
A Short Implicant of CNFs

with Relatively Many Satisfying Assignments∗

Daniel Kane
Department of Mathematics

Stanford University
Stanford CA 94305, USA

dankane@math.stanford.edu

Osamu Watanabe
Dept. of Math. and Comput. Sci.,
Tokyo Institute of Technology

Tokyo 152-8552, Japan
watanabe@is.titech.ac.jp

1 Introduction

We consider the following question:

Consider any Boolean function F (X1, . . . , XN) that has relatively large number of satis-
fying assignments and that can be expressed by a CNF formula with clauses polynomial
in N . Then how many variables do we need to fix in order to satisfy F? In other words,
what is the size of the shortest implicant of F?

To state our results precisely, we introduce notation. Throughout this paper, let F be a given
Boolean function over N variables, and we assume that it is given as a CNF formula with M clauses
and that it has P2N satisfying assignments, where P will be referred as the sat. assignment ratio of
F . Furthermore, we introduce two parameters1 δ, 0 < δ < 1, and d > 0, and consider the following
situation: (i) P ≥ 2−Nδ

, and (ii) M ≤ Nd. For such a CNF formula F , we discuss the size of its
implicant in terms of δ and d. As our main result, we show that if δ < 1, then one can always
find some “short” and “satisfying” partial assignment, where by “short” we mean that it fixes αN
variables for some constant α < 1 and by “satisfying (or, sat.) partial assignment” we mean that
F is evaluated to 1 (i.e., true) under this partial assignment. In other words, F has an implicant
of size ≤ αN . (In this paper, for any partial assignment, by its “size” we will mean the number of
variables fixed by this assignment.)

If a function F has a short sat. partial assignment, then it has many sat. assignments. Our
result shows that a certain converse relation holds provided that F is expressed as a CNF formula
consisting of some fixed polynomial number of clauses. Of course, there should be some limit on
the size of such short sat. partial assignments. Clearly, F needs to have many sat. assignments
so that F has a short sat. assignment. Also it seems reasonable that the size of the shortest sat.

∗This work was started from the discussion at the workshop on Computational Complexity at the Banff Inter-
national Research Station for Mathematical Innovation and Discovery (BIRS), 2013. The first author is supported
in part by an NSF postdoctoral research fellowship. The second author is supported in part by the ELC project
(MEXT KAKENHI Grant No. 24106008).

1For simplicity, throughout this paper, we assume that these parameters are constants, and whenever necessary
we assume that N is sufficiently large w.r.t. these parameters.

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 176 (2013)

partial assignment should get close to N when the number of clauses of F gets larger. We justify
this intuition by giving some lower bound on the size of the shortest sat. partial assignment.

Hirsch [6] considered a similar problem for k-CNF formulas for small k, in particular, for
constant k. He considered k-CNF formulas F with any sat. assignment ratio P > 0, and showed
a deterministic algorithm that finds, when such an F is given as an input, one of its satisfying
assignments quite efficiently, for example, in linear-time when both k and P can be regarded as
constants. As a corollary to this analysis, it is also proved that F always has a partial assignment of
size O(2k log(1/P)). Unfortunately, though, his argument does not seem to work for general CNF
formulas (i.e., CNF formulas with no clause size restriction). In fact, Hirsch proved the existence
of a general CNF formula that does not have a sat. partial assignment that is “very short”, i.e.,
of size O(

√
N) even though it has a large sat. assignment ratio, say, P ≥ 0.5. We show here that

even in the general case, if F satisfies our conditions (i) and (ii), then it indeed has a short sat.
partial assignment. The Switching Lemma of H̊astad [5] also can be used to discuss the existence
of somewhat short satisfying partial assignments. For example, it is not so hard to show that any
CNF formulas with some fixed polynomial number of clauses and constant sat. assignment ratio has
a satisfying partial assignment of size ≤ (1−1/ logN)N . But it seems that there is no trivial way to
improve this bound. The contribution of this paper is to improve the upper bound to (1−Ω(1))N
(even for much smaller sat. assignment ratio). We believe that this structural property would be
of some help for designing algorithms for the general CNF-SAT problem.

We also consider an algorithmic way to get such a short sat. partial assignment, and obtain
a deterministic subexponential-time algorithm that finds one of short sat. partial assignments for
CNF formulas with subquadratic number of clauses. More precisely, for any δ and ε such that
δ + ε < 1, we can define a deterministic algorithm that takes any F satisfying (i) and (ii) with δ

and d = 1 + ε and computes its sat. partial assignment of size ≤ αN in Õ(2N
β
)-time2 for some

constants α < 1 and β < 1.
Clearly, our deterministic algorithm for computing a short sat. partial assignment can be used

for solving the CNF-SAT problem, and it has some advantage over previously known algorithms.
An obvious randomized algorithm for the SAT problem for instances with many sat. assignments is
to search for a sat. assignment by generating assignments uniformly at random. Such an algorithm
finds a sat. assignment with probability ≥ 2−Nδ

for any function with sat. assignment ratio ≥
2−Nδ

. Then for the CNF-SAT problem, we may design a deterministic algorithm by applying some
good pseudo random sequence generator (prg in short) against CNF formulas to this randomized
algorithm. That is, an algorithm that tries to find a sat. assignment among assignments generated
by such a prg from all possible seeds. In order to ensure that this algorithm obtains some sat.
assignment for any CNF formula with sat. assignment ratio ≥ 2−Nδ

, we need to choose the seed
length of the prg so that a generated pseudo random sequence (of length N) is γ := O(2−Nδ

) close
to the uniform distribution for any CNF formula (with, say, NO(1) clauses). For this application,
the current best upper bound for the seed length is Õ(log(1/γ)2) (ignoring minor factors for our
discussion) due to the prg proposed by De et al. [3]. For this seed length, the running time of

the simple deterministic algorithm becomes Õ(2N
2δ
), which is subexponential if δ < 1/2. This

is incomparable with our algorithm’s time bound Õ(2N
β
) with β = 1 − (1−(δ+ε))2

3 . We should
also mention that while the algorithm using prg is oblivious to the input, ours does not have this
property.

2By Õ(t(N)) we mean O
(
t(N)(log t(N))O(1)

)
.

2

2 Notation and Results

Throughout this paper, we will fix the usage of the following symbols: Let F be any Boolean
function over N Boolean variables X1, . . . , XN , where N is our size parameter. We assume that F
has P2N sat. assignments where P ≥ 2−Nδ

, and that F is given as a CNF formula with M ≤ Nd

clauses for some3 d > 0. In order to simplify our discussion, we regard parameters δ and d as
constants; whenever necessary, we may assume that N is large enough for each choice of δ and d.
We use |F | to denote the number of clauses in F , and for any clause C, we use |C| to denote the
number of literals in C. The number of elements in a set W is denoted as ‖W‖. Symbols ρ and
σ are used to denote partial assignments over X1, . . . , XN . Any partial assignment ρ takes value
0, 1, or Xi on each variable Xi. We say that ρ fixes (the value of) Xi if ρ(Xi) = 0 or 1, and that
ρ leaves Xi unassigned if ρ(Xi) = Xi. By F |ρ, we mean a function evaluated by replacing each
occurrence of Xi with ρ(Xi). We say that ρ is a sat. partial assignment if F |ρ = 1; this is a natural
generalization of the standard satisfying assignment notion. We use Fix(ρ) to denote the set of
variables that are fixed by ρ.

