1, 9]; in
fact one can ensure that every nonzero codeword has a fraction 1/q±ε of each field element).
Our main result (Theorem 4.2) is an explicit length-efficient puncturing of Reed-Muller codes
preserving its distance properties:

Theorem 1.1 (Main; stated here for n > q). There is explicit multiset S ⊆ Fnq with |S| =

N 6 nO(d) such that for every nonzero degree-d n-variate polynomial f over Fq, f vanishes
on at most a fraction δ 6 2d/q of the points in S. Given an index i ∈ {1, 2, . . . , N}, the i’th
element of S can be computed in poly(n) time.

One can even take δ 6 d/q+O(d/q2) in the above result (see Remark 2 after Theorem 4.2).
In other words, we construct an explicit HSG of density 1 − O(d/q) for the space Pq(n, d)
of polynomials, with seed length O(d log n). We also note that both the required field size
(which is Ω(d/δ)) and seed length are optimal up to constant factors.

Various constructions of hitting set generators for Pq(n, d) with seed length O(d log n)
were known before, but the best result (implicit in [10]) still needed a field size that was
super-linear in d/δ. For more details on previous work on HSGs, see Section 1.2.

Derandomized length-efficient versions of the Reed-Muller code which preserve its distance
are interesting in their own right, and also have applications to pseudorandom generators
(PRGs) that fool low-degree polynomials. Specifically, Bogdanov [2] reduced the problem of
constructing PRGs for degree-d polynomials to the problem of constructing HSGs for degree-
poly(d) polynomials with density close to 1. Plugging our HSGs from Theorem 1.1 as a
black-box into Bogdanov’s reduction yields the following corollary for PRGs:

Theorem 1.2. For field size q > Ω(d6/ε2), there is an explicit pseudorandom generator with
seed length O(d4 log n+log(1/ε)) that fools polynomials in Pq(n, d) with error ε > 0, and that
is computable in time poly(n, d, log q),

1.1. Our Techniques. The idea behind our hitting set construction is quite simple. We
start with known optimal seed length hitting sets over a large enough extension field (say
Fqk) of Fq. We then reduce the field size to Fq by encoding Fqk into a vector in Fmq using a
“multiplication friendly” inner code of large relative distance. The seed length of the overall
HSG equals the sum of the seed length of the original HSG and logm, and the density is at
least 1− ρ− ς if the original HSG has density 1− ρ and the inner code has relative distance
1− ς.

Multiplication friendly codes are linear codes with the property that the encoding of a
product of d field elements equals the coordinate-wise product of the encodings of those
elements. Such codes can be constructed using algebraic curves and they were first introduced

2



in the context of the bilinear complexity of multiplication in extension fields in a famous
work [6]. In this work, we give a new use of such codes to construct good puncturings of
Reed-Muller codes.

The specific instantiations of our concatenation approach is to start with a construction
of Klivans and Spielman [11], bring down the field size to O(d2/δ2) using certain algebraic-
geometric codes, followed by reduction to the optimal Θ(d/δ) bound using Reed-Solomon
codes. Alternately one can start with a construction due to Lu [10], and reduce the field size
to Θ(d/δ) in a single step using Reed-Solomon codes. We next discuss these and other prior
works on hitting set constructions.

1.2. Prior work. Constructing PRGs for low-degree polynomials has a rich history, starting
with early work on ε-biased sets for fooling linear polynomials [14, 1, 13, 2, 3, 12, 18]. The
best generator for constant degree polynomials is due to Viola [18], which achieves a seed
length of O(d log n + d2d log(1/ε)) by summing d independent low-bias generators for the
linear case. Our contribution to PRGs follows simply by plugging HSGs into Bogdanov’s
reduction in [2], so below we only discuss works on constructing hitting sets.

Constructing hitting sets (of positive density) is equivalent to problem of black-box polyno-
mial identity testing where the goal is to ascertain if an input n-variate low-degree polynomial
is identically zero, given oracle access to polynomial (that allows querying its value at any
desired point in Fnq ). The queries presented to the oracle must form a hitting set in order for
the algorithm to correctly identify nonzero polynomials.

Dvir and Shpilka presented noisy interpolation sets for degree-d polynomials which yield
punctured Reed-Muller codes of relative distance bounded away from 0 (albeit exponentially
small in d), along with efficient decoding algorithms for such codes [7]. We next turn to
puncturings of Reed-Muller codes with large relative distance (or equivalently, hitting sets
with density close to 1) which is our focus in this work.

