
Low-Depth Uniform Threshold Circuits and the Bit-Complexity
of Straight Line Programs

Eric Allender1, Nikhil Balaji2, and Samir Datta2

1 Department of Computer Science, Rutgers University, USA
allender@cs.rutgers.edu

2 Chennai Mathematical Institute, India
{nikhil,sdatta}@cmi.ac.in

Abstract. We present improved uniform TC0 circuits for division, matrix powering, and related prob-
lems, where the improvement is in terms of “majority depth” (initially studied by Maciel and Thérien).
As a corollary, we obtain improved bounds on the complexity of certain problems involving arithmetic
circuits, which are known to lie in the counting hierarchy.

1 Introduction

How hard is it to compute the 10100-th bit of the binary expansion of
√

2? Datta and Pratap [DP12], and
Jeřábek [Jeř12] considered the question of computing the m-th bit of an algebraic number. Jeřábek [Jeř12]
showed that this problem has uniform TC0 circuits3 of size polynomial in m (which is not so useful when
m = 10100). Earlier, Datta and Pratap showed a related result: when m is expressed in binary, this problem
lies in the counting hierarchy. More precisely, Datta and Pratap showed that this problem is reducible to
the problem of computing certain bits of the quotient of two numbers represented by arithmetic circuits
of polynomial size.4 Thus, we are led to the problem of evaluating arithmetic circuits. In this paper, we
focus on arithmetic circuits without input variables. Thus an arithmetic circuit is a (possibly very
compact) representation of a number.

Arithmetic circuits of polynomial size can produce numbers that require exponentially-many bits to
represent in binary. The problem5 known as BitSLP (= {(C, i, b) : the i-th bit of the number represented
by arithmetic circuit C is b}) is known to be hard for #P [ABKPM09]. It was known that BitSLP lies
in the counting hierarchy [ABKPM09], but the best previously-known bound for this problem is the bound

mentioned in [ABKPM09] and credited there to [AS05]: PHPPPPPPPP

. That bound follows via a straightforward
translation of a uniform TC0 algorithm presented in [HAB02].

In this paper, we improve this bound on the complexity of BitSLP to PHPPPPPP

. In order to do this,
we present improved uniform TC0 algorithms for a number of problems that were already known to reside
in uniform TC0. The improvements that we provide are related to the depth of the TC0 circuits. There
are several possible variants of “depth” that one could choose to study. For instance, several papers have
studied circuits consisting only of majority gates, and tight bounds are known for the depth required for
several problems, in that model. (See, for instance [GK98,SR94,Weg93,She07] and other work referenced
there.) Since our motivation comes largely from the desire to understand the complexity of problems in the
counting hierarchy, it turns out that it is much more relevant to consider the notion of majority depth that
was considered by Maciel and Thérien [MT98]. In this model, circuits have unbounded-fan-in AND, OR,

and MAJORITY gates (as well as NOT gates). The class T̂C
0

d consists of functions computable by families

3 For somewhat-related TC0 algorithms on sums of radicals, see [HBM+10].
4 It is mistakenly claimed in [DP12] that this problem lies in PHPPPP

. In this paper, we prove the weaker bound that

it lies in PHPPPPPP

.
5 “SLP” stands for “straight-line program”; which is a model equivalent to arithmetic circuits. Throughout the rest

of the paper, we will stick with the arithmetic circuit formalism.

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Revision 1 of Report No. 177 (2013)

of threshold circuits of polynomial size and constant depth such that no path from an input to an output
gate encounters more than d MAJORITY gates. Thus the class of functions with majority depth zero, T̂C

0

0,

is precisely AC0. In order to explain the connection between T̂C
0

d and the counting hierarchy, it is necessary
to define the levels of the counting hierarchy.

Define CH1 = PP, and CHk+1 = PPCHk .

Proposition 1. (Implicit in [ABKPM09, Theorem 4.1].) Let A be a set such that, for some k, some

polynomial-time computable function f and for some dlogtime-uniform T̂C
0

d circuit family Cn, it holds that
x ∈ A if and only if C|x|+2|x|k (x, f(x, 1)f(x, 2) . . . f(x, 2|x|

k

)) accepts. Then A ∈ PHCHd .

(One important part of the proof of Proposition 1 is the fact that, by Toda’s theorem [Tod91], for every

oracle A, PPPHA

⊆ PPPA

. Thus all of the AC0 circuitry inside the T̂C
0

d circuit can be swallowed up by the
PH part of the simulation.)

Note that the dlogtime-uniformity condition is crucial for Proposition 1. Thus, for the remainder of this
paper, all references to T̂C

0

d will refer to the dlogtime-uniform version of this class, unless we specifically refer
to nonuniform circuits. Table 1 compares the complexity bounds that Maciel and Thérien obtained in the
nonuniform setting with the bounds that we are able to obtain in the uniform setting. (Maciel and Thérien
also considered several problems for which they gave uniform circuit bounds; the problems listed in Table 1
were not known to lie in dlogtime-uniform TC0 until the subsequent work of [HAB02].) All previously-known
dlogtime-uniform TC0 algorithms for these problems rely on the CRR-to-binary algorithm of [HAB02], and
thus have at least majority-depth 4 (as analyzed by [AS05]); no other depth analysis beyond O(1) was
attempted.

Nonuniform Uniform
Problem Majority-Depth [MT98] Majority-Depth [This Paper]

Iterated multiplication 3 3
Division 2 3
Powering 2 3

CRR-to-binary 1 3
Matrix powering O(1) [MP00,HAB02] 3

In all of the cases where our uniform majority-depth bounds are worse than the nonuniform bounds given
by [MT98], our algorithms also give rise to nonuniform algorithms that match the bounds of [MT98] (by
hardwiring in some information that depends only on the length), although in all cases the algorithms differ
in several respects from those of [MT98].

All of the TC0 algorithms that are known for the problems considered in this paper rely on partial
evaluations or approximations. The technical innovations in our improved algorithms rely on introducing yet
another approximation, as discussed in Lemmas 3 and 4.

