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Abstract

We introduce online interactive proofs (OIP), which are a hierarchy of communication complex-
ity models that involve both randomness and nondeterminism (thus, they belong to the Arthur–Merlin
family), but are online in the sense that the basic communication flows from Alice to Bob alone. The
complexity classes defined by these OIP models form a natural hierarchy based on the number of rounds
of interaction between verifier and prover. We give upper and lower bounds that (1) characterize every
finite level of the OIP hierarchy in terms of previously-studied communication complexity classes, and
(2) separate the first four levels of the hierarchy. These results show marked contrasts and some parallels
with the classic Turing Machine theory of interactive proofs.

Our motivation for studying OIP is to address computational complexity questions arising from the
growing body of work on data stream computation aided by a powerful but untrusted helper. By carefully
defining our complexity classes, we identify implicit assumptions in earlier lower bound proofs. This
in turn indicates how we can break the mold of existing protocols, thereby achieving dramatic improve-
ments. In particular, we present two-round stream protocols with logarithmic complexity for several
query problems, including the fundamental INDEX problem. This was thought to be impossible based
on previous work. We also present a near-optimal, one-round stream protocol for counting triangles in
a dynamic graph. Our protocols leverage classic algebraic techniques, including multilinear extensions,
sum check, and arithmetization of Boolean formulas.
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1 Introduction

In a seminal work from the mid-1980s, Babai, Frankl and Simon [6] introduced and studied communi-
cation complexity analogues of the major Turing Machine complexity classes, including P, NP, ΣΣΣ2, ΠΠΠ2.
They hinted at similar analogues of MA and the AM hierarchy, a topic taken up in considerable detail by
Klauck [25, 26] and Aaronson [1]. These works had largely approached the study of communication com-
plexity classes as an intellectual exercise. Yet, a recent flurry of work on verifiable data stream computation
has revealed compelling applications for the study of Arthur–Merlin communication.

To understand the idea of verifiable stream computation, let us consider the following scenario inspired
by the surging popularity of commercial cloud computing services. A verifier (e.g., a retailer using a cloud-
based service) lacks the resources to locally process a massive input (say, the set of all its transactions),
but can access a powerful but untrusted prover (modeling the cloud service provider), who processes the
input on the verifier’s behalf. The verifier must work within the confines of the restrictive data streaming
paradigm, using only a small amount of working memory. The prover must both answer queries about the
input (say, “how many pairs of blue jeans have I ever sold?”), and prove that the answer is correct.

Several recent works have introduced closely related verifiable stream computation models that are of
considerable theoretical interest in their own right. Some, such as the annotated data streams of Chakrabarti
et al. [10] (subsequently studied in [11, 14, 15, 27]), are non-interactive, requiring the correctness proof to
consist of just a single message from the prover to the verifier. Others, such as the Arthur–Merlin streaming
protocols of Gur and Raz [11, 23] are “barely interactive” in the sense that the prover and the verifier may
exchange a constant number of messages. Meanwhile, the streaming interactive proofs (SIPs) of Cormode
et al. [15, 16] permit “many” rounds of interaction between the prover and the verifier. These works have
begun to reveal a rich theory, leveraging algebraic techniques developed in the classical theory of interactive
proofs [5, 19, 21, 36] to obtain efficient verification protocols for a variety of problems that require linear
space in the standard (sans prover) streaming model.

A data-stream-with-prover algorithm naturally gives rise to a communication protocol in the Arthur–
Merlin family: the split of the input between Alice and Bob (who together constitute Arthur) models the
space constraint on the algorithm, while Merlin models the prover. The aforementioned works have thus led
to new and interesting results for various flavors of Arthur–Merlin communication.

In this work, we provide a number of results belonging to two interrelated threads. In the communication
complexity thread, we first identify a new hierarchy of Arthur–Merlin style classes called online interactive
proof (OIP) classes, that are designed to model SIPs. We give various inclusion and separation results that
together characterize the lower levels of this hierarchy and, more importantly, demonstrate that the OIP
classes behave in starkly different ways than the classical complexity classes IPTM and AMTM.1 In the
data stream thread, we give constant-round SIPs with polylogarithmic space and communication costs for
several “query problems,” including INDEX, range counting, and nearest neighbor search, yielding provably
exponential improvements over prior art. (We remind the reader that “rounds” refers to interaction between
the verifier and prover after reading the stream in a single pass.) We also give a near-optimal annotated data
streaming protocol for counting triangles in a dynamic graph.

1.1 Overview of Our Contributions

Communication Complexity. Suppose Alice holds an input x ∈ X , Bob holds y ∈ Y , and they wish to
compute f (x,y) for some Boolean function f : X ×Y → {0,1}, using random coins and settling for some
constant probability of error. Say this costs R( f ) bits of communication. Can Merlin, who knows (x,y),
convince them that f (x,y) = 1 in such a way that the overall communication is o(R( f ))? For several

1Throughout this paper, we use the subscript “TM” to denote a Turing-machine-based complexity class, to resolve the notation
clash with the analogous communication complexity classes.
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interesting functions f the answer is “Yes” and this is the general subject of Arthur–Merlin communication
complexity. However, the complexity of f can vary a lot depending on the precise interaction pattern
between Alice, Bob, and Merlin.

In the MA model, Merlin first broadcasts a “proof” that f (x,y) = 1 and then Alice and Bob use a
randomized communication protocol to check this proof. A more restrictive communication model that
nevertheless allows simulation of an annotated data stream algorithm is one-way or online MA, where
messages go only from Merlin to Bob and Alice to Bob, with Bob announcing the output. To investigate
SIPs, we introduce a more general communication model OIP[k], where the Alice-to-Bob communication
remains one-way but Bob and Merlin are permitted k≥ 1 rounds of interaction. Essentially all “data-stream-
with-prover” protocols developed to date can be simulated in this model with an appropriate value of k.

We submit that the careful study of this new model that we undertake here addresses key theoretical
questions about the role of interactivity in the complexity of streaming interactive proofs. For example,
our study reveals that the OIP[k] hierarchy behaves in dramatically different ways from classical IPTM and
MATM. In particular, the following two fundamental phenomena are observed in classical interactive proofs:

• Equivalence of private coin and public coin protocols. Goldwasser and Sipser [22] proved that
a k-round private coin interactive proof (à la IPTM) can be simulated (with a polynomial blowup in
complexity) by a (k + 2)-round public coin one (à la AMTM). Thus, in the resulting protocol, the
verifier can perform his interaction with the prover before even looking at the input!

• Round reduction. Babai and Moran [7] showed that a (k+ 1)-round interactive proof can be sim-
ulated by a k-round interactive proof with a polynomial blowup in the verifier’s complexity. Thus, a
2-round (verifier-to-prover-and-back) interactive proof is just as powerful as any constant-round one.

We show that analogous results do not hold in the OIP world. First, there are OIP[2] protocols that cannot
be efficiently simulated by any constant-round protocol where Bob interacts with Merlin without looking at
his input. Second, there are exponential separations between OIP[1],OIP[2],OIP[3], and OIP[4].

Data Stream Computation. The technical core of many of our algorithmic results is a certain 2-round
SIP that we call the polynomial evaluation protocol. Its simplest incarnation is a 2-round SIP for the INDEX

problem with O(logn log logn) space and communication costs. This is obtained by adapting a result of
Raz [33] about IP/rpoly (see Section 3). In particular, this gives a polylog-cost OIP[2] protocol for INDEX.

We proceed to give constant-round SIPs with polylogarithmic costs for a number of important query
problems on data streams, in which the input consists of a streamed data set, followed by a query on the data
set specified by a single additional token in the stream. Examples include histogram point queries, nearest
neighbor queries, and range count queries. These SIPs permit both the prover and the verifier to process each
stream update in logarithmic time, making them suitable for practical use. Our primary technical departure
from earlier work on SIPs and related models [15, 16, 20, 23, 27] is that we exploit the verifier’s ability to
send messages that depend on the data stream. In earlier protocols, verifier messages were independent of
the input; our protocols are exponentially more efficient than what can be achieved in that restrictive setting.

Finally, we give a new annotated data stream algorithm for counting triangles in a graph. For n-vertex
graphs, we achieve both space usage and proof length in O(n logn), which is nearly optimal. This affirma-
tively answers a question of Cormode [13], resolves the MA communication complexity of the problem up
to a logarithmic factor, and improves over the best previous upper bound of O(n3/2 logn) [10].

1.2 Related Work

Aaronson and Wigderson [2] gave sublinear upper bounds on the online MA complexities of DISJOINTNESS

and INNER-PRODUCT via a beautiful protocol using algebraic techniques similar to those in the famous
sum-check protocol of Lund et al. [19]. Their protocol is nearly optimal, as shown by a lower bound of
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Klauck [25] that applies more generally to MA protocols. The Aaronson–Wigderson protocol has served as
the starting point for many annotated data streaming protocols. Klauck [26] performed a careful study of
AM, MA, and its quantum analogue QMA. In particular, he gave a promise problem separating QMA from
AM; we shall show that this same problem separates OIP[3] from OIP[4].

Work on annotated data streams has established optimal protocols for problems including frequency
moments and frequent items [10]; linear algebraic problems such as matrix rank [27]; and graph problems
like shortest s–t path [14]. Many of these protocols have subsequently been optimized for streams whose
length is much smaller than the universe size [11]. Gur and Raz [23] studied “Arthur–Merlin streams,” in
which the verifier may send a single random string to the prover at the start of the protocol.

Cormode, Thaler, and Yi [16] showed that, given sufficient additional rounds of interaction, numerous
problems can be solved with SIPs using exponentially less space and communication than in the anno-
tated data stream model. Furthermore, several general IPTM protocols can be simulated in this model.
These include the powerful, general-purpose protocol of Goldwasser, Kalai, and Rothblum [20]. Given
any problem in NC, the resulting protocol requires only polylogarithmic space and communication while
using polylogarithmic rounds of verifier–prover interaction. Refinements and implementations of these pro-
tocols [15, 37, 38] have demonstrated scalability and the practicality of this line of work.

2 Preliminaries and Statements of Results

2.1 Data Streaming and Communication Models

In a data stream problem, the input σ is a stream, or sequence, of tokens from some data universe U . The
goal is to compute or approximate some function g(σ), keeping space usage sublinear in the two key size
parameters: (1) the length of σ , and (2) the size of the universe |U|. Practically speaking, we would also like
to process each stream update (token arrival) quickly. All our data stream algorithms will be randomized,
and we shall allow them to err with some small constant probability on each input stream. In the streaming
interactive proofs (SIP) model, after processing σ , the algorithm (called the “verifier”) may engage in k
rounds of interaction with an oracle (the “prover”) who knows σ and whose goal is to lead the verifier
to output the correct answer g(σ). The verifier, being distrustful, will output “⊥” (indicating “abort”) if he
suspects the prover to be cheating. When k = 1, the model corresponds to the annotated data streams model.

