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Abstract

In this paper, we prove superpolynomial lower bounds for the class of homogeneous depth
4 arithmetic circuits. We give an explicit polynomial in VNP of degree n in n2 variables such
that any homogeneous depth 4 arithmetic circuit computing it must have size nΩ(log logn).

Our results extend the works of Nisan-Wigderson [NW95] (which showed superpolynomial
lower bounds for homogeneous depth 3 circuits), Gupta-Kamath-Kayal-Saptharishi and Kayal-
Saha-Saptharishi [GKKS13, KSS13] (which showed superpolynomial lower bounds for homo-
geneous depth 4 circuits with bounded bottom fan-in), Kumar-Saraf [KS13a] (which showed
superpolynomial lower bounds for homogeneous depth 4 circuits with bounded top fan-in) and
Raz-Yehudayoff and Fournier-Limaye-Malod-Srinivasan [RY08, FLMS13] (which showed super-
polynomial lower bounds for multilinear depth 4 circuits). Several of these results in fact showed
exponential lower bounds.

The main ingredient in our proof is a new complexity measure of bounded support shifted
partial derivatives. This measure allows us to prove exponential lower bounds for homogeneous
depth 4 circuits where all the monomials computed at the bottom layer have bounded support
(but possibly unbounded degree/fan-in), strengthening the results of Gupta et al and Kayal et
al [GKKS13, KSS13]. This new lower bound combined with a careful “random restriction” pro-
cedure (that transforms general depth 4 homogeneous circuits to depth 4 circuits with bounded
support) gives us our final result.

1 Introduction

Proving lower bounds for explicit polynomials is one of the most important open problems in
the area of algebraic complexity theory. Valiant [Val79] defined the classes VP and VNP as
the algebraic analog of the classes P and NP, and showed that proving superpolynomial lower
bounds for the Permanent would suffice in separating VP from VNP. Despite the amount of
attention received by the problem, we still do not know any superpolynomial (or even quadratic)
lower bounds for general arithmetic circuits. This absence of progress on the general problem
has led to a lot of attention on the problem of proving lower bounds for restricted classes of
arithmetic circuits. The hope is that an understanding of restricted classes might lead to a better
understanding of the nature of the more general problem, and the techniques developed in this
process could possibly be adapted to understand general circuits better. Among the many
restricted classes of arithmetic circuits that have been studied with this motivation, bounded
depth circuits have received a lot of attention.
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In a striking result, Valiant et al [VSBR83] showed that any n variate polynomial of degree
poly(n) which can be computed by a polynomial sized arithmetic circuit of arbitrary depth can
also be computed by an arithmetic circuit of depth O(log2 n) and size poly(n). Hence, proving
superpolynomial lower bounds for circuits of depth log2 n is as hard as proving lower bounds for
general arithmetic circuits. In a series of recent works, Agrawal-Vinay [AV08], Koiran [Koi12]
and Tavenas [Tav13] showed that the depth reduction techniques of Valiant et al [VSBR83] can in
fact be extended much further. They essentially showed that in order to prove superpolynomial
lower bounds for general arithmetic circuits, it suffices to prove strong enough lower bounds for
just homogeneous depth 4 circuits. In particular, to separate VNP from VP, it would suffice to
focus our attention on proving strong enough lower bounds for homogeneous depth 4 circuits.

The first superpolynomial lower bounds for homogeneous circuits of depth 3 were proved
by Nisan and Wigderson [NW95]. Their main technical tool was the use of the dimension of
partial derivatives of the underlying polynomials as a complexity measure. For many years
thereafter, progress on the question of improved lower bounds stalled. In a recent breakthrough
result on this problem, Gupta, Kamath, Kayal and Saptharishi [GKKS13] proved the first
superpolynomial (2Ω(

√
n)) lower bounds for homogeneous depth 4 circuits when the fan-in of the

product gates at the bottom level is bounded (by
√
n). This result was all the more remarkable

in light of the results by Koiran [Koi12] and Tavenas [Tav13] which showed that 2ω(
√
n logn)

lower bounds for this model would suffice in separating VP from VNP. The results of Gupta et
al were further improved upon by Kayal Saha and Sapthrashi [KSS13] who showed 2Ω(

√
n logn)

lower bounds for the model of homogeneous depth 4 circuits when the fan-in of the product
gates at the bottom level is bounded (by

√
n). Thus even a slight asymptotic improvement in

the exponent of either of these bounds would imply lower bounds for general arithmetic circuits!
The main tool used in both the papers [GKKS13] and [KSS13] was the notion of the dimen-

sion of shifted partial derivatives as a complexity measure, a refinement of the Nisan-Wigderson
complexity measure of dimension of partial derivatives.

In spite of all this exciting progress on homogeneous depth 4 circuits with bounded bottom
fanin (which suggests that possibly we might be within reach of lower bounds for much more
general classes of circuits) these results give almost no non trivial (not even super linear) lower
bounds for general homogeneous depth 4 circuits (with no bound on bottom fanin). Indeed the
only lower bounds we know for general homogeneous depth 4 circuits are the slightly superlinear
lower bounds by Raz using the notion of elusive functions [Raz10].

Thus nontrivial lower bounds for the class of general depth 4 homogeneous circuits seems
like a natural and basic question left open by these works, and strong enough lower bounds for
this model seems to be an important barrier to overcome before proving lower bounds for more
general classes of circuits.

In this direction, building upon the work in [GKKS13, KSS13], Kumar and Saraf [KS13b,
KS13a] proved superpolynomial lower bounds for depth 4 circuits with unbounded bottom fan-
in but bounded top fan-in. For the case of multilinear depth 4 circuits, superpolynomial lower
bounds were first proved by Raz and Yehudayoff [RY08]. These lower bounds were recently
improved in a paper by Fournier, Limaye, Malod and Srinivasan [FLMS13]. The main technical
tool in the work of Fournier et al was the use of the technique of random restrictions before using
shifted partial derivatives as a complexity measure. By setting a large collection of variables at
random to zero, all the product gates with high bottom fan-in got set to zero. Thus the resulting
circuit had bounded bottom fanin and then known techniques of shifted partial derivatives could
be applied. This idea of random restrictions crucially uses the multilinearity of the circuits, since
in multilinear circuits high bottom fanin means many distinct variables feeding in to a gate, and
thus if a large collection of variables is set at random to zero, then with high probability that
gate is also set to zero.

Our Results: In this paper, we prove the first superpolynomial lower bounds for general
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homogeneous depth 4 circuits with no restriction on the fan-in, either top or bottom. The
main ingredient in our proof is a new complexity measure of bounded support shifted partial
derivatives. This measure allows us to prove exponential lower bounds for homogeneous depth
4 circuits where all the monomials computed at the bottom layer have only few variables (but
possibly large degree/fan-in). This exponential lower bound combined with a careful “random
restriction” procedure that allows us to transform general depth 4 homogeneous circuits to this
form gives us our final result. We will now formally state our results.

Our main theorem is stated below.

Theorem 1.1 (Lower bounds for homogeneous ΣΠΣΠ circuits). There is an explicit family
of homogeneous polynomials of degree n in n2 variables in VNP which requires homogeneous
ΣΠΣΠ circuits of size nΩ(log logn) to compute it.

We prove our lower bound for the family of Nisan-Wigderson polynomials NWd which is
based upon the idea of Nisan-Wigderson designs. We give the formal definition in Section 3.

As a first step in the proof of Theorem 1.1, we prove an exponential lower bound on the top
fan-in of any homogeneous ΣΠΣΠ circuit where every product gate at the bottom level has at
most O(log n) distinct variables feeding into it. Let homogeneous ΣΠΣΠ{s} circuits denote the
class of homogeneous ΣΠΣΠ circuits where every product gate at the bottom level has at most
s distinct variables feeding into it (i.e. has support at most s).