Table 1 also lists one problem that was not considered by Maciel and Thérien: the problem of taking
as input 1m and a k × k matrix A, and producing Am. For any fixed k, this problem was shown to be in
nonuniform TC0 by Mereghetti and Palano [MP00]; it follows from [HAB02] that their algorithm can be
implemented in dlogtime-uniform TC0. The corresponding problem of computing large powers of a k × k
matrix (i.e., when m is given in binary) has been discussed recently; see the final section of [OW14]. We

show that this version of matrix powering is in PHPPPPPP

.
In addition to BitSLP, there has also been interest in the related problem PosSLP (= {C : the number

represented by arithmetic circuit C is positive}) [EY10,KP07,KS12,KP11]. PosSLP ∈ PHPPPP

, and is not
known to be in PH [ABKPM09], but in contrast to BitSLP, it is not known (or believed [EY10]) to be NP-
hard. Our theorems do not imply any new bounds on the complexity of PosSLP, but we do conjecture that

2

BitSLP and PosSLP both lie in PHPP. This conjecture is based mainly on the heuristic that says that, for
problems of interest, if a nonuniform circuit is known, then corresponding dlogtime-uniform circuits usually
also exist. Converting from CRR to binary can be done nonuniformly in majority-depth one, and there is no
reason to believe that this is not possible uniformly – although it seems clear that a different approach will
be needed, to reach this goal.

The well-studied Sum-of-Square-Roots problem reduces to PosSLP [ABKPM09], which in turn reduces
to BitSLP. But the relationship between PosSLP and the matrix powering problem (given a matrix A and
n-bit integer j, output the jth bit of a given entry of Aj) is unclear, since matrix powering corresponds to
evaluating very restricted arithmetic circuits. Note that some types of arithmetic involving large numbers
can be done in P; see [HKR10]. Might matrix powering also lie in PH?

We provide a very weak “hardness” result for the problem of computing the bits of large powers of 2-by-2
matrices, to shed some dim light on this question. We show that the Sum-of-Square-Roots problem reduces
to this problem via PHPP-Turing reductions.

2 Preliminaries

Given a list of primes Π = (p1, . . . , pm) and a number X, the CRRΠ representation of X is the list (X mod
p1, . . . , X mod pm). We omit the subscript Π if context makes clear. For more on circuit complexity classes
such as AC0,TC0,NC1, as well as a discussion of dlogtime uniformity, see [Vol99]. For background on other
complexity classes such as PP,#P,NP, etc., consult a standard text such as [AB09].

We need to refer (repeatedly) to the binary expansion of a rational number. Furthermore, we want to
avoid possible confusion caused by the fact that some numbers have more than one binary expansion (e.g.
1 =

∑∞
i=1 2−i). Thus the following definition fixes a unique binary representation for every rational number.

Definition 1.
The Binary expansion of the rational number X/Y is the unique expression X/Y =

∑∞
i=−∞ ai2i, where each

ai ∈ {0, 1}, and where the binary expansion of any integer multiple of 2j has ai = 0 for all i < j.
The binary expansion of X/Y correct to m places is the sequence of bits representing

∑blog(X/Y)c
i=−m ai2i.

The following lemma is a list of useful subroutines of problems that are computable in AC0 and T̂C
0

1.

Lemma 1. Let x, y, i, j, k, xj ∈ (0, nc) (c ≥ 3 is a constant). Let X,Xj ∈ [0, 2n) and let p < nc be prime.
Then the following operations have the indicated complexities:

1. p 7→ first nc bits of 1/p in T̂C
0

0 = AC0.
2. k,X1 . . . , Xk 7→

∑k
j=1Xj mod p in T̂C

0

1.

3. x 7→ xi mod p in T̂C
0

0 = AC0.
4. p 7→ gp in T̂C

0

0 = AC0 where gp is a generator of the multiplicative group modulo p.

5. X 7→ X mod p in T̂C
0

1.
6. x, y 7→ xy mod p in T̂C

0

0 = AC0.
7. (x1, . . . , xk) 7→

∏k
j=1 xj mod p in T̂C

0

1.

Proof. We list the proofs of items in the Lemma above:

1. Follows from Lemma 4.2 and Corollary 6.2 in [HAB02].
2. Follows from Corollary 3.4.2 in [MT98].
3. Follows from Corollary 6.2 in [HAB02].
4. Follows from testing each integer x ∈ [1, n − 1] for being a generator by checking if x(p−1)/2 6≡ 1 mod p

and reporting the first successful x (implicit in [HAB02,ABKPM09]).
5. Follows from (the proof of) Lemma 4.1 in [HAB02].
6. Follows from Proposition 3.7 in [MT98] and the fact that two log n-bit integers can be multiplied in AC0.
7. Follows from the reduction of multiplication to addition of discrete logs and the previous parts.

ut

3

3 Uniform Circuits for Division

Theorem 1. The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n), and 0m and producing as output the

binary expansion of X/Y correct to m places is in T̂C
0

3.

Proof. This task is trivial if Y = 1; thus in the rest of this argument assume that Y ≥ 2.
Computing the binary expansion of Z/Y correct to m places is equivalent to computing b2mZ/Y c. Thus

we will focus on the task of computing bX/Y c, given integers X and Y .
The basic structure of all TC0 algorithms for division (reducing the problem to iterated product, and com-

puting iterated product via a reduction to iterated addition, via conversion to and from Chinese Remainder
Representation) has remained unchanged since the pioneering work of [BCH86]. Subsequent improvements
have focused on finding more efficient implementations of these various tasks.

Our approach will be to compute Ṽ (X,Y), a strict underestimate of X/Y , such that X/Y − Ṽ (X,Y) <
1/Y . Since Y > 1, we have that bX/Y c 6= b(X + 1)/Y c if and only if (X + 1)/Y = bX/Y c + 1. It follows
that in all cases bX/Y c = bṼ (X + 1, Y)c, since⌊

X

Y

⌋
≤ X

Y
=
X + 1
Y

− 1
Y
< Ṽ (X + 1, Y) <

X + 1
Y

.

Note that, in order to compute bX
Y c, we actually compute an approximation to (X + 1)/Y .

The approximation Ṽ (X,Y) is actually defined in terms of another rational approximation W (X,Y),
which will have the property that Ṽ (X,Y) ≤W (X,Y) < X/Y . We postpone the definition of Ṽ (X,Y), and
focus for now on W (X,Y), an under approximation of X

Y with error at most 2−(n+1). .
Using AC0 circuitry, we can compute a value t such that 2t−1 ≤ Y < 2t.
Let u = 1 − 2−tY . Then u ∈ (0, 1

2]. Thus, Y −1 = 2−t(1 − u)−1 = 2−t(1 + u + u2 + . . .). Set Y ′ =
2−t(1 + u+ u2 + . . .+ u2n+1), then

0 < Y −1 − Y ′ ≤ 2−t
∑

j>2n+1

2−j < 2−(2n+1)

Define W (X,Y) to be XY ′. Hence, 0 < X
Y −W (X,Y) < 2−(n+1).