Communication problems arise naturally out of data stream problems if we suppose Alice holds a prefix
of the input stream, and Bob the remaining suffix. The primary goal of such reductions is to obtain space
lower bounds on data stream algorithms, so we are free to split the stream at any place we like. For example,
many of the data stream problems in this work are query problems, where the input consists of a streamed
data set, S, followed by a query, q, to S. In this case, it would be natural to split the input by giving S to
Alice and q to Bob. Communication problems that will play an important role in this paper include the index
problem INDEX : {0,1}n× [n]→{0,1}where INDEX(x, j) = x j, and the set-intersection and set-disjointness
problems INTER, DISJ : {0,1}n×{0,1}n→{0,1} where INTER(x,y) = ¬DISJ(x,y) =

∨n
i=1(xi∧ yi).

Communication Complexity Classes. All our communication models provide random coins and allow
two-sided error probability up to a constant; when unspecified, this constant defaults to 1/3. Given a com-
munication model C, we denote the corresponding complexity measure of a problem f by C( f ). Following
Babai et al. [6], we also denote by C the corresponding complexity class, defined as the set of all functions
f : {0,1}n×{0,1}n→{0,1} such that C( f ) = (logn)O(1), i.e., functions that are “easy” in the model C.

We let R[k,A] denote the model of randomized communication complexity where Alice and Bob ex-
change k ≥ 1 messages in total with Alice sending the first; R[k,B] is similar, except that Bob starts. In the
MA model, the super-player Merlin, who sees all of the input, broadcasts a message at the start, following
which Alice and Bob run a (two-way, arbitrary-round) randomized “verification” protocol. The MA[k,A]
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and MA[k,B] models are restrictions of MA where Merlin speaks only to Bob 2 and the verification protocol
following Merlin’s single message is restricted to lie in R[k,A] and R[k,B] respectively.

The MA model (indeed, its restriction MA[1,A]) allows us to simulate annotated data stream protocols
in an obvious way: Merlin sends Bob the prover’s message, and Alice sends Bob the verifier’s memory
contents after it has processed her prefix of the stream. Notice that the order of the two messages is not
important, modulo one crucial consideration: Alice must have a private channel to Bob and the random
coins used to generate the message from Alice to Bob must be hidden coins, invisible to Merlin but shared
between Alice and Bob (which is why we called them “hidden coins” rather than “private coins”).

The models OMA[k], OIP[k], and OIP[k]
+++ , for k ≥ 1, are obtained by extending MA[1,A] to simulate k-

round SIP protocols. These communication models work as follows. In each case, Alice and Bob first
toss some hidden coins. Then, upon receiving the input, two things happen: (1) Merlin and Bob interact
for k rounds, with Merlin sending the last message in the interaction, and (2) Alice sends Bob a message,
randomized using the hidden coins. After these actions are completed, Bob produces an output in {0,1}.
The differences between the three series of models are as follows.

• In OMA[k], (1) happens before (2) and Bob must interact with Merlin before looking at his input. This
is directly analogous to AMTM; see the discussion in Section 1.1.

• In OIP[k], (1) happens before (2) and Bob may look at his input before talking to Merlin.

• Finally, OIP[k]
+++ is like OIP[k] except that (2) happens before (1). Thus, Bob’s messages may depend

on Alice’s actual message to Bob, not just on Bob’s input and the hidden coins.

We remark that although OIP[k]
+++ appears to be the most natural communication analogue of k-round SIPs,

all actual SIPs designed thus far, and all the ones we design in this work, can be simulated in the more
restrictive OIP[k] model. In fact, earlier SIPs fit in the even more restrictive OMA[k] model.

In the AM model, the parties first choose a public random string, then Merlin broadcasts a message to
Alice and Bob, who then run a deterministic communication protocol to arrive at a Boolean output. Since
Merlin can in fact predict the exact transcript that Alice and Bob will generate following his message, we can
assume without loss of generality that after Merlin’s message, Alice and Bob output one bit each indicating
whether or not they accept Merlin’s prediction.

Cost and Value of Protocols. Let P be a protocol in a model C involving Merlin. For each input (x,y), P
defines a game between Merlin and Arthur (recall that Alice and Bob together constitute Arthur), wherein
Merlin’s goal is to make Arthur output 1. We define the value VP(x,y) to be Merlin’s probability of winning
this game with optimal play. Given a Boolean function f , we say that P computes f with soundness error
εs and completeness error εc if, for all x,y we have

f (x,y) = 0 ⇒ VP(x,y)≤ εs , and f (x,y) = 1 ⇒ VP(x,y)≥ 1− εc . (1)

When the above holds with εc = 0, we say that P computes f with perfect completeness.
The verification cost of P , denoted vc(P), is the (worst-case) number of bits sent by Alice plus the

number of hidden coin tosses; its help cost hc(P) is the number of bits communicated between Merlin
and Bob; its communication cost cc(P) = hc(P) + vc(P). For a problem f , we define its complexity
C( f ) = min{cc(Q) : Q is a C protocol that solves f with max{εs,εc} ≤ 1/3}.

When analyzing SIPs, we usually have a non-Boolean function g in mind. We say that an SIP computes
g with completeness error εc and soundness error εs if for all inputs x there exists a prover strategy that will
cause the verifier to output g(x) with probability at least 1−εc, and no prover strategy can cause the verifier
to output a value outside {g(x),⊥} with probability larger than εs. The total length of the verifier–prover

2Our definition breaks symmetry between Alice and Bob because our eventual goal is to study online protocols.
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interaction is the help cost. The space used by the data stream algorithm is the space cost. The cost of an
SIP is then the sum of its help cost and its space cost. When designing SIP protocols we will also discuss
the time complexities of the prover and the verifier. To keep things simple, we consider a model in which
all arithmetic operations on a finite field of size nO(1) can be executed in unit time.

2.2 Exponentially Improved Constant-Round SIPs

In Section 3, we lead off with an important two-round SIP for the INDEX problem, considered as a query
problem in the data stream setting: the input stream consists of n bits x1, . . . ,xn, followed by an integer
j ∈ [n]. The goal is to output x j with high probability. The structure of the interaction in our SIP lets us draw
an important conclusion about the corresponding communication problem.

Theorem 2.1. The data stream problem INDEX has a two-round SIP with cost O(logn log logn), in which
the verifier processes each stream token in O(logn) time and the prover runs in total time O(n logn). For the
communication problem INDEX, we have OIP[2](INDEX) =O(logn log logn). In particular, INDEX ∈OIP[2].

We stress that this is a very unexpected result! Previous work gave a one-round SIP with cost Õ(n1/2)
[10] and a (2k−1)-round SIP with cost Õ(n1/(k+1)) [16]. Meanwhile, Klauck and Prakash [27] gave lower
bounds that appeared to have shown tightness of this rounds/cost tradeoff. However, their lower bound made
an implicit assumption about the model: in our terminology, they only showed that OMA[2k−1](INDEX) =
Ω(n1/(k+1)) for each constant k. With our nuanced understanding of the difference between OMA and OIP,
we can pinpoint the essential feature that makes our protocol exponentially better than previous constant-
round ones: the verifier’s messages to the prover must depend on some part of the input. In the case of our
protocol, the verifier’s single message depends on the index j.

The protocol behind Theorem 2.1 can be seen as an incarnation of a rather general abstract protocol that
we call the polynomial evaluation protocol. By instantiating this abstract protocol in other ways, we can
obtain very efficient SIPs for other important query problems, including POINTQUERY, RANGECOUNT,
and NEARESTNEIGHBOR. In the POINTQUERY problem, the input is a stream of updates to a vector
x = (x1, . . . ,xn) ∈ Zn, followed by a query j ∈ [n]. Initially x = 0, and an update is a tuple (i,c) ∈ [n]×Z,
which has the effect of adding c to the entry xi. The goal is to output x j.

Theorem 2.2. Suppose the input to POINTQUERY is guaranteed to satisfy |xi| ≤ q at end of the data stream,
for all entries of x, where the bound q is known a priori. Then there is a two-round SIP for POINTQUERY

with space and help costs in O(logn log(q+ logn)).

We obtain similar “logarithmic” cost SIPs for RANGECOUNT and NEARESTNEIGHBOR as well. Full
formal statements of these results require the introduction of several parameters, so we defer them to Sec-
tion 5. Our SIPs for NEARESTNEIGHBOR require an extra round between verifier and prover, ultimately
because NEARESTNEIGHBOR is a retrieval problem (the answer is an actual data item) and we spend one
round for the prover to claim to the verifier what the answer is. Therefore, these SIPs are three-round SIPs.

2.3 Relations Among Communication Complexity Classes

We prove a number of inclusion and separation results among our “new” communication complexity classes
and relate them to previously studied classes. These are summarized in Figure 1.

The figure has several striking features. Every constant-height layer of the OIP hierarchy is equivalent
to a natural communication complexity class that has previously been studied without reference to stream
computation. The first four levels of the hierarchy are provably separated (in fact each separation is expo-
nential). Concretely, for OIP[2], we show that the INDEX problem in Theorem 2.1 cannot be replaced with
the (much harder) DISJ problem. At least up to constant height, the OIP hierarchy collapses to the fourth
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R[1,A] R[2,B] MA[2,B] AM OMA[k]

OIP[1] OIP[2] OIP[3] OIP[4] OIP[k]

OIP[1]
+++ R[3,A] OIP[2]

+++

Figure 1: The layout of our communication complexity zoo. An arrow from C1 to C2 indicates that C1 ⊆ C2. If the
arrow is double-headed, then the inclusion is strict. Within the figure, k is an arbitrary constant larger than 4.

level. In contrast, the AMTM hierarchy collapses to the second level [7]. Adding to the contrast with Turing
Machine phenomena, the OMA[k] classes are exponentially weaker than their OIP[k] counterparts (in fact,
weaker than even OIP[2]) whereas their classical counterparts IP[k]

TM and AM[k]
TM are equivalent [22].

2.4 A Non-Interactive Protocol for Counting Triangles

Finally, we consider the data stream problem TRIANGLES, where the input consists of arrivals and departures
of edges (u,v) of an undirected graph on vertex set [n]. The goal is to output the number of triangles in
the final resulting graph. This requires Ω(n2) space in the ordinary data stream model. Chakrabarti et
al. [10] gave an annotated data stream algorithm for TRIANGLES with cost O(n3/2 logn); Cormode [13]
asked whether this could be improved. Our next result shows that it can; we give a near-optimal upper
bound, thereby also resolving the MA complexity of TRIANGLES up to a logarithmic factor.

Theorem 2.3. There is an annotated data stream algorithm for TRIANGLES with space and help costs
O(n logn). Every such algorithm requires the product of the space and help costs to be Ω(n2).

