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Abstract

We present a general approach to rounding semidefinite programming relaxations obtained by the
Sum-of-Squares method (Lasserre hierarchy). Our approach is based on using the connection between
these relaxations and the Sum-of-Squares proof system to transform a combining algorithm—an algorithm
that maps a distribution over solutions into a (possibly weaker) solution—into a rounding algorithm that
maps a solution of the relaxation to a solution of the original problem.

Using this approach, we obtain algorithms that yield improved results for natural variants of three
well-known problems:

1. We give a quasipolynomial-time algorithm that approximates max‖x‖2=1 P(x) within an additive
factor of ε‖P‖spectral additive approximation, where ε > 0 is a constant, P is a degree d = O(1),
n-variate polynomial with nonnegative coefficients, and ‖P‖spectral is the spectral norm of a matrix
corresponding to P’s coefficients. Beyond being of interest in its own right, obtaining such an
approximation for general polynomials (with possibly negative coefficients) is a long-standing open
question in quantum information theory, and our techniques have already led to improved results in
this area (Brandão and Harrow, STOC ’13).

2. We give a polynomial-time algorithm that, given a subspace V ⊆ �n of dimension d that (almost)
contains the characteristic function of a set of size n/k, finds a vector v ∈ V that satisfies �i v

4
i >

Ω(d−1/3k(�i v
2
i )2). This is a natural analytical relaxation of the problem of finding the sparsest

element in a subspace, and is also motivated by a connection to the Small Set Expansion problem
shown by Barak et al. (STOC 2012). In particular our results yield an improvement of the previous
best known algorithms for small set expansion in a certain range of parameters.

3. We use this notion of L4 vs. L2 sparsity to obtain a polynomial-time algorithm with substantially
improved guarantees for recovering a planted sparse vector v in a random d-dimensional subspace
of �n. If v has µn nonzero coordinates, we can recover it with high probability whenever µ 6
O(min(1, n/d2)). In particular, when d 6

√
n, this recovers a planted vector with up to Ω(n) nonzero

coordinates. When d 6 n2/3, our algorithm improves upon existing methods based on comparing
the L1 and L∞ norms, which intrinsically require µ 6 O

(
1/
√

d
)
.
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1 Introduction

Convex programming is the algorithmic workhorse behind many applications in computer science and other
fields. But its power is far from understood, especially in the case of hierarchies of linear programming
(LP) and semidefinite programming (SDP) relaxations. These are systematic approaches to make a convex
relaxation tighter by adding to it more constraints. Various such hierarchies have been proposed independently
by researchers from several communities [Sho87, SA90, LS91, Nes00, Par00, Las01]. In general, these
hierarchies are parameterized by a number ` called their level. For problems on n variables, the hierarchy
of the `th level can be optimized in nO(`) time, where for the typical domains used in CS (such as {0, 1}n

or the n-dimensional unit sphere), n rounds correspond to the exact (or near exact) solution by brute force
exponential-time enumeration.

There are several strong lower bounds (also known as integrality gaps) for these hierarchies, in particular
showing that ω(1) levels (and often even nΩ(1) or Ω(n) levels) of many such hierarchies can’t improve by
much on the known polynomial-time approximation guarantees for many NP hard problems, including
SAT, Independent-Set, Max-Cut and more [Gri01b, Gri01a, ABLT06, dlVKM07, Sch08, Tul09, CMM09,
BGMT12, BCV+12]. Unfortunately, there are many fewer positive results, and several of them only show
that these hierarchies can match the performance of previously known (and often more efficient) algorithms,
rather than using hierarchies to get genuinely new algorithmic results.1 For example, Karlin, Mathieu and
Nguyen [KMN11] showed that ` levels of the Sum of Squares hierarchy can approximate the Knapsack
problem up to a factor of 1 + 1/`, thus approaching the performance of the standard dynamic program.
Guruswami and Sinop [GS11] and (independently) Barak, Raghavendra, and Steurer [BRS11] showed that
some SDP hierarchies can match the performance of the [ABS10] algorithm for Small Set Expansion
and Unique Games, and their techniques also gave improved results for some other problems (see also
[RT12, AG11, AGS13]). Chlamtac and Singh [CS08] (building on [Chl07]) used hierarchies to obtain some
new approximation guarantees for the independent set problem in 3-uniform hypergraphs. Bhaskara, Charikar,
Chlamtac, Feige, and Vijayaraghavan [BCC+10] gave an LP-hierarchy based approximation algorithm for
the k-densest subgraph problem, although they also showed a purely combinatorial algorithm with the same
performance. The famous algorithm of Arora, Rao and Vazirani [ARV04] for Sparsest Cut can be viewed
(in retrospect) as using a constant number of rounds of an SDP hierarchy to improve upon the performance of
the basic LP for this problem. Perhaps the most impressive use of super-constant levels of a hierarchy to solve
a new problem was the work of Brandão, Christandl and Yard [BCY11] who used an SDP hierarchy (first
proposed by [DPS04]) to give a quasipolynomial time algorithm for a variant of the quantum separability
problem of testing whether a given density matrix corresponds to a separable (i.e., non-entangled) quantum
state or is ε-far from all such states (see Section 1.2).

One of the reasons for this paucity of positive results is that we have relatively few tools to round such
convex hierarchies. A rounding algorithm maps a solution to the relaxation to a solution to the original
program.2 In the case of a hierarchy, the relaxation solution satisfies more constraints, but we do not always
know how to take advantage of this when rounding. For example, [ARV04] used a very sophisticated analysis
to get better rounding when the solution to a Sparsest Cut relaxation satisfies a constraint known as triangle
inequalities, but we have no general tools to use the additional constraints that come from higher levels of
the hierarchies, nor do we know if these can help in rounding or not. This lack of rounding techniques is
particularly true for the Sum of Squares (SOS, also known as Lasserre) hierarchy [Par00, Las01].3 This is the

1 The book chapter [CT10] is a good source for several of the known upper and lower bounds, though it does not contain some of
the more recent ones.

2 While the name derives from the prototypical case of relaxing an integer program to a linear program by allowing the variables
to take non-integer values, we use “rounding algorithm” for any mapping from relaxation solutions to actual solutions, even in cases
where the actual solutions are themselves non-integer.

3 While it is common in the TCS community to use Lasserre to describe the primal version of this SDP, and Sum of Squares (SOS)
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strongest variant of the canonical semidefinite programming hierarchies, and has recently shown promise
to achieve tasks beyond the reach of weaker hierarchies [BBH+12]. But there are essentially no general
rounding tools that take full advantage of its power.4

In this work we propose a general approach to rounding SOS hierarchies, and instantiate this approach in
two cases, giving new algorithms making progress on natural variants of two longstanding problems. Our
approach is based on the intimate connection between the SOS hierarchy and the “Positivstellensatz”/“Sum
of Squares” proof system. This connection was used in previous work for either negative results [Gri01b,
Gri01a, Sch08], or positive results for specific instances [BBH+12, OZ13, KOTZ14], translating proofs of a
bound on the actual value of these instances into proofs of bounds on the relaxation value. In contrast, we use
this connection to give explicit rounding algorithms for general instances of certain computational problems.

1.1 The Sum of Squares hierarchy

Our work uses the Sum of Squares (SOS) semidefinite programming hierarchy and in particular its relationship
with the Sum of Squares (or Positivstellensatz) proof system. We now briefly review both the hierarchy and
proof system. See the introduction of [OZ13] and the monograph [Lau09] for a more in depth discussion
of these concepts and their history. Underlying both the SDP and proof system is the natural approach to
prove that a real polynomial P is nonnegative via showing that it equals a sum of squares: P =

∑k
i=1 Q2

i
for some polynomials Q1, . . . ,Qk. The question of when a nonnegative polynomial has such a “certificate
of non-negativity” was studied by Hilbert who realized this doesn’t always hold and asked (as his 17th
problem) whether a nonnegative polynomial is always a sum of squares of rational functions. This was
proven to be the case by Artin, and also follows from the more general Positivstellensatz (or “Positive Locus
Theorem”) [Kri64, Ste74]. The Positivstellensatz/SOS proof system of Grigoriev and Vorobjov [GV01] is
based on the Positivstellensatz as a way to refute the assertion that a certain set of polynomial equations

P1(x1, . . . , xn) = . . . = Pk(x1, . . . , xn) = 0 (1.1)

can be satisfied by showing that there exists some polynomials Q1, . . . ,Qk and a sum of squares polynomial
S such that ∑

PiQi = 1 + S . (1.2)

([GV01] considered inequalities as well, although in our context one can always restrict to equalities without
loss of generality.) One natural measure for the complexity of such proof is the degree of the polynomials
P1Q1, . . . , PkQk and S .