In this paper, we use symbols α and β for some constants w.r.t. N , which are defined in terms
of δ and d (and some other technical parameters). On the other hand, symbol c is used to denote
some constants independent of N , δ, and d. For simplifying our notation during the analysis, we
will use some concrete constants such as 0.1, 0.5, etc. whenever we can choose them appropriately.
On the other hand, we will sometimes use three digit numbers, e.g., 0.99 to denote 1 − o(1). We
simply write log for log2 and ln for loge. Let ce = log2 e. When necessary, we write ex and 2x as
exp(x) and exp2(x) respectively for showing the exponent clearly.

We introduce notation to state our results formally. Let sat(F) denote the set of sat. assignments
of F . Then the sat. assignment ratio of F (denoetd as sat.ratio(F)) is defined by sat.ratio(F) =
‖sat(F)‖/2N . This quantity is naturally generalized to F |ρ for any partial assignment ρ, which is
denoted as sat.ratio(F |ρ).

Our main result is the following upper bound for the size of sat. partial assignments.

Theorem 1. For any δ, 0 < δ < 1, and for any d > 0, let F be any CNF formula such that (i)
it has sat. assignment ratio P ≥ exp2(−N δ), and (ii) it consists of M ≤ Nd clauses. Then it has
some sat. partial assignment ρ̂ of size ≤ αN , where α is defined by

α = 1− 1− δ

cd
exp2

(
−(1 + o(1))d

1− δ

)
, (1)

with some constant c > 0.

On the other hand, we have the following lower bound.

Theorem 2. For any δ, 0 < δ < 1, and for any d ≥ 1, consider α defined by

α =
d− (1 + o(1))

d− δ
> 1− 1− δ + o(1)

d
. (2)

Then we have some CNF formula F such that (i) it has sat. assignment ratio P ≥ exp2(−N δ), (ii)
it consists of M ≤ Nd clauses, and (iii) it has no sat. partial assignment ρ of size ≤ αN .

3Our algorithmic version is shown only for CNF formulas with subquadratic number of clauses.

3

We also have an algorithmic version of Theorem 1 when the number of clauses is bounded by
N1+ε for some ε < 1 such that δ + ε < 1 holds.

Theorem 3. For any δ > 0 and ε > 0 such that δ + ε < 1, there exists a deterministic algorithm
such that for any given CNF formula F satisfying (i) and (ii) of Theorem 1 w.r.t. δ and d = 1+ ε,

it runs in Õ(2N
β
)-time for some β < 1 and yields some sat. partial assignment ρ̂ for F of size

≤ αN , where α is defined by

α = 1− 1− (δ + ε)

c1
· exp2

(
− c2
(1− (δ + ε))(1− δ)

)
(3)

with some constants c1, c2 ≥ 1.

Remark. We can show that the above time bound holds for any β such that β ≥ 1− (1−(δ+ε))2

3 .

We recall some common bounds that will be used often in this paper. For any integer n ≥ 1,
we have(

1− 1

n

)n

≤ e−1 ≤
(
1− 1

n+ 1

)n

, and

(
1 +

1

n

)n

≤ e ≤
(
1 +

1

n

)n+1

.

We also use the following more general ones: for any x, 0 < x < 1, and any m ≥ 1, we have

(1− o(1))exp(−xm) ≤ (1− x)m ≤ exp(−xm), and

(1− o(1))exp(xm) ≤ (1 + x)m ≤ exp(xm),

where both lower bounds are correct (and hence used only) when x2m = o(1) w.r.t. size parame-
ter(s), which is N in our case.

3 Upper bound proof

In this section we give a proof of Theorem 1, showing an upper bound on the size of short sat.
partial assignments. Throughout this section, for any δ, 0 < δ < 1 and any d > 0, we consider
sufficiently large N and fix any F satisfying (i) and (ii) of the theorem w.r.t. δ and d.

The key tool of our proof is the following lemma, which can be shown as a corollary of the
analysis given by Hirsch [6]. By the width of a clause, we mean the number of literals appearing in
the clause.

Lemma 1. Consider any CNF formula consisting of clauses of width ≤ k with sat. assignment
ratio Q > 0. Then it has a partial satisfying assignment of size ≤ 4ce2

k logQ−1.
Remark. We may consider k as a function in N . For simplicity, we assume that and Q < 1/4.

Proof. We simply use the main theorem of [6], i.e., Theorem 3.5 (c). In our terminology, the
theorem states that any CNF formula consisting clauses of width ≤ k with sat. assignment ratio Q
has a sat. partial assignment of size at most

log2/λ0

(
2Q−1

)
+ k − 1 < (log 2/λ0)

−1
(
1 + logQ−1

)
+ k,

where λ0 is the unique root of h(x) = 0 for a function

h(x) = 1−
∑

1≤i≤k

x−i
(

= 1 +
1− x−k

1− x
for any x > 1

)
.

4

We show that (log 2/λ0)
−1 ≤ 2ce2

k, which is sufficient for the bound of the lemma since Q < 1/4.
Let λ be a number satisfying (log 2/λ)−1 = 2ce2

k. We need to show that λ0 ≤ λ, from which
(log 2/λ0)

−1 ≤ 2ce2
k follows. As mentioned in [6], h(x) is monotone, h(1) < 0, and h(2) > 0. Thus,

λ0 ∈ (1, 2), and λ0 ≤ λ is derived by showing h(λ) > 0. We confirm this below.
First note that

λ = 2 · 2−(2ce2k)−1
= 2 · e−(2k+1)−1 ≥ 2

(
1− 1

2k+1

)2k+1·(2k+1)−1

= 2− 2−k.

Then we have λ+ λ−k > 2 because λ−k = 2−k · ek(2k+1)−1 ≥ 2−k. Then by simple calculation (and
using the fact that λ > 1) we can show that

1 +
1− λ−k

1− λ
> 0,

which means h(λ) > 0 (again since λ > 1).

Let us first see the outline4 of our proof. For given F satisfying (i) and (ii) of the theorem, we
show the existence of some partial assignment ρ12 that assigns some (1−η)N variables for some η < 1
and converts F to a formula consisting of narrow clauses, clauses of width, say, ≤ 0.99(1− δ) logN ,

while keeping relatively large sat. assignment ratio Q ≥ 2−2Nδ
. Then the theorem follows from the

above lemma. To show the existence of ρ12, we use the idea of Ajtai introduced in [1] and define
ρ12 in two stages. In the first stage, we define a partial assignment ρ1 to eliminate all wide clauses,
clauses of width ≥ Ad lnN where A ≥ 1 is some parameter defined later. We then define ρ2 in
the second stage that converts all clauses to narrow ones. We will show that ρ12 = ρ2 ◦ ρ1 has the
desired properties.

