Electronic Colloquium on Computational Complexity, Report No. 176 (2013)

A Short Implicant of CNF's
with Relatively Many Satisfying Assignments”

Daniel Kane Osamu Watanabe
Department of Mathematics Dept. of Math. and Comput. Sci.,
Stanford University Tokyo Institute of Technology
Stanford CA 94305, USA Tokyo 152-8552, Japan
dankane@math.stanford.edu watanabe@is.titech.ac. jp

1 Introduction
We consider the following question:

Consider any Boolean function F'(X1,...,Xy) that has relatively large number of sat-
isfying assignments and that can be expressed by a CNF formula with relatively small
(but superlinear) number of clauses. Then how many variables do we need to fix in
order to satisfy F'? In other words, what is the size of the shortest implicant of F'?

To state our results precisely, we introduce some notation. Throughout this paper, let F' be a
given Boolean function over N variables, and we assume that it is given as a CNF formula with M
clauses and that it has P2V satisfying assignments, where P will be referred as the sat. assignment
ratio of F. Furthermore, we introduce two parameters' § > 0 and ¢ > 0, and consider the following
situation: (i) P > 2N and (ii) M < N'*¢ For such a CNF formula F, we discuss the size of
its implicant in terms of 4 and €. As our main result, we show that if § + ¢ < 1, then one can
always find some “short” partial assignment on which F' evaluates to 1 by fixing a/N variables for
some « > 0; that is, F has an implicant of size < aN. (In this paper, for any partial assignment,
by its “size” we will mean the number of variables fixed by this assignment; we say that a partial
assignment is short if it fixes at most a/N variables for some constant o < 1.)

If a function F has a short partial assignment, then it has many satisfying assignments. Our
result shows that a certain converse relation holds provided that F' is expressed as a CNF formula
with a relatively small number of clauses. We believe that this structural property would be of
some help for designing algorithms for CNF formulas. In fact, we derive, from our analysis, a
deterministic algorithm that finds a short partial assignment in 5(2N ﬂ)—timeQ for some B < 1 for

*This work was started from the discussion at the workshop on Computational Complexity at the Banff Inter-
national Research Station for Mathematical Innovation and Discovery (BIRS), 2013. The first author is supported
in part by an NSF postdoctoral research fellowship. The second author is supported in part by the ELC project
(MEXT KAKENHI Grant No. 24106008).

'For simplicity, throughout this paper, we assume that these parameters are constants, and whenever necessary
that N is sufficiently large w.r.t. these parameters.

2By 6(t(N)) we mean O (t(N)(]Ogt(N))O(l)).

ISSN 1433-8092

any CNF formula with § + ¢ < 1. (More precisely, we can show that § < 1 — w.)
Clearly, this can be used as a subexponential-time algorithm for solving the CNF-SAT problem for
any CNF formula with § + ¢ < 1.

Note that I’ needs to have many satisfying assignments so that I’ has a short implicant, which
justifies a condition like (i) (with small 0). It seems that a condition like (ii) (with small ¢) is also
necessary. In particular, a DNF formula with a large number of terms can afford to have each term
very long. To justify this intuition, we also show a lower bound for the above « in terms of § and
€.

Hirsch [3] considered a similar problem for k-CNF formulas for any constant k. He considered k-
CNF formulas with P2V assignments for any P > 0. It is shown that some deterministic algorithm
finds, when such an F' is given as an input, one of its satisfying assignments quite efficiently, for
example, in linear-time when P can be regarded as a constant. As a corollary to this analysis, it
is also proved that F' always has a partial assignment of size O(log(1/P)). Unfortunately, though,
his argument does not seem to work for general CNF formulas (i.e., CNF formulas with no clause
size restriction). In fact, Hirsch proved the existence of a general CNF formula that does not have
a partial assignment of size O(v/N) even though it has a large sat. assignment ratio, say, P > 0.5.
It is then suggested that this difference between general CNF and k-CNF could be related to the
difficulty of designing a subexponential-time algorithm for the CNF-SAT problem. We show here
that even in the general case, if F' satisfies our conditions (i) and (ii) with § +¢& < 1, then it indeed
has a somewhat short partial assignment, which can be found by some deterministic algorithm in
subexponential-time.

For solving the general SAT problem, we have an obvious randomized algorithm that tries the
satisfiability of an assignment chosen uniformly at random. Such an algorithm finds a satisfying
assignment with probability > 2=V * for any function with sat. assignment ratio > 2=V *. Then for
the CNF-SAT problem, we may design a deterministic algorithm by applying some good pseudo
random sequence generator (prg in short) against CNF formulas to this randomized algorithm.
That is, an algorithm that tries to find a satisfying assignment among assignments generated by
such a prg from all possible seeds. In order to ensure that this algorithm obtains some satisfying
assignment for any CNF formula with sat. assignment ratio > 2=V 6, we need to choose the seed
length of the prg so that a generated pseudo random sequence (of length N) is v := O(2~V 5) close
to the uniform distribution for any CNF formula (with, say, N o) clauses). For this application,
the current best upper bound for the seed length is O(log(1/v)?) (ignoring minor factors for our
discussion) due to the prg proposed by De et al. [2]. For this seed length, the running time of
the simple deterministic algorithm becomes O(2V 25), which is subexponential if 6 < 1/2. This is
incomparable with our algorithm’s time bound O(2N B) with =1 — w. We should
also mention that while the algorithm using prg is oblivious to the input, ours does not have this

property.