The sum of squares semidefinite program was proposed independently by several authors [Sho87, Par00,
Nes00, Las01] One way to describe it is as follows. If the set of equalities (1.1) is satisfiable then in particular
there exists some random variable X over �n such that

� P1(X1, . . . , Xn)2 = . . . = � Pk(X1, . . . , Xn)2 = 0 . (1.3)

That is, X is some distribution over the non-empty set of solutions to (1.1).
For every degree `, we can consider the linear operator L = L` that maps a polynomial P of degree

at most ` into the number � P(X1, . . . , Xn). Note that by choosing the monomial basis, this operator can
be described by a vector of length n`, or equivalently, by an n`/2 × n`/2 matrix. This operator satisfies the
following conditions:

to describe the dual, in this paper we use the more descriptive SOS name for both programs. We note that in all the applications we
consider, strong duality holds, and so these programs are equivalent.

4 The closest general tool we are aware of is the repeated conditioning methods of [BRS11, GS11], though these can be
implemented in weaker hierarchies too and so do not seem to use the full power of the SOS hierarchy. However, this technique does
play a role in this work as well.
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Normalization If P is the constant polynomial 1 then LP = 1

Linearity L(P + Q) = LP +LQ for every P,Q of degree 6 `.

Positivity LP2 > 0 for every P of degree 6 `/2.

Following [BBH+12], we call a linear operator satisfying the above conditions a level ` pseudoexpectation
function, or `-p.e.f., and use the suggestive notation �̃ P(X) to denoteLP. Correspondingly we will sometimes
talk about a level ` pseudodistribution (or `-p.d.) X, by which we mean that there is an associated level
` pseudoexpectation operator. Given the representation of L as an n` dimension vector it is possible to
efficiently check that it satisfies the above conditions efficiently, and in particular the positivity condition
corresponds to the fact that, when viewed as a matrix, L is positive semidefinite. Thus it is also possible to
optimize over the set of operators satisfying these conditions in time nO(`), and this optimization procedure is
known as the SOS SDP hierarchy. Clearly, as ` grows, the conditions become stricter. In Appendix A we
collect some useful properties of these pseudoexpectations. In particular one can show (see Corollary A.3)
that if �̃ P2(X) = 0 then �̃ P(X)Q(X) = 0 for every polynomial Q (as long as Q, P have degrees at most `/2).
Thus, if there is a refutation to (1.1) of the form (1.2) where all polynomials involved have degree at most
` then there would not exist a level 2` pseudoexpectation operator satisfying (1.3). This connection goes
both ways, establishing an equivalence between the degree of Positivstellensatz proofs and the level of the
corresponding SOS relaxation.

Until recently, this relation was mostly used for negative results, translating proof complexity lower
bounds into integrality gap results for the SOS hierarchy [BBH+12, OZ13, KOTZ14]. However, in 2012
Barak, Brandão, Harrow, Kelner, Steurer and Zhou [BBH+12] used this relation for positive results, showing
that the SOS hierarchy can in fact solve some interesting instances of the Unique Games maximization
problem that fool weaker hierarchies. Their idea was to use the analysis of the previous works that proved
these integrality gaps for weaker hierarchies. Such proofs work by showing that (a) the weaker hierarchy
outputs a large value on this particular instance but (b) the true value is actually small. [BBH+12]’s insight
was that oftentimes the proof of (b) only uses arguments that can be captured by the SOS/Positivstellensatz
proof system, and hence inadvertently shows that the SOS SDP value is actually small as well. Some follow
up works [OZ13, KOTZ14] extended this to other instances, but all these results held for very specific
instances which have been proven before to have small objective value.

In this work we use this relation to get some guarantees on the performance of the SOS SDP on general
instances. We give a more detailed overview of our approach in Section 2, but the high level idea is as
follows. For particular optimization problems, we design a “rounding algorithm” that on input the moment
matrix of a distribution on actual solutions achieving a certain value ν, outputs a solution with some value ν̃
which is a function of ν. We call such an algorithm a combining algorithm, since it “combines” a distribution
over solutions into a single one. (Note that the solution output by the combining algorithm need not be
in the support of the distribution, and generally, when ν̃ , ν, it won’t be.) We then “lift” the analysis of
this combining algorithm into the SOS framework, by showing that all the arguments can be captured in
this proof system. This in turns implies that the algorithm would still achieve the value ν̃ even if it is only
given a pseudoexpectation of the distribution of sufficiently high level `, and hence in fact this combining
algorithm is a rounding algorithm for the level ` SOS hierarchy. We apply this idea to obtain new results for
two applications— optimizing polynomials with nonnegative coefficients over the unit sphere, and finding
“analytically sparse” vectors inside a subspace.

Remark 1.1 (Relation to the Unique Games Conjecture.). While the SOS hierarchy is relevant to many
algorithmic applications, some recent work focused on its relation to Khot’s Unique Games Conjecture
(UGC) [Kho02]. On a high level, the UGC implies that the basic semidefinite program is an optimal efficient
algorithm for many problems, and hence in particular using additional constant or polylogarithmic levels
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of the SOS hierarchy will not help. More concretely, as discussed in Section 1.3 below, the UGC is closely
related to the question of how hard it is to find sparse (or “analytically sparse”) vectors in a given subspace.
Our work shows how the SOS hierarchy can be useful in general, and in particular gives strong average-
case results and nontrivial worst-case results for finding sparse vectors in subspaces. Therefore, it can be
considered as giving some (far from conclusive) evidence that the UGC might be false.

1.2 Optimizing polynomials with nonnegative coefficients bounded spectral norm

Our first result yields an additive approximation to this optimization problem for polynomials with nonnegative
coefficients, when the value is scaled by the spectral norm of an associated matrix. If P is an n-variate degree-t
homogeneous polynomial with nonnegative coefficient, then it can be represented by a tensor M ∈ �nt

such
that P(x) = M · x⊗t for every x ∈ �n. It is convenient to state our result in terms of this tensor representation:

Theorem 1.2. There is an algorithm A, based on O(t log n/ε2) levels of the SOS hierarchy, such that for
every even5 t and nonnegative M ∈ �nt

,

max
‖x‖=1

M · x⊗t 6 A(M) 6 max
‖x‖=1

M · x⊗t + ε‖M‖spectral ,

where · denotes the standard dot product, and ‖M‖spectral denotes the spectral norm of M, when considered
as an nt/2 × nt/2 matrix.

Note that the algorithm of Theorem 1.2 only uses a logarithmic number of levels, and thus it shows
that this fairly natural polynomial optimization problem can be solved in quasipolynomial time, as opposed
to the exponential time needed for optimizing over general polynomials of degree > 2. Indeed, previous
work on the convergence of the Lasserre hierarchy for general polynomials [DW12] can be described in our
language here as trying to isolate a solution in the support of the distribution, and this generally requires a
linear number of levels. Obtaining the logarithmic bound here relies crucially on constructing a “combined”
solution that is not necessarily in the support. The algorithm is also relatively simple, and so serves as a good
demonstration of our general approach.

