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Abstract

The paper [Harry Buhrman, Michal Koucký, Nikolay Vereshcha-
gin. Randomized Individual Communication Complexity. IEEE Con-

ference on Computational Complexity 2008: 321-331] considered com-
munication complexity of the following problem. Alice has a bi-
nary string x and Bob a binary string y, both of length n, and they
want to compute or approximate Kolmogorov complexity C(x|y) of
x conditional to y. It is easy to show that deterministic communica-
tion complexity of approximating C(x|y) with precision α is at least
n − 2α − O(1). The above referenced paper asks what is random-

ized communication complexity of this problem and shows that for r-
round randomized protocols its communication complexity is at least
Ω((n/α)1/r). In this paper, for some positive ε, we show the lower
bound 0.99n for (worst case) communication length of any random-
ized protocol that with probability at least 0.01 approximates C(x|y)
with precision εn for all input pairs.

1 Introduction

Kolmogorov complexity of x conditional to y is defined as minimal length of
a program (for a universal machine) that given y as input prints x. Assume
that Alice has x and Bob has y, which are strings of length n. Is there a
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communication protocol to transmit y to Bob (i.e. to compute the function
I(x, y) = x) that communicates about C(x|y) bits for all input pairs (x, y)?

The trivial upper bound for communication complexity of this problem
is n (Alice sends her input to Bob). If Alice knew y, she could do better:
she could find C(x|y) bit program transforming y to x and send it to Bob.
However, without any prior knowledge of y it seems impossible to solve the
problem in about C(x|y) communicated bits, and the paper [2] confirms this
intuition for deterministic protocols. Moreover, for deterministic protocols
even testing equality x = y may require much more than C(x|y) bits of
communication. Indeed, for every deterministic protocol that tests equality
there is an input pair (x, x) on which the protocol communicates at least n
bits (see e.g. [4]). On the other hand, we have C(x|x) = O(1).

Surprisingly, the situation changes when we switch to randomized com-
munication protocols. The paper [3] shows that for every positive ε there is
a randomized communication protocol with public randomness that for all
input pairs (x, y) communicates at most C(x|y)+O(

√

C(x|y))+log(1/ε) bits
and computes I(x, y) = x with error probability at most ε. That protocol
runs in O(

√

C(x|y)) rounds.
The paper [3] asks whether it is possible to reduce the number of rounds

(keeping the communication close to C(x|y)) or to decrease the surplus
term O(

√

C(x|y)) in communication length. Both questions are related to
the communication complexity of approximating the conditional complexity
C(x|y). Indeed, assume that there is a randomized communication protocol
that finds C(x|y) with precision α in r rounds and communicates at most
l bits. Then the following randomized communication protocol computes
I(x, y) = x in r + 1 rounds with additional error ε and communicates at
most C(x|y) + l + α + log(1/ε) bits. Alice and Bob first run the given pro-
tocol to approximate C(x|y). Assume that the protocol outputs an integer
k. Then Alice communicates to Bob the value of randomly chosen linear
mapping A : {0, 1}n → {0, 1}k+α+log(1/ε) on her x. Bob finds any x′ in the set
S = {x′ | C(x′|y) < k + α} such that Ax′ = Ax and outputs it (we consider
protocols with public randomness thus Bob knows A). By union bound the
additional error probability of this protocol is at most 2k+α2−k−α+log ε = ε
(here 2k+α is an upper bound for the cardinality of S and 2−k−α+log ε is the
probability that Ax′ = Ax for any fixed x′ 6= x).

The paper [3] shows that the worst case randomized communication com-
plexity of approximating C(x|y) with precision α in r rounds is Ω((n/α)1/r)
and asks what happens when the number of rounds is not bounded. In this
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paper we prove that for some positive ε every randomized protocol that for all
input pairs with probability at least 0.01 approximates C(x|y) with precision
εn must communicate 0.99n bits for some input pair. That is, randomized
communication complexity of approximating C(x|y) is close to trivial upper
bound n unless the precision is very bad (more than εn).