We find it useful to use this equivalent expression for W (X,Y):

W (X,Y) =
X

2t

2n+1∑
j=0

(1− Y

2t
)j =

1
22(n+1)t

2n+1∑
j=0

X(2t − Y)j2(2n+1−j)t.

Define Wj(X,Y) to be X(2t − Y)j(2(2n+1−j)t). Thus W (X,Y) = 1
22(n+1)t

∑2n+1
j=0 Wj(X,Y).

Lemma 2. (Adapted from [DP12]) Let Π be any set of primes such that the product M of these primes lies
in (2nc

, 2nd

) for some d > c ≥ 3. Then, given X,Y,Π we can compute the CRRΠ representations of the

2(n+ 1) numbers Wj(X,Y) (for j ∈ {0, . . . , 2n+ 1}) in T̂C
0

1.

Proof. With the aid of Lemma 1, we see that using AC0 circuitry, we can compute 2t−Y , 2j mod p for each
prime p ∈ Π and various powers j, as well as finding generators mod p. In T̂C

0

1 we can compute X mod p
and (2t−Y) mod p (each of which has O(log n) bits). Using those results, with AC0 circuitry we can compute
the powers (2t − Y)j mod p and then do additional arithmetic on numbers of O(log n) bits to obtain the
product X(2t − Y)j(2(2n+1−j)t) mod p for each p ∈ Π. (The condition that c ≥ 3 ensures that the numbers
that we are representing are all less than M .) ut

Having the CRRΠ representation of the number Wj(X,Y), our goal might be to convert the Wj(X,Y)
to binary, and take their sum. In order to do this efficiently, we first show how to obtain an approximation

4

(in binary) to W (X,Y)/M where M =
∏

p∈Π p, and then in Lemma 4 we build on this to compute our
approximation Ṽ (X,Y) to W (X,Y).

Recall that W (X,Y) = 1
22(n+1)t

∑2n+1
j=0 Wj(X,Y). Thus 22(n+1)tW (X,Y) is an integer with the same

significant bits as W (X,Y).

Lemma 3. Let Π be any set of primes such that the product M of these primes lies in (2nc

, 2nd

) for a
fixed constant d > c ≥ 3, and let b be any natural number. Then, given X,Y,Π we can compute the binary
representation of a good approximation to 22(n+1)tW (X,Y)

M in T̂C
0

2 (where by good we mean that it under-
estimates the correct value by at most an additive term of 1/2nb

).

Proof. Let hΠ
p = (M/p)−1 mod p for each prime p ∈ Π.

If we were to first compute a good approximation ÃΠ to the fractional part of:

AΠ =
∑
p∈Π

(22(n+1)tW (X,Y) mod p)hΠ
p

p

i.e. if ÃΠ were a good approximation to AΠ − bAΠc, then ÃΠM would be a good approximation to
22(n+1)tW (X,Y). This follows from observing that the fractional part of AΠ is exactly 22(n+1)tW (X,Y)

M (as in
[HAB02,ABKPM09]).

Instead, we will compute a good approximation Ã′Π to the fractional part of

A′Π =
∑
p∈Π

2n+1∑
j=0

(Wj(X,Y) mod p)hΠ
p

p
.

Note that the exact magnitudes of the two quantities AΠ , A
′
Π are not the same but their fractional parts

will be the same. Since we are adding up 2(n+ 1)|Π| approximate quantities it suffices to compute each of
them to bm = 2nb + 2(n+ 1)|Π| bits of accuracy to ensure:

0 ≤ W (X,Y)
M

− Ã′Π <
1

2nb .

Now we analyze the complexity. By Lemma 2, we obtain in T̂C
0

1 the CRRΠ representation of Wj(X,Y) ∈
[0, 2n) for j ∈ {0, . . . , O(n)}. Also, by Lemma 1, each hΠ

p can be computed in T̂C
0

1, and polynomially-many
bits of the binary expansion of 1/p can be obtained in AC0.

Using AC0 circuitry we can multiply together the O(log n)-bit numbers Wj(X,Y) mod p and hΠ
p , and

then obtain the binary expansion of ((Wj(X,Y) mod p)hΠ
p) · (1/p) (since multiplying an n-bit number by a

log n bit number can be done in AC0).
Thus, with one more layer of majority gates, we can compute

A′Π =
∑
p∈Π

2n+1∑
j=0

(Wj(X,Y) mod p)hΠ
p

p

and strip off the integer part, to obtain the desired approximation. ut

Corollary 1. Let Π be any set of primes such that the product M of these primes lies in (2nc

, 2nd

) for a
fixed constant d > c ≥ 3. Then, given Z in CRRΠ representation and the numbers hΠ

p for each p ∈ Π, we

can compute the binary representation of a good approximation to Z
M in T̂C

0

1

Before presenting our approximation Ṽ (X,Y), first we present a claim, which helps motivate the defini-
tion.

5

Claim. Let Πi for i ∈ {1, . . . , nc} be nc pairwise disjoint sets of primes such that Mi =
∏

p∈Πi
p ∈ (2nc

, 2nd

)
(for some constants c, d : 3 ≤ c < d). Let Π = ∪nc

i=1Πi. Then, for any value A, it holds that

A(1− nc

2nc) <
A

∏nc

i=1 (Mi − 1)∏nc

i=1Mi

< A

The claim follows immediately from Proposition 3, which is provided in the appendix for completeness.
Now, finally, we present our desired approximation. Ṽ (X,Y) is 2nc · V ′(X,Y), where V ′(X,Y) is an

approximation (within 1/2n2c

) of

V (X,Y) =
W (X,Y)

∏nc

i=1 (Mi − 1)/2∏nc

i=1Mi

.

Note that

W (X,Y)− 2nc

V (X,Y) = W (X,Y)− 2nc W (X,Y)
∏nc

i=1 (Mi − 1)/2∏nc

i=1Mi

= W (X,Y)−
W (X,Y)

∏nc

i=1 (Mi − 1)∏nc

i=1Mi

< W (X,Y)
nc

2nc <
22nnc

2nc

and

2nc

V (X,Y)− Ṽ (X,Y) = 2nc

V (X,Y)− 2nc

V ′(X,Y)

= 2nc

(V (X,Y)− V ′(X,Y))

≤ 2nc

(
1

2n2c)

=
2nc

2n2c .

Thus X/Y − Ṽ (X,Y) = (X/Y − W (X,Y) + (W (X,Y) − 2nc

V (X,Y)) + (2nc

V (X,Y) − Ṽ (X,Y)) <
2−(n+1) + nc22n/2nc

+ 2nc

/2n2c

< 1/Y .