Klivans and Spielman gave a randomness efficient polynomial identity test [11, Thm 4]
which yields a density (1− δ) hitting set of size poly(nd/δ) provided q > (nd/δ)6. Their ap-
proach was based on reduction to a univariate problem via an isolation lemma. Subsequently,
in his work on PRGs for low-degree polynomials [2], Bogdanov used BCH codes to reduce
the number of variables from n to about ≈ d log n and constructed a hitting set (again with
poly(nd/δ) elements) over smaller fields of size q > (d log n)2/δ.

Lu [10] extended Bogdanov’s approach by reducing the number of variables in mutiple ways
(instead of the single BCH code based reduction in [2]). While Lu focuses on HSGs with
positive density rather than density close to 1, one can pick parameters in the construction
of [10, Sec. III] to construct HSGs with density 1− δ over a reduced field size of q > (d/δ)1+c

for any c > 0 (the constant in the seed length will get multiplied by 1/c). Equivalently, one
can get density 1− δ for δ > (d/q)1+c, compared to the optimal δ = Θ(d/q) bound. One can
also pick parameters in Lu’s construction to work with q = O(d/δ), but the seed length will
incur a multiplicative log(d/δ) factor and thus not be optimal up to constant factors. Thus,
it was not possible to get both seed length and field size optimal up to constant factors prior
to our work.

Recently, Cohen and Ta-Shma [5] put forth an approach for constructing hitting sets using
algebraic-geometric codes (in a very different way compared to our use in multiplication
friendly codes). Their approach works when the field size is at least Ω(d2/δ2) (which is slightly
worse than Lu’s bound) but the time to compute the HSG has an exponential dependence
on d.

3



1.3. Organization. We begin with preliminaries on punctured Reed-Muller codes and hit-
ting set/pseudorandom generators for polynomials, and a simple lower bound on seed length
and field size for HSGs, in Section 2. In Section 3 we describe multiplication friendly codes,
their construction from algebraic curves, and our main use of these codes in constructing
punctured Reed-Muller codes via concatenation. We instantiate the concatenation approach
with various components to deduce our optimal density hitting sets in Section 4. The result
for PRGs obtained by plugging in our HSG into Bogdanov’s reduction appears in Section 5.
Finally, we conclude with some open questions in Section 6.

2. Preliminaries

Let Fq denote the finite field with q elements. We denote by x the variable vector
(x1, . . . , xn). The multivariate polynomial ring Fq[x1, . . . , xn] is denoted by Fq[x]. For a
vector I = (e1, . . . , en) ∈ Zn>0, we denote by xI the monomial

∏n
i=1 x

ei
i . Thus, we can

write a polynomial of total degree at most d by f(x) =
∑

wtL(I)6d
aIx

I , where aI ∈ Fq and

wtL(I) =
∑n

i=1 ei is the Lee weight. A polynomial in Fq[x] is called a degree-d polynomial if
its total degree is at most d. In the setting throughout the paper, we assume that d < q.

For an integer N , we denote [N ] := {1, 2, . . . , N}. Also, for positive quantities a, b, we
use a & b to mean a > Cb for some absolute constant C. Unless specified otherwise, all
logarithms in this paper will be to base 2.

Definition 1. The Reed-Muller code RM(q, d, n) is defined by {(f(u))u∈Fn
q

: f(x) ∈
Fq[x]; deg(f(x)) 6 d}, where deg(f(x)) denotes the total degree of f(x).

RM(q, d, n) is a q-ary [qn,
(
n+d
d

)
, qn(1− d/q)]-linear code. The relative minimum distance

of RM(q, d, n) is approximately 1 if q � d.

To define our punctured Reed-Muller codes, we adopt the definition of multiset and
simple set from [7]. For N vectors u1, . . . ,uN ∈ Fnq (may not be distinct), the subset
S = {u1, . . . ,uN} is called a multiset. If all ui are distinct, S is called a simple set.

Definition 2. Let S be a multiset of Fnq . The extended punctured Reed-Muller code with
support S, denoted RMS(q, d, n), is defined by {(f(u))u∈S : f(x) ∈ Fq[x]; deg(f(x)) 6 d}.