Relation to quantum information theory. An equivalent way to state this result is that we get an ε additive
approximation in the case that ‖M‖spectral 6 1, in which case the value max‖x‖=1 M · x⊗t is in the interval [0, 1].
This phrasing is particularly natural in the context of quantum information theory. A general (potentially
mixed) quantum state on 2`-qubits is represented by a an n2 × n2 density matrix ρ for n = 2`; ρ is a positive
semidefinite matrix and has trace 1. If ρ is separable, which means that there is no entanglement between
the first ` qubits and the second ` qubits, then ρ = � xx∗ ⊗ yy∗ for some distribution over x, y ∈ �n, where
v∗ denotes the complex adjoint operation. If we further restrict the amplitudes of the states to be real, and
enforce symmetry on the two halves, then this would mean that ρ = � x⊗4. (All our results should generalize
to states without those restrictions to symmetry and real amplitudes, which we make just to simplify the
statement of the problem and the algorithm.) A quantum measurement operator over this space is an n2 × n2

matrix M of spectral norm 6 1. The probability that the measurement accepts a state ρ is Tr(Mρ). Finding
an algorithm that, given a measurement M, finds the separable state ρ that maximizes this probability is an
important question in quantum information theory which amounts to finding a classical upper bound for the
complexity class QMA(2) of Quantum Merlin Arthur proofs with two independent provers [HM13]. Note
that if we consider symmetric real states then this is the same as finding argmax‖x‖=1 M · x⊗4, and hence
dropping the non-negativity constraint in our result would resolve this longstanding open problem. There is a
closely related dual form of this question, known as the quantum separability problem, where one is given a

5 The algorithm easily generalizes to polynomials of odd degree t and to non-homogenous polynomials, see Remark 3.5.
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quantum state ρ and wants to find the test M that maximizes

Tr(Mρ) − max
ρ′ separable

Tr(Mρ′) (1.4)

or to simply distinguish between the case that this quantity is at least ε and the case that ρ is separable. The
best result known in this area is the paper [BCY11] mentioned above, which solved the distinguishing variant
of quantum separability problem in the case that measurements are restricted to so-called Local Operations
and one-way classical communication (one-way LOCC) operators. However, they did not have an rounding
algorithm, and in particular did not solve the problem of actually finding a separable state that maximizes
the probability of acceptance of a given one-way LOCC measurement. The techniques of this work were
used by Brandão and Harrow [BH13] to solve the latter problem, and also greatly simplify the proof of
[BCY11]’s result, which originally involved relations between several measures of entanglement proved in
several papers.6 For completeness, in Appendix C we give a short proof of this result, specialized to the
case of real vectors and polynomials of degree four (corresponding to quantum states of two systems, or two
prover QMA proofs). We also show in Appendix B that in the case the measurement satisfies the stronger
condition of having its `2 (i.e., Frobenius) norm be at most 1, there is a simpler and more efficient algorithm
for estimating the maximum probability the measurement accepts a separable state, giving an ε additive
approximation in poly(n) exp(poly(1/ε)) time. In contrast, [BCY11]’s algorithm took quasipolynomial time
even in this case.

Relation to small set expansion. Nonnegative tensors also arise naturally in some applications, and in
particular in the setting of small set expansion for Cayley graphs over the cube, which was our original
motivation to study them. In particular, one corollary of our result is:

Corollary 1.3 (Informally stated). There is an algorithm A, based on poly(K(G)) log n levels of the SOS
hierarchy, that solves the Small Set Expansion problem on Cayley graphs G over �`2 (where ` = log n) where
K(G) is a parameter bounding the spectral norm of an operator related to G’s top eigenspace.

We discuss the derivation and the meaning of this corollary in Section 6 but note that the condition
of having small value K(G) seems reasonable. Having K(G) = O(1) implies that the graph is a small set
expander, and in particular the known natural examples of Cayley graphs that are small set expanders, such
as the noisy Boolean hypercube and the “short code” graph of [BGH+12] have K(G) = O(1). Thus a priori
one might have thought that a graph that is hard to distinguish from small set expanders would have a small
value of K(G).

1.3 Optimizing hypercontractive norms and finding analytically sparse vectors

Finding a sparse nonzero vector inside a d dimensional linear subspace V ⊆ �n is a natural task arising
in many applications in machine learning and optimization (e.g., see [DH13] and the references therein).
Related problems are known under many names including the “sparse null space”, “dictionary learning”,
“blind source separation”, “min unsatisfy”, and “certifying restricted isometry property” problems. (These
problems all have the same general flavor but differ on various details such as worst-case vs. average case,
affine vs. linear subspaces, finding a single vector vs. a basis, and more.) Problems of this type are often
NP-hard, with some hardness of approximation results known, and conjectured average-case hardness (e.g.,
see [ABSS97, KZ12, GN10] and the references therein).

We consider a natural relaxation of this problem, which we call the analytically sparse vector problem
(ASVP), which assumes the input subspace (almost) contains an actually sparse 0/1 vector, but allows the
algorithm to find a vector v ∈ V that is only “analytically sparse” in the sense that ‖v‖4/‖v‖2 is large. More

6The paper [BH13] was based on a previous version of this work [BKS12] that contained only the results for nonnegative tensors.
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formally, for q > p and µ > 0, we say that a vector v is µ Lq/Lp-sparse if (�i v
q
i )1/q/(Eiv

p
i )1/p > µ1/q−1/p.

That is, a vector is µ Lq/Lp-sparse if it has the same q-norm vs p-norm ratio as a 0/1 vector of measure at
most µ.

This is a natural relaxation, and similar conditions have been considered in the past. For example,
Spielman, Wang, and Wright [SWW12] used in their work on dictionary learning a subroutine finds a vector
v in a subspace that maximizes the ratio ‖v‖∞/‖v‖1 (which can be done efficiently via n linear programs).
However, because any subspace of dimension d contains an O(1/

√
d) L∞/L1-sparse vector, this relaxation

can only detect the existence of vectors that are supported on less than O(n/
√

d) coordinates. Some works
have observed that the L2/L1 ratio is a much better proxy for sparsity [ZP01, DH13], but computing it is a
non-convex optimization problem for which no efficient algorithm is known. Similarly, the L4/L2 ratio is a
good proxy for sparsity for subspaces of small dimension (say d = O(

√
n)) but it is non-convex, and it is not

known how to efficiently optimize it.7

Nevertheless, because ‖v‖44 is a degree 4 polynomial, the problem of maximizing it for v ∈ V of unit
norm amounts to a polynomial maximization problem over the sphere, that has a natural SOS program.
Indeed, [BBH+12] showed that this program does in fact yield a good approximation of this ratio for random
subspaces. As we show in Section 5, we can use this to improve upon the results of [DH13] and find planted
sparse vectors in random subspaces that are of not too large a dimension:

Theorem 1.4. There is a constant c > 0 and an algorithm A, based on O(1)-rounds of the SOS program,
such that for every vector v0 ∈ �

n supported on at most cn min(1, n/d2) coordinates, if v1, . . . , vd are chosen
independently at random from the Gaussian distribution on �n, then given any basis for V = span{v0, . . . , vd}

as input, A outputs an ε-approximation of v0 in poly(n, log(1/ε)) time.

In particular, we note that this recovers a planted vector with up to Ω(n) nonzero coordinates when
d 6
√

n, and it can recover vectors with more than the O(n/
√

d) nonzero coordinates that are necessary for
existing techniques whenever d � n2/3.

Perhaps more significantly, we prove the following nontrivial worst-case bound for this problem:

Theorem 1.5. There is a polynomial-time algorithm A, based on O(1) levels of the SOS hierarchy, that
on input a d-dimensional subspace V ⊆ �n such that there is a 0/1-vector v ∈ V with at most µn nonzero
coordinates, A(V) outputs an O(µd1/3) L4/L2-sparse vector in V.

Moreover, this holds even if v is not completely inside V but only satisfies ‖ΠVv‖
2
2 > (1 − ε)‖v‖22, for some

absolute constant ε > 0, where ΠV is the projector to V.

The condition that the vector is 0/1 can be significantly relaxed, see Remark 4.12. Theorem 4.1 is
also motivated by the Small Set Expansion problem. The current best known algorithms for Small Set
Expansion and Unique Games [ABS10] reduce these problems into the task of finding a sparse vector in a
subspace, and then find this vector using brute force enumeration. This enumeration is the main bottleneck
in improving the algorithms’ performance.8 [BBH+12] showed that, at least for the Small Set Expansion

7 It seems that what makes our relaxation different from the original problem is not so much the qualitative issue of considering
analytically sparse vectors as opposed to actually sparse vectors, but the particular choice of the L4/L2 ratio, which on one hand
seems easier (even if not truly easy) to optimize over than the L2/L1 ratio, but provides better guarantees than the L∞/L1 ratio.
However, this choice does force us to restrict our attention to subspaces of low dimension, while in some applications such as
certifying the restricted isometry property, the subspace in question is often the kernel of a “short and fat” matrix, and hence is
almost full dimensional. Nonetheless, we believe it should be possible to extend our results to handle subspaces of higher dimension,
perhaps at the some mild cost in the number of rounds.