Lemma 4. Let Πi for i ∈ {1, . . . , nc} be nc pairwise disjoint sets of primes such that Mi =
∏

p∈Πi
p ∈

(2nc

, 2nd

) (for some constants c, d : 3 ≤ c < d). Let Π = ∪nc

i=1Πi. Then, given X,Y and the Πi, we can

compute Ṽ (X,Y) in T̂C
0

3.

Proof. Via Lemma 1, in T̂C
0

1 we can compute the CRRΠ representation of each Mi, as well as the numbers
Wj mod p (using Lemma 2). Also, as in Lemma 3, we can compute the values hΠ

p for each prime p.
Then, via Lemma 1, with one more layer of majority gates we can compute the CRR representation

of
∏

i (Mi − 1)/2, as well as the CRR representation of 22(n+1)tW (X,Y) =
∑2n+1

j=0 Wj(X,Y). The CRR
representation of the product 22(n+1)tW (X,Y) ·

∏
i (Mi − 1)/2 can then be computed with AC0 circuitry to

obtain the CRR representation of the numerator of the expression for V (X,Y). (It is important to note that
22(n+1)tW (X,Y) ·

∏
i (Mi − 1)/2 <

∏
iMi, so that it is appropriate to talk about this CRR representation.

Indeed, that is the reason why we divide each factor Mi − 1 by two.)
This value can then be converted to binary with one additional layer of majority gates, via Corollary 1,

to obtain Ṽ (X,Y). ut

This completes the proof of Theorem 1. ut

6

Corollary 2. Let Π be any set of primes such that the product M of these primes lies in (2nc

, 2nd

) for a
fixed constant d > c ≥ 3. Then, given Z in CRRΠ representation, the binary representation of Z can be
computed in T̂C

0

3

Proof. Recall from the proof of Theorem 1 that, in order to compute the bits of Z/2, our circuit actually
computes an approximation to (Z+1)/2. Although, of course, it is trivial to compute Z/2 if Z is given to us
in binary, let us consider how to modify the circuit described in the proof of Lemma 4, if we were computing
Ṽ (Z + 1, 2), where we are given Z in CRR representation.

With one layer of majority gates, we can compute the CRRΠ representation of each Mi and the values
hΠ

p for each prime p. (We will not need the numbers Wj mod p.)
Then, with one more layer of majority gates we can compute the CRR representation of

∏
i (Mi − 1)/2.

In place of the gates that store the value of the CRR representation of 22(n+1)tW (X,Y), we insert the CRR
representation of Z (which is given to us as input) and using AC0 circuitry store the value of Z + 1. The
CRR representation of the product Z+1 ·

∏
i (Mi − 1)/2 can then be computed with AC0 circuitry to obtain

the CRR representation of the numerator of the expression for V (Z + 1, 2).
Then this value can be converted to binary with one additional layer of majority gates, from which the

bits of Z can be read off. ut

It is rather frustrating to observe that the input values Z are not used until quite late in the T̂C
0

3

computation (when just one layer of majority gates remains). However, we see no simpler uniform algorithm
to convert CRR to binary.

For our application regarding problems in the counting hierarchy, it is useful to consider the analog to
Theorem 1 where the values X and Y are presented in CRR notation.

Theorem 2. The function taking as input X ∈ [0, 2n), Y ∈ [1, 2n) (in CRR) as well as 0m, and producing

as output the binary expansion of X/Y correct to m places is in T̂C
0

3.

Proof. We assume that the CRR basis consists of pairwise disjoint sets of primes Mi, as in Lemma 4.
The algorithm is much the same as in Theorem 1, but there are some important differences that require

comment. The first step is to determine if Y = 1, which can be done using AC0 circuitry (since the CRR
of 1 is easy to recognize). The next step is to determine a value t such that 2t−1 ≤ Y < 2t. Although this
is trivial when the input is presented in binary, when the input is given in CRR it requires the following
lemma:

Lemma 5. (Adapted from [AAD00,DMS94,ABKPM09]) Let X be an integer from (−2n, 2n) specified by its

residues modulo each p ∈ Πn. Then, the predicate X > 0 is in T̂C
0

2

Since we are able to determine inequalities in majority-depth two, we will carry out the initial part of
the algorithm from Theorem 1 using all possible values of t, and then select the correct value between the
second and third levels of MAJORITY gates.

Thus, for each t, and for each j, we compute the values Wj,t(X + 1, Y) = (X + 1)(2t − Y)j(2(2n+1−j)t)
in CRR, along with the desired number of bits of accuracy of 1/p for each p in our CRR basis.

With this information available, as in Lemma 4, in majority-depth one we can compute hΠ
p , as well as

the CRR representation of each Mi, and thus with AC0 circuitry we obtain (Wj,t(X + 1, Y) and the CRR
for each (Mi − 1)/2.

Next, with our second layer of majority gates we sum the values Wj,t(X + 1, Y) (over all j), and at this
point we also will have been able to determine which is the correct value of t, so that we can take the correct
sum, to obtain 22(n+1)tW (X,Y).

Thus, after majority-depth two, we have obtained the same partial results as in the proof of Lemma 4,
and the rest of the algorithm is thus identical. ut

Proposition 2. Iterated product is in uniform T̂C
0

3.

7

Proof. The overall algorithm is identical to the algorithm outlined in [MT98], although the implementation
of the basic building blocks is different. In majority-depth one, we convert the input from binary to CRR.
With one more level of majority gates, we compute the CRR of the product.

Simultaneously, in majority-depth two we compute the bottom two levels of our circuit that computes
from CRR to binary, as in Corollary 2.

Thus, with one final level of majority gates, we are able to convert the answer from CRR to binary. ut

3.1 Consequences for the Counting Hierarchy

Corollary 3. BitSLP ∈ PHPPPPPP

.

Proof. This is immediate from Proposition 1 and Corollary 2.
Let f be the function that takes as input a tuple (C, (p, j)) and if p is a prime, evaluates the arithmetic

circuit C mod p and outputs the j-th bit of the result. This function f , taken together with the T̂C
0

3 circuit
family promised by Corollary 2, satisfies the hypothesis of Proposition 1. (There is a minor subtlety, regarding
how to partition the set of primes into the groupings Mi, but this is easily handled by merely using all of
the primes of a given length, at most polynomially-larger than |C|.) ut

Via essentially identical methods, using Theorem 2, we obtain:

Corollary 4. {(CX , CY , i) : the i-th bit of the quotient X/Y , where X and Y are represented by arithmetic

circuits CX and CY , respectively, is in PHPPPPPP

.

4 Integer Powering

In this section, we present an alternative algorithm for integer powering, which serves to illustrate the
approach that we take to matrix powering.