Theorem 1.2 (Lower bounds for homogeneous ΣΠΣΠ circuits with bounded bottom support).
There exists a constant β > 0, and an explicit family of homogeneous polynomials of degree n in
n2 variables in VNP such that any homogeneous ΣΠΣΠ{β logn} circuit computing it must have
top fan-in at least 2Ω(n).

Observe that since homogeneous ΣΠΣΠ{s} circuits are a more general class of circuits than
homogeneous ΣΠΣΠ circuits with bottom fan-in at most s, our result strengthens the results of
of Gupta et al and Kayal et al [GKKS13, KSS13] when s = O(log n).

We prove Theorem 1.1 by applying carefully chosen random restrictions to both the poly-
nomial family and to any arbitrary homogeneous ΣΠΣΠ circuit and showing that with high
probability the circuit simplifies into a homogeneous ΣΠΣΠ circuit with bounded bottom sup-
port while the polynomial (even after the restriction) is still rich enough for Theorem 1.2 to
hold. Our results hold over every field.

Organization of the paper : The rest of the paper is organized as follows. In Section 2,
we provide a high level overview of the proof. In Section 3, we introduce some notations and
preliminary notions used in the paper. In Section 4, we give a proof of Theorem 1.2. In
Section 5, we describe the random restriction procedure and analyze its effect on the circuit and
the polynomial. In Section 6, we prove Theorem 1.1. We conclude with some open problems in
Section 7.

2 Proof Overview

Our proof is divided into two parts. In the first part we show a 2Ω(n) lower bound for homoge-
neous ΣΠΣΠ circuits whose bottom support is at most O(log n). To the best of our knowledge,
even when the bottom support is 1, none of the earlier lower bound techniques sufficed for show-
ing nontrivial lower bounds for this model. Thus a new complexity measure was needed. We
consider the measure of bounded support shifted partial derivatives, a refinement of the measure
of shifted partial derivatives used in several recent works [GKKS13, KSS13, KS13b, KS13a,
FLMS13]. For this measure, we show that the complexity of the NWd polynomial (an explicit
polynomial in VNP) is high whereas any subexponential sized homogeneous depth 4 circuit with
bounded bottom support has a much smaller complexity measure. Thus for any depth 4 circuit
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to compute the NWd polynomial, it must be large – we show that it must have exponential
top fan-in. Thus we get an exponential lower bound for bounded bottom support homogeneous
ΣΠΣΠ circuits. We believe this result might be of independent interest.

In the second part we show how to “reduce” any ΣΠΣΠ circuit that is not too large to a
ΣΠΣΠ circuit with bounded bottom support. This reduction basically follows from a random
restriction procedure that sets some of the variables feeding into the circuit to zero. At the same
time we ensure that when this random restriction procedure is applied to NWd, the polynomial
does not get affected very much, and still has large complexity.

We could have set variables to zero by picking the variables to set to zero independently at
random. For instance consider the following process: Independently keep each variable alive
(i.e. nonzero) with probability 1/nε. Then any monomial with Ω(log n) distinct variables is set
to the zero polynomial with probability at least 1− 1/nΩ(logn). Since any circuit of size no(logn)

will have only no(logn) monomials computed at the bottom layer, hence by the union bound,
each such monomial with Ω(log n) distinct variables will be set to zero. Thus the resulting
circuit will have bounded bottom support. The problem with this approach is that we do not
know how to analyze the effect of this simple randomized procedure on NWd. Thus we define a
slightly more refined random restriction procedure which keeps the NWd polynomial hard and
at the same time makes the ΣΠΣΠ circuit one of bounded bottom support. We describe the
details of this procedure in Section 5.1

3 Preliminaries and Notations

Arithmetic Circuits: An arithmetic circuit over a field F and a set of variables x1, x2, . . . , xN
is an directed acyclic graph whose internal nodes are labelled by the field operations and the leaf
nodes are labelled by the variables or field elements. The nodes with fan-out zero are called the
output gates and the nodes with fan-in zero are called the leaves. In this paper, we will always
assume that there is a unique output gate in the circuit. The size of the circuit is the number
of nodes in the underlying graph and the depth of the circuit is the length of the longest path
from the root to a leaf. We will call a circuit homogeneous if the polynomial computed at every
node is a homogeneous polynomial. By a ΣΠΣΠ circuit or a depth 4 circuit, we mean a circuit
of depth 4 with the top layer and the third layer only have sum gates and the second and the
bottom layer have only product gates. In this paper, we will confine ourselves to working with
homogeneous depth 4 circuits. A homogeneous polynomial P of degree n in N variables, which
is computed by a homogeneous ΣΠΣΠ circuit can be written as

P (x1, x2, . . . , xN ) =

T∑
i=1

di∏
j=1

Qi,j(x1, x2, . . . , xN ) (1)

Here, T is the top fan-in of the circuit. Since the circuit is homogeneous, we know that for every
i ∈ {1, 2, 3, . . . , T},

di∑
j=i

deg(Qi,j) = n

By the support of a monomial α, we will refer to the set of variables which have a positive degree
in α. In this paper, we will also study the class of homogeneous ΣΠΣΠ circuits such that for
every i, j, every monomial in Qi,j has bounded support. We will now formally define this class.

Homogeneous ΣΠΣΠ{s} Circuits: A homogeneous ΣΠΣΠ circuit in Equation 1, is said to be
a ΣΠΣΠ{s} circuit if every product gate at the bottom level has support at most s. Observe that
there is no restriction on the bottom fan-in except that implied by the restriction of homogeneity.
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Shifted Partial Derivatives: In this paper will use a variant of the notion of shifted par-
tial derivatives which was introduced in [Kay12] and has subsequently been the complexity
measure used to to prove lower bounds for various restricted classes of depth four circuits and
formulas [FLMS13, GKKS13, KSS13, KS13b, KS13a]. For a field F, an N variate polynomial
P ∈ F[x1, . . . , xN ] and a positive integer r, we denote by ∂rP , the set of all partial derivatives
of order equal to r of P . For a polynomial P and a monomial γ, we denote by ∂γ(P ) the partial
derivative of P with respect to γ. We now reproduce the formal definition from [GKKS13].

Definition 3.1 (Order-r `-shifted partial derivatives). For an N variate polynomial P ∈
F[x1, x2, . . . , xN ] and positive integers r, ` ≥ 0, the space of order-r `-shifted partial derivatives
of P is defined as

〈∂rP 〉`
def
= F-span{

∏
i∈[N ]

xi
ji · g :

∑
i∈[N ]

ji = `, g ∈ ∂rP} (2)

In this paper, we introduce the variation of bounded support shifted partial derivatives as a
complexity measure. The basic difference is that instead of shifting the partial derivatives by
all monomials of degree `, we will shift the partial derivatives only by only those monomials of
degree ` which have support(the number of distinct variables which have non-zero degree in the
monomial) exactly equal to m. We now formally define the notion.

Definition 3.2 (Support-m degree-` shifted partial derivatives of order-r). For an N variate
polynomial P ∈ F[x1, x2, . . . , xN ] and positive integers r, `,m ≥ 0, the space of support-m degree-
` shifted partial derivatives of order-r of P is defined as

〈∂rP 〉(`,m)
def
= F-span{

∏
i∈S
S⊆[N ]
|S|=m

xi
ji · g :

∑
i∈S

ji = `, ji ≥ 1, g ∈ ∂rP} (3)

The following property follows from the definition above.

Lemma 3.3. For any two multivariate polynomials P and Q in F[x1, x2, . . . , xN ] and any
positive integers r, `,m, and scalars α and β

Dim(〈∂r(αP + βQ)〉(`,m)) ≤ Dim(〈∂rP 〉(`,m)) + Dim(〈∂rQ〉(`,m))

In the rest of the paper, we will use the term (m, `, r)-shifted partial derivatives to refer to
support-m degree-` shifted partial derivatives of order-r of a polynomial. For any linear or affine
space V over a field F, we will use Dim(V ) to represent the dimension of V over F. We will use
the dimension of the space 〈∂rP 〉(`,m) which we denote by Dim(〈∂rP 〉(`,m)) as the measure of
complexity of a polynomial.