2 Preliminaries

Throughout this paper, we will fix the usage of the following symbols: Let F' be any Boolean
function over N Boolean variables X1,..., Xy, where N is our main size parameter. We also use
n to denote logy, N. We assume that F has P2" satisfying assignments where P > 2=V 6, and that
F is given as a CNF formula with M < N'*¢ clauses. In order to simply our discussion, we regard
parameters ¢ and € as constants; whenever necessary, we may assume that N is large enough for

each choice of § and €. Symbols p and ¢ are used to denote partial assignments over Xi,..., Xn.
For any partial assignment p, by p(X;) = *, for example, we mean that the partial assignment does
not fix the value of X;; let F'|p denote a function evaluated under partial assignment p. We use
Fix(p) to denote the set of variables whose value is fixed by p.

In this paper, we use symbols « and § for some constants w.r.t. N, which are defined by some
other technical parameters chosen for § and €. On the other hand, the symbol ¢ is used to denote
some constants independent from N, §, and . In order to simplify our notation, we write, e.g,
O(N) or Q(N) when constant factors are not essential. We simply write log for log, and In for
log,. Letcy = logye. When necessary, we write e* and 2% as exp(z) and expy(x) respectively for
showing the exponent clearly.

We recall some common approximations that will be used several places in this paper. Note
that for any integer k£ > 1, we have

1* 1 \"*
1—— <el < (1—-—1) .
(1-3) << < (1-e0)

Since we will consider very large k, we ignore the difference between k£ and k+ 1, and we will simply
approximate (1 — 1/k)* by e~

We introduce some notation and state our results formally.

Let sat(F') denote the set of satisfying assignments of F'. Then the satisfying assignment ratio
of F' is defined by

sat.ratio(F') = HSEL;(VF)H

We generalize this notion for partial assignments. Consider any partial assignment p over Xy, ..., X,
and for any set U C {0,1}", by Ul|p we denote the set of assignments in U that are consistent
with p. For example, sat(F')|p is the set of satisfying assignments of F' consistent with p, which is
nothing but sat(F'|p). Then the satisfying assignment ratio of F' w.r.t. p (denoted as sat.ratio(F, p))
is defined by
Isat(F)[p||
{0, 1}V |
Theorem 1. For any d,e > 0 such that § +& < 1, let F' be any CNF formula such that (i) its sat.
assignment ratio P satisfies P > expy(—N®), and (i) it consists of M < N'*¢ clauses. Then it
has some partial assignment p satisfying

sat.ratio(F, p) =

Flp=1 and [Fix()] < a, (1)

where « is defined by
1-(6+¢)
c

a =1

(2)
with some constant ¢ > 1.

We also have an algorithmic version of Theorem 1. In particular, this algorithm can be used to
solve certain CNF-SAT instances.

Theorem 2. There exists a deterministic algorithm such that for any parameters 6 and e, and for
any CNF formula F satisfying (i) and (ii) of Theorem 1 w.r.t. § and €, it runs in O(ZNB)—time for
some 3 < 1 and yields some partial assignment p satisfying

Flp=1 and |Fix(p)| < aN,

where « s defined by
1—(6 _
a = max<1—(TLg),l—cé/(1 6)>

1

with some constants c; > 1 and co < 1.

Remark. We can show that the above time bound holds for any 3 such that § < 1 — 1=(0+e)(1=9)

2(2-0)
This bound for B can be further reduced to 1 — %‘;8) for some constant c3 for a simpler task of
finding a satisfying assignment

We also give the following lower bound result.

Theorem 3. For any parameters § and e, 0 < § <1 and 0 < g, consider « satisfying

e

< —.
@ 1+e—-96

3)
Then we have some Boolean function F such that (i) F has sat. assignment ratio > expy(—N?),
(ii) F has a CNF formula with at most N'*¢ clauses, and (iii) it has no partial assignment p such
that

Flp=1 and [Fix(p)| < aN.

3 Upper bound proof

In this section we give a proof of Theorem 1, showing an upper bound on the size of “short” partial
assignments. Throughout this section, for any 4, > 0 such that § + ¢ < 1 holds, we consider
sufficiently large N and fix any F' satisfying (i) and (ii) of the theorem w.r.t. and e.

For our analysis, we make use of the following version of Lovasz Local Lemma.