2 Preliminaries

All logarithms in this paper have the base 2.

2.1 Kolmogorov complexity

Let U be a partial computable function that maps pairs of binary strings to
binary strings. Kolmogorov complexity of a binary string x conditional to a
binary string y with respect to U is defined as

CU(x|y) = min{|p| | U(p, y) = x}.

The notation |p| refers to the length of p.
We call U universal or optimal if for any other partial computable func-

tion V there is a constant c such that

CU(x|y) 6 CV (x|y) + c

for all x, y.
By Solomonoff–Kolmogorov theorem universal partial computable func-

tions exist [5]. We fix a universal U , drop the subscript U and call C(x|y)
the Kolmogorov complexity of x conditional to y. We call U also a “universal
machine”. If U(p, y) = x we say that “program p outputs x on input y”.

Kolmogorov complexity of a string x is the minimal length of a program
that prints x on the empty input Λ:

C(x) = C(x|Λ) = min{|p| | U(p,Λ) = x}.

Kolmogorov complexity of other finite objects (like pairs of strings) is
defined as follows: we fix a computable encoding of the objects in question
by binary strings and declare Kolmogorov complexity of an object to be
Kolmogorov complexity of its code.
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For the properties of Kolmogorov complexity we refer to the textbook [5].
Actually, in this paper we do not need many of them. The first property we
will need is an upper bound for the number of string of small complexity: for
every y and k there are less than 2k strings x with C(x|y) < k. We will use
also the following obvious inequality C(x) 6 |x|+O(1). Also we will use the
inequality for the complexity C(x, y) of the pair of strings x, y:

C(x, y) 6 2C(x) + C(y) +O(1),

which is almost obvious: a short program to print the pair (x, y) can be
identified by the shortest program to print x encoded in a prefix free way
(the easiest prefix free encoding doubles the length) concatenated with the
shortest program to print y. Finally, we will implicitly use the fact that
algorithmic transformations do not increase complexity: C(A(x)) 6 C(x) +
O(1) for every algorithm A and all x (the constant O(1) depends on A but
not on x).

2.2 Communication protocols

In this paper we use standard notions of a deterministic communication
protocol and of a communication protocol with public randomness, as in
the textbook [4]. Assume that Alice and Bob want to compute a function
f : X×Y → Z where the input x ∈ X is given to Alice, and the input y ∈ Y
to Bob.

A deterministic communication protocol to compute such a function is
identified by a rooted finite binary tree whose inner nodes are labeled with
letters A (Alice) and B (Bob), labels indicate the turn to move. Additionally,
each A-marked node is labeled by a function fromX to {0, 1} (different nodes
may be labeled by different functions). This function identifies how the bit
sent by Alice in her turn depends on her input. Similarly each B-marked node
is labeled by a function from Y to {0, 1}. Each leaf of the tree is labeled by
an element of Z (the output of the protocol).

Each node of the tree represents the state of the computation according to
the protocol, which is the sequence of bits sent so far. The root is the initial
state (no bits sent yet), the left son of a node u represents the state obtained
after sending 0 in the state u and the right son of a node u represents the
state obtained after sending 1 in the state u. When the current node is a leaf
the computation halts, and the label of that leaf is considered as the result of

4



protocol, which should be equal to the value of the function f on the input
pair.

The depth of the protocol tree is the worst case length of communication
according to the protocol.

We will consider also randomized communication protocols. A random-
ized communication protocol of depth d with public randomness is a prob-
ability distribution P over deterministic communication protocols of depth
d. We say that a randomized protocol P computes a function f with success
probability p if for all input pairs (x, y) the protocol P drawn at random
with respect to P computes f(x, y) with probability at least p.

3 Results

3.1 Deterministic protocols

Theorem 1. If a deterministic protocol P computes C(x|y) with precision

α then its depth d is at least n− 2α−O(1).