Nisan-Wigderson Polynomials: We will show our lower bounds for a family of polynomials
in VNP which were used for the first time in the context of lower bounds in [KSS13]. The
construction is based upon the intuition that over any finite field, any two distinct low degree
polynomials do not agree at too many points. For the rest of this paper, we will assume n to
be of the form 2k for some positive integer k. Let Fn be a field of size n. For the set of N = n2

variables {xi,j : i, j ∈ [n]} and d < n, we define the degree n homogeneous polynomial NWd as

NWd =
∑

f(z)∈Fn[z]
deg(f)≤d−1

∏
i∈[n]

xi,f(i)

From the definition, we can observe the following properties of NWd.

1. The number of monomials in NWd is exactly nd.

5



2. Each of the monomials in NWd is multilinear.

3. Each monomial corresponds to evaluations of a univariate polynomial of degree at most
d−1 at all points of Fn. Thus, any two distinct monomials agree in at most d−1 variables
in their support.

For any S ⊆ [n] and each f ∈ Fn[z], we define the monomial

mS
f =

∏
i∈S

xi,f(i)

and
mf =

∏
i∈[n]

xi,f(i)

We also define the set MS to represent the set {
∏
i∈S
∏
j∈[n] xi,j}. Clearly,

NWd =
∑

f(z)∈Fn[z]
deg(f)≤d−1

mf

Monomial Ordering and Distance: We will also use the notion of a monomial being an
extension of another as defined below.

Definition 3.4. A monomial θ is said to be an extension of a monomial θ̃, if θ divides θ̃.

In this paper, we will imagine our variables to be coming from a n× n matrix {xi,j}i,j∈[n]. We
will also consider the following total order on the variables. xi1,j1 > xi2,j2 if either i1 < i2 or
i1 = i2 and j1 < j2. This total order induces a lexicographic order on the monomials. For
a polynomial P , we will use the notation Lead-Mon(P ) to indicate the leading monomial of P
under this monomial ordering.

We will use the following notion of distance between two monomials which was also used
in [CM13].

Definition 3.5 (Monomial distance). Let m1 and m2 be two monomials over a set of variables.
Let S1 and S2 be the multiset of variables in m1 and m2 respectively, then the distance ∆(m1,m2)
between m1 and m2 is the min{|S1| − |S1 ∩ S2|, |S2| − |S1 ∩ S2|} where the cardinalities are the
order of the multisets.

In this paper, we will invoke this definition only for multilinear monomials of the same degree.
In this special case, we have the following crucial observation.

Observation 3.6. Let α and β be two multilinear monomials of the same degree which are at
a distance ∆ from each other. If Supp(α) and Supp(β) are the supports of α and β respectively,
then

|Supp(α)| − |Supp(α) ∩ Supp(β)| = |Supp(β)| − |Supp(α) ∩ Supp(β)| = ∆

Approximations: We will repeatedly refer to the following lemma to approximate expressions
during our calculations.

Lemma 3.7 ([GKKS13]). Let a(n), f(n), g(n) : Z>0 → Z>0 be integer valued functions such
that (f + g) = o(a). Then,

log
(a+ f)!

(a− g)!
= (f + g) log a±O

(
(f + g)2

a

)
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In our setup, very often (f + g)2 will be θ(a). In this case, the error term will be an absolute

constant. Hence, up to multiplication by constants, (a+f)!
(a−g)! = a(f+g).

We will also use the following basic fact in our proof.

Fact 3.8. The number of positive integral solutions of the equation

t∑
i=1

yi = k

equals
(
k−1
t−1

)
.

As a last piece of notation, for any i× j matrix H over F2 and a vector α ∈ Fi2, we denote
by H||α to be the i× (j + 1) matrix which when restricted to the first j columns is equal to H
and whose last column is α. Similarly, for any vector α ∈ Fi2 and any b ∈ F2, α||b is the i + 1
dimensional vector where b is appended to α.

4 Lower bounds for ΣΠΣΠ{O(log n)} circuits

In this section, we will prove Theorem 1.2. We will prove an exponential lower bound on the
top fan-in for homogeneous ΣΠΣΠ circuits such that every product gate at the bottom has a
bounded number of variables feeding into it. We will use the dimension of the span of (m, `, r)-
shifted partial derivatives as the complexity measure. We will prove our lower bound for the
NWd polynomial. The proof will be in two parts. In the first part, we will prove an upper
bounded on the complexity of the circuit. Then, we will prove a lower bound on the complexity
of the NWd polynomial. Comparing the two will then imply our lower bound. The bound holds
for NWd for any d = δn, where δ is a constant such that 0 < δ < 1.

4.1 Complexity of homogeneous depth 4 ΣΠΣΠ{s} circuits

Let C be a homogeneous ΣΠΣΠ{s} circuit computing the NWd polynomial. We will now prove
an upper bound on the complexity of a product gate in such a circuit. The bound on the
complexity of the circuit follows from the subadditivity of the complexity measure.

Lemma 4.1. Let Q =
∏n
i=1Qi be a product gate at the second layer from the top in a homoge-

neous ΣΠΣΠ{s} circuit computing a homogeneous degree n polynomial in N variables. For any
positive integers m, r, s, ` satisfying m+ rs ≤ N

2 and m+ rs ≤ `
2 ,

Dim(〈∂rQ〉(`,m)) ≤ poly(nrs)

(
n+ r

r

)(
N

m+ rs

)(
`+ n− r
m+ rs

)
Proof. By the application of chain rule, any partial derivative of order r of Q is a linear
combination of a number of product terms. Each of these product terms is of the form∏
i∈S ∂γi(Qi)

∏
j∈[n]\S Qj , where S is a subset of {1, 2, . . . , n} of size at most r and γi are

monomials such that
∑
i∈S deg(γi) = r. Also, observe that

∏
i∈S ∂γi(Qi) is of degree at most

n − r. In this particular special case all Qi have support at most s, so every monomial in∏
i∈S ∂γi(Qi) has support at most rs. Shifting these derivatives is the same as multiplying them

with monomials of degree ` and support equal to m. So, (m, `, r)-shifted partial derivative of
order r can be expressed as sum of the product of

∏
j∈[n]\S Qj for S ⊆ [n] of size at most r, and

a monomial of support between m and m+ rs and degree between ` and `+ n− r.
We can choose the set S in

(
n+r
r

)
ways. The second part in each term is a monomial of

degree between l and `+ n− r and support between m and m+ rs. The number of monomials
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over N variables of support between m and m+ rs and degree between ` and `+ n− r equals

n−r∑
i=0

rs∑
j=0

(
N

m+ j

)(
`+ i− 1

m+ j − 1

)
Now, in the range of choice of our parameters m, r, s, `, the binomial coefficients increase mono-
tonically with i and j. Hence, we can upper bound the dimension by poly(nrs)

(
n+r
r

)(
N

m+rs

)(
`+n−r−1
m+rs−1

)
.

For a homogeneous ΣΠΣΠ circuit where each of the bottom level product gates is of support
at most s, Lemma 4.1 immediately implies the following upper bound on the complexity of the
circuit due to subadditivity from Lemma 3.3.

Corollary 4.2 (Upper bound on circuit complexity). Let C =
∑T
j=1

∏n
i=1Qi,j be a a homoge-

neous ΣΠΣΠ{s} circuit computing a homogeneous degree n polynomial in N variables. For any
m, r, s, ` satisfying m+ rs ≤ N

2 and m+ rs ≤ `
2 ,

Dim(〈∂rC〉(`,m)) ≤ T × poly(nrs)

(
n+ r

r

)(
N

m+ rs

)(
`+ n− r − 1

m+ rs− 1

)

4.2 Lower bound on the complexity of the NWd polynomial

We will now prove a lower bound on the complexity of the NWd polynomial. For this, we will
first observe that distinct partial derivatives of the NWd polynomial are far from each other in
some sense and then show that shifting such partial derivatives gives us a lot of distinct shifted
partial derivatives. Recall that we defined the set MS to represent the set {

∏
i∈S
∏
j∈[n] xi,j}.