Lemma 1. Let € be a family of events, and for any E € &, let I'(E) be the set of events of £ that
may not be independent from E; in other words, £ —T'(E) is the set of events independent from E.
For each E € &, define x(E) € (0,1) so that

Pr[E] < «(B) [[(-a(E)). (4)

Then we have

Pr /\ FE
Ee&
where E is the event that E does not hold.

In the following, we will refer the above mapping x as an LLL mapping.

Let us first see our proof outline. The goal is to define some partial assignment p satisfying the
theorem. For this, we first define a sequence of partial assignments o1, 09,...,or; then with one
more partial assignment pg, we define p by pgooro---o0;. We will use Local Lovdsz Lemma, for
analyzing po; the sequence o1, 09, ...,07 is used to have F|(op o---o07) satisfy conditions needed
for the lemma. Intuitively, by each partial assignment o;, we would like to eliminate either a “short
clause” or a “popular literal”; for eliminating a short clause C, we define g, to assign some values
to the all variables appearing in C, and for eliminating a popular literal, we define o; to assign

some value to the literal. By choosing appropriate values for each oy, we can guarantee that this
process is terminated by assigning values to at most sublinear number of variables.

In our analysis, we will introduce some parameters. Parameters aj, ag, as, by in (0, 1) are chosen
appropriately and regarded as constants w.r.t. N. Intuitively, a1, a2, and as are chosen close to 0,
while b7 is chosen close to 1.

We begin our precise argument by introducing ¢ defined by

{ = bllOg(—logP>'

Here by € [0,1) is a constant close to 1, whose value will be defined later. Then from our assumptions
on N and P, we have

14 N .
2= |- log P = expy(b1(1 —0)n).

The size of C' (denoted as |C|) is simply the number of literals in the clause. We say that a
clause C is short if C' contains at most ¢ literals, that is, |C| < ¢. We say that a literal is popular if
it appears in L := N(1—a)(1-9) (= expy((1 = a1)(1 — 0)n)) clauses, where a; > 0 is some constant
close to 0, whose value will be determined later.

We present our procedure for picking o; below in Figure 1. We iterate this procedure until the
stopping condition () holds. We show that the number of iterations is bounded by O(N?') for
some (31 < 1. Since at most O(log N) variables are assigned by each o, the number of variables
fixed by G :=opo---007 is NBito(l) Note that it may be possible that (x) holds with empty F},
that is, with all clauses being removed. This means that o; o --- o gy satisfies F', and in this case,
we use g; 0 --- 001 as p, which clearly satisfies the theorem.

procedure for o; (where ¢ > 1)
// assume that o1, ...,04_1 have been defined, and
// let o1 and F;_; denote respectively o,_10---00y and F|o;_1.
if (Fy—1 has no popular variable) and (F;_; has no short clause) — (%)
then stop and output the obtained sequence as oy, ...,o07;
Case I: (if F;_1 has a short clause)
C = (any) one of the short clauses;
oy = a satisfying assignment o of C' maximizing sat.ratio(F;_1,0);
// 0t(X) = * for all variables X not in C;
Case II: (if F;—1 has no short clause and F;_; has a popular literal)
Y; = (any) one of the popular literal (either X; or X;) in Fy_1;
if sat.ratio(F;_1, (Y; := 0)) > (14 27¢72) - sat.ratio(F;_1)
then o; = (Y;:=0); else o, = (Y; :=1);

Figure 1: Procedure for defining oy

Before stating our formal analysis, let us give some intuitive reasoning for our choice of £ and
L and why (x) holds within sublinear number of iterations.

We first argue that Case I does not occur many times. For this, we consider the sat. assignment
ratio sat.ratio(F, @) of F' w.r.t. a so-far-defined partial assignment @. Let C' be a short clause that
is chosen at Case I of some tth iteration. Note that out of all possible 2!¢ assignments of C,

2I¢1 — 1 of them satisfy C. Then by defining o; to be one of such assignments satisfying C, the sat.
assignment ratio sat.ratio(F,o; o @) is increased from sat.ratio(F,) by a factor of 2/€1/(21¢l — 1)
> 20/(2° — 1) (= (1 —27%)71). Since the sat. assignment ratio is initially P > expy(—dn) and it is
at most 1, we can bound the number of iterations where Case I occurs. As we will see below it is
bounded by N01+(1=013 from our choice of £, and this bound is sublinear if b; < 1.

Next consider Case II. Let Y; be one of the popular literals chosen at Case II of some tth
iteration. Since it appears in L clauses in the current F};_1, by a partial assignment “Y; := 17 we
can satisfy at least L clauses of F;_; (and hence remove them from F;_ ;). Clearly this does not
occur more than M/L times, where M/L = N(1+e)=(-a)(1=0) — n(1=a1)d+e which is sublinear if
a1 > 0. Here we need to be a bit careful. There may be many satisfying assignments that assigns 0
to Y;, and we may lose many satisfying assignments by using the positive assignment “Y; := 1" for
the tth partial assignment o;. In order to avoid this situation, we first check whether the negative
assignment “Y; := 0” improves the sat. assignment ratio similar to Case I and use this assignment
for oy if such a situation occurs (and use the positive assignment for oy if otherwise). Following the
same argument as Case I, we can give a similar upper bound for the number of situations where
negative assignments are used.