Proof. Indeed, let P (x, y) denote the output of P on input pair (x, y). The
protocol P defines a partition of the set {0, 1}n×{0, 1}n into at most 2d rect-
angles such that P (x, y) is constant on every rectangle from the partition [4].

Let (y, y) be a diagonal input pair, A × B the rectangle in the partition
containing it and k the value of P on that rectangle. As C(y|y) = O(1), we
have k 6 α + O(1). Since the rectangle A × B includes A × {y}, we have
C(x|y) 6 2α + O(1) for all x ∈ A, which implies that |A| 6 22α+O(1). Hence
the number of diagonal pairs (y′, y′) in A × B is at most 22α+O(1). As the
total number of diagonal pairs is 2n, it follows that the partition should have
at least 2n−2α−O(1) rectangles hence d > n− 2α−O(1).

3.2 Randomized protocols

For randomized protocols it is much harder to derive lower bounds for com-
munication complexity of our problem. For fixed number of rounds a lower
bound was shown in [3].

Theorem 2 ([3]). Assume that a randomized r round protocol with shared

randomness for every (x, y) ∈ {0, 1}n × {0, 1}n communicates at most d
bits and with probability at least p > 1/2 produces a number k such that
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k 6 C(x|y) < k + α. Then d > Ω((n/α)1/r). The constant in Ω-notation
depends on r and p.

We strengthen this theorem by removing the dependence of the lower
bound on r. Our lower bound holds even for protocols whose success prob-
ability p may approach 0. By a technical reason we switch from conditional
complexity C(x|y) to complexity of the pair C(x, y|n) conditional to n. Let
us show that approximating C(x, y|n) and C(x|y) reduce to each other. By
the symmetry of information [5], we have

|C(x, y)− (C(y) + C(x|y))| 6 4 log n+O(1).

As Bob can find C(y) privately and transmit it to Alice in log n bits, approx-
imating C(x, y) and C(x|y) with more than logarithmic precision are almost
equivalent. On the other hand,

|C(x, y)− C(x, y|n)| 6 log n+O(1)

and hence approximating C(x, y) and C(x, y|n) with more than logarithmic
precision are also equivalent. More specifically, if a protocol approximates
C(x|y) with precision α then it can approximate C(x, y|n) with precision
α + 5 log n + O(1) by communicating extra log n bits, and the other way
around.

Our main result shows that approximating C(x, y|n) is hard for random-
ized communication protocols.

Theorem 3. Assume that a randomized protocol of depth d with shared ran-

domness for every (x, y) ∈ {0, 1}n×{0, 1}n with probability at least p produces

a list of α numbers containing C(x, y|n). Then

d > n− log n−O(α/p).

Corollary 4. For some positive ε for all large enough n there is no random-

ized protocol of depth 0.99n that for all input pairs with probability at least

0.01 approximates C(x, y|n) with precision εn. The same statement holds for

C(x, y) and C(x|y) in place of C(x, y|n).

Proof of Theorem 3. First notice that it suffices to prove the statement for
α = 1. Indeed, if a protocol computes a list with α entries containing
C(x, y|n) with probability p then a randomly chosen entry of the list equals
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C(x, y|n) with probability p/α. Thus we will assume that α = 1. In other
words, we will consider protocols that compute C(x, y|n) with success prob-
ability p.

Assume that there is a randomized protocol of depth d that computes
C(x, y|n) for every input pairs (x, y) with success probability at least p. By
Yao’s principle [6], it follows that for any probability distribution µ on pairs
(x, y) ∈ {0, 1}n × {0, 1}n there is a deterministic protocol of depth d that
computes C(x, y|n) on a fraction at least p of input pairs with respect to µ.
Thus it suffices to find a distribution µ such that every deterministic protocol
that computes C(x, y|n) on a fraction at least p of input pairs with respect
to µ has large depth.