8 This is the only step that takes super-polynomial time in [ABS10]’s algorithm for Small Set Expansion. Their algorithm for
Unique Games has an additional divide and conquer step that takes subexponential time, but, in our opinion, seems less inherently
necessary. Thus we conjecture that if the sparse-vector finding step could be sped up then it would be possible to speed up the
algorithm for both problems.
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question, finding an L4/L2 analytically sparse vector would be good enough. Using their work we obtain the
following corollary of Theorem 1.5:

Corollary 1.6 (Informally stated). There is an algorithm that given an n-vertex graph G that contains a set
S of size o(n/d1/3) with expansion at most ε, outputs a set S ′ of measure δ = o(1) with expansion bounded
away from 1, i.e., Φ(S ) 6 1 −Ω(1), where d is the dimension of the eigenspace of G’s random walk matrix
corresponding to eigenvalues larger than 1 − O(ε).

The derivation and meaning of this result is discussed in Section 6. We note that this is the first result that
gives an approximation of this type to the small set expansion in terms of the dimension of the top eigenspace,
as opposed to an approximation that is polynomial in the number of vertices.

1.4 Related work

Our paper follows the work of [BBH+12], that used the language of pseudoexpectation to argue that the SOS
hierarchy can solve specific interesting instances of Unique Games, and perhaps more importantly, how it is
often possible to almost mechanically “lift” arguments about actual distributions to the more general setting
of pseudodistribution. In this work we show how the same general approach be used to obtain positive results
for general instances.

The fact that LP/SDP solutions can be viewed as expectations of distributions is well known, and several
rounding algorithms can be considered as trying to “reverse engineer” a relaxation solution to get a good
distribution over actual solutions.

Techniques such as randomized rounding, the hyperplane rounding of [GW95], and the rounding for
TSP [GSS11, AKS12] can all be viewed in this way. One way to summarize the conceptual difference
between our techniques and those approaches is that these previous algorithms often considered the relaxation
solution as giving moments of an actual distribution on “fake” solutions. For example, in [GW95]’s Max
Cut algorithm, where actual solutions are modeled as vectors in {±1}n, the SDP solution is treated as the
moment matrix of a Gaussian distribution over real vectors that are not necessarily ±1-valued. Similarly in
the TSP setting one often considers the LP solution to yield moments of a distribution over spanning trees
that are not necessarily TSP tours. In contrast, in our setting we view the solution as providing moments of a

“fake” distribution on actual solutions.
Treating solutions explicitly as “fake distributions” is prevalent in the literature on negative results (i.e.,

integrality gaps) for LP/SDP hierarchies. For hierarchies weaker than SOS, the notion of “fake” is different,
and means that there is a collection of local distributions, one for every small subset of the variables, that are
consistent with one another but do not necessarily correspond to any global distribution. Fake distributions
are also used in some positive results for hierarchies, such as [BRS11, GS11], but we make this more explicit,
and, crucially, make much heavier use of the tools afforded by the Sum of Squares relaxation.

The notion of a “combining algorithm” is related to the notion of polymorphisms [BJK05] in the study of
constraint satisfaction problems. A polymorphism is a way to combine a number of satisfying assignments of
a CSP into a different satisfying assignments, and some relations between polymorphism, their generalization
to approximation problems, rounding SDP’s are known (e.g., see the talk [Rag10]). The main difference
is polymorphisms operate on each bit of the assignment independently, while we consider here combining
algorithms that can be very global.

In a follow up (yet unpublished) work, we used the techniques of this paper to obtain improved results for
the sparse dictionary learning problem, recovering a set of vectors x1, . . . , xm ∈ �

n from random samples
of µ-sparse linear combinations of them for any µ = o(1), improving upon previous results that required
µ � 1/

√
n [SWW12, AGM13, AAJ+13].
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1.5 Organization of this paper

In Section 2 we give a high level overview of our general approach, as well as proof sketches for (special
cases of) our main results. Section 3 contains the proof of Theorem 1.2— a quasipolynomial time algorithm
to optimize polynomials with nonnegative coefficients over the sphere. Section 4 contains the proof of
Theorem 1.5— a polynomial time algorithm for an O(d1/3)-approximation of the “analytical sparsest vector
in a subspace” problem. In Section 5 we show how to use the notion of analytical sparsity to solve the question
of finding a “planted” sparse vector in a random subspace. Section 6 contains the proofs of Corollaries 1.3
and 1.6 of our results to the small set expansion problem. Appendix A contains certain technical lemmas
showing that pseudoexpectation operators obey certain inequalities that are true for actual expectations.
Appendix C contains a short proof (written in classical notation, and specialized to the real symmetric setting)
of [BCY11, BH13]’s result that the SOS hierarchy yields a good approximation to the acceptance probability
of QMA(2) verifiers / measurement operators that have bounded one-way LOCC norm. Appendix B shows a
simpler algorithm for the case that the verifier satisfies the stronger condition of a bounded L2 (Frobenius)
norm. For the sake of completeness, Appendix D reproduces the proof from [BBH+12] of the relation
between hypercontractive norms and small set expansion. Our papers raises many more questions than it
answers, and some discussion of those appears in Section 7.

1.6 Notation
Norms and inner products. We will use linear subspaces of the form V = RU where U is a finite set with an
associated measure µ : U → [0,∞]. The p-norm of a vector v ∈ V is defined as ‖v‖p =

(∑
ω∈U µ(ω)|vω|p

)1/p. Similarly,
the inner product of v, w ∈ V is defined as 〈u, v〉 =

∑
ω∈U µ(ω)uωvω. We will only use two measures in this work: the

counting measure, where µ(ω) = 1 for every ω ∈ U, and the uniform measure, where µ(ω) = 1/|U| for all ω ∈ U. (The
norms corresponding to this measure are often known as the expectation norms.) We will use vector notation (i.e.,
letters such as u, v, and indexing of the form ui) for elements of subspaces with the counting measure, and function
notation (i.e., letters such as f , g and indexing of the form f (x)) for elements of subspaces with the uniform measure.
The dot product notation u · v will be used exclusively for the inner product with the counting measure.

Pseudoexpectations. We use the notion of pseudoexpectations from [BBH+12]. A level ` pseudoexpectation
function (`-p.e.f.) �̃X is an operator mapping a polynomial P of degree at most ` into a number denoted by �̃x∼X P(x)
and satisfying the linearity, normalization, and positivity conditions as stated in Section 1.1. We sometimes refer to X
as a level ` pseudodistribution (`-p.d.) by which we mean that there exists an associated pseudoexpectation operator.9

If P,Q are polynomials of degree at most `/2, and �̃X is an `-p.e.f., we say that �̃X is consistent with the constraint
P(x) ≡ 0 if it satisfies �̃x∼X P(x)2 = 0. We say that it is consistent with the constraint Q(x) > 0, if it consistent with
the constraint Q(x) − S (x) ≡ 0 for some polynomial S of degree 6 `/2 which is a sum of squares. (In the context of
optimization, to enforce the inequality constraint Q(x) > 0, it is always possible to add an auxiliary variable y and then
enforce the equality constraint Q(x) − y2 ≡ 0.) Appendix A contains several useful facts about pseudoexpectations.

2 Overview of our techniques

Traditionally to design a mathematical-programming based approximation algorithm for some optimization
problem O, one first decides what the relaxation is— i.e., whether it is a linear program, semidefinite program,
or some other convex program, and what constraints to put in. Then, to demonstrate that the value of the
program is not too far from the actual value, one designs a rounding algorithm that maps a solution of the
convex program into a solution of the original problem of approximately the same value. Our approach is

9 In the paper [BBH+12] we used the name level ` fictitious random variable for X, but we think the name pseudodistribution is
better as it is more analogous to the name pseudoexpectation. The name “pseudo random variable” would of course be much too
confusing.
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conceptually different— we design the rounding algorithm first, analyze it, and only then come up with the
relaxation.

Initially, this does not seem to make much sense— how can you design an algorithm to round solutions of
a relaxation when you don’t know what the relaxation is? We do this by considering an idealized version of a
rounding algorithm which we call a combining algorithm. Below we discuss this in more detail but roughly
speaking, a combining algorithm maps a distribution over actual solutions of O into a single solution (that
may or may not be part of the support of this distribution). This is a potentially much easier task than rounding
relaxation solutions, and every rounding algorithm yields a combining algorithm. In the other direction, every
combining algorithm yields a rounding algorithm for some convex programming relaxation, but in general
that relaxation could be of exponential size. Nevertheless, we show that in several interesting cases, it is
possible to transform a combining algorithm into a rounding algorithm for a not too large relaxation that we
can efficiently optimize over, thus obtaining a feasible approximation algorithm. The main tool we use for
that is the Sum of Squares proof system, which allows to lift certain arguments from the realm of combining
algorithms to the realm of rounding algorithms.