Now we state this idea formally.

Lemma 2. The number T' of iterations of the above procedure needed until (x) holds for Fr is
bounded by O(NP) where By = max (b1 + (1 — b1)d,a1 + (1 — a1)d + €), which is less than 1 by
choosing a1 > 0 sufficiently small and by < 1 (since we assume that 6 +¢ < 1).

Proof. In order to measure the progress made by each iteration, we introduce the following potential
function for a given partial assignment & of F. Below by |F’| we denote the number of clauses in
F'.

d(z) = 2'log (sat.ratio(F,7) ') + [(Flo)| L7t

Clearly, ® must be nonnegative for any partial assignment. We show that each o, decreases ®
by constant whereas its initial value is 2N”1, thereby proving our upper bound for 7.

First estimate the initial potential, that is, ®(7() for the null partial assignment 7y. Noting
that sat.ratio(F, o) = P and !(F|Eo)| (=|F|) = M, we have

(7)) = 2°(—logP)+ M- L' = N (—logP)!™" 4 N1teNy—(1-a)(1-9)
NblN(l—b1)5+N1+E—(1—a1)(1—5) — Nb1+(1_b1)5+Na1+(1_a1)6+8.

This is bounded by 2N/ with
61 = max(b1—|—(1—b1)5,a1+(1—a1)5+8) < 1. (6)

Later (at the end of our analysis for the theorem) we will choose a; > 0 sufficiently small and
b1 < 1 so that the above bound for 81 holds, which is possible since we assume that § +¢ < 1.

Consider first Case I of the above procedure for defining o; and analyze the difference between
®(7;) and ®(7,—1). Let C be the short clause satisfied by o;. We first estimate the sum of
sat.ratio(F, cogs_1) over all satisfying assignments o of C', which we write by 3,.sat.c sat.ratio(F, oo
T—1). From the definition of the satisfying assignment ratio, we have

Yo:sat.C HS&'E(F|E{/,1 o U)H

osarc sat-ratio(F,o e Ti-1) = ==
1V,

Note here that
Yosat.c |[sat(Flo—100)|| = [sat(F|ae—1)|l,

and
110, 1}V G100l = Sowsarc 27 {0, 1}N]7-1]].

Hence, we have
[sat (F[oe—1)||
Sosat.c 271C1{0, 1}V a1

o [sat (Flo—1)]]
:sat. —
70, 13N |

EO’:S&t.C Sat-ratiO(F, o O Etfl) e

= 9Cly = 2|C‘EU;SM,C sat.ratio(F,a4_1).

Note that there are 2/€l — 1 satisfying assignments for C. Thus, the above estimation shows
that sat.ratio(F,o o ay_1) on average is 2/°1/(2/¢l — 1) x sat.ratio(F,@;_1). Since we choose for oy
an assignment maximizing the ratio, we have

2lC|
2101 — 1

sat.ratio(F, o, 004—1) > - sat.ratio(F,—1) > - sat.ratio(F, o4—1),

1—2-¢
since |C] < ¢ because C' is a short clause.

Then 2¢log(sat.ratio(F,7;_1)~'), the first term of ®(;_1), gets decreased at least by logye > 1
because

2 1og (sat.ratio(F, oy o Et,l)_l) < 20g ((1 - Z_E) sat.ratio(F), Et,l)_l)
. 1
= log (1 —-27) + 2% log (sat.ratio(F,5—1) ") .

Thus, we have ®(o; 05y_1) < ®(74—1) — 1.

Consider next Case II. In this case, we want to assign Y; positively (i.e., to use the assignment
Y; :=1) to satisfy at least L clauses. But in order to avoid the situation where too many satisfying
assignments are lost by this assignment, we first check whether the satisfying assignment ratio gets
increased by assigning Y; negatively. If the ratio is increased by a factor of (1 +27¢2), then we
simply use this negative assignment for oy, by which the ® value gets decreased by at least 1/4,

since
1 1

1
U ~
2 10g<1—|—2z+2> = Zloge > 1

Otherwise, the ratio would not get decreased more than (1 —27¢2) times by assigning Y; positively,
which means that the increment of the first term of the ® value is at most (loge)/4 < 1. On the
other hand, by assigning Y; positively, we can satisfy (and hence eliminate) at least L clauses from
F;_1, by which the ® value is decreased by at least 1. Thus, we have ®(o,07;-1) < ®(74—1) —Q(1),
and from this the lemma is proved.]

Now we may assume that some partial assignment & is chosen such that (i) it assigns at most
NP+ol) variables for some 81 < 1, and (ii) F'|o has no popular variable nor short clause. We may
also assume that the value of F'|7 is not yet fixed and there are some clauses remained in F'|g. For
this F'|o, we define our last partial assignment py via Lovész Local Lemma.