The length of RMS(q, d, n) is clearly |S|. However, we do not know the dimension and
minimum distance of RMS(q, d, n) for an arbitrary subset S of Fnq . Note that RMS(q, d, n)
is indeed a punctured code from the Reed-Muller code RM(q, d, n) if S is simple. However,
RMS(q, d, n) may not be a usual punctured Reed-Muller code for a multiset S.

Definition 3. For a real δ ∈ (0, 1), a function G : [N ] → Fnq is called a hitting set
generator (HSG) of density 1−δ for degree-d polynomials over Fq if for every non-zero degree-
d polynomial f(x), one has Pri∈[N ][f(G(i)) = 0] 6 δ, i.e., wtH(f(G(1)), . . . , f(G(N))) >
N(1 − δ), where wtH stands for the Hamming weight. The number logN is called the seed
length of the hitting set generator G.

It is straightforward to verify that hitting set generators and extended punctured Reed-
Muller codes are actually equivalent. More precisely, we have the following result.

Proposition 2.1. There exists a q-ary extended punctured Reed-Muller code with parameters
[N,
(
n+d
d

)
,> N(1− δ)] if and only if there exists a hitting set generator G of density 1− δ for

degree-d polynomials over Fq with seed length logN .
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Proof. Let RMS(q, d, n) be a q-ary extended punctured Reed-Muller code with parameters

[N,
(
n+d
d

)
,> N(1−δ)]. Write S = {u1, . . . ,uN}. Since the dimension ofRMS(q, d, n) is

(
n+d
d

)
which is the same as the dimension of the space of all degree-d polynomials, it is clear that
the vector (f(u1), . . . , f(uN )) is nonzero for any nonzero degree d polynomial f(x) ∈ Fq[x].
Consider the map G : [N ] → Fnq defined by i 7→ ui. Then wtH(f(G(1)), . . . , f(G(N))) =
wtH(f(u1), . . . , f(uN )) > N(1− δ).

Conversely, assume that there exists a hitting set generator G of density 1− δ for degree-
d polynomials over Fq with seed length logN . Let S = {G(i) : i ∈ [N ]} and consider the
extended punctured Reed-Muller code RMS(q, d, n). Then it is easy to see that RMS(q, d, n)

is a q-ary [N,
(
n+d
d

)
,> N(1− δ)]-linear code. �

The following result shows that, if there exists a q-ary extended punctured Reed-Muller
code RMS(q, d, n) with parameters [N,

(
n+d
d

)
,> N(1 − δ)], then the ground field size q and

code length N cannot be too small.

Proposition 2.2. If there exists an extended punctured Reed-Muller code RMS(q, d, n) with

parameters [N,
(
n+d
d

)
,> N(1− δ)] , then q > d/δ and N &

(
n+d
d

)
/δ (i.e., logN > Ω(d log n+

log(1/δ)) when d� n).

Proof. Let S = {u1, . . . ,uN} with ui = (ui1, . . . , uin) for 1 6 i 6 N . For an element
α ∈ Fq, denote by Nα the cardinality of the set {i ∈ [N ] : ui1 = α}. Then we have∑

α∈Fq
Nα = N . Label elements of Fq as α1, . . . , αq. Without loss of generality, we may

assume that Nα1 > Nα2 > · · · > Nαq . Hence, dNαj 6
∑d

i=1Nαi for any d+ 1 6 j 6 q. This
gives

(1) N =

q∑
i=1

Nαi 6
d∑
i=1

Nαi +
q − d
d

d∑
i=1

Nαi =
q

d

d∑
i=1

Nαi .

Consider the polynomial f(x) =
∏d
i=1(x1−αi). Then f(x) has at least

∑d
i=1Nαi zeros in S,

i.e, wtH(f(u1), . . . , f(uN )) 6 N −
∑d

i=1Nαi 6 N(1− d/q) by (1). The desired result on field
size q follows from that fact that the minimum distance of RMS(q, d, n) is at least N(1− δ).

Finally, applying the Singleton bound gives N + 1 >
(
n+d
d

)
+N(1− δ), i.e, N > (

(
n+d
d

)
−

1)/δ. �

There is a close relation between hitting set generators and pseudorandom generators
as shown in [2]. Before giving the precise statement of [2], we first define pseudorandom
generators. There are several essentially equivalent ways to define a pseudorandom generator;
we choose a more algebraic definition.