We now explain more precisely the general approach, and then give an overview of how we use this
approach for our two applications— finding “analytically sparse” vectors in subspaces, and optimizing
polynomials with nonnegative coefficients over the sphere.

Consider a general optimization problem of minimizing some objective function in some set S , such as
the n dimensional Boolean hypercube or the unit sphere. A convex relaxation for this problem consists of an
embedding that maps elements in S into elements in some convex domain, and a suitable way to generalize
the objective function to a convex function on this domain. For example, in linear programming relaxations
we typically embed {0, 1}n into the set [0, 1]n, while in semidefinite programming relaxations we might embed
{0, 1}n into the set of n × n positive semidefinite matrices using the map x 7→ X where Xi, j = xixk. Given
this embedding, we can use convex programming to find the element in the convex domain that maximizes
the objective, and then use a rounding algorithm to map this element back into the domain S in a way that
approximately preserves the objective value.

A combining algorithm C takes as input a distribution X over solutions in S and maps it into a single
element C(X) of S , such that the objective value of C(X) is approximately close to the expected objective
value of a random element in X. Every rounding algorithm R yields a combining algorithm C. The reason
is that if there is some embedding f mapping elements in S into some convex domain T , then for every
distribution X over S , we can define yX to be �x∈X f (x). By convexity, yX will be in T and its objective value
will be at most the average objective value of an element in X. Thus if we define C(X) to output R(yX) then
C will be a combining algorithm with approximation guarantees at least as good as R’s.

In the other direction, because the set of distributions over S is convex and can be optimized over by
an O(|S |)-sized linear program, every combining algorithm can be viewed as a rounding algorithm for this
program. However, |S | is typically exponential in the bit description of the input, and hence this is not a
very useful program. In general, we cannot improve upon this, because there is always a trivially lossless
combining algorithm that “combines” a distribution X into a single solution x of the same expected value
by simply sampling x from X at random. Thus for problems where getting an exact value is exponentially
hard, this combining algorithm cannot be turned into a rounding algorithm for a subexponential-sized
efficiently-optimizable convex program. However it turns out that at least in some cases, nontrivial combining
algorithms can be turned into a rounding algorithm for an efficient convex program. A nontrivial combining
algorithm C has the form C(X) = C′(M(X)) where C′ is an efficient (say polynomial or quasipolynomial
time) algorithm and M(X) is a short (say polynomial or quasipolynomial size) digest of the distribution X. In
all the cases we consider, M(X) will consist of all the moments up to some level ` of the random variable X,
or some simple functions of it. That is, typically M(X) is a vector in �m`

such that for every i1, . . . , i` ∈ [m],
Mi1,...,i` = �x∼X xi1 · · · xi` . We do not have a general theorem showing that any nontrivial combining algorithm
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can be transformed into a rounding algorithm for an efficient relaxation. However, we do have a fairly general
“recipe” to use the analysis of nontrivial combining algorithms to transform them into rounding algorithms.
The key insight is that many of the tools used in such analyses, such as the Cauchy–Schwarz and Hölder
inequalities, and other properties of distributions, fall under the “Sum of Squares” proof framework, and
hence can be shown to hold even when the algorithm is applied not to actual moments but to so-called
“pseudoexpectations” that arise from the SOS semidefinite programming hierarchy.

We now turn to giving a high level overview of our results. For the sake of presentations, we focus on
certain special cases of these two applications, and even for these cases omit many of the proof details and
only provide rough sketches of the proofs. The full details can be found in Sections 5, 4 and 3.

2.1 Finding a planted sparse vector in a random low-dimensional subspace

We consider the following natural problem, which was also studied by Demanet and Hand [DH13]. Let
f0 ∈ �U be a sparse function over some universe U of size n. That is, f0 is supported on at most µn
coordinates for some µ = o(1). Let V be the subspace spanned by f0 and d random (say Gaussian) functions
f1, . . . , fd ∈ �U . Can we recover f0 from any basis for V?

Demanet and Hand showed that if µ is very small, specifically µ � 1/
√

d, then f0 would be the most
L∞/L1-sparse function in V , and hence (as mentioned above) can be recovered efficiently by running n
linear programs. The SOS framework yields a natural and easy to describe algorithm for recovering f0 as
long as µ is a sufficiently small constant and the dimension d is at most O(

√
n). The algorithm uses the

SOS program for finding the most L4/L2-sparse function in V , which, as mentioned above, is simply the
polynomial optimization problem of maximizing ‖ f ‖44 over f in the intersection of V and the unit Euclidean
sphere.

Since f0 itself is in particular µ L4/L2-sparse , the optimum for the program is at least µ. Thus a combining
algorithm would get as input a distribution D over functions f ∈ V satisfying ‖ f ‖2 = 1 and ‖ f ‖44 > 1/µ,
and need to output a vector closely correlated with f0.10 (We use here the expectation norms, namely
‖ f ‖pp = �ω | f (ω)|p.) For simplicity, assume that the fi’s are orthogonal to f0 (they are nearly orthogonal, and
so everything we say below will still hold up to a sufficiently good approximation, see Section 5). In this
case, we can write every f in the support ofD as f = 〈 f0, f 〉 f0 + f ′ where f ′ ∈ V ′ = span{ f1, . . . , fd}. It is
not hard to show using standard concentration of measure results (see e.g., [BBH+12, Theorem 7.1]) that if
d = O(

√
n) then every f ′ ∈ V ′ satisfies

‖ f ′‖4 6 C‖ f ′‖2 , (2.1)

for some constant C. Therefore using triangle inequality, and using the fact that ‖ f ′‖2 6 ‖ f ‖2 = 1, it must
hold that

µ−1/4 6 ‖ f ‖4 6 〈 f , f0〉µ−1/4 + C (2.2)

or
〈 f , f0〉 > 1 −Cµ1/4 = 1 − o(1) (2.3)

for µ = o(1).
In particular this implies that if we apply a singular value decomposition (SVD) to the second moment

matrix D ofD (i.e., D = � f∈D f ⊗2) then the top eigenvector will have 1 − o(1) correlation with f0, and hence
we can simply output it as our solution.

To make this combining algorithm into a rounding algorithm we use the result of [BBH+12] that showed
that (2.1) can actually be proven via a sum of squares argument. Namely they showed that there is a degree 4
sum of squares polynomial S such that

‖Π′ f ‖44 + S ( f ) = C4‖ f ‖42 . (2.4)
10 Such a closely correlated vector can be corrected to output f0 exactly, see Section 5.
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(2.4) implies that even ifD is merely a pseudodistribution then it must satisfy (2.1). (When the latter is
raised to the fourth power to make it a polynomial inequality.) We can then essentially follow the argument,
proving a version of (2.2) raised to the 4th power by appealing to the fact that pseudodistributions satisfy
Hölder’s inequality, (Corollary A.11) and hence deriving that D will satisfy (2.3), with possibly slightly
worse constants, even when it is only a pseudodistribution.

In Section 5, we make this precise and extend the argument to obtain nontrivial (but weaker) guarantees
when d >

√
n. We then show how to use an additional correction step to recover the original function f0 up

to arbitrary accuracy, thus boosting our approximation of f0 into an essentially exact one.

2.2 Finding “analytically sparse” vectors in general subspaces

We now outline the ideas behind the proof of Theorem 4.1— finding analytically sparse vectors in general
(as opposed to random) subspaces. This is a much more challenging setting than random subspaces, and
indeed our algorithm and its analysis is more complicated (though still only uses a constant number of SOS
levels), and at the moment, the approximation guarantee we can prove is quantitatively weaker. This is the
most technically involved result in this paper, and so the reader may want to skip ahead to Section 2.3 where
we give an overview of the simpler result of optimizing over polynomials with nonnegative coefficients.

We consider the special case of Theorem 4.1 where we try to distinguish between a YES case where there
is a 0/1 valued o(d−1/3)-sparse function that is completely contained in the input subspace, and a NO case
where every function in the subspace has its four norm bounded by a constant times its two norm. That is,
we suppose that we are given some subspace V ⊆ �U of dimension d and a distributionD over functions
f : U → {0, 1} in V such that �ω∈U[ f (ω) = 1] = µ for every f in the support ofD, and µ = o(d−1/3). The goal
of our combining algorithm to output some function g ∈ V such that ‖g‖44 = �ω g(ω)4 � (�ω g(ω)2)2 = ‖g‖42.
(Once again, we use the expectation inner product and norms, with uniform measure overU.)