Theorem 3. The function taking as input X ∈ [0, 2n), 1m and 1i(where i ∈ [1, nm]) and producing as

output the i-th bit of Xm is in T̂C
0

3.

Proof. Our algorithm is as follows:

1. Convert X to CRR. Let X ≡ Xj mod pj for j ∈ [k]. This is implementable in T̂C
0

1 by item 5 in Lemma
1.

2. Compute Xm by reducing via Fermat’s little theorem. Since Xp−1 ≡ 1 mod p for any prime p, we
can compute Xmj

j mod pj where m = qj(pj − 1) + mj for j ∈ [k]. This step is in AC0 via item 3 in
Lemma 1. In parallel, compute the first two phases of our uniform algorithm to convert CRR to binary
(Corollary 2).

3. At this stage, we have the answer encoded in CRR, and we invoke the final layer of the circuit from
Corollary 2, convert the answer to binary.

Putting these three together, we have integer powering in T̂C
0

3. ut

5 Powering

We investigate the complexity of integer powering and powering constant size matrices from the perspective
of optimizing the majority depth. We present TC0 circuits with majority depth three for both these problems.

Since iterated integer product is in uniform T̂C
0

3, by Proposition 2, it is immediate that integer powering
is also in this class.

8

5.1 Integer Matrix Powering

Theorem 4. The function MPOW(A,m, p, q, i) taking as input a (d× d) integer matrix A ∈ {0, 1}d2n, p, q,

1i, where p, q ∈ [d], i ∈ [O(n)] and producing as output the i-th bit of the (p, q)-th entry of Am is in T̂C
0

3.

For a (d × d) matrix, the characteristic polynomial χA(x) : Z → Z is a univariate polynomial of degree
at most d. Let q, r : Z → Z be univariate polynomials of degree at most (m − d) and (d − 1) such that
xm = q(x)χA(x)+ r(x). By the Cayley-Hamilton theorem, we have that χA(A) = 0. So, in order to compute
Am, we just have to compute r(A).

Lemma 6. Given a (d×d) matrix A with entries that are n-bit integers, the coefficients of the characteristic

polynomial of A in CRR can be computed in T̂C
0

1.

Proof. We convert the entries of A to CRR and compute the determinant of (xI − A). This involves an
iterated sum of O(2dd!) integers each of which is an iterated product of d n-bit integers. The conversion

to CRR is in T̂C
0

1 by item 5 in Lemma 1. Since addition, multiplication, and powering of O(1) numbers of
O(log n) bits is computable in AC0 (by Lemma 1, items 3, 4 and 6), it follows that the coefficients of the

characteristic polynomial can be computed in T̂C
0

1.

Lemma 7. Given the coefficients of the polynomial r, in CRR, and given A in CRR, we can compute Am

in CRR using AC0 circuitry.

Proof. Recall that Am = r(A). Let r(x) = r0 + r1x+ . . .+ rd−1x
d−1. Computing any entry of r(A) in CRR

involves an iterated sum of O(1) many numbers which are themselves an iterated product of O(1) many
O(log n)-bit integers. The claim follows by appeal to Lemma 1. ut

Lemma 8. (Adapted from [HV06]) Let p be a prime of magnitude poly(m). Let g(x) of degree m and f(x) of
degree d be monic univariate polynomials over GFp, such that g(x) = q(x)f(x) + r(x) for some polynomials
q(x) of degree (m− d) and r(x) of degree (d− 1). Then, given the coefficients of g and f , the coefficients of

r can be computed in T̂C
0

1.

Proof. Following [HV06], let f(x) =
∑d

i=0 aix
i, g(x) =

∑m
i=0 bix

i, r(x) =
∑d−1

i=0 rix
i and q(x) =

∑m−d
i=0 qix

i.
Since f, g are monic, we have ad = bm = 1. Denote by fR(x), gR(x), rR(x) and qR(x) respectively the
polynomial with the i-th coefficient ad−i, bm−i, rd−i−1 and qm−d−i respectively. Then note that xdf(1/x) =
fR(x), xmg(1/x) = gR(x), xm−dq(1/x) = qR(x) and xd−1r(1/x) = rR(x).

We use the Kung-Sieveking algorithm (as implemented in [HV06]). The algorithm is as follows:

1. Compute f̃R(x) =
∑m−d

i=0 (1− fR(x))i via interpolation modulo p.
2. Compute h(x) = f̃R(x)gR(x) = c0 + c1x+ . . .+ cd(m−d)+mx

d(m−d)+m. from which the coefficients of q(x)
can be obtained as qi = cd(m−d)+m−i.

3. Compute r(x) = g(x)− q(x)f(x).

To prove the correctness of our algorithm, note that we have g(1/x) = q(1/x)f(1/x) + r(1/x). Scaling
the whole equation by xm, we get gR(x) = qR(x)fR(x) + xm−d+1rR(x). Hence when we compute h(x) =
f̃R(x)gR(x) in step 2 of our algorithm, we get

h(x) = f̃R(x)gR(x) = f̃R(x)qR(x)fR(x) + xm−d+1f̃R(x)rR(x).

Note that f̃R(x)fR(x) = f̃R(x)(1 − (1 − fR(x))) =
∑m−d

i=0 (1 − fR(x))i −
∑m−d

i=0 (1 − fR(x))i+1 = 1 −
(1 − fR(x))m−d+1 (a telescoping sum). Since f is monic, fR has a constant term which is 1 and hence
(1 − fR(x))m−d+1 does not contain a monomial of degree less than (m − d + 1). This is also the case with
xm−d+1f̃R(x)rR(x), and hence all the monomials of degree less than (m− d+ 1) belong to qR(x).