We start with the following observation.

Lemma 4.3. For any positive integer r such that n− r > d and r < d− 1, the set {∂α(NWd) :
α ∈M[r]} consists of |M[r]| = nr nonzero distinct polynomials.

Proof. We need to show the following two statements.

• ∀α ∈M[r], ∂α(NWd) is a non zero polynomial.

• ∀α 6= β ∈M[r], ∂α(NWd) 6= ∂β(NWd).

For the first item, observe that, since r < d − 1, for every α ∈ M[r], there is a polynomial f
of degree at most d − 1 in Fn[z] such that α =

∏r
i=1 xi,f(i). So, ∂α(mf ) 6= 0 since mf is an

extension of α, in fact, there are many such extensions. Also, observe for any two extensions
mf and mg, ∂α(mf ) and ∂α(mg) are multilinear monomials at a distance at least n− r− d > 0
from each other. Hence, ∂α(NWd) =

∑
g ∂α(mg) is a non zero polynomial, where the sum is

over all g ∈ Fn[z] of degree ≤ d− 1 such that mg is an extension of α.
For the second item, let us now consider the leading monomials of ∂α(NWd) and ∂β(NWd).

These leading monomials each come from some distinct polynomials f, g ∈ Fn[z] of degree at
most d−1. Also, since α 6= β and n−r > d, ∂α(mf ) 6= ∂β(mg). In fact, ∂α(NWd) and ∂β(NWd)
do not have a common monomial. Therefore, ∂α(NWd) 6= ∂β(NWd).

Remark 4.4. Observe that there is nothing special about the setM[r] and the Lemma 4.3 holds
for {M}S for any set S, such that S ⊆ [n] and |S| < d− 1.

In the proof above, we observed that for any α 6= β ∈ M[r], the leading monomials of
∂α(NWd) and ∂β(NWd) are multilinear monomials of at a distance at least n − r − d from
each other. We will exploit this structure to show that shifting the polynomials in the set
{∂α(NWd) : α ∈ M[r]} by monomials of support m and degree ` results in many linearly
independent shifted partial derivatives. We will first prove the following lemma.
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Lemma 4.5. Let α and β be two distinct multilinear monomials of equal degree such that the
distance between them is ∆. Let Sα and Sβ be the set of all monomials obtained by shifting α
and β respectively with monomials of degree ` and support exactly m over N variables. Then
|Sα ∩ Sβ | ≤

(
N−∆
m−∆

)(
`−1
m−1

)
.

Proof. From the distance property, we know that there is a unique monomial γ of degree ∆ and
support ∆ such that αγ is the lowest degree extension of α which is divisible by β. Therefore,
any extension of α which is also an extension of β must have the support of αγ as a subset. In
particular, for a shift of α to lie in Sβ , α must be shifted by monomial of degree ` and support
m which is an extension of γ. Hence, the freedom in picking the support is restricted to picking
some m − ∆ variables from the remaining N − ∆ variables. Once the support is chosen, the
number of possible degree ` shifts on this support equals

(
`−1
m−1

)
by Fact 3.8. Hence, the number

of shifts of degree equal to ` and support equal to m of α which equals some degree ` and support
m shift of β is exactly

(
N−∆
m−∆

)(
`−1
m−1

)
.

We will now prove the following lemma, which is essentially an application of Claim 4.5 to
the NWd polynomial. For any monomial α and positive integers `,m, we will denote by S`,m(α)
the set of all shifts of ∂αNWd by monomials of degree ` and support m. More formally,

S`,m(α) = {γ · ∂α(NWd) : γ =
∏
i∈U
U⊆[N ]
|U |=m

xi
ji ,
∑
i∈U

ji = `, ji ≥ 1}

also, let
LM`,m(α) = {Lead-Mon(f) : f ∈ S`,m(α)}

Lemma 4.6. For any positive integers r, m and ` such that n − r > d and r < d − 1, let α
and β be two distinct monomials in M[r]. Then |S`,m(α) ∩ S`,m(β)| ≤

(
N−(n−d−r)
m−(n−d−r)

)(
`−1
m−1

)
.

Proof. In the proof of Lemma 4.3, we have observed that the leading monomials of ∂α(NWd)
and ∂β(NWd) are equal to ∂α(mf ) and ∂β(mg) for two distinct polynomials f, g ∈ Fn[z] of
degree at most d − 1. Hence, ∂α(mf ) and ∂β(mg) are multilinear monomials at a distance at
least ∆ = n− r − d from each other.

Since monomial orderings respect multiplication by the same polynomial, we know that the
leading monomial of a shift equals the shift of the leading monomial. Therefore, if γα and γβ
are two monomials of degree ` and support equal to m such that γα∂α(NWd) = γβ∂β(NWd),
then γα∂α(mf ) = γβ∂β(mg). Hence, the |S`,m(α) ∩ S`,m(β)| is at most the number of shifts of

∂α(mf ) which is also a shift of ∂β(mg). By Lemma 4.5, this is at most
(
N−(n−d−r)
m−(n−d−r)

)(
`−1
m−1

)
.

We will now prove a lower bound on the dimension of the span of (m, `, r)-shifted partial
derivatives of theNWd polynomial. For this, we will use the following proposition from [GKKS13],
the proof of which is a simple application of Gaussian elimination.

Proposition 4.7 ([GKKS13]). For any field F, let P ⊆ F[z] be any finite set of polynomials.
Then,

Dim(F-span(P)) = |{Lead-Mon(f) : f ∈ F-span(P)}|

Therefore, in order to lower bound Dim(〈∂rNWd〉(`,m)), it would suffice to obtain a lower
bound on the size of the set

⋃
α LM`,m(α), where the union is over all monomials α of degree

equal to r. To obtain this lower bound, we will show a lower bound on the size of the set⋃
α∈M[r] LM`,m(α).
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Lemma 4.8. Let d = δn for any constant 0 < δ < 1. Let `,m, r be positive integers such that

n− r > d, r < d− 1, m ≤ N , m = θ(N) and for φ = N
m , r satisfies r ≤ (n−d) log φ±O(φ

(n−d−r)2
N )

logn+log φ .
Then,

Dim(〈∂rNWd〉(`,m)) ≥ 0.5nr
(
N

m

)(
`− 1

m− 1

)
Proof. Recall that M[r] = {

∏r
i=1

∏
j∈[n] xi,j}. We have argued in Lemma 4.3 that for each

α, β ∈M[r], such that α 6= β, ∂α(NWd) 6= ∂β(NWd) and both of these are non zero polynomials.
As discussed above, we will prove a lower bound on the size of the set

⋃
α∈M[r] LM`,m(α). From

the principle of inclusion-exclusion, we know

|
⋃

α∈M[r]

LM`,m(α)| ≥
∑

α∈M[r]

|LM`,m(α)| −
∑

α6=β∈M[r]

|LM`,m(α) ∩ LM`,m(β)|

Let us now bound both these terms separately.

• Since shifting preserves monomial orderings, therefore for any γ 6= γ̃ of degree ` and
support m, and for any α ∈M[r], Lead-Mon(γ∂α(NWd)) 6= Lead-Mon(γ̃∂α(NWd)). Hence,
for each α ∈M[r], |LM`,m(α)| is the number of different shifts possible, which is equal to
the number of distinct monomials of degree ` and support m over N variables. Hence,

|LM`,m(α)| =
(
N

m

)(
`− 1

m− 1

)
.