Since the f ’s correspond to sets of measure µ, we would expect the inner product 〈 f , f ′〉 of a typical pair
f , f ′ (which equals the measure of the intersection of the corresponding sets) to be roughly µ2. Indeed, one
can show that if the average inner product 〈 f , f ′〉 is ω(µ2) then it’s easy to find such a desired function g.
Intuitively, this is because in this case the distribution D of sets does not have an equal chance to contain
all the elements inU, but rather there is some set I of o(|U|) coordinates which is favored byD. Roughly
speaking, that would mean that a random linear combination g of these functions would have most of its
mass concentrated inside this small set I, and hence satisfy ‖g‖4 � ‖g‖2. But it turns out that letting g be a
random gaussian function matching the first two moments ofD is equivalent to taking such a random linear
combination, and so our combining algorithm can obtain this g using moment information alone.

Our combining algorithm will also try all n coordinate projection functions. That is, let δω be the function
such that δω(ω′) equals n = |U| if ω = ω′ and equals 0 otherwise, (and hence under our expectation inner
product f (ω) = 〈 f , δω〉). The algorithms will try all functions of the form Πδu where Π is the projector to the
subspace V . Fairly straightforward calculations show that 2-norm squared of such a function is expected to be
(d/n)‖δω‖22 = d, and it turns out in our setting we can assume that the norm is well concentrated around this
expectation (or else we’d be able to find a good solution in some other way). Thus, if coordinate projection
fails then it must hold that

O(d2) = O(�
ω
‖Πδω‖

4
2) > �

ω
‖Πδω‖

4
4 = �

ω,ω′
〈Πδω, δω′〉

4 . (2.5)

It turns out that (2.5) implies some nontrivial constraints on the distributionD. Specifically we know that

µ = �
f∼D
‖ f ‖44 = �

f∼D,ω∈U
〈 f , δω〉4 .

But since f = Π f and Π is symmetric, the RHS is equal to

�
f∼D,ω∈U

〈 f ,Πδω〉4 = 〈 �
f∼D

f ⊗4, �
ω∈U

(Πδω)⊗4〉 6 ‖ �
f∼D

f ⊗4‖2‖ �
ω∈U

(Πδω)⊗4‖2 ,
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where the last inequality uses Cauchy–Schwarz. If we square this inequality we get that

µ2 6 〈 �
f∼D

f ⊗4, �
f∼D

f ⊗4〉〈 �
ω∈U]

(Πδω)⊗4, �
ω∈U

(Πδω)⊗4〉 =

(
�

f , f ′∼D
〈 f , f ′〉4

) (
�
ω,ω′
〈Πδω,Πδω′〉

4
)
.

But since is a projector satisfying Π = Π2, we can use (2.5) and obtain that

Ω(µ2/d2) 6 �
f , f ′∼D

〈 f , f ′〉4 .

Since d = o(µ−3) this means that
�

f , f ′∼D
〈 f , f ′〉4 � µ8 . (2.6)

Equation (2.6), contrasted with the fact that � f , f ′∼D〈 f , f ′〉 = O(µ2), means that the inner product of two
random functions in D is somewhat “surprisingly unconcentrated”, which seems to be a nontrivial piece
of information about D.11 Indeed, because the f ’s are nonnegative functions, if we pick a random u and
consider the distribution Du where the probability of every function is reweighed proportionally to f (u),
then intuitively that should increase the probability of pairs with large inner products. Indeed, as we show
in Lemma A.4, one can use Hölder’s inequality to prove that there exist ω1, . . . , ω4 such that under the
distributionD′ where every element f is reweighed proportionally to f (ω1) · · · f (ω4), it holds that

�
f , f ′∼D′

〈 f , f ′〉 >
(
�

f , f ′∼D
〈 f , f ′〉4

)1/4

. (2.7)

(2.7) and (2.6) together imply that E f , f ′∼D′〈 f , f ′〉 � µ2, which, as mentioned above, means that we can find
a function g satisfying ‖g‖4 � ‖g‖2 by taking a gaussian function matching the first two moments ofD′.

Once again, this combining algorithm can be turned into an algorithm that uses O(1) levels of the
SOS hierarchy. The main technical obstacle (which is still not very hard) is to prove another appropriate
generalization of Hölder’s inequality for pseudoexpectations (see Lemma A.4). Generalizing to the setting
that in the YES case the function is only approximately in the vector space is a bit more cumbersome. We
need to consider apart from f the function f that is obtained by first projecting f to the subspace and then
“truncating” it by rounding each coordinate where f is too small to zero. Because this truncation operation is
not a low degree polynomial, we include the variables corresponding to f as part of the relaxation, and so our
pseudoexpectation operator also contains the moments of these functions as well.

2.3 Optimizing polynomials with nonnegative coefficients

We now consider the task of maximizing a polynomial with nonnegative coefficients over the sphere, namely
proving Theorem 3.1. We consider the special case of Theorem 3.1 where the polynomial is of degree 4. That
is, we are given a parameter ε > 0 and an n2 × n2 nonnegative matrix M with spectral norm at most 1 and
want to find an ε additive approximation to the maximum of∑

i, j,k,l

Mi, j,k,lxix jxkxl , (2.8)

over all x ∈ Rn with ‖x‖ = 1, where in this section we let ‖x‖ be the standard (counting) Euclidean norm

‖x‖ =

√∑
i x2

i .

11 Interestingly, this part of the argument does not require µ to be o(d−1/3), and some analogous “non-concentration” property of
D can be shown to hold for a hard to roundD for any µ = o(1). However, we currently know how to take advantage of this property
to obtain a combining algorithm only in the case that µ � d−1/3.
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One can get some intuition for this problem by considering the case where M is 0/1 valued and x is
0/k−1/2 valued for some k. In this case one can think of M is a 4-uniform hypergraph on n vertices and x as a
subset S ⊆ [n] that maximizes the number of edges inside S divided by |S |2, and so this problem is related to
some type of a densest subgraph problem on a hypergraph.12

Let’s assume that we are given a distribution X over unit vectors that achieve some value ν in (2.8).
This is a non convex problem, and so generally the average of these vectors would not be a good solution.

However, it turns out that the vector x∗ defined such that x∗i =

√
�x∼X x2

i can sometimes be a good solution
for this problem. Specifically, we will show that if it fails to give a solution of value at least c − ε, then we
can find a new distribution X′ obtained by reweighing elements X that is in some sense “simpler” than X.
More precisely, we will define some nonnegative potential function Ψ such that Ψ(X) 6 log n for all X and
Ψ(X′) 6 Ψ(X) −Ω(ε2) under the above conditions. This will show that we will need to use this reweighing
step at most logarithmically many times.

Indeed, suppose that ∑
i, j,k,l

Mi, j,k,lx∗i x∗j x
∗
k x∗l = (x∗⊗2)T Mx∗⊗2 6 ν − ε . (2.9)

We claim that in contrast
yT My > ν , (2.10)

where y is the n2-dimensional vector defined by yi, j =
√
�x∼X x2

i x2
j . Indeed, (2.10) follows from the

non-negativity of M and the Cauchy–Schwarz inequality since

ν =
∑
i, j,k,l

Mi, j,k,l �
x∈X

xix jxkxl 6
∑
i, j,k,l

Mi, j,k,l

√
�

x∼X
x2

i x2
j

√
�

x∼X
x2

k x2
l = yT My

Note that since X is a distribution over unit vectors, both x∗ and y are unit vectors, and hence (2.9) and
(2.10) together with the fact that M has bounded spectral norm imply that

ε 6 yT My − (x∗⊗2)T Mx∗⊗2
= (y − x∗⊗2)T M(y + x∗⊗2)

6 ‖y − x∗⊗2
‖ · ‖y + x∗⊗2

‖ 6 2‖y − x∗⊗2
‖ . (2.11)

However, it turns out that ‖y − x∗⊗2‖ equals
√

2 times the Hellinger distance of the two distributions
D,D∗ over [n] × [n] defined as follows: �[D = (i, j)] = � x2

i x2
j while �[D∗ = (i, j)] = (� x2

i )(� x2
j) (see

Section 3). At this point we can use standard information theoretic inequalities to derive from (2.11) that
there is Ω(ε2) mutual information between the two parts of D. Another way to say this is that the entropy of
the second part ofD drops on average by Ω(ε2) if we condition on the value of the first part. To say the same
thing mathematically, if we define D(X) to be the distribution (�x∼X x2

1, . . . ,�x∼X x2
n) over [n] and D(X|i) to

be the distribution 1
�x∼X x2

i
(�x∼X x2

i x2
1, . . . ,�x∼X x2

i x2
n) then

�
i∼D(x)

H(X|i) 6 H(X) −Ω(ε2) .