Now we explain each stage precisely from the first stage for defining ρ1. We show a procedure
for defining a sequence of partial assignments σ1, σ2, . . . , σT so that ρ1 is defined by ρ1 = σT ◦· · ·◦σ1.
Intuitively, the main objective of the procedure is to eliminate wide clauses. Consider the situation
where we have determined σ1, . . . , σt−1, and let Ft−1 denote F |σt−1 ◦ · · ·◦σ1. Also let W denote the
set of wide clauses in Ft−1. Note that there must be some variable Xi that appears in more than
‖W‖Ad logN

N clauses of W ; then either Xi or Xi is a literal that appears more than ‖W‖Ad logN
2N clauses

of W , which we call a popular literal among W . We would like to define σt to assign positively to one
of such popular literals, thereby killing many wide clauses. But we should be careful not to reduce
the sat. assignment ratio too much by this assignment. Here we check whether the assignment
reduces the sat. assignment ratio too much; specifically, we check whether the sat. assignment ratio
becomes smaller than 1 − p1 of the current value, and if so, use the opposite assignment to the
popular literal. Note that this opposite assignment increases the sat. assignment ratio by 1 + p1.
From this, we can show that such opposite assignments do not occur so many times (since the sat.
assignment ratio cannot go beyond 1). Though very natural, this is somewhat new technical point
for implementing the idea of Ajtai for our problem.

4In the earlier version of our paper [4] submitted to CCC’14, we used an outline similar to our algorithmic version,
for which we needed to assume that M ≤ N1+ε for some ε < 1. This new proof outline was advised by one of the
referees of CCC’14, who also explained us in detail the ideas of Ajtai in [1], which lead us to this improved version.
We thank to the CCC’14 PC for their careful reading and many constructive comments to our submission and, in
particular, to the anonymous referee for the instructive advice.

5

We define the probability parameter p1 by

p1 =
ceA

2
N−(1−δ),

and using this p1, we formally describe our idea as a procedure in Figure 1. We iterate this
procedure until no wide clause exists. We show below that the number of iterations is bounded by
6N/A.

procedure for σt (where t ≥ 1)
// assume that σ1, . . . , σt−1 have been defined, and let Ft−1 denote F |σt−1 ◦ · · · ◦ σ1.

if Ft−1 has no wide clause
then stop and output the obtained sequence as σ1, . . . , σT ;

W = the set of wide clauses in Ft−1;

Yi = (any) one of the popular literal (either Xi or Xi) among W ;
if sat.ratio(Ft−1|(Yi := 1)) ≤ (1− p1) · sat.ratio(Ft−1)

then σt = (Yi := 0); (Case I)
else σt = (Yi := 1); (Case II)
// σt leaves the other variables unassigned.

Figure 1: Procedure for defining σt

Lemma 2. Define T be the number of iterations of the above procedure needed until no wide clause
exists in FT . Then we have T ≤ 6N/A. Also we have sat.ratio(FT) ≥ 0.99 · 2−2Nδ

.

Proof. Let T1 and T2 denote respectively the number of iterations such that Case I and Case II
occurs. We show that each of them is bounded by O(N/A).

We first show that T2 ≤ 2N/A. For any t ≥ 1, suppose that Case II occurs at the tth iteration
of our procedure. That is, the algorithm finds some literal Yi (either Xi or Xi) that is popular
among the set W of wide clauses in Ft−1, and it indeed assigns true to Yi. This assignment satisfies

(and hence removes) more than ‖W‖Ad logN
2N clauses of W , which reduces the number of wide clauses

by (1 − Ad logN
2N). Thus, since we have initially at most M (≤ Nd) wide clauses, if Case II occurs

for T ′ times, then the remaining number of wide clauses becomes at most

M

(
1− Ad lnN

2N

)T ′

< Ndexp

(
−Ad lnN

2N
T ′
)

= NdN−d· A
2N

·T ′
.

Thus, the remaining number of wide clauses becomes less than 1 (that is, 0) if T ′ ≥ 2N/A. Hence,
Case II does not occur more than 2N/A times, that is, T2 ≤ 2N/A.

We can also show here that the sat. ratio does not decrease so much by an assignment defined
by this first stage. Note that the sat. ratio may decrease only by assignments defined at Case II.
On the other hand, for any iteration t where Yi is selected as a popular literal, Case II would not
be chosen if the sat. ratio is increased by 1 + p1 by an assignment Yi := 0. Hence, when Case
II is chosen, it is guaranteed that the sat. ratio does not decrease by a factor less than 1 − p1 by

6

assigning Yi true. Thus, from our bound for T2, for any tth iteration of the procedure, we have

sat.ratio(F |σt ◦ · · · ◦ σ1) ≥ sat.ratio(F) (1− p1)
T2 ≥ P

(
1− ceA

2
N−(1−δ)

)2N/A

≥ P · 0.99exp
(
−(ceA/2)N δ−1(2N/A)

)
= 0.99P exp

(
−ceN

δ
)

≥ 0.99 · 2−Nδ · 2−Nδ
= 0.99 · 2−2Nδ

.

In particular, this bound holds when the iteration stops with no wide clause.
Next we give a bound T1 ≤ 4N/A. From the above, we know that the sat. ratio cannot be

smaller than 0.99 · 2−2Nδ
by the assignments of Case II. On the other hand, at each step where

Case I is chosen, the sat. ratio gets increased by 1 + p1. Hence, if Case I occurs T ′ times by some
tth iteration, then the sat. ratio of Ft becomes at least

0.99 · 2−2Nδ
(1 + p1)

T ′
= 0.99 · 2−2Nδ

(
1 +

ceA

2
N−(1−δ)

)T ′

≥ 0.99 · 2−2Nδ · 0.99exp
(
ceA

2
N−(1−δ)T ′

)
= 0.992exp2

(
−2N δ + 2N δAT ′

4N

)
.

Thus, if T ′ > 4N/A, then the sat. ratio of Ft becomes larger than 1, a contradiction. Therefore we
have T2 ≤ 4N/A. From these bounds the lemma follows.

With A = 12 use our procedure to define ρ1 = σT ◦ · · · ◦ σ1. Then Lemma 2 guarantees that
FT = F |ρ1 has no wide clause, it has sat. ratio ≥ 0.99 · 2−2Nδ

, and ρ1 fixes at most 6N/A = N/2
variables. Next we consider the second stage to define ρ2 for converting all clauses of FT to narrow
ones. Without loss of generality (by renaming variable indecies) we may assume that, for some
N ′ ≥ N/2, X = {X1, . . . , XN ′} is the set of variables of FT ; that is, X1, . . . , XN ′ are variables
unassigned by ρ1. The idea is to show the existence of some subset S of X such that (i) each clause
of FT has at most k = 0.99(1 − δ) logN variables in S, and (ii) ‖S‖ = Ω(N). Then from (i) it
follows that any assignment to X \S transforms FT to a formula consisting of only narrow clauses.
From such partial assignments, we choose one with the largest sat. ratio as ρ2.