Let ag be a parameter in (0, 1) that is sufficiently small; again ag will be determined at the end
of our analysis. For defining our pg, we consider a standard random partial assignment p that is
defined by

0, with prob. (1 —a2)/2,
p(X;) = 1, with prob. (1 —a2)/2, and
x, with prob. as

for each X; ¢ Fix(a). We would like to find some p that still keeps Q(N) variables unassigned and
yet F|po@ = 1. If such p exists, then we use it for pg and define p = pg o .

It is easy to see that p assigns * to approximately as N’ variables with high probability, where
N’ is the number of variables of F|g. Recall that N’ > N — N#1+o(): then the following claim
holds.

Claim 1. With probability 1 — 2= the random partial assignment p assigns * to more than
(a2/2)N wariables.

Thus, we set « = 1 — ay/2; then the theorem follows from the following lemma, which shows
that with some positive probability there exists p with F|pod = 1 among those satisfying the above
claim. We can simply use one of them for py to define our target p = pp o@. (The bound (2) for «
will be given after the proof of the lemma by determining our technical parameters.)

Lemma 3. For some B2 > 0, we have
Pr[F|p 00 = 1] > exp (—2(1_52)”> = exp (—N(l_ﬁQ)) .
p

Proof. Let C be the set of clauses of F|g. For each clause C € C, let E¢ be the event that p does
not satisfy C, i.e., C|p # 1. Then Pr[AcecEc | is the probability that F|p = 1, i.e., the probability
that we would like to bound.

Here we use Lovasz Local Lemma to estimate this probability. In the following analysis, we
introduce symbols u, v, w to simplify expressions and also for later reference. First we define an
LLL mapping z for Lovasz Local Lemma. In order to define x(E¢) for each C' € C appropriately,
we note that

2
~ 27101 gmmICl = 9-ICl(1—coa2) _ 9—ulC| (7)

1 € .
Pr[EC] = <+QQ> — 9o~ICl, (1 +a2)a21-p\0\

where ¢y = loge and u = 1 — ¢pay. We then introduce a parameter ag > 0 and define z(E¢) for

each C € C by
x(EC) = 2—u\C| .2a3u\C| — 2—(1—a3)u|C| _ 2—U‘C|’

where we let v = (1 — ag)u € (0,1).
We show that the condition (4) of Lovasz Local Lemma is satisfied. First note that Ecr € I'(E¢)
if and only if C” shares some variable with C'; thus,

IT(EC)|| < L-|C| = 20-a0=0n

because there is no popular variable. Thus, we have

[I a-een = I (-27) > I (1-2%)

EC/GF(EC) EO/EF(Ec) ECIGF(Ec)
I'(E 2ut(2—vt.L.|C
(1 B 2_1)@) IT(E > (1 B 2_04) (ICl)
A exp <—2_”£ -L-|C|) = exp (—2_”6 -g(lma))(1=d)n . \C!)

— e <_2(—vb1(1—6)n+(1—a1)(1—5)n) _ ’C\)

Y

= exp <_2((1—a1)—vb1)(1—5)n) |C|> = exp, (_Co2w(1—6)n . |C|> ’

where w = (1 — ay) — vby. Hence, we have

2(Be)] (A -xz(Ec)) > expy(—ulCl+ (a3 — o2 " fu)ulCY).
Eq€T(Ec)

Now for condition (4), we will define our parameters so that
w= (1—a)—vby = (1—a1)—(1—a3)(l —cpaz2)by < 0

holds; then then we have
CO2w(1—6)n/y < as

for sufficiently large n, and this implies (7) < (8); that is, (4) holds for our mapping.
Then by Lovasz Local Lemma (5) we have

A Ee

ceC

Pr > JJa-z(Ee) = JJa-27v¢

ceC ceC
_ <1 B 27U£>M _ <1 B 271)@) vl pr.9—ve

exp (—M . 2—1;12) = exp (—2(1+€)” . 2_”4)

= exp <_2(1+€)n . 2—vb1(1—5)n) = exp (_2(1—(Ub1—(vb15+5)))n>

> exp (_2(1(vb1(5+5)))n> .

Q

By our choice of parameters (explained later), we may assume that
Ubl — (5—|—€) > 0.

Thus, the lemma holds with 8 = vb; — (6 +¢) > 0.

(10)

O]

To conclude our proof, we determine our technical parameters a1, as,as, and b;. Recall that
these values are chosen to satisfy the following inequalities: (6), (9), and (10). Let A = 1— (0 +¢),

which is positive by our assumption. Let d be any positive number such that 2d << 1 — §; for
simplicity, we let d = (1 — §)/4. Define a by

 (1+42d)A
= "5 (< A).