Let p be the characteristic of Fq and let ωp be a p-th primitive root of unity in the complex

field C, then we define the map from Fq to C by χ(α) = ω
Tr(α)
p for α ∈ Fq, where Tr is the

trace map from Fq to Fp. Then χ be a nontrivial additive character from Fq to the complex
field C.

Definition 4. Let ε be a real in (0, 1). Let χ be the additive character from Fq to the complex
field C defined above. A function G : [N ] → Fnq is called an ε-bias pseudorandom generator
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for degree-d polynomials over Fq if for every non-zero degree d polynomial f(x), one has∣∣∣∣∣∣ 1

qn

∑
u∈Fn

q

χ(f(u))− 1

N

∑
i∈[N ]

χ(f(G(i)))

∣∣∣∣∣∣ 6 ε.
Below we quote Bogdanov’s result from [2] on constructing PRGs using HSGs.

Proposition 2.3. Let G1 : [M ] → F2n−1
q be a hitting set generator of density 1 − δ for

degree-3d2 polynomials over Fq. Let G2 : [N ] → Fn−1q be a hitting set generator of density

1− δ for degree-3d4 polynomials over Fq. Then the function G : [M ]× [N ]× Fq × Fq → Fnq
given by

G(i, j, s, t) 7→ (s+ v1, w2s+ z2t+ v2, . . . , wms+ zmt+ vm)

is a pseudorandom generator for degree-d polynomials of bias O(
√
δd+ d2/

√
q+ d6/q), where

G1(i) = (v1, . . . , vn, w2, . . . , wn) and G2(j) = (z2, . . . , zn).

3. Concatenation via multiplication friendly pairs

We have already shown in Section 2 that a q-ary extended punctured Reed-Muller code
with parameters [N,

(
n+d
d

)
,> N(1 − δ)] is equivalent to a hitting set generator G of density

1− δ for degree-d polynomials over Fq with seed length logN . In this section, we present a
concatenation of extended punctured Reed-Muller codes over larger fields via multiplication
friendly pairs to produce extended punctured Reed-Muller codes over smaller fields.

3.1. Multiplication friendly pairs. Multiplication friendly pairs were first introduced by
D.V. Chudnovsky and G.V. Chudnovsky [6] as bilinear multiplication algorithms to study
complexity in extension fields. Following the brilliant work by D.V. Chudnovsky and G.V.
Chudnovsky, Shparlinski, Tsfasman and Vlăduţ [15] systematically studied this idea and
extended the result in [6]. Recently, multiplication friendly pairs were used to study multi-
plicative secrets sharing [4]. Both of the above applications used only bilinear multiplication
friendly pairs, while we use high order multiplication friendly pairs in this section.

For d vectors ci = (ci1, ci2, . . . , cim) ∈ Fmq (i = 1, 2, . . . , d), we denote by c1 ∗ c2 ∗ · · · ∗ cd

the coordinate-wise product (
∏d
i=1 ci1,

∏d
i=1 ci2, . . . ,

∏d
i=1 cim). In particular, we denote by

c∗d the vector (cd1, · · · , cdn) if c = (c1, . . . , cn).

For an Fq-linear code C, we denote by C∗d the linear code

Span{c1 ∗ c2 ∗ · · · ∗ cd : c1, c2, . . . , cd ∈ C}.

Definition 5. A pair (π, ψ) is called a (d, k,m)q-multiplication friendly pair if π is an Fq-
linear map from Fqk to Fmq and ψ is an Fq-linear map from Fmq to Fqk such that π(1) =
(1, . . . , 1) and ψ(π(α1) ∗ · · · ∗ π(αd)) = α1 · · ·αd for all αi ∈ Fq. A (2, k,m)q-multiplication
friendly pair is also called a bilinear multiplication friendly pair.

We have an additional requirement in the above definition of multiplication friendly pairs
compared with the original definition [6, 15], namely we require that π(1) = (1, . . . , 1). This
ensures that (π, ψ) is a (d, k,m)q-multiplication friendly pair whenever (π, ψ) is a (t, k, n)q-
multiplication friendly pair for t > d. This is because

ψ(π(α1) ∗ · · · ∗ π(αd)) = ψ(π(α1) ∗ · · · ∗ π(αd) ∗ π(1) ∗ · · · ∗ π(1)) = α1 · · ·αd,
where there are (t− d) π(1)’s in the above formula.
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Lemma 3.1. If (π, ψ) is a (d, k,m)q-multiplication friendly pair, then π is injective.