Lemma 3. Using the notation above. There exists a subset S of X (= the set of all variables of
FT) such that (i) every clause in FT has at most k = 0.99(1 − δ) logN variables in S, and (ii)
‖S‖ ≥ 0.99ηdN/2, where

ηd =
0.99(1− δ)

70d
exp2

(
− d

0.98(1− δ)

)
.

Hence, FT |ρ′ has only narrow clauses for any partial assignment ρ′ that fixes all and only variables in
X\S. Furthermore, among such partial assignments, there exists some ρ2 such that sat.ratio(FT |ρ2)
≥ 0.99 · 2−2Nδ

holds.

Proof. We generate S randomly by selecting each Xi ∈ X with probability ηd independently. Then
with high probability, we have ‖S‖ ≥ 0.99ηdN

′ (≥ 0.99ηdN/2) by Chernoff bound, we can bound
the probability that ‖S‖ < 0.99ηdN

′ occurs by, say, 0.1 (for sufficiently large N).

7

Consider any clause C of FT , and we estimate the probability that it has at least k = 0.99(1−
δ) logN literals in5 S. For any fixed k literals in C, the probability that they (i.e., these variables)
all selected in S is ηkd . Hence, by using the union bound, the probability that some k literals are
all selected in S is at most(
Ad logN

k

)
ηkd ≤

(
ceAd logN

k

)k

ηkd =

(
ηd

ce12d logN

0.99(1− δ) logN

)k

<

(
ηd

70d

0.99(1− δ)

)k

= exp2

(
− dk

0.98(1− δ)

)
≤ exp2(−1.01d logN) = N−1.01d.

Thus, again by the union bound, the probability that FT has some clause that has more than k
literals in S is less than 0.9. Therefore, with some positive probability some S (among randomly
generated ones) satisfies the theorem.

Note that each assignment to variables in X − S yields a disjoint partial assignment ρ′ of FT .
Thus, among them there should be some ρ′ that has at least the sat. ratio of FT , which is at least
0.99 · 2−2Nδ

.

We summarize our analysis and prove the theorem.

Proof of Theorem 1. For a given formula F , we define ρ1 and ρ2 as stated in Lemma 2 and Lemma 3
respectively. We use A = 12 as mentioned above. Then we can guarantee that the resulting formula
F ′ = F |ρ2 ◦ ρ1 has at least N ′ = 0.99ηdN/2 variables, which are the variables in the set S that
ρ2 keeps unassigned among variables in FT = F |ρ1. Note also that F ′ consists of clauses of width

≤ k = 0.99(1− δ) logN and has sat. assignment ratio Q ≥ 0.99 · 2−2Nδ
. Hence we apply Lemma 1

to this formula to show the existence of some partial assignment ρ3 (to F ′) of size at most

4ce2
k logQ−1 ≤ 4ceN

0.99(1−δ) · (2N δ − log 0.99) ≤ 8.01ceN
1−0.01(1−δ),

which is smaller than N ′/2 for sufficiently large N . Thus, by defining ρ̂ = ρ3 ◦ ρ2 ◦ ρ1, we have a
satisfying partial assignment that keeps at least

N ′

2
=

0.99ηdN

2
=

0.99 · 0.99(1− δ)

2 · 70d
exp2

(
− d

0.98(1− δ)

)
·N ≥ 1− δ

cd
exp2

(
−(1 + o(1))d

1− δ

)
·N

variables unassigned for some constant c > 0. This gives the desired upper bound to the size of our
defined partial assignment ρ̂. tu

4 A lower bound

We move on to the proof of Theorem 2. The idea is relatively easy. For any δ, 0 < δ < 1, and d ≥ 1,
consider α satisfying (2) of Theorem 2. To be concrete, let us assume that α = (d− 1.01)/(d− δ).
Let Π be the set of partial assignments fixing αN variables. Our goal is to show F that satisfies
the conditions (i) and (ii) of the theorem and (iii) that is satisfied by no ρ ∈ Π.

We define F randomly as the conjunction of at most Nd random clauses chosen independently.
Roughly speaking, each clause is a disjunction of approximately 2s randomly chosen literals. The
parameter s is chosen large enough to guarantee that each clause is satisfiable with a certain

5S is a set of variables; thus, precisely, by “a literal is in S”, we mean that its corresponding variable is in S.

8

probability so that F ’s sat. assignment ratio exceeds exp2(−N δ) with probability larger than some
p. On the other hand, we keep s small enough so that each clause is satisfied with relatively small
probability by fixing values of at most αN variables, thereby ensuring that F |ρ = 1 for some partial
assignments ρ ∈ Π with probability << p. Then with the probabilistic argument, we can show the
existence of our target Boolean formula F .

We start our detailed explanation with a precise way to generate a random clause. For some
parameter s that will be defined later, we consider the following way to generate a random clause:
For each i, 1 ≤ i ≤ N , independently, with probability s/N , select Xi, with probaiblity s/N , select
Xi, and other wise, discard the variable. The resulting clause is just the disjunction of the selected
literals. In the following claim, we assume that C is a random clause obtained by this random
clause generation.

Claim 1. For any assignment a ∈ {0, 1}N and any partial assignment ρ ∈ Π, we have

Pr
C
[C(a) = 0] ≤ e−s, and Pr

C
[C|ρ 6= 1] ≥ 0.99e−sα.

Proof. Note that there are N literals that are satisfied by a. Thus, the first bound is shown by
estimating the probability that none of them are selected for C.

For the second bound, consider any ρ ∈ Π, and let Iρ,+ (resp., Iρ,−) be the set of indecies i such
that ρ(Xi) = 1 (resp., ρ(Xi) = 0). A random clause C is not satisfied by ρ (i.e., C|ρ 6= 1 holds) if
and only if Xi is not chosen for all i ∈ Iρ,+ and Xi is not chosen for all i ∈ Iρ,−. Thus, we have

Pr
C
[C|ρ 6= 1] =

(
1− s

N

)αN
≥ 0.99exp

(
− s

N
· αN

)
≥ 0.99e−sα.

Here we fix s by s = (d− δ) lnN + 1, from which we have

e−sNd = N δ/e. (4)

Note also that 0 < s/N < 1; hence, we can use s/N as a parameter for our random clause
generation.

For generating a random formula F we iterate this random clause generation procedure in-
dependently for Nd times and define F as the conjunction of obtained clauses. In the following
analysis, we use F as a random variable denoting a random formula generated in this way. We
define p = exp2(−N δ), and in the following claims, we show the probability that F satisfies the
conditions of the theorem is at least, say, 0.9p > 0, thereby proving the existence of the desired
formula.