Then we define a1, a2, a3, and by as follows:

a; = a a—ﬁ a—ﬁ andb—€+a
e CE) MR D T S

We show that with these parameters, inequalities (6), (9), and (10) are satisfied. First consider (6).
Note that by + (1 —01)d = 0+ b1(1 —0) = 6 +e+a, and that a; + (1 —a1)d + € < 0 + ¢+ a. Thus,
we have

61 = max(bl +(1—b1)5,a1 +(1 —a1)5—|—€) = Jd+e+a.

On the other hand, we have

§+eta = 1—(1_(5+z>)_(2_5_2d) = 1—(1_(2(_;?25()1_5) < 1, (11)

and (6) is proved.
In order to show (9), we compare (1 —a1)/(b1(1 —a3)) and 1 — cpas. By using a3 < a;, we have

1—0,1 _ 1—a1 14 as < 1—a1+a3.
bl(l — a3) b1 1-— as b1

Then (9), that is, (1 —a1)/(b1(1 —a3)) < 1 — cpag follows from (1 — a1 + a3)/b; < 1 — ¢pag, which
is shown by substituting our defined values to these parameters. Also (10) is immediate from (9)
because we have vby > 1 —a1 >1—-A =6 +e¢.

Finally, we show the bound (2) for a. Recall that we defined @ = 1 — as/2. Then (2) with
¢ = 8¢y follows from

dA (1 =6)+e) (e+A)d+e) < d0+e
cole+a) deg(e+a) degleta) T deo

ag =

4 Algorithmic version

In this section we give a proof of Theorem 2, showing an algorithmic way to define a short partial
assignment.

The key tool is to use an algorithmic version of Lovasz Local Lemma, which has been improved
greatly [4, 5, 1]. Our idea is simple. We show some subexponential-time deterministic algorithm
that reduces our task to the CNF-SAT problem and use an algorithmic version of Lovasz Local
Lemma. Here we use the version® reported in [1].

We specify our target problem and state their lemma in a slightly simpler way. Note that in the
algorithmic version of Lovész Local Lemma one should consider all CNF formulas (more precisely,

3In their paper, as a typical application of the lemma, an efficient deterministic algorithm is shown for k-CNF
formulas with no variable appearing in many clauses. This may be used in our situation; but here we go back to the
original lemma to confirm that our parameter choice works.

10

all CNF formulas satisfying certain conditions) instead of considering some single CNF formula
as we did in the previous section. For any N’, let Fys be the set of CNF formulas F’ over N’
Boolean variables with at most (N’)? clauses. Let F = Un'Fpy/. We use a mapping considered in
Lemma 1, which can be defined for each formula. Consider any F’ € F. Let C denote the set of its
clauses. Consider a random assignment to its N’ variables, and for each C € C, let E¢ denote an
event that C' becomes false by the assignment. Our goal (and the task of our algorithm) is to find
an assignment avoiding E¢ for all C' € C, that is, to find a satisfying assignment for a given F'inF.
Let T'(E¢) be the set of events E¢s such that C’ shares some variable with C. In the lemma we
consider an LLL mapping = (for this F’); by using this z, we also define 2/(E¢) by

¥(Eo) = x(Be) [(1—=(Ee)).
B¢/ €T (Ec)

Now we state the following algorithmic version of Lovasz Local Lemma [1].

Lemma 4. For any € > 0 and dy > 0, there exists a deterministic algorithm that, for any given
F' € Fnr, runs in time (N’)Cdld?(l/f) and yields some satisfying assignment of F' if we can define
some mapping x for F' that satisfies

Pr[Ec] < 2/(Ec)'™™, xz(Ec) < 1/2, and 2/(Eg) > N™® (12)
forallC eC.

We propose our deterministic algorithm and show that it indeed satisfies the requirement of the
theorem. Below we explain the execution of the algorithm on any given CNF formula F' satisfying
the condition of the theorem. We use the same set of parameters with almost the same values as
previous section; these values will be justified at the end of this section. Our deterministic algorithm
starts with executing the procedure of Figure 1 for sufficient number of times for obtaining a partial
assignment o. Note that the procedure is executed deterministically in a brute force way. That is,
instead of choosing each o, appropriately, we try all possibilities and consider all possible &’s that
can be obtained by iterating the procedure for at most 2N”! times, where 2N is the bound given
in the proof of Lemma 2. Then as Lemma 2 guarantees that there should be some & that satisfies
the target condition (x) of Figure 1; that is, F'|¢ has no short clause nor popular variable. Since
we can easily check this condition, choose any such . It is easy to check that the time needed to
compute this part is bounded by

(max{2€,2}+NO(1)>O(NBI) < eXPQ((cb1(1—5)logN)'Nﬂ1> < 6(2Nﬁ1).

For this F'|o, we consider a random assignment p’ that is similar to p used in the previous
section. With a parameter ag, this p’ assigns * independently to each variable with probability
az (and leave it unassigned otherwise). Since every clause of F|g has at least ¢ literals (where
log¢ = b1(1—0)log N), we have the following claim by Chernoff bound and the union bound. (The
proof will be stated later.)