To show that the constructed distribution µ has this property we will use
a method similar to the discrepancy method [4]. More specifically, for the
constructed distribution µ, for all rectangles R ⊂ {0, 1}n×{0, 1}n the follow-
ing will hold1: The fraction of pairs (with respect to µ) inside the rectangle
that have any specific value of the function C(x, y|n) is small compared to
the size of the rectangle. The following lemma states that for such a µ every
deterministic protocol of small depth is able to compute C(x, y|n) only for a
small fraction of input pairs. In that lemma µ is a probability distributions
over {0, 1}n × {0, 1}n and f is any function from {0, 1}n × {0, 1}n into N.

Lemma 1. Assume that for every rectangle R ⊂ {0, 1}n × {0, 1}n and all

k ∈ N we have

µ({(x, y) ∈ R | f(x, y) = k}) 6 ε|R|+ δ.

Then every deterministic protocol of depth d computes f correctly on a frac-

tion at most

ε22n + δ2d

of input pairs with respect to µ.

Proof. Fix a deterministic protocol P of depth d and call P (x, y) its output on
input pair (x, y). The protocol P defines a partition of the set {0, 1}n×{0, 1}n

into at most 2d rectangles such that P (x, y) is constant on every rectangle
from the partition [4]. The contribution of any rectangle R from the partition
to the fraction of successful pairs equals

µ({(x, y) ∈ R | f(x, y) = k})

1A rectangle is a set of the form A×B.
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where k stands for the value of P (x, y) on the rectangle. By the assumption
this contribution is at most ε|R| + δ. Summing up the contributions of all
rectangles we obtain the upper bound ε22n + δ2d.

On the top level the construction of µ is the following. For some integer
l 6 n, we construct a family of l distributions µi where i = 2n− l+1, . . . , 2n,
with the following properties:

(1) |C(x, y|n)− i| = O(1) for all pairs (x, y) in the support of µi;
(2) µi(R) 6 ε′|R|+ δ′ for every rectangle R ⊂ {0, 1}n × {0, 1}n.

Then we will let µ to be the arithmetic mean of µi. The properties (1) and
(2) imply that the assumptions of Lemma 1 are fulfilled for

ε = O
(ε′

l

)

and δ = O
(δ′

l

)

(for the function f(x, y) = C(x, y|n)). Indeed, for every k and every rectangle
R the µ-probability of the set

{(x, y) ∈ R | C(x, y|n) = k}

is the arithmetic mean of its µi-probabilities. By property (1) the µi-probability
of this set is non-zero only when i is in the interval [k −O(1); k +O(1)] and
by property (2) for such i’s it is at most ε′|R|+ δ′.

By Lemma 1 properties (1) and (2) imply that every deterministic pro-
tocol of depth d computes C(x, y|n) correctly on a fraction at most

O
(ε′22n + δ′2d

l

)

of input pairs with respect to µ.
Is suffices to construct a large family of distributions such that properties

(1) and (2) hold for small ε′, δ′. To this end we will need the following
combinatorial lemma.

Lemma 2. For every n > 1 and every 3 < i 6 2n there is a bipartite graph

Gn,i whose left and right nodes are all binary strings of length n, that has at
least 2i−1 and at most 2i+1 edges and for every left set A and right set B with

log |A|, log |B| > 2n− i+ log n+ 4

the rectangle A×B has at most |A×B| · 2i−2n+1 edges.
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Let us finish the proof of the theorem assuming this lemma. Let l ∈
[n; 2n) be an integer number to be chosen later. Apply Lemma 2 to all
i = 2n − l + 1, . . . , 2n. The number of edges En,i in the resulting graph is
between 2i−1 and 2i+1. We may assume that the graph Gn,i is computable
given n, i (using the brute force search we can find the first graph satisfying
the lemma). Thus Kolmogorov complexity of each edge in Gn,i (conditional
to n) is at most i+O(1) (every edge can be identified by a its i+1 bit index).
Remove from the graph all edges of complexity less than i− 2. The number
of removed edges is less that 2i−2 and hence the resulting graph has more
than 2i−1 − 2i−2 = 2i−2 edges.