9

Now we justify why the algorithm above is amenable to a T̂C
0

1 implementation: Firstly, note that given
f(x) and g(x), the coefficients of fR(x) and gR(x) can be computed in NC0. To compute the coefficients
of f̃R(x), we use interpolation via the discrete Fourier transform (DFT) using arithmetic modulo p. Find
a generator w of the multiplicative group modulo p and substitute x = {w1, w2, . . . , wp−1} to obtain a
system of linear equations in the coefficients F of f̃R(x) : V · F = Y , where Y is the vector consisting of
f̃R(wi) evaluated at the various powers of w. Since the underlying linear transformation V (w) is a DFT, it
is invertible; the inverse DFT V −1(w) is equal to V (w−1) · (p−1)−1, which is equivalent to −V (w−1) mod p.
We can find each coefficient of f̃R(x) evaluating V −1Y , i.e., by an inner product of a row of the inverse
DFT-matrix with the vector formed by evaluating

∑(m−d+1)
i=1 (1 − fR(x))i−1 at various powers of w and

dividing by p − 1. The terms in this sum can be computed in AC0, and then the sum can be computed in
majority-depth one, to obtain the coefficients of f̃R(x). The coefficients of h(x) in step 2 could be obtained
by iterated addition of the product of certain coefficients of f̃R and gR, but since the coefficients of f̃R are
themselves obtained by iterated addition of certain terms t, we roll steps 1 and 2 together by multiplying
these terms t by the appropriate coefficients of gR. Thus steps 1 and 2 can be accomplished in majority-depth
1. Then step 3 can be computed using AC0 circuitry. ut

Proof. (of Theorem 4)

Our T̂C
0

3 circuit C that implements the ideas above is the following:

0. At the input, we have the d2 entries Aij , i, j ∈ [d] of A, a set Π of short primes (such that Π can be
partitioned in to nc sets Πi that are pairwise disjoint, i.e., Π = ∪nc

i=1Πi), the numbers I = {1, 2, . . . , (m−
d+ 1)}.

1. In majority-depth one, we obtain (1) Aij mod p for each prime p in our basis, and (2) Mi =
∏

p∈Πi
p

for all the nc sets that constitute Π, and (3) the CRR of the characteristic polynomial of A (via appeal
to Lemma 6).

2. In the next layer of threshold gates, we compute (1)
∏nc

i (Mi − 1)/2 in CRR, and (2) the coefficients of
the polynomial r in CRR, by appeal to Lemma 8.

3. At this point, by Lemma 7, AC0 circuitry can obtain r(A) = Am in CRR, and with one more layer of
MAJORITY gates we can convert to binary, by appeal to Corollary 2.

ut

6 Reducing Sum-of-square-roots to Matrix Powering

In this section, we present a reduction, showing that the Sum-of-Square-Roots problem is reducible, in some
sense, to the problem of computing large powers of 2-by-2 integer matrices. First, we define the problems of
interest:

Definition 2. [The Sum-of-Square-Roots Problem] Let a = (a1, . . . , an) be a list of n-bit positive
integers, and let σ = (σ1, . . . , σn) ∈ {−1,+1}n. Define SSQRT(a, σ) to be the problem of determining if:

n∑
i=1

σi
√
ai > 0

Definition 3. Bit-2-MatPow(A,N,B, i, j) (where A is a 2 × 2 matrix of n-bit integers and N,B are n-bit
positive integers) is the problem of determining the Bth bit of (AN)i,j.

Theorem 5. SSQRT ∈ PHPPBit-2-MatPow
.

Our proof makes use of Linear Fractional Transformations (LFTs), which in turn correspond directly to
2-by-2 matrices. Appendix B contains the necessary background concerning LFTs, including the proof of the
following lemma:

10

Lemma 9. If [pn(a), qn(a)] denotes the nth convergent for the matrix sequence M1,M2, . . . where each Mi =

L(a) =
(
a a
1 a

)
, then qn(a)− pn(a) < a

(
1− 1

a

)n+1. Thus if a ∈ [1, 2], then 0 ≤ qn(a)− pn(a) < 2−n, and for

all n,
√
a ∈ [pn(a), qn(a)]. Furthermore, pn(a) = (L(a)n)1,2/(L(a)n)2,2.

Proof. (of Theorem 5) Let (a, σ) be an input instance for SSQRT. Let αi be a positive integer satisfying
2αi < ai ≤ 2αi+1. Further, let a′i = ai/2αi be a rational in (1, 2]. Hence, by an application of Lemma 9,
any number, say pM (a′i) in the M th convergent interval of L(ai) approximates

√
a′i with an error of at most

2−M . To obtain an approximation of
√
ai from this we need to multiply pM (a′i) by 2b

αi
2 c (and if αi is odd

then we must also multiply this by an approximation to
√

2 – which can also be approximated in this way
by setting a = 2 and α = 0).

How good an approximation is needed? That is, how large must M be? Tiwari has shown [Tiw92] that
if a sum of n square roots ±√ai is not zero, where each ai has binary representation of length at most s,
then the sum is bounded from below by

2−(s+1)2n

Thus taking M = 2(log n)(s + 1)2n and obtaining an approximation of each
√
ai to within 2−M provides

enough accuracy to determine the sign of the result. By Lemma 9, a suitable approximation is provided by
(L(ai)M)1,2/(L(ai)M)2,2 (or – if αi is odd – by the expression (L(ai)M)1,2(L(2)M)1,2/(L(ai)M)2,2(L(2)M)2,2).
Denote this fraction by Ci/Di. (Note that each Di > 0.)

Note that
n∑

i=1

σi
√
ai > 0 ⇔

n∑
i=1

σi
Ci

Di
> 0

⇔
n∑

i=1

σiCi

∏
j 6=i

Dj > 0

We will need to re-write the expression
∑n

i=1 σiCi

∏
j 6=iDj in order to make it easier to evaluate. First,

note that this expression is of the form
∑n

i=1

∏n
j=1 Zi,j for integers Zi,j whose binary representation is of

length less than 2n2
. Thus this expression can written in the form

∑n
i=1

∏n
j=1

∑2n2

k=1 bi,j,k2k where each
bi,j,k ∈ {−1, 0, 1} is easily computable from the input and from the oracle Bit-2-MatPow. Via the distributive
law, this can be rewritten as

∑n
i=1

∑
(k1,k2,...,kn)∈[2n2]n

∏n
j=1 bi,j,kj 2

kj .
Thus there is a function f computable in polynomial time with an oracle for Bit-2-MatPow that, on input

(a, σ, i, k1, k2, . . . , kn, j, `) outputs the `th bit of the number
∏n

j=1 bi,j,kj
2kj . (Namely, the algorithm queries

the n oracle bits corresponding to bi,j,kj and combines this information with σ to obtain the sign ∈ {−1, 0, 1},
and computes the value of the exponent

∑
j kj , and from this easily determines the value of bit ` of the

binary representation.)

Since addition of m numbers, each consisting of m bits is computable in T̂C
0

1, it is now immediate that
the bits of this expression are computable in PHPP. Thus in PH, using the bits of this expression as an oracle,
one can determine if the number represented in this manner is positive or not. (Namely, is there some bit
that is non-zero, and is the sign bit positive?) ut

7 Open Questions and Discussion

Is conversion from CRR to binary in dlogtime-uniform T̂C
0

1? This problem has been known to be in P-

uniform T̂C
0

1 starting with the seminal work of Beame, Cook, and Hoover [BCH86], but the subsequent
improvements on the uniformity condition [CDL01,HAB02] introduced additional complexity that trans-
lated into increased depth. We have been able to reduce the majority-depth by rearranging the algorithmic
components introduced in this line of research, but it appears to us that a fresh approach will be needed, in
order to decrease the depth further.