Proof. Suppose that π is not injective. Then there exists a nonzero element α ∈ Fqk such
that π(α) = 0. Hence 0 = ψ(0) = ψ(π(α)∗π(1)∗· · ·∗π(1)) = α, which is a contradiction. �

The construction of multiplication friendly pairs in [6] is through algebraic curves over
finite fields and variants of this construction have been extensively studied in literature. In
fact, the only way to construct asymptotically good multiplication friendly pair is through
algebraic curves over finite field [6, 15, 4]. Furthermore, most of these constructions focus on
the bilinear case, i.e., d = 2. Also, there is an additional requirement in Definition 5 for our
purpose. For completeness, we present a construction of (d, k,m)q-multiplication friendly
pair via algebraic curves over finite fields, or equivalently global function fields over finite
fields. For a function field F/Fq and a rational place P∞ and an integer a > 0, we define
the Riemann-Roch space L(aP∞) to be the set of functions of F that have at most a poles
at P∞ and no poles at any other place. By the Riemann-Roch theorem, L(aP∞) is a finite
dimensional Fq-vector space with dimension at least a− g+ 1, where g is the genus of F . We
refer to [16] for detailed background on function fields.

Lemma 3.2. Let F/Fq be a function field of genus g with at least m + 1 distinct rational
places P∞, P1, . . . , Pm and a place Q of degree k. If 2g − 1 + k < m/d, then there exists a
(d, k,m)q-multiplication friendly pair (π, ψ) such that (π(Fqk))∗d is a q-ary linear code with
minimum distance at least m− d(2g − 1 + k).

Proof. Consider the Fq-linear map φ from L((2g − 1 + k)P∞) to the residue class field FQ
defined by f 7→ f(Q), where f(Q) stands for the residue class in FQ. Then the kernel of φ is
L((2g − 1 + k)P∞ −Q) and hence the image of φ has dimension dimFq L((2g − 1 + k)P∞)−
dimFq L((2g − 1 + k)P∞ − Q) = k. This implies that φ is surjective. It is clear that φ(1) is
mapped the multiplicative identity 1 of FQ.

Choose k functions {f1, . . . , fk} from L((2g−1+k)P∞) such that {φ(f1), . . . , φ(fk)} forms
an Fq-basis of Fqk . Let V be the Fq-subspace of L((2g − 1 + k)P∞) spanned by {f1, . . . , fk}.
Then φ derives an Fq-isomorphism from V to FQ as vector spaces. Let τ denote the Fq-linear
isomorphism from FQ to V which is the inverse of φ.

First of all, note that τ(x)(Q) = τ(φ(x)) = x for any x ∈ FQ. Thus, one has α1 · · ·αd =
τ(α)(Q) · · · τ(αd)(Q) = (τ(α1) · · · τ(αd))(Q) for all αi ∈ FQ. Consider the Fq-linear map π
from FQ to Fnq defined by x 7→ (τ(x)(P1), . . . , τ(x)(Pm)). Then π(1) = (1(P1), . . . , 1(Pm)) =
(1, . . . , 1).

We consider an Fq-linear map χ from L(d(2g−1+k)P∞) to Fmq defined by f 7→ (f(P1), . . . ,

f(Pm)). The kernel of χ is L(d(2g− 1 + k)P∞−
∑m

i=1 Pi) which is 0 since d(2g− 1 + k) < m.
Therefore, it is injective and hence we can define ψ to be the Fq-linear map from image of χ
to FQ by sending u to χ−1(u)(Q). We can extend ψ to an Fq-linear map from Fnq to FQ.

Now for any α1, . . . , αd ∈ FQ, we have

ψ(π(α1) ∗ · · · ∗ π(αd)) = ψ(τ(α1)(P1) · · · τ(αd)(P1), . . . , τ(α1)(Pn) · · · τ(αd)(Pm))

= ψ((τ(α1) · · · τ(αd))(P1), . . . , (τ(α1) · · · τ(αd))(Pm))

= (τ(α1) · · · τ(αd))(Q)

(note that (τ(α1) · · · τ(αd)) ∈ L(d(2g − 1 + k)P∞))