Like most prior work on annotated data streams, we use algebraic techniques as in the sum-check pro-
tocol of Lund et al. [19]. Yet, we deviate from all earlier annotated data stream protocols, as well as many
prominent interactive protocols, in a big way. Roughly speaking, in previous protocols, the verifier’s up-
dates to her memory state were “commutative,” in the sense that reordering the stream tokens would not
change the final state reached by the verifier. However, our new verifier is inherently “non-commutative”:
her update to her state at time i depends on her actual state at time i. See Section 6.1 for further discussion.

Our protocol does not achieve smooth tradeoffs between space and help costs: we do not know how
to reduce the space usage to o(n logn) without blowing the annotation length up to Ω(n2), or vice versa.
This is in contrast to prior work on annotated data streams [10, 11, 14, 23], which typically achieved any
combination of space and help costs subject to the product of these two costs being above some threshold.
We conjecture that achieving such smooth tradeoffs for TRIANGLES is impossible.

3 The Polynomial Evaluation Protocol and Its Applications

We shall present a two-round SIP for an abstract data stream problem called “polynomial evaluation,” where
the input consists of a multivariate polynomial described implicitly, as a table of values, followed by a point
at which the polynomial must be evaluated. Without space constraints, this problem simply amounts to
interpolation followed by direct evaluation, but our goal is to obtain a protocol where the verifier uses space
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roughly logarithmic in the size of the table of values, and is convinced by the prover about the correct answer
after a similar amount of communication. For ease of presentation, we shall first consider a special setting
that is important in its own right: the INDEX problem.

With very different motivations from ours, Raz [33] gave an interactive proof protocol placing every
language in IPTM/rpoly, the class of languages that have interactive proofs with polynomial-time verifiers
that take randomized advice, where the advice is kept secret from the prover. Our SIP for INDEX can be
seen as an adaptation of Raz’s interactive proof to the streaming setting.

The Setup. Recall that the input in the INDEX problem is a stream of n data bits x1, . . . ,xn, followed by
a query index j ∈ [n]. Assume WLOG that n = 2b, for some integer b. Identify each integer z ∈ [n] with a
Boolean vector z = (z1, . . . ,zb) ∈ {0,1}b in some canonical way, such as by using the binary representation
of z. We can then view the data bits as a table of values for the Boolean function gx : {0,1}b→{0,1} given
by gx(z) = xz, and thus for the multilinear b-variate polynomial g̃x(Z1, . . . ,Zb) given by

g̃x(Z1, . . . ,Zb) = ∑
z∈{0,1}b

gx(z)χz(Z1, . . . ,Zb) , where (2)

χu(Z1, . . . ,Zb) =
b

∏
i=1

(
(1−ui)(1−Zi)+uiZi

)
(3)

is the indicator function of the vector u = (u1, . . . ,ub). We shall interpret g̃x as a polynomial in F[Z1, . . . ,Zb]
for a fixed “large enough” finite field F. With this interpretation, g̃x is called the multilinear extension of gx

to F. We define a line in Fb to be the range of a nonconstant affine function from F to Fb. Every line contains
exactly |F| points. Given such a line, `, we define its canonical representation to be the degree-1 polynomial
λ`(W ) ∈ Fb[W ] such that λ`(0) and λ`(1) are, respectively, the lexicographically first and second points in
`. We define the canonical restriction of a polynomial f (Z1, . . . ,Zb) to ` to be the univariate polynomial
f (λ`(W )) ∈ F[W ], whose degree is at most the total degree of f .

Proof of Theorem 2.1. Adopting the notations and conventions outlined above, we give a two-round SIP
protocol for the data stream problem INDEX, shown in Figure 2.

Input: Stream of data bits (x1, . . . ,xn) where n = 2b, followed by index j ∈ [n].
Goal: Prover to convince Verifier to output the correct value of x j.
Shared Agreement: Finite field F with 3b+1≤ |F| ≤ 6b+2; bijective map u ∈ [n]←→ u ∈ {0,1}b.

Initialization: Verifier picks r ∈R Fb uniformly at random, sets Q← 0.

Stream Processing: Upon reading xz, where z ∈ [n], Verifier updates Q← Q+ xzχz(r).

Query Handling: Upon reading the index j, Verifier interacts with Prover as follows:
1. If j = r, Verifier outputs Q as the answer. Otherwise, he sends Prover `, the unique line in Fb

through j and r.

2. Prover sends Verifier a polynomial h(W ) ∈ F[W ] of degree at most b, claiming that it is the
canonical restriction of the multilinear polynomial g̃x(Z1, . . . ,Zb) to the line `. That is, Prover
claims that h(W )≡ g̃x(λ`(W )).

3. Let w, t ∈ F be such that λ`(w) = j and λ`(t) = r. Verifier checks that h(t) = Q, aborting if not.
If the check passes, Verifier outputs h(w) as the answer.

Figure 2: A Two-Round Streaming Interactive Proof (SIP) Protocol for the INDEX Problem
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To analyze this protocol, first note that after reading all the data bits, the verifier would have computed
Q = g̃x(r), by Eq. (2). Now the protocol is easily seen to have perfect completeness. Since g̃x(Z1, . . . ,Zb) is
multilinear, it follows that deg g̃x(λ`(W ))≤ b, so the prover can always honestly choose h(W ) = g̃x(λ`(W )).
If he does so, then we will indeed have h(t) = g̃x(λ`(t)) = g̃x(r) = Q, and the verifier’s check will pass.
Finally, the verifier will output h(w) = g̃x(λ`(w)) = g̃x(j) = x j, the correct answer to the INDEX instance.

Next, we analyze soundness. If the prover supplies a polynomial h(W ) 6≡ g̃x(λ`(W )), then, since both
polynomials have degree at most b, they agree at at most b points in F. From the prover’s perspective after he
receives the verifier’s message, r is uniformly distributed in `\{j}. Thus, Prr[h(t) =Q]≤ b/(|F|−1)≤ 1/3.

Now we consider this protocol’s costs. The verifier maintains the random point r ∈ Fb and the running
sum Q ∈ F, using O(b log |F|) space. He sends the prover `, which is specified by two elements of Fb, and
receives a degree-b polynomial in F[W ]; both communications use at most O(b log |F|) bits. Recalling that
|F| ≤ 6b+2, we see that both space and communication costs are in O(b logb) = O(logn log logn).

Finally, we consider the verifier’s and prover’s runtimes. The honest prover must send the univariate
polynomial g̃x(λ`(W )). Since g̃x has degree at most b, it suffices for the prover to specify the evaluations of
g̃x(λ`(W )) at b+ 1 = O(logn) points. A direct application of Eqs. (2) and (3) shows that each evaluation
can be done in O(n logn) time, resulting in a total runtime of O(n log2 n). However, using now-standard
memoization techniques (see e.g. [38, Section 5.1]), it is possible for the prover to in fact perform each of
these evaluations in just O(n) time, resulting in a total runtime of O(n logn).

The verifier can clearly run in O(b) = O(logn) time per stream update, as each stream update xz only
requires the verifier to compute χz(r), and it follows from Eq. (3) that this can be done with O(b) field
operations. During the interaction with the prover, the verifier runs in polylogn time. Indeed, to compute
the prescribed message to the prover, the verifier merely needs determine the line ` through the points j and
r, which can be done in O(b) = O(logn) time. To process the message from the prover, the verifier must
evaluate the polynomial h sent by the prover at the points t and w; both of these evaluations can be done in
polylogn time.

This proves the data streaming portion of Theorem 2.1. To prove the communication complexity portion,
we simply note that the above SIP protocol can be simulated in OIP[2]: the hidden coins shared between Al-
ice and Bob determine r, and Bob can send Merlin ` without having to hear from Alice, since ` is determined
entirely by r and Bob’s input j.

Generalization to Polynomial Evaluation. The above SIP protocol uses very little of the special structure
of the INDEX problem. Let us abstract out its salient features, so as to handle the general problem described
at the start of this section. First, note the protocol treats the data set given by (x1, . . . ,xn) as an implicit
description of the polynomial g̃x. Second, note that our soundness analysis did not require multilinearity per
se, only an upper bound on the total degree of g̃x. Finally, note that the specific form of Eqs. (2) and (3) is
not crucial either; all we used was that it allows the verifier an easy streaming computation.

Thus, suppose our data stream implicitly describes a v-variate polynomial g of total degree d over a field
F, followed by a point j ∈ Fv. Suppose this implicit description allows a streaming verifier to evaluate g at a
random point r ∈R Fv using space S. Then the technique of the protocol in Figure 2 gives a two-round SIP
for computing g(j), with the following properties: (1) perfect completeness; (2) soundness error bounded
by d/(|F|−1); (3) space usage O(v log |F|+S); (4) communication cost O((d + v) log |F|). We shall refer
to this abstract protocol as the polynomial evaluation protocol.

Update Streams and Point Queries. We turn to proving Theorem 2.2 about the POINTQUERY problem.

Proof of Theorem 2.2. Let σ be an input stream for POINTQUERY, consisting of updates to the vector
x ∈ Zn, followed by a query j ∈ [n]. Assume WLOG that n = 2b for an integer b, and use a bijection
u ∈ [n]←→ u ∈ {0,1}b as in Theorem 2.1. The vector x resulting from the updates defines a multilinear
polynomial g̃x(Z1, . . . ,Zb) by Eq. (2), where gx(z) := xz. We can treat g̃x as a polynomial over any field we
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like, but to solve our problem, we need to tell apart the 2q+ 1 possible values taken on by the entries of x
(recall that q is an upper bound on ‖x‖∞ at the end of the stream). For this it suffices to have char(F)≥ 2q+1.

Applying the polynomial evaluation protocol is now straightforward. The verifier starts with r ∈R Fb

and Q = 0. Upon receiving an update indicating “xi← xi+c,” he updates Q←Q+cχi(r). The other details
are as in Figure 2. The space and communication costs are both in O(b log |F|) as before.

To ensure a soundness error of at most 1/3, we let |F|> 3b as before. This and the earlier condition on
char(F) can both be satisfied by, e.g., taking F= Fp, for a prime p > 3b+2q. This translates to cost bounds
in O(logn log(q+ logn)), as claimed.

Other Applications. In Section 4, we shall use the polynomial evaluation protocol as a key technical tool
in some of our theorems characterizing several levels of the OIP hierarchy. In Section 5, we build on the
polynomial evaluation protocol to obtain efficient constant-round SIPs for the NEARESTNEIGHBOR and
RANGECOUNT problems.

4 A Communication Complexity Zoo

We now study our central communication models OIP[k] and OIP[k]
+++ , and prove the web of relationships

given in Figure 1. Our results are of two types: (1) establishing separations or collapses between levels of
the OIP and OIP+++ hierarchies, as the case may be, and (2) relating these hierarchies to other previously
studied communication complexity classes.

We start with an easy observation that is immediate from our definitions.

Observation 4.1. We have OMA[1] = OIP[1] = OIP[1]
+++ = MA[1,A].