11

Is BitSLP in PHPP? An affirmative answer to the first question implies an affirmative answer to the
second, and this would pin down the complexity of BitSLP between P#P and PHPP. We have not attempted
to determine a small value of k such that BitSLP ∈ (Σp

k)A for some set A ∈ CH3, because we suspect
that BitSLP does reside lower in CH, and any improvement in majority-depth will be more significant than
optimizing the depth of AC0 circuitry, since PH ⊆ PPP.

Is PosSLP in PH? Some interesting observations related to this problem were announced recently [Ete13,JS12].
Is it easy to compute bits of large powers of small matrices? We remark in this regard, that there are

some surprising things that one can compute, regarding large powers of integers [HKR10].

References

AAD00. Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and Arithmetic circuits. Journal of
Computer and System Sciences, 60(2):395–421, 2000.

AB09. S. Arora and B. Barak. Computational complexity: a modern approach, volume 1. Cambridge University
Press, 2009.

ABKPM09. Eric Allender, Peter Bürgisser, Johan Kjeldgaard-Pedersen, and Peter Bro Miltersen. On the complexity
of numerical analysis. SIAM J. Comput., 38(5):1987–2006, 2009.

AS05. E. Allender and H. Schnorr. The complexity of the BitSLP problem. Unpublished Manuscript, 2005.
BCH86. P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems. SIAM

Journal on Computing, 15:994–1003, 1986.

CDL01. A. Chiu, G. I. Davida, and B. Litow. Division in logspace-uniform NC1. ITA, 35(3):259–275, 2001.
DMS94. P. Dietz, I Macarie, and J. Seiferas. Bits and relative order from residues, space efficiently. Information

Processing Letters, 50(3):123–127, 1994.
DP12. S. Datta and R. Pratap. Computing bits of algebraic numbers. In TAMC, pages 189–201, 2012.
EP97. A. Edalat and P. J. Potts. A new representation for exact real numbers. Electronic Notes in Theoretical

Computer Science, 6:119–132, 1997.
Ete13. K. Etessami. Probability, recursion, games, and fixed points. Talk presented at Horizons in TCS: A

Celebration of Mihalis Yannakakis’ 60th Birthday, 2013.
EY10. K. Etessami and M. Yannakakis. On the complexity of Nash equilibria and other fixed points. SIAM J.

Comput., 39(6):2531–2597, 2010.
GK98. M. Goldmann and M. Karpinski. Simulating threshold circuits by majority circuits. SIAM J. Comput.,

27(1):230–246, 1998.
HAB02. W. Hesse, E. Allender, and D.A.M. Barrington. Uniform constant-depth threshold circuits for division

and iterated multiplication. Journal of Computer and System Sciences, 65:695–716, 2002.
HBM+10. P. Hunter, P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. Computing rational radical sums in

uniform TC0. In FSTTCS, pages 308–316, 2010.
HKR10. M. Hirvensalo, J. Karhumäki, and A. Rabinovich. Computing partial information out of intractable:

Powers of algebraic numbers as an example. Journal of Number Theory, 130:232–253, 2010.
HV06. A. Healy and E. Viola. Constant-depth circuits for arithmetic in finite fields of characteristic two. In

STACS 2006, pages 672–683. Springer, 2006.
Jeř12. Emil Jeřábek. Root finding with threshold circuits. Theoretical Computer Science, 462:59–69, 2012.
JS12. G. Jindal and T. Saranurak. Subtraction makes computing integers faster. CoRR, abs/1212.2549, 2012.
KP07. P. Koiran and S. Perifel. The complexity of two problems on arithmetic circuits. Theor. Comput. Sci.,

389(1-2):172–181, 2007.
KP11. P. Koiran and S. Perifel. Interpolation in Valiant’s theory. Computational Complexity, 20(1):1–20, 2011.
KS12. N. Kayal and C. Saha. On the sum of square roots of polynomials and related problems. TOCT, 4(4):9,

2012.
MP00. C. Mereghetti and B. Palano. Threshold circuits for iterated matrix product and powering. ITA,

34(1):39–46, 2000.
MT98. A. Maciel and D. Thérien. Threshold circuits of small majority-depth. Inf. Comput., 146(1):55–83, 1998.
OW14. J. Ouaknine and J. Worrell. Positivity problems for low-order linear recurrence sequences. In SODA,

pages 366–379, 2014.
Pot97. P. J. Potts. Efficient on-line computation of real functions using exact floating point. Manuscript, Dept.

of Computing, Imperial College, London, 1997.

12

Pot99. P. J. Potts. Exact Real Arithmetic using Möbius Transformations. PhD thesis, Imperial College, Uni-
versity of London, 1999.

She07. A. A. Sherstov. Powering requires threshold depth 3. Inf. Process. Lett., 102(2-3):104–107, 2007.
SR94. K.-Y. Siu and V. P. Roychowdhury. On optimal depth threshold circuits for multiplication and related

problems. SIAM J. Discrete Math., 7(2):284–292, 1994.
Tiw92. P. Tiwari. A problem that is easier to solve on the unit-cost algebraic ram. J. Complexity, 8(4):393–397,

1992.
Tod91. S. Toda. PP is as hard as the polynomial time hierarchy. SIAM J. Comput., 20:865–877, 1991.
Vol99. H. Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.
Weg93. Ingo Wegener. Optimal lower bounds on the depth of polynomial-size threshold circuits for some arith-

metic functions. Inf. Process. Lett., 46(2):85–87, 1993.

Acknowledgments

The first author acknowledges the support of NSF grants CCF-0832787 and CCF-1064785. We would like to
thank anonymous referees for help in improving the presentation of the paper.

A Proof of Claim 3

The following simple proposition is used in Claim 3, and is included for completeness.

Proposition 3. Let x > 1 be given. Then for all n > 1,

1− n

x
<

(
1− 1

x

)n

.

Proof. By induction. Assume that 1−n/x ≤ (1− 1/x)n. Then 1− (n+ 1)/x = 1−n/x+n/x− (n+ 1)/x <
(1− 1/x)n − 1/x < (1− 1/x)n − (1− 1/x)n1/x = (1− 1/x)n(1− 1/x). ut

B Linear Fractional Transformations (LFTs)

Here we give a brief introduction to LFTs based on the expositions in [EP97,Pot97,Pot99], concentrating
only on the aspects required in this paper.