= α1 · · ·αd.
7



Finally, if
∑
aπ(α1) ∗ · · · ∗ π(αd) ∈ π(Fqk)∗d is not zero, then ψ(

∑
aπ(α1) ∗ · · · ∗ π(αd)) =∑

aα1 · · ·αd ∈ FQ is not zero as well since ψ is injective on L(d(2g − 1 + k)P∞). On the
other hand,∑

aπ(α1) ∗ · · · ∗ π(αd) =
(
τ
(∑

aα1 · · ·αd
)

(P1), . . . , τ
(∑

aα1 · · ·αd
)

(Pm)
)

and τ(
∑
aα1 · · ·αd) ∈ L(d(2g − 1 + k)P∞). Hence,

∑
aπ(α1) ∗ · · · ∗ π(αd) has at most

d(2g − 1 + k) zeros. This completes the proof. �

Example 3.3. Consider the rational function field F/Fq. Then the genus of F is 0. If
k > 2 and q > m > d(k − 1), then there exists a (d, k,m)q-multiplication friendly pair

(π, ψ) such that (π(Fqk))∗d is a q-ary linear code of length m and relative minimum distance
1− d(k − 1)/m.

Example 3.4. Let q be a square. We consider a tower of function fields over Fq which was
introduced by Garcia and Stichtenoth [8]. The tower (K1,K2,K3, . . . ) is given by Ke :=
Fq(x1, . . . , xe), with

x
√
q

i+1 + xi+1 =
x
√
q

i

x
√
q−1

i + 1
for i = 1, . . . , e− 1.

Let F = Ke. Then the number of rational places of F satisfies N(F ) > q(e−1)/2(q −√q) + 1.
Moreover, N(F )/g(F ) → √

q − 1. If k is proportional to N(F ), then there are roughly

qk/k places of degree k by the Hasse-Weil bound [16]. Thus, there exists an (d, k,m)q-

multiplication friendly pair (π, ψ) such that (π(Fqk))∗d is a q-ary linear code of length m and

relative minimum distance 1− d(2g(F ) + k − 1)/m, where m 6 q(e−1)/2(q −√q).

3.2. Extended punctured Reed-Muller codes via concatenation. In this subsection,
we concatenate extended punctured Reed-Muller codes over larger fields via multiplication
friendly pairs to produce extended punctured Reed-Muller codes over smaller fields.

Let π be an Fq-isomorphism between Fqk and a q-ary [m, k]-linear code C. For a column

vector v = (v1, . . . , vn)T ∈ Fn
qk

, we obtain an n×m matrix

π(v) =


π(v1)
·
·
·

π(vn)

 .

Denote by πi(v) the i-th column of π(v) for i = 1, 2, . . . ,m. For I = (e1, . . . , en) ∈ Zn>0, we

denote by (π(v))I the vector

((π1(v))I , . . . , (πm(v))I) =

 n∏
j=1

π1(vj)
ej , . . . ,

n∏
j=1

πm(vj)
ej


= (π1(v1), . . . , πm(v1))

∗e1 ∗ · · · ∗ (π1(vn), . . . , πm(vn))∗en

= π(v1)
∗e1 ∗ · · · ∗ π(vn)∗en .

8



Thus, if (π, ψ) is a (d, k,m)q-multiplication friendly pair and I = (e1, . . . , en) ∈ Zn>0 with
wtL(I) 6 d, then

ψ
(
(π(v))I

)
=

n∏
j=1

v
ej
j = vI

for any v = (v1, . . . , vn)T ∈ Fn
qk

.

Theorem 3.5. If there exist a qk-ary extended punctured Reed-Muller code RMS(qk, d, n)

with parameters [M,
(
n+d
d

)
,> M(1 − δ)] and a (d, k,m)q-multiplication friendly pair (π, ψ)

such that (π(Fqk))∗d has relative minimum distance at least 1 − ς, then one can construct

a q-ary extended punctured Reed-Muller code RMT (q, d, n) with parameters [mM,
(
n+d
d

)
,>

mM(1− δ − ς)] for some multiset T of Fnq .

Proof. Let S = {u1, . . . ,uM} with ui ∈ Fn
qk

. Each ui is viewed as a column vector. Let

T = {πi(uj) : 1 6 i 6 m, 1 6 j 6M}. Then T is a multiset of Fnq .

Let f(X) be a nonzero degree-d polynomial over Fq. Then |{j ∈ [M ] : f(uj) = 0}| 6 ρM .