Claim 2. With probability 1 — N=%W) the random partial assignment o' satisfies the following
(xx): it assigns x to more than (az2/2)N wvariables and it assigns * to at most |C|/2 variables at
each clause C of F|o.

11

We deterministically obtain for p’ one of such partial assignments satisfying (#x). This is
possible in polynomial-time in N by the standard method of using conditional probabilities. For
the obtained p’, we remove all variables from F|g that are assigned x by p’. Note that even after
this each clause has at least ¢/ := ¢/2 literals. Then we define F’ by keeping only the first ¢
literals for each clause (where we may use any order of literals in each clause). The crucial points
are: (a) any satisfying assignment of F” is extended naturally (by using & and p’) to a partial
assignment p for F satisfying the condition of the theorem, and (b) all clauses of F’ is of size ¢/
and F’ has no popular variables. By using (b) we show below that Lemma 4 can be used to show
some polynomial-time deterministic algorithm for finding a satisfying assignment for F’; then by
(a) we use this satisfying assignment to define a partial assignment satisfying the theorem. This is
the execution of our deterministic algorithm. It is easy to see that the total running time of this
algorithm is bounded by 5(2Nﬁ1)

Below after stating a technical lemma and the proof of Claim 2, we conclude our proof by
justifying the choice of our technical parameter values.

Lemma 5. For the above F’', we can define an LLL mapping satisfying the condition (12) of
Lemma 4.

Proof. We use the analysis given in the proof of Lemma 3. Consider the first condition of (12).
Note that
Pr[Ec] = 2719

and hence (7) holds with v = 1. This is only the difference, and the other part of the analysis
works as before. Thus, from (8) we have

¥(Bo) > expy(—|C|+ (ag — co20™)|C]),

where we may assume that az — ¢g2@(!=9" > ¢ for some constant ¢ > 0 for any sufficiently large n
(= log N). Therefore, the first condition of (12) is satisfied because

1+e
Pr[Eo] = 2719 < 2-(+90-9lcl _ (2—|C|+e\C|) < Z(Bo)te.

For the second and the third conditions (12), we note that |C| = ¢ = £¢/2 = bi(1 — §)n/2 holds
for all clauses C'. Then it is easy to see that the second condition holds and the third one holds
with d2 =1.]

Proof of Claim 2. The first condition of (xx) was analyzed by Claim 1; thus, we consider here only
the second condition.

Consider any clause C' of F|g, and let Z be the number of literals that gets * by our random
partial assignment. Then its expectation p is ag|C|, which is much smaller than |C|/2. Thus, by
Chernoff bound, we can bound the probability that Z exceeds |C|/2 by

Pr[Z>‘Cq = Pr[Z>(1+na|C|] = Pr[Z>1+n)u]

2
" 1
<<1+(:7>1+v> = (2a50) 72 e

(2a¢)/! < (2a2¢)" = (2a0¢)" 7",

IN

(13)

12

where we let n = (2a2) ™! — 1 so that it satisfies (1 + n)as = 1/2.
It is easy to check that b; > 1/2 holds for the value of b; defined in the proof of Lemma 5.
Thus, we may choose some constant ca < 1 of Theorem 2 so that

ag < cé/(l_(s) = agl(l_(s) < 2_3(2e)_l

holds. Then this implies

(2aze) br1=0) o 273,

and hence, (13) is at most 273" = N3, Since there are at most N? clauses, the lemma follows by
the union bound. O

We can use the same parameter values except for as. For as, we add one more condition as <
cé/ (1-9) in the above; but it is easy to check that this new condition (which may lower the choice
of az) does not affect the choice of the other parameters. (Note that we can use the constant ¢
of Theorem 1 for ¢;.) In particular, we can choose a; and by so that the bound (6) for 1 holds.
Therefore, we have Theorem 2.

5 A lower bound

We move on to the proof of Theorem 3. The idea is relatively easy. For any e > 0 and ¢ € [0, 1],
consider « satisfying (3) of Theorem 3. Let II be the set of partial assignments fixing values of a N
variables. Our goal is to show F' that satisfies the conditions (i) and (ii) of the theorem and that
is satisfied by no p € II.

We define F randomly as the conjunction of N'*¢ random clauses chosen independently.
Roughly speaking, each clause is a disjunction of approximately s randomly chosen literals. The
parameter s is chosen large enough to guarantee that each clause is satisfiable with a certain prob-
ability so that F’s sat. assignment ratio exceeds I' := exp,(—N?) with probability larger than some
~. On the other hand, we keep s small enough so that each clause is satisfied with relatively small
probability by fixing values of at most /N variables, thereby ensuring that F'|p = 1 for some partial
assignments p € II with probability < . Then with the probabilistic argument, we can show the
existence of our target Boolean formula F'.

To explain this idea in detail, we only have to give a precise method to define a random clause.
For a given parameter s that will be defined later, our random clause C' is defined as the disjunction
of literals that are selected independently with probability s/N. The following claim holds under
this method of generating random clauses.