A linear fractional transformation is a function mapping y 7→ ay+c
by+d for reals (and preferably integers)

a, b, c, d and the associated matrix is
(
a c
b d

)
. The interesting thing about LFTs is that the matrix corre-

sponding to the composition of two LFTs is the usual product of the matrices corresponding to the two LFTs.

In other words, if the matrix corresponding to φi(y) is
(
ai ci
bi di

)
(for i = 1, 2), then a matrix corresponding

to φ1φ2(y) (which abbreviates φ1(φ2(y))) is
(
a1 c1
b1 d1

) (
a2 c2
b2 d2

)
, as can be easily verified. In this paper we

deal only with nonsingular LFTs i.e. LFTs whose matrix has a non-zero determinant. An LFT is said to be
positive if all four entries in its matrix have the same sign.

Let φ be an LFT and let M =
(
a c
b d

)
be its matrix. φ acts as a bijection between any interval [p, q] and

a subset of the extended reals i.e. the usual reals augmented with ∞. Further, this subset is also an interval
(possibly including ∞): either [φ(p), φ(q)] or [φ(q), φ(p)]. Notice that we do not claim that there is a linear
order on the reals augmented with ∞. Instead, we refer to these sets as “intervals” in the same sense that
connected subsets of the unit circle can be called intervals.

For a concrete example, φ[0,∞] is the interval [a
b ,

c
d] if det(M) < 0 and the interval [c

d ,
a
b] if det(M) > 0.

Notice that φ(∞) is taken to be limy→∞ φ(y) = a
b . Notice also that (−1/x)[−1, 1] is the interval [1,−1]

containing ∞.
An LFT is said to be refining for an interval [p, q] if φ[p, q] ⊆ [p, q]. We will need the following two

propositions from [Pot97]:

13

Proposition 4. Given two non-trivial intervals [p, q] and [r, s] with p 6= q and r 6= s, there exists an LFT φ
with φ[p, q] = [r, s].

Proposition 5. For LFTs φ and ψ we have φ[0,∞] ⊇ ψ[0,∞] iff ψ = φγ for a positive LFT γ.

Thus for any sequence of nested intervals [p0, q0] ⊇ [p1, q1] ⊇ . . . ⊇ [pn, qn] ⊇ . . . we have [pn, qn] =
φ0φ1 . . . φn[0,∞] where φ0 is an LFT and all other φi’s are positive LFTs.6 Thus if a sequence of nested
intervals converges to a real number r, then the corresponding infinite sequence of LFTs or the corresponding
infinite product of matrices represents r; and the initial finite subsequence of LFTs applied to the interval
[0,∞] yield increasingly finer approximations to r.

LFTs are closely related to continued fractions; in fact, the continued fraction

a0 +
b0

a1 + b1

. . .

corresponds to the LFT
(
a0 b0
1 0

) (
a1 b1
1 0

)
. . ..

An LFT for the square root function is:

√
x ≡

∞∏
n=0

(
x x
1 x

)

for x ∈ [1,∞]. This differs slightly from the LFT specified in [Pot97,Pot99]. We establish its correctness
below, and conclude by proving Lemma 9.

To see that this LFT φ is an LFT for the square root function, we first establish a bound on the length
of the nth convergent. We use the following notation: ‖[p, q]‖ = q− p denotes the length of the interval [p, q].
The following two subsections show that ‖φn[0,∞]‖ → 0 as n→∞.

B.1 Length of the nth convergent

LetMi =
(
ai ci
bi di

)
and Pi =

∏i−1
j=0Mj =

(
Ai Ci

Bi Di

)
. Then the length of the interval [pn, qn] =

∏n
i=0Mi[0,∞] =

PnMn[0,∞] is given by:

‖PnMn[0,∞]‖ =
∥∥∥∥(

An Cn

Bn Dn

) (
an cn
bn dn

)
([0,∞])

∥∥∥∥
=

∥∥∥∥(
Anan + Cnbn Ancn + Cndn

Bnan +Dnbn Bncn +Dndn

)
([0,∞])

∥∥∥∥
=

∣∣∣∣Anan + Cnbn
Bnan +Dnbn

− Ancn + Cndn

Bncn +Dndn

∣∣∣∣
=

∣∣∣∣ (AnDn −BnCn)(andn − bncn)
(Bnan +Dnbn)(Bncn +Dndn)

∣∣∣∣
6 We call [pn, qn], the nth convergent of the LFT sequence φ.

14

B.2 Length of the nth convergent for the Square Root, and the Proof of Lemma 9

Using the notation above with Mi =
(
x x
1 x

)
, we get

‖[pn, qn]‖ =
∣∣∣∣ (AnDn −BnCn)(x2 − x)
(xBn +Dn)(xBn + xDn)

∣∣∣∣
<

∣∣∣∣ (AnDn −BnCn)(x2 − x)
(xBn)(xDn)

∣∣∣∣
=

∣∣∣∣(An

Bn
− Cn

Dn

) (
1− 1

x

)∣∣∣∣
=

∣∣∣∣(qn−1 − pn−1)
(

1− 1
x

)∣∣∣∣
Thus, inductively, qn − pn < |(q0 − p0)

(
1− 1

x

)n |.
Thus φn(y) → y0 for some y0 and all y ∈ [0,∞]. In particular, φn(y0) → y0 and thus φn+1(y) → φ(y0) as

n→∞. Thus, φ(y0) = y0, so that
xy0 + x

y0 + x
= y0

Hence x = y2
0 .

This establishes that φ is a LFT for the square root function.
Now recall Lemma 9, which states that if [pn(x), qn(x)] denotes the nth convergent for the matrix sequence

M1,M2, . . . where each Mi = L(x) =
(
x x
1 x

)
, then qn(x) − pn(x) < x

(
1− 1

x

)n+1. Thus if x ∈ [1, 2], then

0 ≤ qn(x)− pn(x) < 2−n, and for all n,
√
x ∈ [pn(x), qn(x)]. Furthermore, pn(x) = (L(x)n)1,2/(L(x)n)2,2.

From the foregoing, we have that qn(x) − pn(x) < |(q0(x) − p0(x))
(
1− 1

x

)n |. But [p0(x), q0(x)] =(
x x
1 x

)
[0,∞] = [1, x]. This yields qn(x)− pn(x) < (x− 1)

(
1− 1

x

)n ≤ x
(
1− 1

x

) (
1− 1

x

)n =
(
1− 1

x

)n+1.

The other parts of Lemma 9 follow immediately.

15

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