Throughout this section, f will denote an arbitrary communication problem given by a Boolean function
f : X ×Y → {0,1}, and n will parametrize its “instance size” up to a constant factor, i.e., we will have
log |X |+ log |Y| = Θ(n). We shall use big-O and big-Ω notation to hide constants independent of f , |X |
and |Y|. We shall use the term “ordinary protocol” to mean a randomized communication protocol involving
Alice and Bob alone (and no Merlin).

4.1 A Characterization of OIP[2]

The fact that INDEX ∈ OIP[2] (Theorem 2.1) is striking: combined with the well-known lower bound
R[1,A](INDEX) = Ω(n), it shows that introducing Merlin into the picture while keeping the one-way re-
striction on the Alice/Bob communication lowers cost exponentially. It is now natural to ask whether OIP[2]

allows such exponential savings for harder problems, such as DISJ. Our next result—a lower bound on
OIP[2] complexity—implies that it does not.

Theorem 4.2. Let P be an OIP[2] protocol computing f . Then hc(P)vc(P) = Ω(R[2,B]( f )). In particular,
OIP[2]( f ) = Ω

(
R[2,B]( f )1/2

)
, which implies OIP[2] ⊆ R[2,B].

Proof. After appropriate parallel repetition, we may assume that the soundness and completeness errors ofP
at most 1/12 each. In general, P takes the following shape: (1) hidden coins are tossed, generating random
string r according to distribution D; (2) Bob sends Merlin a message mB = mB(y,r); (3) Merlin responds
with a message mM = mM(x,y,mB); (4) Alice sends Bob a message mA = mA(x,r); (5) Bob outputs a bit
given by a function outP(y,mM,mA). Let Dm be D conditioned on the event {mB = m}. With this notational
setup, we now describe (in Figure 3) a two-message ordinary protocol Q that we claim computes f .
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1. Bob samples r ∼ D, computes m = mB(y,r), then sends Alice i.i.d. samples
r(1), . . . ,r(h) ∼Dm, where h = 36(hc(P)+4).

2. Alice sends Bob mA
(
x,r(1)

)
, . . . ,mA

(
x,r(h)

)
.

3. Bob outputs 1 iff ∃mM : |{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}|> h/2.

Figure 3: The R[2,B] protocol Q, which simulates the OIP[2] protocol P .

To analyze this protocol, let us first define the weight Wx,y(m) of a Bob-message m to be the probability
that Merlin, playing optimally after receiving m, convinces Bob to output 1. That is,

Wx,y(m) = max
mM

Pr
r∼Dm

[
outP(y,mM,mA(x,r)) = 1

]
. (4)

Then, with m ∼ mB(y,D), the expected weight Em[Wx,y(m)] is at least 11/12 when f (x,y) = 1 and at most
1/12 when f (x,y) = 0.

Correctness on 111-inputs: Fix (x,y) ∈ f−1(1). We shall proceed assuming that the specific Bob-
message m chosen in Step 1 of Q satisfies Wx,y(m)> 2/3 = 1−4(1/12); by Markov’s inequality, this fails
to happen with probability at most 1/4. Studying Eq. (4) tell us that there exists a specific Merlin-message
m∗M such that Prr[outP(y,m∗M,mA(x,r)) = 1] > 2/3. Therefore, according to the strategy in Steps 2 and 3,
the size of the set {i ∈ [h] : outP(y,m∗M,mA(x,r(i))) = 1} is a sum of h i.i.d. indicators and exceeds 2h/3 in
expectation. By standard Chernoff bounds (e.g., [29, Theorem 4.4]), the probability that Bob outputs 0 is
2−Ω(h). Thus, overall, the probability that Q outputs 0 on input (x,y) is at most 1/4+2−Ω(h) < 1/3.

Correctness on 000-inputs: Fix (x,y) ∈ f−1(0). We shall proceed assuming that the specific Bob-
message m chosen in Step 1 of Q satisfies Wx,y(m)< 1/3; by Markov’s inequality, this fails to happen with
probability at most 1/4. For each specific Merlin-message mM, define

size(mM) =
∣∣∣{i ∈ [h] : outP(y,mM,mA(x,r(i))) = 1}

∣∣∣ .
Then size(mM) is a sum of h i.i.d. indicators and has expectation below h/3. By standard Chernoff bounds,
Pr[size(mM)> h/2]≤ e−h/36. By a union bound over all possible Merlin-messages mM, the probability that
Bob outputs 1 is at most 2hc(P)e−h/36 < 2−4, using our choice of h. Adding in the 1/4 from our Markov
argument earlier, the overall probability that Q outputs 1 on input (x,y) is at most 1/4+2−4 < 1/3.

Communication Cost: By definition of the OIP[2] model, we have |r| ≤ vc(P) and |mA| ≤ vc(P).
Thus, each of the two messages in Q costs at most h ·vc(P) = O(hc(P)vc(P)) bits.

The above proof exploits a key property of OIP[2] protocols: Bob can sample from the conditional
distribution Dm. This is possible because mB = mB(y,r) is independent of Alice’s message mA, a property
not satisfied in the stronger OIP[2]

+++ model. This explains why Theorem 4.2 does not apply to OIP[2]
+++ , and

indeed we shall later give an exponential separation between OIP[2] and OIP[2]
+++ in Corollary 4.17.

Corollary 4.3. We have Ω(n1/2)≤ OIP[2](DISJ)≤ O(n1/2 logn). In particular, DISJ /∈OIP[2].

Proof. For the lower bound, we combine Theorem 4.2 with the fact that R[2,B](DISJ) ≥ R(DISJ) = Ω(n),
the last step being a celebrated lower bound [24]. The upper bound follows from the Aaronson–Wigderson
protocol [2] for DISJ, which is in fact an MA[1,A] protocol.

We have now seen that up to polynomial (specifically, quadratic) blowup, OIP[2] is no more powerful
than ordinary R[2,B]. We now show that up to another quadratic blowup this is in fact a characterization.
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Theorem 4.4. For all f , we have OIP[2]( f ) = O
(

R[2,B]( f )2
)
. In particular, OIP[2] ⊇ R[2,B].

Proof. Let Q be an R[2,B] protocol for f with cost C and error at most 1/6. Assume WLOG that C ≥ 5 and
that each of the two messages in Q is a string in {0,1}C. We shall treat Alice’s messages as elements of the
field F= F2C via an agreed-upon bijection.

We design an OIP[2] protocol P for f , based on Q. Given an input (x,y), P begins by choosing a
(hidden) random string r shared between Alice and Bob exactly as Q would have. From now on, think of
x,y,r as fixed. This then fixes a message mB that Bob would have sent Alice in Q, as well as a function
mA : {0,1}C → F specifying Alice’s response to each Bob-message. Let m̃A(Z1, . . . ,ZC) ∈ F[Z1, . . . ,ZC] be
the multilinear extension of this function mA. In P , Alice needs to send a message to Bob that allows him to
determine mA(mB) = m̃A(mB) with Merlin’s help. This is an instance of polynomial evaluation, so we solve
it by applying the OIP[2] polynomial evaluation protocol (PEP) from Section 3.

The polynomial m̃A is C-variate and has total degree C. Therefore, by the discussion in Section 3, PEP
has communication cost O(C log |F|) = O(C2), as does P . Next, PEP has perfect completeness, so an honest
Merlin can cause P to output 1 whenever the choice of r would have caused Q to output 1. Finally, PEP
has soundness error at most C/(|F|−1) =C/(2C−1)< 1/6, so a dishonest Merlin can cause P to differ in
output from Q with probability at most 1/6. Using the error bound of 1/6 on Q, we conclude that P has
completeness error at most 1/6 and soundness error at most 1/6+1/6 = 1/3.

Corollary 4.5. For all f , we have Ω
(

R[2,B]( f )1/2
)
≤ OIP[2]( f )≤ O

(
R[2,B]( f )2

)
. Thus, OIP[2] = R[2,B].

Proof. Combine Theorems 4.2 and 4.4.

4.2 A Characterization of OIP[3]

We now turn to characterizing OIP[3]. We give a lower bound that builds on the argument in Theorem 4.2.
Just as before, we can then derive a lower bound for the specific problem DISJ.

Theorem 4.6. Let P be an OIP[3] protocol computing f . Then there is an MA[2,B] protocol Q computing
f with hc(Q)≤ hc(P) and vc(Q) = O(hc(P)vc(P)). In particular, OIP[3]( f ) = Ω

(
MA[2,B]( f )1/2

)
, which

implies OIP[3] ⊆MA[2,B].

Proof. The high-level idea for building Q is as follows. After Merlin sends his first message to Bob in
P , the remainder of P is an OIP[2] protocol. Theorem 4.2 shows how to cut Merlin out of this remaining
protocol, replacing it with R[2,B] protocol. After this replacement, the result is an MA[2,B] protocol.

In more detail, suppose P has completeness and soundness errors at most 1/12. Let Pm denote the
OIP[2] protocol obtained from P by fixing Merlin’s first message to m. Let Qm be the R[2,B] protocol
simulating Pm as in Figure 3. Note that cc(Qm) = O(hc(Pm)vc(Pm)). LetQ be the MA[2,B] protocol where
we use Qm as Arthur’s verification strategy for a message from Merlin. We claim that Q computes f .

Completeness: Fix (x,y) ∈ f−1(1). By the completeness of P , there exists some first message m∗ from
Merlin such thatPm∗ outputs 1 with probability at least 11/12. By the completeness analysis in Theorem 4.2,
Qm∗ outputs 1 with probability at least 2/3. Therefore, if Merlin sends the message m∗ in Q, he will cause
the output to be 1 with probability at least 2/3.

Soundness: Fix (x,y)∈ f−1(0). By the soundness of P , for every possible first message, m, that Merlin
may send, Pm outputs 1 with probability at most 1/12. By the soundness analysis in Theorem 4.2, for all m,
Qm outputs 1 with probability at most 1/3. Therefore, no matter what Merlin sends as his message inQ, he
can cause the output to be 1 with probability at most 1/3.

Costs: Merlin inQ sends only part of what Merlin in P sends; therefore hc(Q)≤ hc(P). Furthermore,
vc(Q)≤maxm cc(Qm) = maxm O(hc(Pm)vc(Pm)) = O(hc(P)vc(P)).
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Corollary 4.7. We have Ω(n1/3)≤ OIP[3](DISJ)≤ O(n1/3 logn). In particular, DISJ /∈OIP[3].

Proof. Klauck [25] proved that MA(DISJ) = Ω(n1/2). Applying Theorem 4.6 to this result gives the non-
tight bound OIP[3](DISJ) = Ω(n1/4). But we observe that Klauck’s proof shows something stronger: namely,
if an MA protocol Q computes DISJ, then hc(Q)vc(Q) = Ω(n). Combining Theorem 4.6 with this result,
we conclude that if an OIP[3] protocol P computes DISJ, then hc(P)2 vc(P) = Ω(n), and therefore hc(P)+
vc(P) = Ω(n1/3).