Write f(X) =
∑

wtL(I)6d
aIX

I with I = (e1, . . . , en). Then

f(πi(uj)) =
∑

wtL(I)6d
aI(πi(uj))

I .

Hence,

(f(π1(uj)), . . . , f(πm(uj))) =
∑

wtL(I)6d

aI((π1(uj))
I , . . . , (πm(uj))

I) =
∑

wtL(I)6d

aI(π(uj))
I)

and

ψ (f(π1(uj)), . . . , f(πm(uj))) =
∑

wtL(I)6d

aIψ((π(uj))
I) = f(uj).

This implies that (f(π1(uj)), . . . , f(πm(uj))) is a nonzero vector and hence its Hamming
weight is at least (1− ς)m as long as f(uj) is not zero.

Thus, the total number of zeros of {f(πi(uj)) : 1 6 j 6 M, 1 6 i 6 m} is at most
ρmM + (1− ρ)ςmM 6 (ρ+ ς)mM . The desired result follows. �

4. Good extended punctured Reed-Muller codes

In this section, we give efficient constructions of good extended punctured Reed-Muller
codes through some known extended punctured Reed-Muller codes over larger fields.

In [10], a hitting set generator with nice parameters was constructed. As stated there, the
result ensured positive density when the field size is at least d1+c for any c > 0. By choosing
parameters in the proof of Theorem 1 of [10] appropriately, specifically picking the prime p
in that construction to be Θ(d/δ), one can get density (1− δ) hitting sets provided the field
size satisfies q & d2/δ2.1 This yields the following result, stated in the equivalent language of
extended punctured Reed-Muller codes.

Proposition 4.1. (see [10, Theorem 1]) Let δ be a real in (0, 1). Given any n, d ∈ Z>0

and any finite field F` such that ` > d2/δ2, there is an explicit `-ary extended punctured

Reed-Muller code with parameters [M,
(
n+d
n

)
, (1 − δ)M ] for logM = O(d log n + log(1/δ)).

1In fact, one can work with q & (d/δ)1+c for any c > 0, but our alphabet reduction works just as well with
the quadratic bound.
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Furthermore, given an index i, α ∈ Fn` which is the i’th element of the puncturing multiset
can be constructed in time poly(n, d, log `).

By combining Proposition 4.1 and Theorem 3.5 with Example 3.3, we immediately obtain
our main result.

Theorem 4.2 (Main). Let δ be a real in (0, 1). Then for any n, d ∈ Z>0 and prime
power q > 2d/δ, there is a q-ary extended punctured Reed-Muller code with parameters

[N,
(
n+d
n

)
, (1− δ)N ] with logN = O(d log n+ log(1/δ)). The i’th element of this puncturing

can be constructed in poly(n, d, log q) time.

Proof. Let m = d2dδ e. Since m 6 q, by Example 3.3, there a (d, 2,m)q-multiplication friendly

pair (π, ψ) such that (π(Fq2))∗d is a q-ary linear code of length m and relative minimum

distance at least 1−d/m > 1−δ/2. By Proposition 4.1, there is a q2-ary extended punctured

Reed-Muller code with parameters [M,
(
n+d
n

)
, (1−δ/2)M ] with logM = O(d log n+log(1/δ)).

Thus, the desired result on the seed length follows from Theorem 3.5.

The hitting set generator in Proposition 4.1 can be computed in time poly(n, d, log q). For
any desired j ∈ [m], the Fq-symbol in the j’th location of multiplication friendly code used in
Theorem 4.2 can be computed in time poly(log q). Thus, the extended punctured Reed-Muller
code given in Theorem 4.2 can be computed in poly(n, d, log q) time, as claimed. �

Remark 1. By Proposition 2.2, both the seed length and field size in Theorem 4.2 are best
possible up to constant factors.

Remark 2 (Punctured codes of distance 1 − d/q − o(d/q)). Theorem 4.2 gives a punctured
Reed-Muller code over F` of relative distance 1 − O(d/`). By taking these codes over the
field F` = Fq2 , and concatenating them again with the (d, 2, q)q-multiplication friendly pair
of Example 3.3, we can get a q-ary extended punctured Reed-Muller code with parameters
[N,
(
n+d
d

)
, (1− ζ)N ] for ζ 6 d/q +O(d/q2) and N 6 poly(nd/ζ).