Claim 2.
Pr
F

[sat.ratio(F) ≥ p] ≥ exp2

(
−N δ

)
(= p). (5)

Proof. Consider any assignment a ∈ {0, 1}N . From Claim 1 and from the definition of random
formula F , it follows

Pr
F
[F (a) = 1] ≥

(
1− e−s

)Nd

≥ 0.99exp
(
−e−sNd

)
= 0.99exp

(
−N δ/e

)
,

9

where the last derivation is from (4). Let q denote 0.99exp(−N δ/e). Note that q >> p; in particular,
we have q > 2p if N is large enough.

For our analysis, we use the standard averaging argument. Note first that

ExpF
[
sat.ratio(F)

]
= 2−N

∑
a

ExpF
[
F (a)

]
= 2−N

∑
a

Pr
F

[
F (a) = 1

]
≥ q

On the other hand, letting r = PrF [sat.ratio(F) < p], we have

ExpF
[
sat.ratio(F)

]
< r · p+ (1− r) · 1 = 1− r(1− p).

Then from the above two inequalities, we have q < 1− r(1− p), from which

r <
1− q

1− p
= 1− q − p

1− p
< 1− p

follows since q > 2p and 1− p < 1. This proves the claim.

Claim 3.

Pr
F

[
∃ρ ∈ Π

[
F |ρ = 1

]]
≤
(

3

e2

)N

(< 0.1p for sufficiently large N). (6)

Proof. Consider any partial assignment ρ ∈ Π. Again from Claim 1 and from the definition of
random formula F , it follows

Pr
F
[F |ρ = 1] ≤

(
1− 0.99e−sα

)Nd

≤ exp
(
−0.99e−sαNd

)
= exp

(
−0.99

(
N δ−d

e

)α

Nd

)
.

We analyze below the last expression and show that it is at most exp(−2N); then the claim
follows from the union bound because there are at most 3N partial assignments. Consider the
argument of the above expression exp(· · ·); our goal is to show that it is ≤ −2N . To see this,
consider

ln

(
0.99

(
N δ−d

e

)α

Nd

)
=
(
d− α(d− δ)

)
lnN + ln 0.99− α. (7)

From our choice of α, we have d−α(d− δ) = 1.01. Hence, we have (7) ≥ lnN +ln 2 for sufficiently
large N . This gives our desired bound.

5 Algorithmic version

In this section we give a proof of Theorem 3, showing an algorithmic way to define a short partial
assignment.

The key tool is to use an algorithmic version of the Lovász Local Lemma, which has been
improved greatly [7, 8, 2]. Our idea is simple. We show a subexponential-time deterministic
algorithm that reduces our task to the CNF-SAT problem and use an algorithmic version of the
Lovász Local Lemma. Here we use the version6 reported in [2].

6In their paper, as a typical application of the lemma, an efficient deterministic algorithm is shown for k-CNF
formulas with no variable appearing in many clauses. This may be used in our situation; but here we go back to the
original lemma to confirm that our parameter choice works.

10

We specify our target problem and state the lemma in a slightly simpler way. Consider any
sufficiently large N ′, and let FN ′ denote the set of CNF formulas over N ′ Boolean variables with
at most (N ′)2 clauses. The lemma gives an algorithm that finds a sat. assignment for any formula
in FN ′ satisfying a certain condition. Let F ′ be any given formula in FN ′ . Consider a random
assignment to its N ′ variables, and for each clause C of F ′, let EC denote an event that C becomes
false by the assignment. Our goal (and the task of our algorithm) is to find an assignment avoiding
EC for all clauses C of F ′, that is, to find a sat. assignment for this F ′ ∈ FN ′ . Let Γ(C) be the
set of clauses that shares some variable with C; note that EC is independent from EC′ for any
C ′ 6∈ Γ(C). In the lemma we consider some mapping x (for this F ′); by using this x, we also define
x′(EC) by

x′(EC) = x(EC)
∏

C′∈Γ(C)

(1− x(EC′)) .

Now we state the following algorithmic version of the Lovász Local Lemma [2].

Lemma 4. For any y > 0, there exists a deterministic algorithm that takes any F ′ ∈ FN ′ for any
N ′ ≥ 1 as input, and runs in time O((N ′)(cLLL/y)) yielding some sat. assignment of F ′ if we can
define some mapping x for F ′ that satisfies

Pr[EC] ≤ x′(EC)
1+y, x(EC) < 1/2, and x′(EC) ≥ (N ′)−1 (8)

for all its clauses C, where cLLL > 0 is some constant independent from y and N ′.

In the following, we show some algorithmic way to transform F to another formula F ′; we then
apply this lemma to F ′ to obtain its sat. assignment, which can be used to define our desired partial
assignment. Here, in order to explain requirements for F ′, we consider some rough strategy for
defining x for F ′ to achieve the conditions of (8). For any clause C of F ′, we have Pr[EC] = 2−|C|.
Thus, it is natural to define x(EC) ≈ 2−|C|. Then we need to require that |C| is not so small,
that is, C is not “very narrow” to satisfy the first and the third conditions of (8). We need, for
example, |C| ≥ logN ′. Also in order to avoid the situation where x′(EC) gets too small compared
with x(EC), we need to require that ‖Γ(C)‖ is not so large, that is, C is not so “popular.” When
constructing F ′, these two requirements are important.

We explain our algorithmic way to obtain a sat. partial assignment ρ̂. First let us fix input
related parameters. Let F be any given CNF formula satisfying the condition of the theorem with
parameters δ and ε, and let α be the constant defined by (3). Let γ = 1 − (δ + ε), which may be
small7 but a positive constant. Fix F , δ, ε, γ, and α from now on to the end of this section.

We define ρ̂ in three stages. In the first stage, a partial assignment ρ1 is defined in a way
similar to the first stage in the proof of Theorem 1. In the second stage, we convert F to F ′ by
removing some number of variables randomly from F |ρ1 so that it is still satisfiable and we can use
the algorithm of the above lemma to find one of its sat. assignments. Then in the third stage, we
use the above algorithm to compute a sat. assignment of F ′. Note that this complete assignment
to F ′ can be regarded as a sat. partial assignment ρ2 of F |ρ1 that leaves all (and only) removed
variables unassigned; we define our final assignment ρ̂ by ρ̂ = ρ2 ◦ ρ1. The partial assignment ρ1
is defined to satisfy the following two requirements: (a′) F |ρ1 has no “narrow” clause, and (b)
F |ρ1 has no “popular” literal. Then from the first requirement we can show that (a) F ′ has no

7For simplicity, we assume that γ < 0.5. The case where γ ≥ 0.5 can be analyzed similarly with different setting
for our technical parameters b and B.

11

“very narrow” clause with high probability after removing some number of variables. By using this
property together with (b), we can satisfy the conditions of (8). (Note that F ′ clearly satisfies (b)
if F |ρ1 does.)