Let µi be the uniform probability distribution over the edges of Gn,i. The
first property holds by construction. Let us show that the second property
holds for some small ε′, δ′ for every rectangle A×B. Assume first that both
log |A| and log |B| are larger than 2n− i+ log n+ 4 (this bound comes from
of Lemma 2). The probability that a random edge from Gn,i falls into A×B
is at most the number of edges in A×B divided by the total number of edges
in Gn,i. By Lemma 2 the number of edges in A×B is at most |A×B| ·2i−2n+1

and En,i is at least 2
i−2. Hence

µi(A× B) = O(|A×B|/22n).

Otherwise either |A|, or |B| is less than 22n−i+log n+4 and we use the trivial
upper bound |A× B| 6 2n × 22n−i+log n+4 for the number of edges of Gn,i in
A× B and the inequality i > 2n− l. We have

µi(A×B) 6|A×B|/2i−2 = O(23n−2i+log n)

=O(22l−n+logn)).

Thus the second property holds for

ε′ = O(2−2n) and δ′ = O(22l−n+logn).

By Lemma 1 if a deterministic depth d protocol computes C(x, y|n) on a
fraction p of input pairs with respect to µ then

p 6 O
(1 + 2d+2l−n+logn

l

)

. (1)

By Yao’s principle Equation (1) also holds for success probability of every
depth d randomized protocol to compute C(x, y|n). Now we have to choose
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l so that this inequality yields the best lower bound for d. A simple analysis
reveals that an almost optimal choice of l is such that the exponent in the
power of 2 in the right hand side of (1) is 0, that is l = (n − d − log n)/2
(notice that if this l is negative then there is nothing to prove). Plugging
such l in (1), we obtain

p 6
O(1)

n− log n− d
.

The statement of the theorem easily follows.

It remains to prove Lemma 2. The lemma is proved by a probabilistic
method. We will show that a randomly chosen graph has the desired prop-
erties with positive probability. The probability distribution over graphs is
defined as follows. Every pair (left node, right node) is an edge of the graph
with probability 2i−2n and decisions for different pairs are independent.

We have to show that both requirements hold with probability more than
one half. To this end we will use the Chernoff bound in the exponential form
[1, Cor A.1.14]: for any independent random variables T1, . . . , Tk with values
0,1 the probability that their sum T exceeds twice the expectation ET of T
is less than 2−ET/4 and the probability that T is less than ET/2 is less than
2−ET/6.

The first requirement states that the number of edges in the graph is
between 2i−1 and 2i+1. The expected number of edges is 2i. Hence by
Chernoff bound2 the probability that the requirement is not met is at most
2−2i/4 + 2−2i/6 < 1/2, as i > 4.

The second requirement states that for all A,B of cardinality at least
22n−i+log n+4 the number of edges in A × B does not exceed its expectation
twice. Fix a and b greater than 22n−i+log n+4 > 32. Fix A and B of sizes
a, b respectively. The expected number of edges that connect A and B is
ab2i−2n. Thus the probability that the number of edges between A and B
exceeds its average two times is at most 2−ab2i−2n−2

. The number of possible
A’s of size a is at most 2na. Similarly, the number of possible B’s of size b
is at most 2nb. By union bound, the probability that there are A and B of
sizes a, b respectively, that violate the statement of the theorem is at most
2nb+na−ba2i−2n−2

. The exponent in this formula can be written as the sum of
b(n−a2i−2n−3) and a(n− b2i−2n−3). The lower bound for |A|, |B| was chosen
so that both terms n− a2i−2n−3 and n− b2i−2n−3 be less than −n. By union

2We could use here a weaker bound of large deviations.
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bound the probability that there are A and B, that violate the statement of
the theorem is at most

2n
∑

b,a=32

2−bn−an =
2n
∑

b=32

2−bn

2n
∑

a=32

2−an < 1/2.
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