Alternate concatenation scheme. Theorem 4.2 already gives an extended punctured
Reed-Muller with the best possible parameters up to constant factors. Next, we are go-
ing to obtain the same result using an earlier construction in [11], to illustrate that our
concatenation approach does not require very strong parameters as a starting point.

Proposition 4.3. (see [11, Theorem 4]) For every δ > 0, if ` is at least (nd/δ)6, then there

is an explicit `-ary extended punctured Reed-Muller code with parameters [M,
(
n+d
n

)
, (1−δ)M ]

with logM = O(d log n+ log(1/δ)).

To bring down the field size of the extended punctured Reed-Muller code in Proposition
4.3, we have to concatenate it with an asymptotically good multiplication friendly pair as
the field size in Proposition 4.3 depends on n.

Proposition 4.4. Let δ be a real in (0, 1). Then for any n, d ∈ Z>0 and prime power square
r with r = Θ(d2/δ2), there is an explicit r-ary extended punctured Reed-Muller code with

parameters [K,
(
n+d
n

)
, (1− δ)K] with logK = O(d log n+ log(1/δ)).

Proof. Consider ` = rk-ary extended punctured Reed-Muller code with parameters [M,
(
n+d
n

)
,

(1 − δ/2)M ] with logM = O(d log n + log(1/δ)) and ` 6 (nd/δ)O(1), promised by Proposi-
tion 4.3. Then k = O((log d + log n − log δ)/ log r). Consider a (d, k,m)r-multiplication
friendly pair given in Example 3.4 and apply Theorem 3.5, we get a r-ary extended punctured
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Reed-Muller code with parameters [mM,
(
n+d
n

)
, (1 − δ)mM ] for degree-d polynomials with

the following parameters: field size r and seed length logm + logM = logm + O(d log n/δ)
and density 1− δ/2− d(k/m+ 2/(

√
r− 1)). Thus, if m = Θ(kd/δ) and r = Θ(d2/δ2), we get

the desired result. �

Remark 3. (i) The hitting set generator in [11, Theorem 4] can be constructed in time
poly(n, d, log q).

(ii) The multiplication friendly pair used in Proposition 4.4 can be computed in time
poly(rk) by searching for a degree k place by brute force.

(iii) Thus, any desired location of the puncturing underlying the extended punctured Reed-
Muller code constructed in Proposition 4.4 can be computed in time poly(nd/δ, log q).

As in Theorem 4.2, by concatenating the extended punctured Reed-Muller code given
in Proposition 4.4 with the Reed-Solomon based (d, 2,m)q multiplication friendly pair of
Example 3.3, we can obtain a similar result to Theorem 4.2 via this alternate approach.

5. Hitting set generator and pseudorandom generator

In this section, we first turn the result on extended punctured Reed-Muller codes given in
Section 4 into a result on hitting set generator. Then by the reduction result of Proposition
2.3, we obtain a pseudorandom generator with the best-known parameters.

First, it follows from Theorem 4.2 and Proposition 2.1 that we have the following result
on hitting set generators.

Theorem 5.1. If q & d/δ, then there exists a hitting set generator G : [N ]→ Fnq of density
1 − δ for degree-d polynomials with seed length logN = O(d log n + log(1/δ)) that can be
computed in time poly(n, d, log q).

Finally, we apply Bogdanov’s reduction of Proposition 2.1 to Theorem 5.1 to give the
following result.

Theorem 5.2. For any ε ∈ (0, 1) and a prime power q with q & d6/ε2, one can get an
ε-bias pseudorandom generator G : [N ] → Fnq for degree-d polynomials with seed length

logN = O(d4 log n+ log(1/ε)) that can be computed in time poly(n, d, log q).

6. Concluding remarks

We conclude with some natural open questions raised by our work:

• Can one construct explicit puncturings of RM(q, d, n) which have relative distance
1 − d/q − ε for any desired ε > 0, and block length poly(nd/ε)? In this work,
we achieved this for ε & d/q2. More ambitiously, can one construct pseudorandom
generators with seed length O(d log n+ log(1/ε)) over arbitrary fields Fq, or at least
when q > d?

• Can one efficiently decode any of the explicit puncturings of RM(q, d, n) given here
or in the literature? In the terminology of [7], can one construct noisy interpolation
sets that can correct a fraction of errors bounded away from 0 as d increases (say, an
error fraction 1/4)?

• Can one apply our field size reduction approach directly to pseudorandom generators
to get PRGs over smaller fields?
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