We show that the assignment ρ̂ = ρ2 ◦ ρ1 defined above leaves Ω(N) variables unassigned as
desired. First, we show that ρ1 leaves some (1 − o(1))N variables unassigned. Like the previous
ρ1, our ρ1 is defined by using a sequence σ1, σ2, . . . of very short partial assignments defined step
by step. Here we need to eliminate narrow clauses and popular literals. To eliminate each narrow
clause, we fix the values of all literals in the clause. We show that the sat. ratio increases a good
amount by using an appropriate assignment to those literals. Hence, the number of applying very
short partial assignments of this type is limited (because otherwise, the sat. ratio exceeds 1). On
the other hand, we eliminate popular literas (here w.r.t. all clauses in the current formula) in the
same way as before, and by the same reasoning, we can bound the number of applying this step.
Altogether we can show that there exists some ρ1 that satisfies both (a′) and (b) by fixing at most
O(Nβ) variables, where β < 1 is the constant specified in the theorem. Then we show that with
high probability one can remove Ω(N) variables from F |ρ1 while keeping both (a) and (b) so that
we can apply the above lemma to find an assignment satisfying F ′.

Consider an algorithmic implementation of these three stages. We show that one can in fact find
the best ρ1 by trying all possible candidate partial assignments in Õ(2N

β
)-time. By the standard

method of conditional probabilities, the random removable of variables can be derandomized in
polynomial-time. Thus, F ′ is obtained deterministically in Õ(2N

β
)-time. Then the above lemma

guarantees that one of its sat. assignment is computed in O(NO(1/y))-time. Since the last time

bound is subsumed by Õ(2N
β
), we can conclude that ρ̂ = ρ2 ◦ ρ1 is deterministically computable

in Õ(2N
β
)-time. This is the outline of our algorithmic way to obtain ρ̂.

We start detailed explanation by defining necessary parameters for our analysis. Below for
simplicity we use one parameter b in several contexts, as a parameter to denote some number in
(0, 1) that is close to 1. We will confirm by the end of our analysis that the argument goes through
by defining b by, e.g., b = 1− 0.4γ < 1. Define ` and L by

` = b(1− δ) logN, and L = N (1−bγ)(1−δ).

The motivation for these choices will be given later. We say that a clause is narrow if its width is
less than `, and a literal is popular (in a currently considered CNF formula) if it appears in more
than L clauses.

Now consider the first stage, where a partial assignment ρ1 is defined so that F |ρ1 has no narrow
clause nor popular literal. Similar to the proof of Theorem 1 we define ρ1 by ρ1 = σT ◦ · · · ◦ σ1,
where each σt is a partial assignment defined by the procedure stated in Figure 2. We iterate this
procedure until (∗) holds.

Here we give a rough estimate to explain the motivation for our choices of ` and L. Suppose
that at some tth iteration of the procedure, Ft−1 has some narrow clause and C is one of such
narrow clauses chosen in the procedure. Let σt be the partial assignment defined in the procedure
w.r.t. C. Note that out of all possible 2|C| assignments of C, 2|C|− 1 of them satisfy C. Hence (see
also the proof of the next lemma), sat. assignment ratio sat.ratio(Ft) (= sat.ratio(Ft−1|σt)) gets
increased from sat.ratio(Ft−1) by a factor of

2|C|

2|C| − 1
= 1 +

1

2|C| − 1
≥ 1 +

1

2` − 1
≥ 2ce2

−`
.

12

procedure for σt (where t ≥ 1)
// assume that σ1, . . . , σt−1 have been defined, and let Ft−1 denote F |σt−1 ◦ · · · ◦ σ1.
// let p2 = 2−`−2.

if (Ft−1 has no narrow clause) and (Ft−1 has no popular literal) — (∗)
then stop and output the obtained sequence as σ1, . . . , σT ;

Case A: (if Ft−1 has a narrow clause)
C = (any) one of the narrow clauses;
σt = a satisfying assignment σ of C maximizing sat.ratio(Ft−1, σ);
// σt leaves the other variables unassigned.

Case B: (if Ft−1 has no narrow clause and Ft−1 has a popular literal)

Yi = (any) one of the popular literal (either Xi or Xi) in Ft−1;
if sat.ratio(Ft−1|(Yi := 1)) ≤ (1− p2) · sat.ratio(Ft−1)

then σt = (Yi := 0); (Case B.I)
else σt = (Yi := 1); (Case B.II)
// σt leaves the other variables unassigned.

Figure 2: Procedure for defining σt

In other words, we have log(sat.ratio(Ft))−log(sat.ratio(Ft−1))≥ 2−`. Note here that log(sat.ratio(F0))
(= log(sat.ratio(F))) ≥ −N δ and log(sat.ratio(Fs)) ≤ 0 for any s. Hence, the number of times that
Case A occurs in the iterations of the procedure is at most N δ/2−` = N δ2` = exp2(δ logN + `). In
order to bound the number of occurrences of Case A by o(N), we require that ` < (1 − δ) logN .
Suppose next that some popular literal is assigned true at some iteration of the procedure. This
partial assignment satisfies at least L clauses, and the number of clauses gets decreased by L at this
iteration. Hence, the number of times that (Case B.II) occurs is bounded by N1+ε/L. Again in
order to bound this by o(N) we require that L > N ε, which can be achieved by choosing L bit larger
than N (1−γ)(1−δ) (since ε = 1− δ − γ). Finally, as explained later, we also require that L is small
enough compared with 2` in order to satisfy the condition (8) of Lemma 4. These requirements
determine ` and L roughly as defined above.

We formally prove this idea works.

Lemma 5. Define T be the number of iterations of the above procedure needed until (∗) holds for
FT . Then we have T ≤ 10Nβb, where βb = 1 − γ(1 − b), which is less than 1 by choosing b < 1.
Also there is a deterministic algorithm simulating these iterations to produce some σT ◦ · · · ◦ σ1
satisfying (∗) in Õ(2N

βb+o(1)
)-time.

Remark. From our choice of b (see (11)) we may define β directly as

β = 1− (1− (δ + ε))2

3
,

with which we can bound the running time of the deterministic algorithm by Õ(2N
β
).

Proof. In order to measure the progress made by each iteration, we introduce the following potential
function for a given partial assignment σs := σs◦· · ·σ1 of F . Below by |F |σs| we denote the number
of clauses in F |σs.

Φ(σs) = 2` log
(
sat.ratio(F |σs)

−1
)
+
∣∣(F |σs)

∣∣ · L−1.

13

Clearly, Φ must be nonnegative for any partial assignment. We show that each σt decreases
Φ(σt−1) by constant, say, 0.2, whereas its initial value is 2Nβb , thereby proving our upper bound
for T .