For the upper bound, we note that Aaronson and Wigderson [2] also gave an online MAMA protocol
for DISJ of cost O(n1/3 logn). Every online MAMA protocol admits a simulation in OIP[3].

As we did for the second level in the OIP hierarchy, we give an upper bound that applies to the third
level and gives a characterization that is tight up to a quadratic blowup.

Theorem 4.8. For all f , we have OIP[3]( f ) = O
(

MA[2,B]( f )2
)
. In particular, OIP[3] ⊇MA[2,B].

Proof sketch. We build on the argument in Theorem 4.4 exactly as the proof of Theorem 4.6 builds on
Theorem 4.2. Given an MA[2,B] protocol Q of cost C, the verification strategy used by Alice and Bob in Q
is an R[2,B] protocol of cost C, which we can replace with an OIP[2] protocol of cost O(C2), by Theorem 4.4.
After this replacement we have an OIP[3] protocol. The remaining analysis is routine.

Corollary 4.9. For all f , Ω
(

MA[2,B]( f )1/2
)
≤ OIP[3]( f )≤ O

(
MA[2,B]( f )2

)
. Thus, OIP[3] = MA[2,B].

Proof. Combine Theorems 4.6 and 4.8.

4.3 A Characterization of OIP[4] and Beyond

The fourth level of the OIP hierarchy turns out to have surprising power. It can capture all of AM, a model
that lies at the frontier of our current understanding of communication complexity classes in the sense that
we do not know any nontrivial AM lower bounds. Thanks to this surprising power, we can show that all
constant-height levels of the OIP hierarchy collapse to the fourth level.

Theorem 4.10. For all f , we have OIP[4]( f ) = O(AM( f ) logAM( f )). In particular, OIP[4] ⊇ AM.

Proof. Suppose AM( f ) =C. WLOG, there is a protocolQ for f with the following shape: Bob tosses coins
to generate a random string r and sends it to Merlin, who responds with a message m, where |r|+ |m| ≤C.
Bob then sends (r,m) to Alice, who responds with a single bit, after which Bob announces the output.

The interaction between Bob and Alice is an R[2,B] protocol (in fact, it is deterministic) of cost C. The-
orem 4.4 shows that it can be replaced with an OIP[2] protocol of cost O(C2). Performing this replacement
gives us an OIP[4] protocol for f . The cost bound can be improved to O(C logC) by revisiting the analysis
of the polynomial evaluation protocol used to prove Theorem 4.4 and using the fact that Alice’s message in
Q is just a single bit.

Theorem 4.11. For each k > 0, there exists a constant ck > 0 such that for all f , OIP[k]
+ ( f )≥Ω

(
AM( f )ck

)
.

In particular, for every constant k, we have OIP[k]
+++ ⊆ AM.

Proof. Let C = OIP[k]
+ ( f ) and let P be an OIP[k]

+++ protocol with cost C that computes f . By definition, P uses
a hidden random string and Merlin learns about this string only indirectly, from Bob’s computed messages.
We apply the Goldwasser–Sipser set lower bound technique [22] to convert P into a protocol where all
random coins are directly revealed. Specifically, we can convert P into an AMAM · · ·AM protocol Q′,
where k+ 3 messages are sent in total: Merlin’s messages are broadcast and after his final message Alice
sends a message to Bob, who announces the output. We have cc(Q′) = O(Cak) for some constant ak ≥ 1.

We apply Babai and Moran’s round elimination techniques [7] to turn Q′ into a standard AM protocol
Q of cost at most O(cc(Q′)bk) for some constant bk ≥ 1. The result follows by taking ck = 1/(akbk).
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We remark that our transformations in the above proof do not preserve online-ness. The final protocol
Q is no longer online, i.e., we cannot require communications to go to Bob alone.

Corollary 4.12. For all f , we have Ω
(

AM( f )c4
)
≤ OIP[4]( f ) ≤ O(AM( f ) logAM( f )), where c4 is the

constant from Theorem 4.11. In particular, OIP[4] = AM.

Proof. Combine Theorems 4.10 and 4.11, noting that OIP[4] ⊆OIP[4]
+++ .

Remark. Theorems 4.10 and 4.11 together imply that, up to polynomial factors, the OIP[2]
+++ communication

model is no more powerful than OIP[4]. These theorems also establish that all constant-round OIP protocols
with four or more messages are equivalent in power, up to polynomial factors.

4.4 Exponential Separations in Our Complexity Zoo

Among the first four levels of the OIP hierarchy, we can now show that every pair of adjacent levels is
exponentially separated. The next three results make this precise. Recall that INTER = ¬DISJ is the set
intersection problem.

Theorem 4.13. We have OIP[1](INDEX) = Ω(n1/2) whereas OIP[2](INDEX) = O(logn log logn).

Proof. We combine Observation 4.1 and Theorem 2.1, and then use the known results that MA[1,A]( f ) =
Ω
(

R[1,A]( f )1/2
)

for all f [10] (see also Theorem 4.18 in Section 4.5), and that R[1,A](INDEX)=Ω(n) [3].

Theorem 4.14. We have OIP[2](INTER) = Ω(n1/2) whereas OIP[3](INTER) = O(log2 n).

Proof. For the lower bound we use R[2,B](INTER) ≥ R(INTER) = R(DISJ) = Ω(n) and then apply Theo-
rem 4.2.

For the upper bound, we note that INTER has a nondeterministic protocol with cost O(logn), wherein
Alice and Bob guess an element in the intersection of their respective sets and they verify membership. In
particular this gives MA[2,B](INTER) = O(logn); in fact, Bob need not send anything to Alice in the MA[2,B]

protocol. Now apply Theorem 4.8.

While we do not know of a total Boolean function that separates OIP[3] from OIP[4], we do know
of a partial Boolean function whose OIP[3] communication complexity is exponentially larger than its
OIP[4] communication complexity. Specifically, Klauck [26, Corollary 3] gives a promise problem he calls
PAPPMP which has Quantum Merlin-Arthur (QMA) communication complexity Ω(n1/6) and AM com-
munication complexity O(logn). Since Theorem 4.6 shows that any OIP[3] protocol can be transformed
into an equivalent MA[2,B] protocol with a quadratic blowup in cost, and MA[2,B] protocols are simply
restricted versions of QMA protocols, Klauck’s lower bound on the QMA cost of PAPPMP implies that
OIP[3](PAPPMP) = Ω(n1/12).

Meanwhile, Theorem 4.10 shows that any AM communication protocol can be transformed into an
equivalent OIP[4] protocol with a logarithmic blowup in costs. Thus, Klauck’s upper bound on the AM
communication complexity of PAPPMP implies that OIP[4](PAPPMP) = O(logn log logn).

Theorem 4.15. We have OIP[3](PAPPMP) = Ω(n1/12) whereas OIP[4](PAPPMP) = O(logn log logn).

Next, we show that, up to polynomial factors, OIP[2]
+++ is at least as powerful as R[3,A], the class of

three-message randomized communication protocols in which Alice speaks first. This will enable us to
exhibit an explicit function f on domain {−1,1}n×{−1,1}n such that OIP[2]( f ) = Ω(

√
n/ logn), while

OIP[2]
+ ( f ) = O(log2 n).
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Theorem 4.16. For all f , we have OIP[2]
+ ( f ) = O

(
R[3,A]( f )2

)
.

Proof. Let Q be any three-message randomized communication protocol of cost C, with Alice speaking
first. We show how to convert Q into an OIP[2]

+++ protocol P of cost O(C2).
We think ofQ as consisting of one message m(1)

A from Alice to Bob, followed by a two-message commu-
nication protocol Q′ in which Bob speaks first. Theorem 4.4 shows how to transform Q′ into an equivalent
OIP[2] protocol P ′ of cost O(C2) (note this OIP[2] protocol depends on m(1)

A ).
Thus, we obtain an OIP[2]

+++ protocol P as follows. Alice’s message to Bob in P consists of two parts. The
first specifies m(1)

A , and the second is the message she would have sent to Bob in P ′. Bob, who learns m(1)
A

from the first part of Alice’s message, now knows what OIP[2] protocol P ′ to execute, and simply behaves
the same as he would in P ′.

Exponential separations between R[3,A] and R[2,B] are known. In particular, consider the k-step (bipartite)
pointer jumping function PJk, which interprets each of Alice and Bob’s inputs as a list of N = Θ(n/ logn)
pointers, a pointer being a (logN)-bit integer. Each pointer in a player’s list is interpreted as pointing to (i.e.,
indexing) a pointer in the other player’s list. The goal is to follow these pointers, starting at the first pointer
in Alice’s list, and output the kth pointer encountered. For example, if Alice’s input is x = (00,01,10,00)
and Bob’s input is y = (01,10,11,00), then PJ1(x,y) = 01, PJ2(x,y) = 01, PJ3(x,y) = 10, and so on. To turn
PJk into a Boolean function BPJk, we take the parity of the (logN)-bit output of PJk.

Corollary 4.17. We have OIP[2](BPJ2) = Ω(
√

n/ logn), while OIP[2]
+ (BPJ2) = O(log2 n).

Proof. Nisan and Wigderson [30] showed that R[k,B](BPJk) = Ω(N/k2− k logN). In particular, any two-
message randomized communication protocol in which Bob speaks first has cost Ω(N). Hence, Theorem
4.2 implies that OIP[2](BPJ2) = Ω(

√
n/ logn).

To prove the upper bound on OIP[2]
+ (BPJ2), note that there is a trivial three-message protocol for PJ2 (and

hence for BPJ2) of cost O(logn) in which Alice speaks first. The upper bound then follows from Theorem
4.16.

4.5 An Exponential Separation Between OIP[2] and OMA[k]

In this section, we establish that for any function f , OMA[2k]( f ) = Ω
(

R[1,A]( f )1/(k+1)
)
. An essentially

identical lower bound was proven by Klauck and Prakash for a closely related (though not identical) com-
munication model; we provide details for completeness, and in the process identify the crucial details of the
communication model that enable the lower bound to hold.

Theorem 4.18. For any function f and constant k, OMA[2k]( f ) = Ω
(

R[1,A]( f )1/(k+1)
)
.

Proof. We begin by proving the result for the case k = 1, showing how to transform any OMA[2] protocol
P into an R[1,A] protocol Q of cost O(hc(P)vc(P)). This transformation is almost identical to the one of
Theorem 4.2, with one crucial change.

Analogously to the proof of Theorem 4.2, P takes the following shape: (1) hidden coins are tossed,
generating random string r according to distribution D; (2) Bob sends Merlin a message mB = mB(r); (3)
Merlin responds with a message mM = mM(x,y,mB); (4) Alice sends Bob a message mA = mA(x,r); (5)
Bob outputs a bit given by a function outP(y,mM,mA).