But one can verify that D(X|i) = D(Xi) where Xi is the distribution over x’s such that �[Xi = x] = x2
i �[X =

x]/�X x2
i , which means that if we define Ψ(X) = H(D(X)) then we get that

�
i∼D(x)

Ψ(Xi) 6 Ψ(X) −Ω(ε2)

12 The condition of maximizing |E(S )|/|S |2 is related to the log density condition used by [BCC+10] in their work on the densest
subgraph problem, since, assuming that the set [n] of all vertices is not the best solution, the set S satisfies that log|S | |E(S )| > logn |E|.
However, we do not know how to use their algorithm to solve this problem. Beyond the fact that we consider the hypergraph setting,
their algorithm manages to find a set of nontrivial density under the assumption that there is a “log dense” subset, but it is not
guaranteed to find the “log dense” subset itself.
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and hence Ψ is exactly the potential function we were looking for.
To summarize our combining algorithm will do the following for t = O(log n/ε2) steps: given the first

moments of the distribution X, define the vector x∗ as above and test if it yields an objective value of at
least ν − ε. Otherwise, pick i with probability �x∼X x2

i and move to the distribution Xi. Note that given d
level moments for X, we can compute the d − 1 level moments of Xi, and hence the whole algorithm can be
carried out with only access to level O(log n/ε2) moments of X. We then see that the only properties of the
moments used in this proof are linearity, the fact that

∑
x2

i can always be replaced with 1 in any expression,
and the Cauchy–Schwarz inequality used for obtaining (2.10). It turns out that all these properties hold
even if we are not given access to the moments of a true distribution X but are only given access to a level
d pseudoexpectation operator �̃ for d equalling some constant times log n/ε2. Such pseudoexpectations
operators can be optimized over in d levels of the SOS hierarchy, and hence this combining algorithm is in
fact a rounding algorithm.

3 Approximation for nonnegative tensor maximization

In this section we prove Theorem 1.2, giving an approximation algorithm for the maximum over the sphere of
a polynomial with nonnegative coefficients. We will work in the space Rn endowed with the counting measure
for norms and inner products. We will define the spectral norm of a degree-2t homogeneous polynomial
M in x = x(x1, . . . , xn), denoted by ‖M‖spectral, to be the minimum of the spectral norm of Q taken over all
quadratic forms Q over (�n)⊗t such that Q(x⊗t) = M(x) for every x. Note that we can compute the spectral
norm of an homogeneous polynomial in polynomial time using semidefinite programming. Thus we can
restate our main theorem of this section as:

Theorem 3.1 (Theorem 1.2, restated). Let M be a degree-2t homogeneous polynomial in x = (x1, . . . , xn)
with nonnegative coefficients. Then, there is an algorithm, based on O(t2 log n/ε2) levels of the SOS hierarchy,
that finds a unit vector x∗ ∈ �n such that

M(x∗) > max
x∈�n,‖x‖=1

M(x) − ε‖M‖spectral .

To prove Theorem 3.1 we first come up with a combining algorithm, namely an algorithm that takes (the
moment matrix of) a distribution X over unit vectors x ∈ Rn such that M(x) > ν and find a unit vector x∗ such
that M(x∗) > ν − ε. We then show that the algorithm will succeed even if X is merely a level O(t log n/ε2)
pseudo distribution; that is, the moment matrix is a pseudoexpectation operator. The combining algorithm is
very simple:

Combining algorithm for polynomials with nonnegative coefficients:

Input: distribution X over unit x ∈ �n such that M(x) = ν.

Operation: Do the following for t2 log n/ε2 steps:

Direct rounding: For i ∈ [n], let x∗i =

√
�x∼X x2

i . If M(x∗) > ν − 4ε then output x∗ and quit.

Conditioning: Try to find i1, . . . , it−1 ∈ [n] such that the distribution Xi1,...,it−1 satisfies Ψ(Xi1,...,it−1) 6 Ψ(X) −
ε2/t2, and set X = Xi1,...,it−1 , where:

– Xi1,...,it−1 is defined by letting �[Xi1,...,it−1 = x] be proportional to �[X = x] ·
∏t−1

j=1 x2
i j

for every
x ∈ �n.

– Ψ(X) is defined to be H(A(X)) where H(·) is the Shannon entropy function and A(X) is the
distribution over [n] obtained by letting �[A(X) = i] = �x∼X x2

i for every i ∈ [n].
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Clearly Ψ(X) is always in [0, log n], and hence if we can show that we always succeed in at least one
of the steps, then eventually the algorithm will output a good x∗. We now show that if the direct rounding
step fails, then the conditioning step must succeed. We do the proof under the assumption that X is an actual
distribution. Almost of all of this analysis holds verbatim when X is a pseudodistribution of level at least
2t2 log n/ε2, and we note the one step where the extension requires using a nontrivial (though easy to prove)
property of pseudoexpectations, namely that they satisfy the Cauchy–Schwarz inequality.

Some information theory facts. We recall some standard relations between various entropy and distance
measures. Let X and Y be two jointly distributed random variables. We denote the joint distribution of X and Y
by {XY}, and their marginal distributions by {X} and {Y}. We let {X}{Y} denote the product of the distributions
{X} and {Y} (corresponding to sampling X and Y independently from their marginal distribution). Recall that
the Shannon entropy of X, denoted by H(X), is defined to be

∑
x∈Support(X) �[X = x] log(−�[X = x]). The

mutual information of X and Y is defined as I(X,Y) def
= H(X) − H(X | Y), where H(X | Y) is conditional

entropy of X with respect to Y , defined as �y∼{Y} H(X | Y = y). The Hellinger distance between two

distributions p and q is defined by dH(p, q) def
=

(
1 −

∑
i
√

piqi
)1/2

. (In particular, dH(p, q) equals 1/
√

2 times
the Euclidean distance of the unit vectors

√
p and

√
q.) The following inequality (whose proof follows

by combining standard relations between the Hellinger distance, Kullback–Leibler divergence, and mutual
information) would be useful for us

Lemma 3.2. For any two jointly-distributed random variables X and Y,

2dH
(
{XY}, {X}{Y}

)2
6 I(X,Y)

3.1 Direct Rounding

Given X, we define the following correlated random variables A1, . . . , At over [n]: the probability that
(A1, . . . , At) = (i1, . . . , it) is equal to �x∼X x2

i1
· · · x2

it
. Note that for every i, the random variable Ai is distributed

according to A(X). (Note that even if X is only a pseudodistribution, A1, . . . , At are actual random variables.)
The following lemma gives a sufficient condition for our direct rounding step to succeed:

Lemma 3.3. Let M,X be as above. If dH({A1 · · · At}, {A1} · · · {At}) 6 ε, then the unit vector x∗ with
x∗i = (�x∼X x2

i )1/2 satisfies M(x∗) > ν − 4ε‖M‖spectral. Moreover, this holds even if X is a level ` > 2t
pseudodistribution.

Proof. Let Q be a quadratic form with Q(x⊗t) = M(x). Let y ∈ (�n)⊗t be the vector yi1···it =

(�̃x∼cX x2
i1
· · · x2

it
)1/2. Then,

�̃M(x∗) = 〈M̂, �̃ x∗⊗2t
〉 6 〈M̂, y ⊗ y〉 = Q(y) (3.1)

Here, the vector M̂ ∈ (�n)⊗2t contains the coefficients of M. In particular, M̂ > 0 entry-wise. The inequality
in (3.1) uses Cauchy–Schwarz; namely that �̃ xαxβ 6 (�̃(xα)2 · �̃(xβ)2)1/2 = yαyβ. The final equality in (3.1)
uses that y is symmetric.