First estimate the initial potential, that is, Φ(σ0) for the null partial assignment σ0; that is,

F |σ0 is F itself. Noting that sat.ratio(F) = P ≥ 2−Nδ
and |F | = M ≤ N1+ε, we have

Φ(σ0) = 2` (− logP) +M · L−1 ≤ N b(1−δ)N δ +N1+εN−(1−bγ)(1−δ)

= N b(1−δ)+δ +N ε+δ−bγ(1−δ) = N b(γ+ε)+1−ε−γ +N1−γ(1−b(1−δ))

≤ N1−γ(1−b) +N1−γ(1−b),

where the last bound is derived by using b < 1 and δ, ε ≥ 0. Thus, Φ(σ0) ≤ 2Nβb as desired.
For analyzing the decrement of Φ, consider first Case A of the above procedure for defining σt

when σt−1 = σt−1◦· · ·◦σ1 have been defined. We estimate the difference between Φ(σt) and Φ(σt−1).
Let C be the narrow clause satisfied by σt. We first estimate the sum of sat.ratio(F |σ◦σt−1) over all
satisfying assignments σ of C, which we write by Σσ:sat.C sat.ratio(F |σ ◦σt−1). From the definition
of the satisfying assignment ratio, we have

Σσ:sat.C sat.ratio(F |σ ◦ σt−1) =
Σσ:sat.C ‖sat(F |σ ◦ σt−1)‖

‖{0, 1}N |σ ◦ σt−1‖
,

where by “{0, 1}N |ρ” we denote the set of assignments consistent with ρ. Note here that

Σσ:sat.C ‖sat(F |σ ◦ σt−1)‖ = ‖sat(F |σt−1)‖,

and
‖{0, 1}N |σ ◦ σt−1‖ = Σσ:sat.C 2−|C|‖{0, 1}N |σt−1‖.

Hence, we have

Σσ:sat.C sat.ratio(F |σ ◦ σt−1) =
‖sat(F |σt−1)‖

Σσ:sat.C 2−|C|‖{0, 1}N |σt−1‖

= 2|C|Σσ:sat.C
‖sat(F |σt−1)‖
‖{0, 1}N |σt−1‖

= 2|C|Σσ:sat.C sat.ratio(F |σt−1).

Note that there are 2|C| − 1 satisfying assignments for C. Thus, the above estimation shows
that sat.ratio(F |σ ◦ σt−1) on average is 2|C|/(2|C| − 1) × sat.ratio(F |σt−1). Since we choose for σt
an assignment maximizing the ratio, we have

sat.ratio(F |σt ◦ σt−1) ≥ 2|C|

2|C| − 1
· sat.ratio(F |σt−1) ≥

(
1 +

1

2` − 1

)
· sat.ratio(F |σt−1)

≥ 2ce2
−` · sat.ratio(F |σt−1),

since |C| < ` because C is a narrow clause. Then 2` log(sat.ratio(F |σt−1)
−1), the first term of

Φ(σt−1), gets decreased at least by ce = log e > 1 (while the second term of Φ(σt−1) does not
increase). Thus, we have Φ(σt ◦ σt−1) ≤ Φ(σt−1)− 1.

Consider next Case B. In this case, we want to assign Yi positively (i.e., to use the assignment
Yi := 1) to satisfy at least L clauses. Here we make use of the previous technique. In order to avoid
the situation where too many satisfying assignments are lost by this assignment, we first check

14

whether the satisfying assignment ratio gets increased by assigning Yi negatively. If the ratio is
increased by a factor ≥ 1 + p2 = 1+ 2−`−2, then we simply use this negative assignment for σt, by
which the Φ value gets decreased by at least 0.2 (for sufficiently large N), since 2` log(1 + p2)

−1 ≈
ce/4 > 0.2 (or more precisely, 2` log(1+p2)

−1 ≥ ce/4−0.1 > 0.2 for sufficiently large N). Otherwise,
the ratio would not get decreased by a factor < (1−2−`−2) by assigning Yi positively, which means
that the increment of the first term of the Φ value is at most ce/4 < 0.4. On the other hand, by
assigning Yi positively, we can satisfy (and hence eliminate) at least L clauses from F |σt−1, by
which the Φ value is decreased by at least 1. Thus, we have Φ(σt ◦ σt−1) ≤ Φ(σt−1)− 0.6.

Finally, we show that the whole computation can be executed deterministically in subexponetial-
time, more precisely, within the time bound stated in the theorem. Here we simply consider all
possible sequence of partial assignments σt ◦ · · · ◦ σ1 that could be chosen during (at most) 10Nβb

iterations of the procedure to find one yielding a CNF formula satisfying (∗), that is, a CNF formula
with no narrow clause nor popular literal. Since there are at most(
2` + 2

)10Nβb+1
= exp2

(
(`+ 1)(10Nβb + 1)

)
≤ exp2

(
O
(
(logN)(Nβb)

))
≤ exp2

(
Nβb+o(1)

)
possible choices and one can check whether a given sequence of partial assignments satisfies (∗) in
polynomial-time in N , the whole computation can be done in Õ(2N

βb+o(1)
)-time.

Define ρ1 = σT ◦ · · · ◦ σ1 by using the sequence σ1, σ2, . . . , σT of partial assignments that our
algorithm produces. This is the partial assignment obtained in the first stage. As guaranteed by
the above lemma, F |ρ1 has no narrow clause nor popular literal. Also note that it fixes at most
`T ≤ (logN) · 10Nβb variables for some βb < 1; hence, there are at least, say, 0.99N unassigned
variables in F |ρ1. Let X denote the set of such remaining variables of F |ρ1.

We consider the second stage. We choose here (at least) (1− α)N variables from X to keep as
free variables of our final partial assignment, and construct a CNF formula F ′ by removing these
variables from F |ρ1. We first consider a randomized way to select removed variables. We use R to
denote the set of selected variables. We introduce two parameters B and p∗, where p∗ is defined as
a constant (that may depend on δ and ε) so that

1−Bp∗ = b

holds with constant B defined below. Our method is simply to select each variable X with proba-
bility p∗ to R independently. We show below that with high probability the random set R satisfies
desired properties for constructing F ′.

Lemma 6. Use notation as above. We define B by

B = e · exp2
(

2.1

(1− b)b(1− δ)

)
. (9)

Then with probability 1 − o(1), R satisfies the following conditions: (i) (p∗/2)N ≤ ‖R‖ ≤ 0.1N ,
and (ii) every clause of F |ρ1 has at least `′ := b` (= (1−Bp∗)`) literals in X \R.

Proof. Though small, since p∗ is constant, we can use the standard Chernoff bound to show that
the probability that (i) fails to hold is less than, e.g., N−1.

For bounding the probability that (ii) fails to hold, we consider any clause C of F |ρ1. Let Z
denote the number of variables of C that are selected to R. Note that Exp[Z] = p∗|C|. Hence, if

15

C has less than `′ = b` literals in X \R, then we have Z > |C| − b` > (1− b)|C| = Bp∗|C|. Again
by the Chernoff bound, this probability is bounded by

Pr[Z > Bp∗|C|] ≤

(
e(B−1)

BB

)p∗|C|

≤
(

eB

BB

)p∗`

= exp2
(
(−B logB + ceB)p∗`) = exp2

(
(− logB + ce)Bp∗b(1− δ) logN)

= exp2
(
(− logB + ce)(1− b)b(1− δ) logN)

= exp2
(
−2.1 logN) = N−2.1.