• For any two distinct α, β ∈M[r], from Lemma 4.6,

|LM`,m(α) ∩ LM`,m(β)| ≤
(
N − (n− d− r)
m− (n− d− r)

)(
`− 1

m− 1

)
Therefore,

|
⋃

α∈M[r]

LM`,m(α)| ≥ |M[r]|
(
N

m

)(
`− 1

m− 1

)
−
(
|M[r]|

2

)(
N − (n− d− r)
m− (n− d− r)

)(
`− 1

m− 1

)
To simplify this bound, we will show that for the choice of our parameters, the second term is
at most the half the first term. In this case, we have

|
⋃

α∈M[r]

LM`,m(α)| ≥ 0.5|M[r]|
(
N

m

)(
`− 1

m− 1

)
We need to ensure, (|M[r]|

2

)(
N−(n−d−r)
m−(n−d−r)

)(
`−1
m−1

)
|M[r]|

(
N
m

)(
`−1
m−1

) ≤ 0.5

It suffices to ensure

|M[r]|
(
N−(n−d−r)
m−(n−d−r)

)(
N
m

) ≤ 1

which is the same as ensuring that

|M[r]| × (N − (n− d− r))!
N !

× m!

(m− (n− d− r))!
≤ 1

10



Now, using the approximation from Lemma 3.7,

log
N !

(N − (n− d− r))!
= (n− d− r) logN ±O

(
(n− d− r)2

N

)
and

log
m!

(m− (n− d− r))!
= (n− d− r) logm±O

(
(n− d− r)2

m

)
Thus we need to ensure that

log |M[r]| ≤ log

(
N

m

)n−d−r
±O

(
(n− d− r)2

N

)
±O

(
(n− d− r)2

m

)
Substituting |M[r]| = nr, we need

r log n ≤ log

(
N

m

)n−d−r
±O

(
(n− d− r)2

N
+

(n− d− r)2

m

)
Substituting m = N

φ (and noting that φ > 1), we require

r log n ≤ (n− d− r) log φ±O
(
φ

(n− d− r)2

N

)
.

Thus we require

r ≤
(n− d) log φ±O(φ (n−d−r)2

N )

log n+ log φ

Observe that for any constant 0 < δ < 1 such that d = δn, r can be chosen any constant
times n

logn by choosing φ to be an appropriately large constant. So, for such a choice of r,

Dim(〈∂rNWd〉(`,m)) ≥ 0.5|M[r]|
(
N

m

)(
`− 1

m− 1

)
For |M[r]| = nr, we have

Dim(〈∂rNWd〉(`,m)) ≥ 0.5nr
(
N

m

)(
`− 1

m− 1

)

Remark 4.9. The proof above shows something slightly more general than a lower bound on
just the complexity of the NWd polynomial. The only property of the NWd polynomial that we
used here was that the leading monomials of any two distinct partial derivatives of it were far
from each other. We will crucially use this observation in the proof of our main theorem. Also,
there is nothing special about using the set M[r]. The proof works for any set of monomials
MS = {

∏
i∈S
∏
j∈[n] xi,j}, where S is a subset of {1, 2, 3, . . . , n} of size exactly r.

4.3 Top fan-in lower bound

We are now ready to prove our lower bound on the top fan-in of any homogeneous ΣΠΣΠ{β logn}

(for some constant β) and computes the NWd polynomial, where d = δn for some constant δ
between 0 and 1.

Theorem 4.10. Let d = δn for any constant 0 < δ < 1. There exists a constant β such that
all homogeneous ΣΠΣΠ{β logn} circuits which compute the NWd polynomial have top fan-in at
least 2Ω(n).
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Proof. By comparing the complexities of the circuit and the polynomial as given by Corollary 4.2
and Lemma 4.8, the top fan-in of the circuit must be at least

0.5nr
(
N
m

)(
`−1
m−1

)
poly(nrs)

(
n+r
r

)(
N

m+rs

)(
`+n−r
m+rs

) (4)

This bound holds for any choice of positive integers `,m, r, a constant β such that s = β log n
which satisfy the constraints in the hypothesis of Corollary 4.2 and Lemma 4.8. In other words,
we want these parameters to satisfy

• m+ rs ≤ N
2

• m+ rs ≤ `
2

• m = θ(N)

• n− r > d

• r < d− 1

• For φ = N
m , r ≤

(n−d) log φ±O
(
φ

(n−d−r)2
N

)
logn+log φ

In the rest of the proof, we will show that there exists a choice of these parameters such
that we get a bound of 2Ω(n) from Expression 4. We will show the existence of such parameters

satisfying the asymptotics ` = θ(N), r = θ
(

n
logn

)
and s = θ(log n). In the rest of the proof, we

will crucially use these asymptotic bounds for various approximations.

For this, we will group together and approximate the terms in the ratio
0.5nr(Nm)( `−1

m−1)
poly(nrs)(n+r

r )( N
m+rs)(

`+n−r
m+rs )

• (Nm)
( N
m+rs)

= (N−m−rs)!(m+rs)!
(N−m)!m! = ( m

N−m )rs upto some constant factors, as long as (rs)2 =

θ(N) = θ(m).

• ( `−1
m−1)

(`+n−r
m+rs )

= (`−1)!
(m−1)!(`−m)! ×

(m+rs)!(`−m+n−r−rs)!
(`+n−r)! . We now pair up things we know how to

approximate within constant factors.
( `−1
m−1)

(`+n−r
m+rs )

= (`−1)!
(`+n−r) ×

(m+rs)!
(m−1)! ×

(`−m+n−r−rs)!
(`−m)! =

poly(n)× 1
`n−r ×mrs × (`−m)n−r

(`−m)rs . This simplifies to poly(n)×
(

m
`−m

)rs
×
(
`−m
`

)n−r
.

• nr

(n+r
r )
≥ nr

( 2(n+r)
r )

r . We just used Stirling’s approximation here.

In the range of our parameters, the approximations above imply that the top fan-in, up to
polynomial factors is at least(r

3

)r
×
(

m

`−m

)rs
×
(
`−m
`

)n−r
×
(

m

N −m

)rs
Simplifying further, this is at least

2Ω(r log r−rs log `−m
m −(n−r) log `

`−m−rs log N−m
m )

Recall that we will set m and ` to be θ(N) and r to be θ( n
logn ). The constants have to be

chosen carefully in order to satisfy the constraints. We will choose constants α, β and η such
that s = β log n, r = α · n/ log n and m = η`. First choose η to be any small constant > 0 (for
instance η = 1/4). Now, choose α to be a constant much larger than log 1

1−η . This makes sure

that r log r dominates (n− r) log `
`−m . Recall that α can be chosen to be any large constant by

choosing φ to be an appropriately large constant (by the constraint between r and φ in the fifth
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bullet). Notice that this sets m to be a small constant factor of N . Fix these choices of η and α.
Now, we choose the term β to be a small positive constant such that rs log 1−η

η and rs log N−m
m

are much less than r log r. Observe that this choice of parameters satisfies all the constraints
imposed in the calculations above, and the top fan-in is at least 2Ω(r log r) = 2Ω(n).

5 Random Restrictions

In this section, we will describe our random restriction algorithm and analyze the effect of
random restrictions on ΣΠΣΠ circuits as well as the NWd polynomial.

Let n = 2k. We identify elements of [n] with elements of F2k . We view F2k as a k-dimensional
vector space over F2. Let φ : F2k → Fk2 be an F2-linear isomorphism between F2k and Fk2 . Thus
φ(α + β) = φ(α) + φ(β). Let M : F2k → Fk×k2 , map α ∈ F2k to the matrix M(α), which
represents the linear transformation over Fk2 that is given by multiplication by α in F2k . Thus
it follows that M(α× β) = M(α)×M(β), and M(α+ β) = M(α) +M(β). Moreover it is not
hard to see that φ(α× β) = M(α)× φ(β).

Since n = 2k, thus Fn ≡ F2k . Let Fn[Z] denote the space of univariate polynomials over Fn.

For f ∈ Fn[Z] of degree ≤ d−1, f is of the form
∑d−1
i=0 aiZ

i, for ai ∈ Fn. Thus we can represent
f as a vector of coefficients (a0, a1, . . . ad−1), and hence view f as an element of Fdn. For ease of
notation, for α ∈ Fn we will let [α] represent φ(α). Also, for f ∈ Fn[Z] of degree at most d− 1,
we let [f ] ∈ Fkd2 represent the concatenation of φ applied to each of the coefficients of f .