The key difference between our current setting and the setting of Theorem 4.2 is that in our current
setting, mB is a function only of r, and not of Bob’s input y. The proof of Theorem 4.2 (see Figure 3)
described a standard protocol Q in which Bob sends to Alice i.i.d. samples r(1), . . . ,r(h) ∼ (D | mB = m),
where h = 36(hc(P)+ 4). In our case, Alice can choose these i.i.d. samples herself, because mB does not
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depend on Bob’s input y. We therefore obtain an R[1,A] protocol Q of cost O(hc(P)vc(P)), instead of an
R[2,B] protocol as in Theorem 4.2.

The general case proceeds by induction on k. We view an OMA[2k] protocol P as an OMA[2] protocol
P1 followed by an OMA[2k−2] protocol P2. Inductively, we can replace P2 with a R[1,A] protocolQ2 of cost
O
(
hc(P2)

k−1 vc(P2)
)
≤O

(
hc(P)k−1 vc(P)

)
. By concatenating P1 andQ2, we obtain an OMA[2] protocol

P3 for f with vc(P3) = O
(
hc(P)k−1 vc(P)

)
and hc(P3) ≤ hc(P). By our argument in the case k = 1, we

can transform P3 into an R[1,A] protocol Q of cost O
(
hc(P)k vc(P)

)
.

In particular, if C = max{hc(P),vc(P)}, then the cost of Q is O(Ck+1). This immediately implies that
OMA[2k]( f ) = Ω

(
R[1,A]( f )1/(k+1)

)
, completing the proof.

The main property of the OMA[k] communication model exploited in our proof of Theorem 4.18 is the
following: in any OMA[k] protocol P , for all i ≤ k, Alice can determine Bob’s ith message to Merlin in
P on her own. In particular, the same lower bound would apply to any variant of online Arthur-Merlin
communication models in which Bob’s messages to Merlin must be independent of his input y. This is
the intuitive reason why the OIP[2] model is exponentially more powerful than the OMA[k] model for any
constant k: in the OIP[2] model, Bob’s message to Merlin may depend on his input y, while this is not
allowed in the OMA[k] model.

Combining Theorem 4.18 with the logarithmic upper bound of Theorem 2.1 on the cost of an OIP[2]

protocol for INDEX, we obtain an exponential separation between OIP[2] and OMA[k] for any constant
k > 0.

Corollary 4.19. For any constant k > 0, OIP[2] 6⊆OMA[k].

Discussion. Recall that in the Turing Machine world, the AMTM and IPTM hierarchies are equivalent.
Corollary 4.19 shows that this equivalence fails badly in the OIP world.

It is instructive to observe why standard transformations [22] from private coin to public coin protocols
in the Turing Machine world fail to apply in our context. In a sentence, it is because these transformations
do not preserve online-ness. This is a subtle point that appears to have been missed in prior work [27].

In more detail, the Goldwasser–Sipser transformation from private coin to public coin protocols [22]
has at its core a set lower bound protocol, wherein the prover has to convince the verifier that a certain set
S is “large”. To this end, the verifier sends the prover a hash function h chosen at random from a pairwise
independent family, plus a random value z in the codomain of h. The prover tries to respond with an element
w ∈ S such that h(w) = z, and separately convinces the verifier that w indeed lies in S. If S is “large”, then
such a w is likely to exist, whereas if S is “small”, then such a w is unlikely (or at least less likely) to exist.

Eliding many further details, Goldwasser and Sipser generically turn an IPTM protocol P for a language
L into an AMTM protocol Q for L roughly as follows. They apply the set lower bound protocol to the set
consisting of all settings of the private random string that would have caused the verifier in P to accept the
input. Since P is a valid interactive proof for L, this set is “large” if and only if the input is in L.

The natural application of this technique to the standard AM communication model transforms a “hidden
coin” AM communication protocol P into a public coin one by having Alice and Bob send Merlin a hash
function h and a value w in the range of h. Merlin responds by broadcasting to Alice and Bob an r such that
h(r) = w, and Alice and Bob check that they would have accepted in P given hidden random coins r. It is
crucial that Merlin’s communication is a broadcast, and as a result, this approach does not apply to our OIP
communication models in which Merlin is not allowed to talk to Alice. Of course, if Alice does not get to
know r, then it leaves Alice and Bob with no way of checking that they would have accepted in the original
protocol P given hidden random string r. This difficulty is fundamental, as evidenced by our exponential
separation between OIP[2] and OMA[k] for any constant k > 0.
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5 Constant-Round SIPs for NEARESTNEIGHBOR and RANGECOUNT

Thus far, we have applied the polynomial evaluation protocol of Section 3 to the basic problems INDEX and
POINTQUERY, and used it to obtain several structural complexity results (Theorems 4.4, 4.8 and 4.10) for
our communication complexity classes. In this section, we shall see that the polynomial evaluation protocol
is also a powerful algorithmic tool. We shall build upon it to obtain protocols of polylogarithmic cost for
much more complicated problems, namely, important geometric problems such as NEARESTNEIGHBOR

and RANGECOUNT.

5.1 Nearest Neighbor

Consider a “premetric” space3 (X ,D) given by a finite ground set X and distance function D :X ×X →R+

satisfying D(x,x) = 0 for all x ∈ X . Let BD(z,r) = {x ∈ X : D(x,z) ≤ r} denote the corresponding ball
of radius r ∈ R+ centered at z ∈ X . In the NEARESTNEIGHBOR problem, the input consists of a stream
〈x(1), . . . ,x(m)〉 of m points from X , constituting the data set, followed by a query point z ∈X . The goal is to
output x??? = argminx(i) D(x(i),z), the nearest neighbor of z in the data set. We shall give highly efficient SIPs
for this problem that handle rather general distance functions D. To keep our statements of bounds simple,
we shall impose the following structure on (X ,D).

• We assume that X = [n]d . We think of d as the dimensionality of the data, and [n]d as a very fine
“grid” over the ambient space of possible points.

• For all x,y ∈ [n]d , D(x,y)≤ 1 is an integer multiple of a small parameter ε ≥ 1/nd .

Overall, this amounts to assuming that our data set has polynomial spread: the ratio between the maximum
and minimum distance. We proceed to give two SIPs for NEARESTNEIGHBOR. Our basic SIP has cost
roughly logarithmic in the stream length and the spread (and therefore linear in d but only logarithmic in n).
After we present it, we shall critique it and then give a more sophisticated SIP to handle its faults.

Theorem 5.1. Under the above assumptions on the premetric space (X ,D), the NEARESTNEIGHBOR prob-
lem has a three-round SIP with cost O(d logn log(m+ log(d logn))).

Proof. Let B = {BD(x, jε) : x ∈ X , j ∈ Z,0 ≤ j ≤ 1/ε} be the set of all balls of all radii between 0 and
1 (quantized at granularity ε). By our assumptions on the structure of (X ,D), we have |B| ≤ nd/ε ≤ n2d .
The input stream 〈x(1), . . . ,x(m)〉 defines a derived stream, consisting of updates to a vector v indexed by the
elements of B. We shall denote by v[βββ ] the entry of v indexed by βββ ∈ B. The derived stream is defined as
follows: the token x(i) increments v[βββ ] for every ball βββ that contains x(i). The verifier runs the POINTQUERY

protocol of Theorem 2.2 on this derived stream.
The verifier learns the query point z at the end of the stream. The prover then supplies a point y claimed

to be a valid nearest neighbor (note that there may be more than one valid answer). To check this claim, it is
sufficient for the verifier to check two properties: (1) that y did appear in the stream, and (2) that the stream
contained no point closer to z than y. The first property holds iff v[BD(y,0)] 6= 0. The second property holds
iff v[BD(z,D(y,z)− ε)] = 0. Clearly, these two properties can be checked by two point queries over the
derived stream.

Following the protocol of Theorem 2.2, the two point queries (executed in parallel) involve two more
rounds between the verifier and the prover, for an overall three-round SIP. Since the entries of v never exceed
m, each POINTQUERY protocol requires space and help costs O(d logn log(m+ log(d logn))).

3 This very general setting, which includes metric spaces as special cases, captures several important distance functions such as
the Bregman divergences from information theory and machine learning that satisfy neither symmetry nor the triangle inequality.
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While the protocol of Theorem 5.1 achieves very small space and help costs, the prover’s and verifier’s
runtimes could be as high as Ω(nd), because processing a single stream token x(i) may require both parties
to enumerate all balls containing x(i). Ultimately, this inefficiency is because the protocol assumes hardly
anything about the nature of the distance function D and, as a result, does not get to exploit any structural
information about the balls in B.

To rectify this, we shall make the entirely reasonable assumption that the distance function D is “effi-
ciently computable” in the rather mild sense that membership in a ball generated by D can be decided by a
short (say, polynomial-length) formula. Accordingly, we shall express our bounds in terms of a parameter
that captures this notion of efficient computation.

Definition 5.2. Suppose the distance function D on X satisfies the assumptions for Theorem 5.1. Let
ΦD : B×X → {0,1} be the ball membership function for D, i.e., ΦD(BD(z,r),x) = 1 ⇐⇒ x ∈ BD(z,r).
Think of ΦD as a Boolean function of (3d logn)-bit inputs. We define the formula size complexity of D,
denoted fsize(D), to be the length of the shortest de Morgan formula for ΦD.

Since addition and multiplication of b-bit integers can both be computed by Boolean circuits in depth
logb (see, e.g., [31, 39]), they can be computed by Boolean formulae of size poly(b). It follows that for
many natural distance functions D, including the Euclidean, Hamming, `1, and `∞ metrics (and in fact `p for
all suitably “small” positive p), we have fsize(D) = poly(d, logn).

Theorem 5.3. Suppose the premetric space (X ,D) satisfies the assumptions made for Theorem 5.1. Then
NEARESTNEIGHBOR on (X ,D) has a three-round SIP, whose space and help costs are both at most
O(fsize(D) log(m + fsize(D))), in which the prover and the verifier each run in time poly(m, fsize(D)).
In particular, if fsize(D) = poly(d, logn), as is the case for many natural distance functions D, then the
space and help costs are both poly(d, logm, logn) and the runtimes are poly(d,m, logn).

Before describing the protocol in detail, let us explain the high level idea that allows us to avoid the
high runtimes of the previous protocol. Essentially, the SIP of Theorem 5.1 ran our polynomial evaluation
protocol on a multilinear extension of the vector v defined by the derived stream. That SIP took v to
be a completely arbitrary table of values. As a result, the verifier’s computation—evaluating the multilinear
extension at a random point—became costly. The honest prover incurred similar costs. A closer examination
of the nature of v reveals that if D is a “reasonable” distance function, then v itself has plenty of structure.
In particular, an appropriate higher degree extension of v can in fact be evaluated much more efficiently (by
both the verifier and the prover) than the above multilinear extension. Details follow.