Since there are at most N2 clauses in F |ρ1, by the union bound, the probability that some clause
has less than `′ literals in X \R is bounded by N−0.1.

We can derandomize this selection procedure by using the standard method of conditional
probabilities. That is, in some fixed order of variables in X, we determine whether each variable
is selected to R or not based on the following conditional probabilities under the selection made
so far: the probability that ‖R‖ > 0.1N occurs, the probability that ‖R‖ ≤ (p∗/2)N occurs,
and the probability that the width of C becomes less than `′ for each clause C of F |ρ1. Though
tedious, these conditional probabilities are polynomial-time computable, and following the method
of conditional probabilities, a deterministic algorithm computes some desired set R by selecting
variables while keeping the sum of these conditional probabilities < 1. Now for defining F ′, we
remove variables in R from F |ρ1. Also for simplicity we reduce the width of each clause to exactly
`′ by removing literals (in any fixed way) from clauses with more than `′ literals. Let F ′ be the
resulting CNF formula, which is the CNF formula constructed in the second stage. Let N ′ denote
the number of variables of F ′; we may assume that N ′ ≥ 0.99N − 0.1N = 0.89N .

In the third stage, we apply the algorithmic version of the Lovász Local Lemma stated as
Lemma 4 to obtain some complete sat. assignment to F ′. Then as explained before, this can be
regarded as a sat. partial assignment ρ2 of F |ρ1 that leaves all variables in R unassigned, and we
define ρ̂ = ρ2 ◦ ρ1 as our final partial assignment. We first confirm that Lemma 4 is applicable.

Lemma 7. Use notation as above. Formula F ′ obtained in the second stage satisfies the condition
of Lemma 4. In particular, we can define a mapping x satisfying (8) w.r.t. some constant y > 0.
Remark. By “constant y” we mean some number determined by δ and ε but independent from
N , F , and F ′.

Proof. Recall that every clause C of F ′ is of width `′ and hence Pr[EC] = 2−`′ . We define x(Ec) =
2−b`′ and show that the first condition of (8) is satisfied w.r.t. some y. The second condition is
clear, and the third condition is immediate from the following analysis.

Consider any clause C of F ′. Since there is no popular literal, every variable appears at most
2L clauses; hence, we have ‖Γ(C)‖ ≤ 2L`′. By using this we have

x′(EC) = x(EC)
∏

C′∈Γ(C)

(1− x(EC′)) = 2−b`′
∏

C′∈Γ(C)

(
1− 2−b`′

)
≥ 2−b`′

(
1− 2−b`′

)2L`′
≥ 2−b`′ · 0.99exp

(
−2−b`′2L`′

)
= 0.99exp2

(
−`′

(
b+ ce2

−(b`′−log 2L)
))

. (10)

16

Below we show (if b is chosen appropriately) that (b`′− log 2L) → ∞ (when N → ∞) and hence we
may ignore ce2

−(b`′−log 2L) (for sufficiently large N). But before moving on to the detailed analysis,
we point out that the requirement that L is smaller than 2` we mentioned before is due to more
precise requirement that log 2L < b`′ (= b2`).

Let us focus on b`′ − log 2L. By definition, we have

b`′ − log 2L = b2(1− δ) logN − (1− bγ)(1− δ) logN − 1 = (b2 + bγ − 1)(1− δ) logN − 1.

We choose b so that b2 + bγ − 1 > 0 holds. Here we define it by

b = 1− 0.4γ. (11)

Then it is easy to check that b2 + bγ − 1 > 0 if γ is small enough, say, γ < 0.5. From this it follows
that (b`′ − log 2L) → ∞. Thus, for sufficiently large N , we have

(10) ≥ 0.99exp2
(
−`′(1− 0.4γ + 0.1γ)

)
≥ exp2

(
−`′(1− 0.2γ)

)
.

Hence, by using y = 0.2γ, we have

(x′(EC))
1+y ≥

(
exp2(−`′(1− 0.2γ))

)1+y
= exp2

(
−`′(1− 0.2γ)(1 + 0.2γ)

)
= exp2

(
−`′(1− 0.04γ2)

)
= exp2(−`′)exp2(0.04γ

2)

≥ exp2(−`′) = Pr[EC].

Finally, we summarize our analysis and prove Theorem 3.

Proof of Theorem 3. For a given formula F , we define ρ̂ = ρ2 ◦ρ2 as explained just before Lemma 7
by using our technical parameters b and B defined in (11) and (9) respectively. It has been shown
in our discussion that ρ̂ is a sat. partial assignment and that it is deterministically computable in
Õ(2N

β
)-time with β = 1 − (1 − (δ + ε))2/3. Also as guaranteed by Lemma 6 it leaves at least

(p∗/2)N variables unassigned. On the other hand, we have (by using the assumption γ < 0.5)

p∗
2

=
1− b

2
B−1 =

0.4γ

2
e−1 · exp2

(
− 2.1

0.4γ(1− 0.4γ)(1− δ)

)
≤ 0.4(1− (δ + ε))

2e
exp2

(
− 2.1

0.4(1− (δ + ε))0.8(1− δ)

)
≤ 1− (δ + ε)

c1
exp2

(
− c2
(1− (δ + ε))(1− δ)

)
with some appropriate constants c1, c2 ≥ 1. We use these constants to define α by (3) of the
theorem. Then from the above, we have αN ≥ (1−p∗/2)N , where (1−p∗/2)N bounds the number
of fixed variables in F |ρ̂, which proves the theorem. tu

References

[1] M. Ajtai, Σ1
1-formula on finite structures, Ann. Pure. Appl. Logic 24, 1–48, 1983.

17

[2] K. Chandrasekaran, N. Goyal, and B. Haeupler, Deterministic algorithms for the Lovász Local
Lemma, in Proc. of the 21st Annual ACM-SIAM Sympos. on Discrete Algorithms (SODA’10),
SIAM, 992–1004, 2010.

[3] A. De, O. Etesami, L. Trevisan, and M. Tulsiani, Improved pseudo-random generators for depth
2 circuits, in Proc. the 14th. International Workshop on Randomization and Computation,
(APPROX-RANDOM’10), Lecture Notes in Computer Science 6302, 504–517, 2010.

[4] D. Kane and O. Watanabe, A short implicant of CNFs with relatively many satisfying assign-
ments, ECCC TR13-176, 2013.

[5] J. H̊astad, Computational limitations of small depth circuits, Ph.D. thesis, Massachusetts In-
stitute of Technology, 1987.

[6] E. Hirsch, A fast deterministic algorithm for formulas that have many satisfying assignments,
Logic Journal of the IGPL, 6(1): 59–71, 1998.

[7] R. Moser, A constructive proof of the Lovász local lemma, in Proc. of the 41st Annual ACM
Sympos. on Theory of Computing (STOC’09), 343–350, 2009.

[8] R. Moser and G. Tardos, A constructive proof of the general Lovász local lemma, J. ACM,
57(2), 2010.

18

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