Let Evalα be the dk×k matrix obtained by stacking the matrices M(α0), M(α1), ..., M(αd−1)
one below the other. In other words, the first k rows are the rows of M(α0), the second k rows
are the rows of M(α1) and so on. The following claim follows easily from the definitions.

Claim 5.1. Let f ∈ Fn[Z] be of degree at most d− 1, and let α ∈ Fn. Then

[f(α)] = [f ]× Evalα.

In the rest of the discussion we will identify the elements of Fn with {1, 2, . . . , n}. Let Evali
be the dk × 2k matrix obtained by adding a column for each of the 2k linear combinations of
the columns of Evali. Let Eval be the dk × nk matrix obtained by concatenating Evali for all
i ∈ [n]. Let Eval be the dk × n2k matrix obtained by concatenating Evali for all i ∈ [n].

In order to restrict the variables in the circuit, we will first “randomly restrict” the space of
polynomials in Fn[Z] of degree at most d− 1. We present the random restriction procedure in
the next section.

5.1 Random Restriction Algorithm

Let ε > 0 be any constant. We will define a randomized procedure Rε which selects a subset of
the variables {xi,j | i, j ∈ [n]} to set to zero.

The restriction proceeds by first restricting the space of polynomials f ∈ Fn[Z] of degree at
most d − 1. This restriction then naturally induces a restriction on the space of variables by
selecting only those variables xi,j such that there is some polynomial f in the restricted space
for which f(i) = j.

We restrict the space of polynomials by iteratively restricting the values the polynomials
can take at points in F2k . For each i ∈ F2k , we restrict the values f can take at i to a random
affine subspace of codimension εk (when we view F2k as a k dimensional vector space over F2).
We do this by sampling εk random and independent columns from Evali and restricting the
inner product of [f ] with these columns to be randomly chosen values. Each column that we
pick in this manner imposes an F2-affine constraint on [f ], and restricts [f ] to vary in an affine
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subspace of codimension 1. Since these random constraints for the various values of i might not
be linearly independent, it is possible that at the end of the process no polynomial f satisfies the
constraints. Thus we need to be more careful. We iteratively impose these random constraints
for various values of i, but at the same time ensure that each new constraint that is imposed
on f is linearly independent of the old constraints. We do this by making sure that each new
column that is sampled is linearly independent of the old columns.

Random restriction procedure Rε
Output: The set of variables that are set to zero.

1. Initialize A0 = Fkd2 , B to be a 0 dimensional vector, M to be an empty matrix over F2.

2. Outer Loop : For i from 1 to n, do the following:

• Inner Loop : For j going from 1 to εk, do the following:

(a) If all the columns of Evali have been spanned by the columns in M, then do
nothing

(b) Else pick a uniformly random column C of Evali that has not been spanned by
the columns of M, and pick a uniformly random element b of F2.

(c) SetM =M‖C (appending C as a new column of M) and set B = B‖b (appending
b to the vector B.

• Set Ai = {[f ] | [f ]×M = B; [f ] ∈ Fkd2 }
3. Let S0 = {xi,j | j 6= f(i) ∀ [f ] ∈ An}. Set all the variables xi,j ∈ S0 to 0.

The above random restriction procedure imposes at most εk × n independent F2-affine con-
straints on [f ]. Each constraint restricts the space of possible [f ] by codimension 1. Thus in the
end An is an affine subspace of Fkd2 of codimension at most εk × n. This immediately implies
the claim below which shows that the size of An is large. This in turn will imply that many of
the monomials in NWd will survive after the random restriction.

Claim 5.2. |An| ≥ nd/2εkn = nd−εn.

Proof. The main observation is that each time we are in Step (b) of the inner loop, we impose
an independent F2-affine constraint on the possible choices of [f ]. Thus the space of possible [f ]
reduces by codimension exactly 1. Thus we never impose conflicting constraints on [f ] and we
ensure that at each step the number of [f ] satisfying all constraints is large.

5.2 Effect of random restriction on NWd

Let S0 be the set of variables output by the random restriction procedure Rε. Let Rε(NWd)
be the polynomial obtained from NWd after setting the variables in S0 to 0. In this section we
will show that Rε(NWd) continues to remain hard in some sense. More precisely, we will show
that for any S0 output by the Rε, and for r < d, a lot of distinct rth order partial derivatives of
Rε(NWd) are non zero.

Let r < d− 1. Let S ⊂ [n] be a set of size r. Let TS = {
∏
i∈S xi,ji | (ji)i∈S ∈ [n]r} be a set

of nr monomials. We will consider partial derivatives of NWd with respect to monomials in TS
for some choice of S.

Lemma 5.3 (Random restriction on NWd). For every ε > 0, and every set S0 output by the
random restriction procedure Rε, there is a set S ⊂ [n] of size r such that at least nr(1−εn/d)

monomials in TS are such that the partial derivative of Rε(NWd) with respect to each of these
monomials is nonzero and distinct.
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Proof. Observe that for any polynomial of degree at most d−1, its evaluation at some d distinct
points uniquely determines it. Let Si ∈ [n] be the set {(i − 1)r + 1, (i − 1)r + 2, . . . , ir}. We
will consider the set of evaluations of f such that [f ] ∈ An at points of the set Si for various
i. We will show that for some choice of i, the number of distinct sets of evaluations in Si as
[f ] ranges in An is large. Let mi be the number of distinct r-tuples of evaluations on Si as [f ]
varies in An. Thus the total number of distinct d-tuples of evaluations on [d] as [f ] varies in

An is at most
∏d/r
i=1mi. However each d-tuple of evaluations on [d] uniquely identifies [f ] ∈ An.

Thus |An| ≤
∏d/r
i=1mi. However by Claim 5.2 we know that |An| ≥ nd/2εkn = nd−εn. Thus

there exists i ≤ d/r such that mi ≥ nr(1−εn/d). Thus there are nr(1−εn/d) monomials in TSi
each of which is consistent with some polynomial f such that [f ] ∈ An. Thus for each such
monomial, there exists a monomial in Rε(NWd) extending it, and hence the corresponding
partial derivative is nonzero. From Remark 4.4 it follows that each of these partial derivative is
distinct.

5.3 Effect of random restriction on ΣΠΣΠ circuit

Let C be a homogeneous ΣΠΣΠ circuit of size at most nρ log logn for some very small constant ρ
that we will choose later. We will use Rε(C) to refer to the ΣΠΣΠ circuit obtained from C after
setting the variables in S0 to 0. This operation simply eliminates those monomials computed
at the bottom later of C which contain at least one variable which is set to 0. Observe that
homogeneity is preserved in this process. We will now show that with very high probability
over the random restrictions, no product gate in C at the bottom layer which takes more than
Ω(log n) distinct variables as input survives.

Lemma 5.4 (Random restriction on ΣΠΣΠ circuit). Let ε > 0 and β > 0 be constants.
Then there exists ρ > 0 such that if C is a ΣΠΣΠ circuit of size at most nρ log logn, then with
probability > 9/10, all the monomials computed at the bottom layer which have support at least
β log n have some variable set to 0 by Rε.

Before we prove this lemma, we will first prove some simple results about affine subspaces
and the probabilities of variables surviving the random restriction process.

Proposition 5.5. Let V and W be fixed subspaces of Fk2 such that W is a subspace of V . Let U
be a subspace of V which is chosen uniformly at random among all subspaces of V of dimension

Dim(U). Then, the probability that W is a subspace of U is at most
∏(Dim(W )−1)
j=0

2Dim(U)−2j

2Dim(V )−2j
≤

2−(Dim(V )−Dim(U))Dim(W ).