Proof. Put b = d logn and S = fsize(D). According to Definition 5.2, the function ΦD is computed by a
length-S formula that takes a 2b-bit input βββ = (β1, . . . ,β2b) describing a ball in B and a b-bit input x =
(x1, . . . ,xb) describing a point in X . With each gate G of this formula we associate a polynomial G̃ in the
variables W1, . . . ,W2b,X1, . . . ,Xb, as follows:

G = βi =⇒ G̃ =Wi ,

G = xi =⇒ G̃ = Xi ,

G = ¬G1 =⇒ G̃ =−G̃1 ,

G = G1∧G2 =⇒ G̃ = G̃1G̃2 ,

G = G1∨G2 =⇒ G̃ = 1− (1− G̃1)(1− G̃2) .

Let Φ̃D(W1, . . . ,W2b,X1, . . . ,Xb) denote the polynomial thereby associated with the output gate; this poly-
nomial is the standard arithmetization [36] of the formula. We will interpret Φ̃D as a polynomial in
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F[W1, . . . ,X1, . . .] for a “large enough” finite field F. By construction, Φ̃D has total degree at most S and
agrees with ΦD on every Boolean input. Define the polynomial Ψ(W1, . . . ,W2b)=∑

m
i=1 Φ̃D(W1, . . . ,W2b,x(i)).

Observe that the vector v defined by the derived stream in the proof of Theorem 5.1 behaves as follows:

v[βββ ] =
m

∑
i=1

ΦD(βββ ,x(i)) =
m

∑
i=1

Φ̃D(βββ ,x(i)) = Ψ(βββ ) . (5)

Thus, Ψ is a degree-S extension of v to F. The input stream defines Ψ implicitly, and the verifier can easily
evaluate Ψ(r) for random r∈R F2b. So we can invoke the polynomial evaluation protocol (twice, in parallel)
and answer the NEARESTNEIGHBOR query just as in Theorem 5.1. For full clarity, we spell out the resulting
SIP below. The term “canonical representation” and notation λ` are as in Section 3 and Figure 2.

Input: Stream of points x(1), . . . ,x(m) from X defining a data set, followed by query z ∈ X .
Goal: Prover to convince Verifier to output a nearest neighbor of z w.r.t. distance function D.
Shared Agreement: Finite field F of prime order with 6S+2m≤ |F| ≤ 12S+4m, where S = fsize(D).

Initialization: Verifier picks r(1),r(2) ∈R F2b independently and uniformly, sets Q1← 0 and Q2← 0.

Stream Processing: Upon reading x ∈ X , Verifier updates Qi← Qi + Φ̃D(r(i),x) for i ∈ {1,2}.

Query Handling: Upon reading query z, Verifier interacts with Prover as follows:

1. Prover sends Verifier a point y ∈ X , claiming that it is a nearest neighbor of z in the data set.

2. Verifier identifies balls βββ
(1)=BD(y,0) and βββ

(2)=BD(z,D(y,z)−ε). For i∈{1,2}, if βββ
(i)= r(i),

Verifier sets Ai←Qi and skips Steps 3 and 4 for this i; otherwise he sends Prover `(i), the unique
line in F2b through βββ

(i) and r(i).
3. For i ∈ {1,2}, Prover sends Verifier a polynomial hi(V ) ∈ F[V ] of degree at most S, claiming

that it is the canonical restriction of Ψ(W1, . . . ,W2b) to the line `(i). That is, Prover claims that
hi(V )≡Ψ(λ`(i)(V )), where λ`(V ) denotes the canonical representation of the line ` in F2b.

4. For i ∈ {1,2}, let vi, ti ∈ F be such that λ`(i)(vi) = βββ
(i) and λ`(i)(ti) = r(i). Verifier checks that

hi(ti) = Qi, aborting if not. Otherwise, he sets Ai← hi(vi).

5. If A1 6= 0 and A2 = 0, then Verifier outputs y as the answer. Otherwise he aborts.

Figure 4: A Three-Round SIP for the NEARESTNEIGHBOR Problem

This protocol’s correctness can be analyzed using the same ideas as in the proofs of Theorems 2.1
and 5.1. It has perfect completeness. If a dishonest prover supplies an incorrect polynomial for either h1(V )
or h2(V ), the verifier will fail to notice with probability at most S/(|F|− 1) ≤ 1/6, leading to a soundness
error of at most 1/6+1/6 = 1/3. Entries of v always lie between 0 and m and char(F) = |F|> m, since F
is of prime order, therefore there are no “wrap around” problems in Eq. (5).

Turning to the protocol’s costs, the verifier needs O(S) space to evaluate Φ̃D and O(b log |F|) space to
maintain r(1),r(2),Q1, and Q2. The prover needs to communicate two degree-S polynomials, which costs
O(S log |F|). Under the reasonable assumption that the optimal formula for ΦD depends on all its input
variables, we have S≥ 3b, which yields a bound of O(S log(m+S)) on the space and help costs. The claim
about the runtimes is straightforward from the protocol’s description.

We remark that our above theorem made the tacit uniformity assumption that a formula for ΦD of length
fsize(D) could be constructed in space O(fsize(D)) and time O(poly(fsize(D))).
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5.2 RANGECOUNT Queries

Let U be any data universe and R ⊆ 2U a set of ranges. In the RANGECOUNT problem, the data stream
σ = 〈x(1), . . . ,x(m),R∗〉 specifies a sequence of universe elements x(i) ∈ U , followed by a query or target
range R∗ ∈ R. The goal is to output |{i : x(i) ∈ R∗}|, i.e., the number of elements in the target range that
appeared in the stream.

We easily obtain a two-message streaming interactive proof for the RANGECOUNT problem in which
both the help and space cost are bounded by O(log |R| log(|R|m)). The verifier simply runs a POINTQUERY

on the derived stream σ ′ defined to have data universeR. σ ′ is obtained from σ as follows: on each stream
update x(i) ∈ U , the verifier inserts into σ ′ one copy of each range R ∈R such that x(i) ∈ R. The range count
problem is equivalent to a POINTQUERY on σ ′, with the target item being R∗, and we obtain the following
theorem.

Theorem 5.4. There is a two-message SIP with O(log |R| log(|R| ·m)) cost for RANGECOUNT.

In particular, for spaces of bounded shatter dimension ρ , log |R| = ρ logm = O(logm). The above
protocol also implies a three-message SIP for the problem of linear classification, a core problem in machine
learning. Just like the protocol for NEARESTNEIGHBOR invokes a two-message protocol for INDEX, a SIP
for linear classification (find a hyperplane that separates red and blue points) verifies that the proposed
hyperplane is empty of red points on one side and blue points on the other using the above two-message
RANGECOUNT protocol.

The prover and verifier in the protocol of Theorem 5.4 may require time Ω(|R|) per stream update.
This could be prohibitively large. However, we can obtain savings analogous to Theorem 5.3 if we make a
mild “efficient computability” assumption on our ranges. Specifically, suppose there exists a (poly(S)-time
uniform) de Morgan formula Φ of length S that takes as input a binary string representing a point x(i) ∈ U ,
as well as the label of a range R ∈ R and outputs a bit that is 1 if and only if x(i) ∈ R. We then obtain the
following more practical SIP.

Theorem 5.5. Suppose membership in ranges fromR can be decided by de Morgan formulas of length S as
above. Then there is a two-round SIP for RANGECOUNT on R, with space and help costs at most poly(S),
in which both the prover and the verifier run in time poly(m,S).

6 A Non-Interactive Protocol for Counting Triangles

Consider a data stream σ consisting of a sequence of undirected edges 〈e1, . . . ,em〉, where each edge ei ∈
[n]× [n]. σ defines an undirected graph G in the natural manner. In the TRIANGLES problem, the goal is
to determine the number of unordered triples of distinct vertices (u,v,z) such that edges (u,v), (v,z), and
(z,u) all appear in G. Computing the number of triangles is a well-studied problem [4] and there has been
considerable interest in designing algorithms in a variety of models including the data stream model [8,32],
MapReduce [35], and the quantum query model [28]. One motivation is the study of social networks where
important statistics such as the clustering coefficient and transitivity coefficient are based on the number of
triangles. Understanding the complexity of counting triangles captures the ability of a model to perform
a non-trivial correlation within large graphs. Chakrabarti et al. [10] gave two annotated data streaming
protocols for this problem. The first protocol had help cost O(n2 logn), and space cost O(logn). The second
protocol achieved help cost O(x logn) and space cost O(y logn) for any x,y such that x ·y≥ n3. In particular,
by setting x = y = n3/2, the second protocol of Chakrabarti et al. ensured that both help cost and space cost
equaled O

(
n3/2 logn

)
. Cormode [13] asked whether it is possible to achieve an annotated data streaming

protocol in which both the help cost and space cost are Õ(n). We answer this question in the affirmative.
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Theorem 6.1 (Restatement of Theorem 2.3). There is an annotated data stream algorithm for TRIANGLES

with space and help costs O(n logn). Every such algorithm requires the product of the space and help costs
to be Ω(n2).

Proof. The lower bound was proved in [10, Theorem 7.1]. Details of the upper bound follow.
Let Gi denote the graph defined by the first i stream updates 〈e1, . . . ,ei〉, and let Ei : [n]× [n]→ {0,1}

denote the function that outputs 1 on input (u,v) if and only if e j = (u,v) for some j < i. On edge update
ei = (ui,vi), notice that the number of triangles that ei completes in Ei is precisely ∑z∈[n] Ei(ui,z)Ei(vi,z).
Thus, at the end of the stream, the total number of triangles in the graph G = Gm is precisely

∑
i≤m

∑
z∈[n]

Ei(ui,z)Ei(vi,z). (6)

We will use sum-check techniques to compute this quantity. To this end, let F denote a field of prime order
6n3 ≤ |F| ≤ 12n3, and let Ẽi(X ,Y ) denote the unique polynomial over F of degree at most n in each variable
X ,Y such that Ẽi(u,v) = Ei(u,v) for all (u,v) ∈ [n]× [n].

Then Quantity (6) equals

∑
i≤m

∑
z∈[n]

Ei(ui,z)Ei(vi,z) = ∑
i≤m

∑
z∈[n]

Ẽi(ui,z)Ẽi(vi,z) = ∑
z∈[n]

∑
i≤m

Ẽi(ui,z)Ẽi(vi,z). (7)

In turn, the right hand side of Equation (7) can be written as ∑z∈[n] g(z), where g denotes the univariate
polynomial defined via:

g(Z) = ∑
i≤m

Ẽi(ui,Z)Ẽi(vi,Z). (8)

Notice g(Z) is a univariate polynomial of degree at most 2n. Our annotated data streaming protocol
proceeds as follows.