Claim 3. For any assignment a € {0,1}" and any partial assignment p € I, we have
%r[C(a) =0] ~ e ® and %r[C|p #£1] ~ e
Proof. Consider any p € II, and let I, (resp., I, _) be the set of indecies i such that p(X;) =1

(resp., p(X;) = 0). A random clause C' is not satisfied by p (i.e., C|p # 1 holds) if and only if X;
is not chosen for all ¢ € I, ; and X; is not chosen for all i € I, _. Thus, we have

l:ér[C\pyél] = (1—%)(1]\[~ e %

13

Here we fix s by
s = (14+e—0)InN+1,

from which we have
e SN = NYJe. (14)

Note also that 0 < s/N < 1; hence, we can use s/N as a parameter for our random selection.
We define our random formula F by the conjunction of N'*¢ clauses randomly defined as above
independently. Then we have the following two claims, from which the existence of our desired F
follows immediately.

Claim 4.
l?r [sat.ratio(F) > T'] > expy (—N‘S) . (15)

Proof. Consider any assignment a € {0,1}". From Claim 3 and from the definition of random
formula F, it follows

Pr[F(a)=1] ~ (1- e_s)NHE ~ exp (—e *N't%) = exp <—N5/e> ,

where the last expression is from (14). Let I denote exp(—N? /e). Note that I" >> I' = exp,(—N?);
in particular, we have IV > 2T".
Now we use the standard averaging argument. Note first that

Expp[sat.ratio(F)] = Expp [2NZF(a)
= 27 Expp[F(a)]

= 2_Nza:1;r[F(a):1] ~ I

On the other hand, letting p = Prp[sat.ratio(#') < I'], we have
Expp[satratio(F)] < p-T+(1—p)-1 = 1—p(1-T).

Then from the above two (in)equalities, we have I' < 1 — p(1 —I'), from which

-1 ' —T
= 1- 1-T
P=q°T -1 °©
since IV > 2I" and 1 — " < 1. This proves the claim. O
Claim 5.
o\ N
I;r[EIpGH[F\pzlﬂ < <e> << T. (16)

Proof. Consider any partial assignment p € II. Again from Claim 3 and from the definition of
random formula F', it follows

s—(142)\ @
P;r[F\pzl} ~ (1—675“)M ~ exp(—e**M) = exp(— (Ne> NHE).

We will analyze below the last expression and show that it is at most exp(—2N); then the claim
follows from the union bound because there are at most 3"V partial assignments.
We show that the argument of the above expression exp(---) is at most —2N; to see this,

consider
NO—(1+e) @
In —— | N | = (1+e)—a(l+e—6))nN —a. (17)

[§]

Here note that there is some a¢ > 0 with which
eE—a

C T 1re—s

holds; this follows from the assumption (3) and the fact that 1 +& — § > 0. Then we can restate
(17) by
(17) = (1+a)lnN—a = InN+alnN —a,

and, noting that o < 1, this can be bounded below by In N + In2 = In(2N) for sufficiently large
N. This gives our desired bound. O

From this lower bound, we know, for any F with N¢ clauses, the size of a partial assignment
p satisfying F' must be at least 1 — 1/d that goes to 1 with d — oco. But it does not exclude the
possibility that any N%size CNF formula has some satisfying partial assignment of size agN for
some ag < 1 if it has sat. assignment ratio greater than, say, > 1/2. On the other hand, it is easy
to see that our upper bound approach works only for CNF formulas with N'*¢ clauses for some
e < 1 (no matter how we choose the technical parameters). Note first that b must be smaller than
1 in order to bound the number of iterations of defining @ by O(N”1) for some 8; < 1 (see (6)).
Then from (9) we need a; > 0, which means that the threshold L for “being popular” is sublinear
in N. Then again for bounding the number of iterations (based on the bound M/L = N'*¢/L),
we need the condition € < 1. It is an interesting open problem to determine whether this ¢ < 1
bound is essential.

References

[1] K. Chandrasekaran, N. Goyal, and B. Haeupler, Deterministic algorithms for the Lovész Local
Lemma, in Proc. of the 21st Annual ACM-SIAM Sympos. on Discrete Algorithms (SODA’10),
SIAM, 992-1004, 2010.

[2] A.De, O. Etesami, L. Trevisan, and M. Tulsiani, Improved pseudo-random generators for depth
2 circuits, in Proc. the 14th. International Workshop on Randomization and Computation,
(APPROX-RANDOM'10), Lecture Notes in Computer Science 6302, 504-517, 2010.

[3] E. Hirsch, A fast deterministic algorithm for formulas that have many satisfying assignments,
Logic Journal of the IGPL, 6(1): 59-71, 1998.

[4] R. Moser, A constructive proof of the Lovész local lemma, in Proc. of the 41st Annual ACM
Sympos. on Theory of Computing (STOC’09), 343-350, 2009.

[5] R. Moser and G. Tardos, A constructive proof of the general Lovész local lemma, J. ACM,
57(2), 2010.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