Proof. Let us consider Y to be a fixed subspace of dimension Dim(U) of V . Now, let AU be an
invertible linear transformation from U to Y . Since, U is chosen uniformly at random, so AU is
also a uniformly random invertible matrix. Now, W was a subspace of U if and only if AUW is
a subspace of Y . But since AU is chosen uniformly at random, so AUW is a uniformly random
subspace of Fk2 of dimension Dim(W ). So, the desired probability is the same as the probability
that for a fixed subspace Y of dimension Dim(U), a uniformly at random chosen subspace W
of dimension Dim(W ) lies in Y . Observe that sampling a uniformly random subspace can be
done by greedily and uniformly at random sampling independent basis vectors for the subspace.
Thus W is contained in Y if and only if all of the Dim(W ) linearly independent basis vectors

chosen while randomly sampling W lie in Y . This quantity is at most
∏(Dim(W )−1)
j=0

2Dim(U)−2j

2Dim(V )−2j
.

Since, Dim(U) ≤ Dim(V ), this probability is upper bounded by 2−(Dim(V )−Dim(U))Dim(W ).

We will now visualize our variables to be arranged in an n × n variable matrix, where the
(i, j)th entry of this matrix is the variable xi,j . We say that a monomial survives the random
restriction procedure given by Rε if no variable in the monomial is set to zero.
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Definition 5.6 (Compact row). We say that the ith row in the variable matrix is compact if the
columns of M sampled by the random restriction algorithm span every column of Evali. Thus
M and B uniquely determine the value of f(αi). We say a row is non-compact otherwise.

Proposition 5.7. Suppose that the ith row of the variable matrix is compact. Then, for every
j ∈ Fn, the probability that a variable xi,j survives Rε is at most 1

n .

Proof. The columns of M sampled by the random restriction algorithm span every column of
Evali, so the value of B uniquely determines the value of [f ]×Evali. Moreover, since the columns
of Evali are linearly independent (since for every j ∈ [n], there exists an f such that f(i) = j)
and B is chosen uniformly at random, so the value of [f ]× Evali is a uniformly random element
of Fk2 . This implies that the value of f(i) is uniquely determined and is a uniformly random
element of Fn. Thus the probability that f(i) = j equals 1/n, and the result follows.

Proposition 5.8. Suppose that the ith row of the variable matrix is non-compact. Then, for
every j ∈ {1, 2, . . . , n}, the probability that xi,j survives is at most 1

nε . In fact this holds even
after conditioning on any choice of Ai−1, which is the affine subspace [f ] is allowed to vary in
after i− 1 stages on the random restriction algorithm.

Proof. In the random restriction algorithm, since i is a non-compact row, in stage i, we picked
εk independent columns of Evali. At the end of stage i − 1, [f ] was restricted to vary in some
affine subspace Ai−1. Thus the possible values of f(i) also varied in some affine subspace V . At
the end of stage i, [f ] was restricted to vary in some affine subspace of codimension εk of Ai−1.
This affine subspace was chosen by restricting the values of f at i. Thus [f(i)] was allowed
to vary in a random affine subspace of codimension εk in V . Call this subspace U . Thus the
probability that xi,j survives is at most the probability that j lies in the subspace U , which is
at most |U |/|V | = 1

nε .

We will now prove that any monomial which has a large support in any row of the variable
matrix survives the random restriction procedure with only a very small probability.

Lemma 5.9. Any monomial which has a support larger than t in a row in the variable matrix
survives Rε with probability at most 1

nε log t .

Proof. Let α be a monomial which has support ≥ t in row i of the variable matrix. Let
S = {xi,j1 , xi,j2 , . . . , xi,jt} be any subset of the variables in this support of size t. For t = 1,
the lemma trivially holds. Now, if t > 1, then if the row i is compact then this monomial
survives with probability 0. So, now we will assume that row i is non-compact. Since we
identified Fn with Fk2 , {ji, j2, . . . , jt} ⊂ Fk2 . There must be log t of these elements that are
linearly independent. Let this set of independent elements be β1, β2, . . . , βlog t. Thus α survives
only if for each j, there is an f such that [f ] ∈ An and f(i) = βj .

Recall that in the random restriction algorithm, in stage i, we picked εk independent columns
of Evali. At the end of stage i−1, [f ] was restricted to vary in some affine subspace Ai−1. Thus
the possible values of [f(i)] also varied in some affine subspace V . If each of β1, β2, . . . , βlog t

were not contained in V then α does not survive. Thus let us assume that β1, β2, . . . , βlog t ∈ V .
At the end of stage i, [f ] was restricted to vary in some affine subspace of codimension εk

of Ai−1. This affine subspace was chosen by restricting the values of f at i. Thus [f(i)] was
allowed to vary in a random affine subspace of codimension εk in V . Call this subspace U . Let
W be the subspace given by the span of β1, β2, . . . , βlog t. Then β1, β2, . . . , βlog t ∈ U if and only
if W ⊆ U . By Lemma 5.5, the probability of this happening is at most 1

nε log t .
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Now, let us consider a monomial which has a large number of variables from different rows.
We will now estimate the probability that this monomial survives.

Lemma 5.10. Let t < d−1. Any monomial which has support in t non-compact rows survives
Rε with probability at most 1

nεt .

Proof. Let α be a monomial which has at least one variable in each of t distinct non compact
rows, say i1, i2, i3, . . . , it. From Lemma 5.8, we know that a variable in row ij , j ∈ [t], survives
with probability at most 1

nε . In fact, conditioned on the variables in i1, i2, . . . , ij surviving for
any rows i1, i2, . . . , ij , the probability that the variable in row ij+1 survives is at most 1

nε . Hence,
all of them survive with probability at most 1

nεt .

We will now show that monomials which have nonzero support in many compact rows survive
with very low probability.

Lemma 5.11. Let t < d − 1. Any monomial which has nonzero support in t compact rows
survives Rε with probability at most 1

nt .

Proof. Let i1, i2, . . . , it be some t distinct compact rows. It is easy to see that the columns of
the matrices Evali1 ,Evali2 , . . . ,Evalit are all linearly independent, since f can take all possible
values at the points i1, i2, . . . , it. Therefore, the probability that some variable survives in one
of these rows is independent of the probability that some variable in another row survives. From
Lemma 5.7, we know that any variable in any of these rows survives with probability at most
1
n . From the above two observations, the probability that any monomial with support in these
rows survives is at most 1

nt .

Together, Lemma 5.9, Lemma 5.10 and Lemma 5.11 show that any monomial with large
support survives only with a very small probability, which completes the proof of Lemma 5.4.
We formally prove this below.

Proof of Lemma 5.4: From Lemma 5.9, we know that any monomial which has at least
β

100 logn

log logn

variables in any row survives with probability at most 1

nε(log
β

100
+0.9 log logn)

(for n large enough).

Hence, for any circuit of size at most nρ log logn, where ρ < ε/2, by the union bound, with high

probability none of the monomials which has at least
β

100 logn

log logn variables in any row survives.
Similarly, by Lemma 5.10, a monomial with nonzero support in at least log log n non-compact

rows survives with probability at most 1
nε log logn . Hence, for circuits of size nρ log logn, where

ρ < ε/2, with high probability none of these monomials survive.
Similarly, monomials with nonzero support in log log n compact rows are eliminated with a

very high probability if ρ < 1/2. Hence, at the end of any such random restriction process, with
probability very close to 1, none of the surviving monomials has support larger than β log n if
ρ < ε/2.

6 Lower Bounds for NWd

In this section, we give a proof of our main theorem. We will heavily borrow from the proof of
Theorem 4.10 in Section 4. The following lemma provides a lower bound on the complexity of
the NWd polynomial after restricting it via Rε.

Lemma 6.1. Let δ and ε be any constants such that 0 < ε, δ < 1. Let d = δn. Let `,m, r be
positive integers such that n− r > d, r < d− 1, m ≤ N , m = θ(N) and for φ = N

m , r satisfies
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r ≤
(n−d) log φ±O

(
φ

(n−d−r)2
N

)
(1−εn/d) logn+log φ . Then, for every random restriction Rε,

Dim(〈∂rRε(NWd)〉(`,m)) ≥ 0.5n(1−εn/d)r

(
N

m

)(
`− 1

m− 1

)
Proof. The proof is analogous to the proof of Lemma 4.8 till the point we substitute the value of
M[r] in the calculations in the proof of Lemma 4.8. For Rε(NWd), the value to be substituted
is now nr(1−εn/d) as shown in Lemma 5.3. So, we know that

Dim(〈∂rRε(NWd)〉(`,m)) ≥ 0.5n(1−εn/d)r

(
N

m

)(
`− 1

m− 1

)
as long the parameters satisfy

nr(1−εn/d) × (N − (n− d− r))!
N !