Prover’s computation. At the end of the stream, the prover is required to send a univariate polynomial
s(Z) of degree at most 2n, where s(Z) is claimed to equal g(Z). Notice that since s(Z) has degree at
most 2n, s(Z) can be specified by sending its values on all inputs in {0, . . . ,2n} – this requires help cost
O(n log |F|) = O(n logn).

Verifier’s computation. At the start of the stream, the verifier picks a random field element r ∈ F, and keeps
the value of r secret from the prover. We will show below that the verifier can evaluate g(r) with a single
streaming pass over the input, using space O(n logn). The verifier checks whether s(r) = g(r). If this check
fails, the verifier halts and rejects. If the check passes, the verifier outputs ∑z∈[n] s(z) as the correct answer.

We now explain how the verifier can evaluate g(r) with a single streaming pass over the input. The
high-level idea is as follows. Equation (8) expresses g(r) as a sum of m terms, where the ith term equals
Ẽi(ui,r)Ẽi(vi,r). For each u ∈ [n], we will show how the verifier can incrementally maintain the quantity
Ẽi(u,r) at all times i. The verifier will maintain all n of these quantities, resulting in a total space cost of
O(n log |F|) = O(n logn). With these quantities in hand, it is straightforward for the verifier to incrementally
maintain the sum ∑ j≤i Ẽi(ui,r)Ẽi(vi,r) at all times i: upon the ith stream update, the verifier simply adds
Ẽi(ui,r) · Ẽi(vi,r) to the running sum.

To maintain the quantity Ẽi(u,r), we begin by writing the bivariate polynomial Ẽi(X ,Y ) in a convenient
form. Given a pair (u,v) ∈ [n]× [n], let δ̃(u,v) denote the following (Lagrange) polynomial:

δ̃(u,v)(X ,Y ) =
(

∏1≤u′≤n:u′ 6=u(X−u′)

∏1≤u′≤n:u′ 6=u(u−u′)

)(
∏1≤v′≤n:v′ 6=v(Y − v′)

∏1≤v′≤n:v′ 6=v(v− v′)

)
. (9)
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Notice that δ̃(u,v) evaluates to 1 on input (u,v), and evaluates to 0 on all other inputs (x,y) ∈ [n]× [n]. Thus,

we may write Ẽi(X ,Y ) = ∑ j≤i δ̃(u j,v j)(X ,Y ). In particular, for each node u ∈ [n], Ẽi(u,r) = Ẽi−1(u,r) +

δ̃(ui,vi)(u,r)+ δ̃(vi,ui)(u,r). Thus, the verifier can incrementally maintain the quantity Ẽi(u,r) in a streaming

manner using space O(log |F|): while processing the ith stream update, the verifier simply adds δ̃(ui,vi)(u,r)+

δ̃(vi,ui)(u,r) to the running sum tracking Ẽi(u,r).

Completeness. It is evident that if the prover sends the true polynomial g(Z), then the verifier’s check will
pass.

Soundness. If the prover sends a polynomial s(Z) 6= g(Z), then with probability at least 1− 2n/|F| ≥
1−1/3n over the verifier’s random choice of r ∈ F, it will hold that s(r) 6= g(r). Hence, with probability at
least 1−1/3n≥ 2/3, the verifier’s check will fail and the verifier will reject.

Several remarks regarding Theorem 6.1 are in order.

• Verifier Time. The verifier in the protocol of Theorem 6.1 can process each stream update in constant
time as follows. On stream update ei = (ui,vi), the verifier must add δ̃(ui,vi)(u,r)+ δ̃(vi,ui)(u,r) to each

of the Ei(u,r) values. However, using Equation (9), it is straightforward to check that δ̃(ui,vi)(u,r) = 0
for all u 6= ui, so the verifier need only update two quantities a time i: Ei(ui,r) and Ei(vi,r). We
explain how both of these updates can be computed in constant time.

It can be seen from Equation (9) that

δ̃(ui,vi)(ui,r) =
∏1≤v′≤n:v′ 6=vi(r− v′)

∏1≤v′≤n:v′ 6=vi(vi− v′)
(10)

The right hand side of Equation (10) can be computed in O(1) time if the verifier maintains a pre-
computed lookup table consisting of O(n) field elements. Specifically, for each v ∈ [n], the verifier
needs to maintain the quantities ∏1≤v′≤n:v′ 6=v(r− v′) and

(
∏1≤v′≤n:v′ 6=vi(vi− v′)

)−1. All O(n) of these
quantities can be computed in pre-processing in total time O(n logn), where the logn term is due to
the time required to compute a multiplicative inverse in the field F.

Finally, the verifier can process the proof itself in time O(n). Indeed, recall that the proof consists of
the values s(x) for x ∈ {0, . . . ,2n}, and the verifier simply needs to compute ∑1≤x≤n s(x) as well as
s(r). The first quantity can trivially be computed in time O(n), and the second can be computed in
time O(n) as well using standard techniques (see, e.g., [15]).

• Prover Time. The honest prover in the protocol of Theorem 6.1 can be implemented to run in time
O(m ·n). Indeed, the honest prover needs to evaluate g(x) for O(n) points x∈F, and we have explained
above how g(x) can be computed in O(m) time (in fact, in O(1) time per stream update). Note that
this time is comparable to the cost of a naive triangle counting algorithm that, for each edge and node
combination, tests whether the two edges incident on the edge and node exist in the graph.

• More general streaming models. The protocol of Theorem 6.1 can be trivially modified to handle
streams with deletions, as well as weighted and directed graphs. In the case of weighted graphs, the
weight assigned to a triangle (u,v,z) is the product of weights of the constituent edges (u,v), (v,z),
and (z,u).

• Extensions. Let H be a graph on k vertices. It is possible to extend the protocol underlying Theorem
6.1 to count the number of occurrences of H as a subgraph of G. The protocol requires k−2 rounds,
and its help and space costs are O(kn logn) and O(n logn) respectively. We omit the details for brevity.
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• MA communication. Theorem 6.1 implies that the (online) MA communication complexity of count-
ing triangles is O(n logn). This essentially matches an Ω(n) lower bound on the (even non-online) MA
communication complexity of the problem, proved by Chakrabarti et al. [10] via a standard reduction
to SET-DISJOINTNESS, and answers a question of Cormode [13].

6.1 Comparison to Prior Work

As is typical in the literature on interactive proofs, the verifier in our TRIANGLES protocol evaluates g(r)
for a random point r ∈ F, where g is a polynomial derived from the input stream σ . This quantity serves as
a “secret” that the verifier can use to catch a dishonest prover. However, our protocol qualitatively departs
from prior work in that for our definition of g, g(r) is not a linear sketch of the input. For purposes of
this discussion, we define a linear sketch as any summary of the form v ∈ Fw for some w > 0 which can
be computed as v = Sf(σ). Here, S ∈ Fw×n is a “sketch matrix” and f(σ) denotes the frequency-vector
of the stream, i.e., the ith element of f(σ) is the number of times item i appears in σ . The vast majority
of protocols in the interactive proofs literature only require the verifier to compute a linear sketch of the
input [2, 10, 15, 16, 19, 20, 23, 36]. Typically, this linear sketch consists of one or more evaluations of a
low-degree extension of the frequency vector f itself.

In contrast, in our TRIANGLES protocol, we view the quantity ∑ j≤i Ẽ j(u j,r) · Ẽ j(v j,r) as the verifier’s
sketch at time i. While Ẽ j(u,r) is a linear sketch of the input for each j and node u ∈ [n] (in fact, this is what
enables the verifier to compute Ẽ j(u,r) for each u ∈ [n] in a streaming manner), ∑ j≤i Ẽ j(u j,r) · Ẽ j(v j,r) is
not. A consequence is that, in our TRIANGLES protocol, the verifier’s update to her state at time j depends
on her state at time j (specifically, her update depends on the stored values Ẽ j(u j,r) and Ẽ j(v j,r)). This
contrasts with linear sketches, as in a linear sketch, each stream update (i,δ ) contributes the value Sei to the
sketch independently of all other stream updates, where ei is the vector consisting of a 1 in the ith coordinate
and zeros elsewhere.

Refereed vs. Unrefereed Communication. Another way to formalize the way in which our counting
triangles protocol differs from prior work is the following. Given a data stream σ and an annotated data
streaming protocol P , fix the verifier’s random coins r within P , and let v(σ) denote the summary of the
stream that the verifier must compute in order to execute the protocol P with random coins r. Consider
a three-party refereed communication model in which the first player (Alice) holds the first half of a data
stream, the second player (Bob) holds the second half, and the third player (Reginald) is a referee. The
goal is to compute v(x◦ y), where x◦ y denotes the “concatenated” data stream. Alice and Bob each send a
message to Reginald, who must output v. The cost of the protocol is the sum of Alice and Bob’s messages.

To our knowledge, in all existing annotated data streaming protocols P , the verifier’s summary v(x◦ y)
can be computed by a refereed communication protocol of cost proportional to the space cost of P . This is
because v is a linear sketch in existing protocols: letting S be the sketch matrix, Alice can send the referee
Sf(x), Bob can send the referee Sf(y), and the referee can compute Sf(x◦y) = S(f(x)+ f(y)) = Sf(x)+Sf(y).

In contrast, the verifier’s summary in our counting triangles protocol cannot obviously be computed by
a refereed communication protocol of cost proportional to O(n logn), the space cost of our protocol. The
key point is that, in our protocol, the verifier’s updates when processing the second half of the data depend
on the first half of the data stream. Hence, in the refereed communication setting, Bob is unable to simulate
the verifier’s computation on his input y, as he needs information about x to do so.

7 Conclusion

In this paper, we advanced the study of constant-round interactive protocols for verifying outsourced stream-
ing computations. We introduced new communication models that closely capture constant-round streaming

22



interactive proofs, and we showed that constant-round SIPs behave very differently from classical interactive
proofs in several fundamental ways. In particular, we demonstrated that in the streaming setting, “secret”
coins are exponentially more powerful than public coins, and generic round elimination is impossible. Our
main algorithmic contributions were to give constant-round streaming interactive proofs that are exponen-
tially more efficient than prior work for a large class of problems, as well as giving an essentially optimal
annotated data streaming protocol for counting triangles.

Many questions remain for future work, but here we highlight just one: proving superlogarithmic lower
bounds on OIP[2]

+++ communication complexity. Klauck [26] has identified the problem of proving superlog-
arithmic lower bounds on AM communication complexity as an important “first step” toward resolving the
ΠΠΠ222 6= ΣΣΣ222 problem in two-party communication complexity, one of the most important problems left open
by Babai et al. [6]. As we have shown, standard techniques easily establish that OIP[2]

+++ is a subset of AM,
but have been unable to prove any superlogarithmic lower bounds against OIP[2]

+++ protocols. Proving OIP[2]
+++

lower bounds therefore represents an important (and potentially tractable) “zeroth step” toward resolving
ΠΠΠ222 6= ΣΣΣ222.
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