× m!

(m− (n− d− r))!
≤ 1 (5)

Now, using the approximation from Lemma 3.7,

log
N !

(N − (n− d− r))!
= (n− d− r) logN ±O

(
(n− d− r)2

N

)
and

log
m!

(m− (n− d− r))!
= (n− d− r) logm±O

(
(n− d− r)2

m

)
Now, taking logarithms on both sides in Equation 5 and substituting these approximations,

we get

(1− εn/d)r log n ≤ log

(
N

m

)n−d−r
±O

(
(n− d− r)2

N
+

(n− d− r)2

m

)
Substituting m = N

φ and noting that φ > 1, we require

(1− εn/d)r log n ≤ (n− d− r) log
N

m
±O

(
φ

(n− d− r)2

N

)
and

r ≤
(n− d) log φ±O(φ (n−d−r)2

N )

(1− εn/d) log n+ log φ

Observe that for any constant 0 < δ < 1 such that d = δn, r can be chosen any constant
times n

logn by choosing φ to be an appropriately large constant. So, for such a choice of r, we
get

Dim(〈∂rNWd〉(`,m)) ≥ 0.5n(1−εn/d)r

(
N

m

)(
`− 1

m− 1

)

The following lemma proves a lower bound on the top fan-in of any homogeneous ΣΠΣΠ{β logn}

circuit for the Rε(NWd) polynomial for a constant β. The proof of the lemma is essentially the
same as the proof of Theorem 4.10.

Lemma 6.2. Let d = δn for any constant δ such that 0 < δ < 1. Then, there exist constants
ε, β such that any homogeneous ΣΠΣΠ{β logn} circuit computing the Rε(NWd) polynomial for
any random restriction Rε has top fan-in is at least 2Ω(n).
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Proof. By comparing the complexities of the circuit and the polynomial as given by Corollary 4.2
and Lemma 4.8, the top fan-in of the circuit must be at least

0.5n(1−εn/d)r
(
N
m

)(
`−1
m−1

)
poly(nrs)

(
n+r
r

)(
N

m+rs

)(
`+n−r
m+rs

)
This bound holds for any choice of positive integers `,m, r, a constant β such that s = β log n

which satisfy the constraints in the hypothesis of Corollary 4.2 and Lemma 6.1. In other words,
we want these parameters to satisfy

• m+ rs ≤ N
2

• m+ rs ≤ `
2

• n− r > d

• r < d− 1

• For φ = N
m , r ≤

(n−d) log φ±O
(
φ

(n−d−r)2
N

)
(1−εn/d) logn+log φ

In the rest of the proof, we will show that there exists a choice of these parameters such that
we get a bound of 2Ω(n) from expression above. We will show the existence of such parameters

satisfying the asymptotics ` = θ(N), r = θ
(

n
logn

)
and s = θ(log n). In the rest of the proof, we

will crucially use these asymptotic bounds for various approximations.
Let us now estimate this ratio term by term. We will invoke Lemma 3.7 for approximations.

• (Nm)
( N
m+rs)

= (N−m−rs)!(m+rs)!
(N−m)!m! = ( m

N−m )rs upto some constant factors, as long as (rs)2 =

θ(N) = θ(m).

• ( `−1
m−1)

(`+n−r
m+rs )

= (`−1)!
(m−1)!(`−m)! ×

(m+rs)!(`−m+n−r−rs)!
(`+n−r)! . Lets now pair up things we know how

to approximate within constant factors.
( `−1
m−1)

(`+n−r
m+rs )

= (`−1)!
(`+n−r) ×

(m+rs)!
(m−1)! ×

(`−m+n−r−rs)!
(`−m)! =

poly(n)× 1
`n−r ×mrs × (`−m)n−r

(`−m)rs . This simplifies to poly(n)×
(

m
`−m

)rs
×
(
`−m
`

)n−r
.

• n(1−εn/d)r

(n+r
r )

≥ n(1−εn/d)r

( 2(n+r)
r )

r . We just used Stirling’s approximation here.

In the asymptotic range of our parameters, the approximations above imply that the top
fan-in, up to polynomial factors is at least(r

3

)r
×
(

m

`−m

)rs
×
(
`−m
`

)n−r
× 1

n(εn/d)r
×
(

m

N −m

)rs
Simplifying further, this is at least

2Ω(r log r−rs log `−m
m −(n−r) log `

`−m−(εn/d)r logn−rs log N−m
m )

We will set m and ` to be θ(N) and r to be θ( n
logn ). The constants have to be chosen carefully

in order to satisfy the constraints. We will choose constants α, β and η such that s = β log n,
r = α · n/ log n and m = η`. First let us choose ε to be a very small positive constant such that
εn/d = ε/δ << 0.1 First choose η to be any small constant > 0 (for instance η = 1/4). Now,
choose α to be a constant much much larger than log 1

1−η and ε/δ. This makes sure that r log r

dominates (n−r) log `
`−m and (εn/d)r log n. Recall that α can be chosen to be any large constant

by choosing φ to be appropriately large constant (by the constraint between r and φ in the fifth
bullet). Notice that this sets m to be a small constant factor of N . Fix these choices of η and α.
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Now, we choose the term β to be a small constant such that rs log 1−η
η and rs log N−m

m is much
less than r log r. Observe that this choice of parameters satisfies all the constraints imposed in
the calculations above. Hence, the top fan-in must be at least 2Ω(r log r) = 2Ω(n).

We now have all the ingredients to prove our main theorem.

Theorem 6.3. Let d = δn for any constant δ such that 0 < δ < 1. Any homogeneous ΣΠΣΠ
circuit computing the NWd must have size at least nΩ(log logn).

Proof. For every value of δ, such that 0 < δ < 1, choose the parameters ε = ε̃, β = β̃ such that
Lemma 6.2 is true for d̃ = δn. Now, let us choose a constant ρ = ρ̃ such that Lemma 5.4 holds.
Now, let C be a homogeneous ΣΠΣΠ circuit computing the NWd̃ polynomial. If the number
of bottom product gates of C was at least nρ̃log logn, then C has large size and we are done.
Else, let us now apply a random restriction Rε to the circuit. By the choice of parameters,
Lemma 5.4 holds and so with probability 0.9 every bottom product gate in C with support
larger than β̃ log n is set to zero. After a restriction, the circuit computes Rε̃(NWd̃). So, now
we are in the case when we have a small support homogeneous circuit of depth four computing
some random restriction of the NWd̃ polynomial and then, by Lemma 6.2 above, the top fan-in
of Rε̃(C) must be at least 2Ω(n). Hence, any homogeneous ΣΠΣΠ circuit computing NWd̃ must
have size at least nΩ(log logn).

7 Open Problems

The main question left open by this work is to prove much stronger, possibly exponential lower
bounds for homogeneous ΣΠΣΠ circuits. Given the earlier related works and the results of this
paper, this question might be well within reach. It would be also very interesting to understand
the limits of the new complexity measure of bounded support shifted partial derivatives that is
introduced in this paper (as well as other variants) and investigate if they can be used to prove
lower bounds for other interesting classes of circuits.
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[Tav13] Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. In
MFCS, pages 813–824, 2013.

[Val79] L. G. Valiant. Completeness classes in algebra. In Proceedings of the 11th Annual
STOC, STOC ’79, pages 249–261, New York, NY, USA, 1979. ACM.

[VSBR83] Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast parallel
computation of polynomials using few processors. SIAM Journal of Computation,
12(4):641–644, 1983.

21

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