Next, we bound the difference between Q(y) and M(x∗)

Q(y) − M(x∗) = Q(y) − Q(x∗⊗t) = 〈y + x∗⊗t,Q(y − x∗⊗t)〉 6 ‖Q‖ · ‖y + x∗⊗t
‖ · ‖y − x∗⊗t

‖ . (3.2)

(Here, 〈·,Q ·〉 denotes the symmetric bilinear form corresponding to Q.)
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Since both x∗⊗t and y are unit vectors, ‖y + x∗⊗t‖ 6 2. By construction, the vector y corre-
sponds to the distribution {A1 · · · At} and x∗⊗t corresponds to the distribution {A1} · · · {At}. In particular,
dH({A1 · · · At}, {A1} · · · {At}) = 1√

2
‖y − x∗⊗t‖. Together with the bounds (3.1) and (3.2),

M(x∗) > �̃M(x) − 4‖Q‖ · dH({A1 · · · At}, {A1} · · · {At}) . �

To verify this carries over when X is a pseudodistribution, we just need to use the fact that Cauchy–
Schwarz holds for pseudoexpectations (Lemma A.2).

3.2 Making Progress

The following lemma shows that if the sufficient condition above is violated, then on expectation we can
always make progress. (Because A1, . . . , At are actual random variables, it automatically holds regardless of
whether X is an actual distribution or a pseudodistribution.)

Lemma 3.4. If dH({A1 · · · At}, {A1} · · · {At}) > ε, then H(At | A1 · · · At−1) 6 H(A) − 2ε2/t2

Proof. The bound follows by combining a hybrid argument with Lemma 3.2.
Let A′1, . . . , A

′
t be independent copies of A1, . . . , At so that

{A1 · · · At · · · A′1 · · · A
′
t} = {A1 · · · At}{A1} · · · {At} .

We consider the sequence of distributions D0, . . . ,Dt with

Di = {A1 · Ai · · · A′i+1 · · · A
′
t} .

By assumption, dH(D0,Dt) > ε. Therefore, there exists an index i such that dH(Di−1,Di) > ε/t. Let
X = A1 · · · Ai−1 and Y = AiA′i+1 · · · A

′
t . Then, Di = {XY} and Di−1 = {X}{Y}. By Lemma 3.2,

H(Y) − H(Y | X) = I(X,Y) > 2dH({XY}, {X}{Y}) > 2ε2/t2 .

Since A′i+1, . . . , A
′
t are independent of A1, . . . , Ai,

H(Y) − H(Y | X) = H(Ai) − H(Ai | A1 · · · Ai−1) .

By symmetry and the monotonicity of entropy under conditioning, we conclude

H(At | A1 · · · At−1) 6 H(A) − 2ε2/t2 . �

Lemma 3.4 implies that if our direct rounding fails then the expectation of H(A1) conditioned on
A2, . . . , At is at most H(A) − 2ε2/t2, but in particular this means there exist i1, . . . , it−1 so that H(At|A1 =

i1, . . . , At−1 = it−1) 6 H(A) − 2ε2/t2. The probability of i under this distribution At|A1 = i1, . . . , At−1 = it−1 is
proportional to �x∼X x2

i ·
∏t−1

j=1 x2
i j

, which means that it exactly equals the distribution A(Xi1,...,it−1). Thus we
see that Ψ(Xi1,...,it−1) 6 Ψ(X) − 2ε2/t2. This concludes the proof of Theorem 3.1. �

Remark 3.5 (Handling odd degrees and non homogenous polynomials). If the polynomial is not homogenous
but only has monomials of even degree, we can homogenize it by multiplying every monomial with an
appropriate power of (

∑
x2

i ) which is identically equal to 1 on the sphere. To handle odd degree monomials
we can introduce a new variable x0 and set a constraint that it must be identically equal to 1/2. This way we
can represent all odd degree monomials by even degree monomials with a blowup of 2 in the coefficients.
Note that if the pseudoexpectation operator is consistent with this constraint then our rounding algorithm will
in fact output a vector that satisfies it.
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4 Finding an “analytically sparse” vector in a subspace

In this section we prove Theorem 1.5. We letU be a universe of size n and L2(U) be the vector space of
real-valued functions f : U → �. The measure on the setU is the uniform probability distribution and hence
we will use the inner product 〈 f , g〉 = �ω f (ω)g(ω) and norm ‖ f ‖p = (�ω f (ω)p)1/p for f , g : U → � and
p > 1.

Theorem 4.1 (Theorem 1.5, restated). There is a constant ε > 0 and a polynomial-time algorithm A, based
on O(1) levels of the SOS hierarchy, that on input a projector operator Π such that there exists a µ-sparse
Boolean function f satisfying ‖Π f ‖22 > (1 − ε)‖ f ‖22, outputs a function g ∈ Image(Π) such that

‖g‖44 > Ω

(
‖g‖42

µ(rank Π)1/3

)
.

We will prove Theorem 4.1 by first showing a combining algorithm and then transforming it into a
rounding algorithm. Note that the description of the combining algorithm is independent of the actual
relaxation used, since it assumes a true distribution on the solutions, and so we first describe the algorithm
before specifying the relaxation. In our actual relaxation we will use some auxiliary variables that will make
the analysis of the algorithm simpler.

Combining algorithm for finding an analytically sparse vector:

Input: DistributionD over Boolean (i.e., 0/1 valued) functions f ∈ L2(U) that satisfy:

– µ( f ) = �[ f (ω) = 1] = 1/λ.

– ‖Π f ‖22 > (1 − ε)‖ f ‖22.

Goal: Output g such that
‖g‖44 > γ‖g‖

2
2 where γ = Ω(1/µ(rank Π)1/3) (4.1)

Operation: Do the following:

Coordinate projection rounding: For ω ∈ U, let δω : U → � be the function that satisfies 〈 f , δω〉 = f (ω)
for all f ∈ L2(U). Go over all vectors of the form gω = Πδω for ω ∈ U and if there is one that satisfies
(4.1) then output it. Note that the output of this procedure is independent of the distributionD.

Random function rounding: Choose a random gaussian vector t ∈ L2(U) and output g = Πt if it satisfies
(4.1). (Note that this is also independent of the distributionD.)

Conditioning: Go over all choices for ω1, . . . , ω4 ∈ U and modify the distribution D to the distribution
Dω1,...,ω4 defined such that �Dω1 ,...,ω4

[ f ] is proportional to �D[ f ]
∏4

j=1 f (ω j)2 for every f .

Gaussian rounding: For every one of these choices, let t to be a random Gaussian that matches the first two
moments of the distributionD, and output g = Πt if it satisfies (4.1).

Because we will make use of this fact later, we will note when certain properties hold not just for
expectations of actual probability distributions but for pseudoexpectations as well. The extension to pseudo-
expectations is typically not deep, but can be cumbersome, and so the reader might want to initially restrict
attention to the case of a combining algorithm, where we only deal with actual expectations. We show the
consequences for each of the steps failing, and then combine them together to get a contradiction.
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4.1 Random function rounding

We start by analyzing the random function rounding step. Let e1, . . . , en be an orthonormal basis for the space
of functions L2(U). Let t be a standard Gaussian function in L2(U), i.e., t = ξ1e1 + . . .+ ξnen for independent
standard normal variable ξ1, . . . , ξn (each with mean 0 and variance 1). The following lemmas combined
show what are the consequences if ‖Πt‖4 is not much bigger than ‖Πt‖2.

Lemma 4.2. For any f , g : U → �,
�
t
〈 f , t〉〈g, t〉 = 〈 f , g〉 .

Proof. In the {e1, . . . , en} basis, f =
∑

i aiei and g =
∑

j b je j. Then, 〈 f , g〉 =
∑

i aibi and 〈 f , t〉〈g, t〉 =∑
i j aib jξiξ j, which has expectation

∑
i aibi. Hence, the left-hand side is the same as the right-hand side. �

Lemma 4.3. The 4th moment of ‖Πt‖4 satisfies

�
t
‖Πt‖44 > �ω

‖Πδω‖
4
2 .

Proof. By the previous lemma, the Gaussian variable Πt(ω) = 〈Πδω, t〉 has variance ‖Πδω‖22. Therefore,

�
t
‖Πt‖44 = �

t
�
ω

Πt(ω)4
4 = �

ω
�
t
〈δω,Πt〉4

= 3�
ω

(
�
t
〈Πδω, t〉2

)4
= 3�

ω
‖Πδω‖

4
2 ,

since 3 = �X∼N(0,1) X4. �

Lemma 4.4. The 4th moment of ‖Πt‖2 satisfies

�
t
‖Πt‖42 6 10 · (rank Π)2 .

Proof. The random variable ‖Πt‖2 has a χ2-distribution with k = rank Π degrees of freedom. The mean of
this distribution is k and the variance is 2k. It follows that �t‖Πt‖42 6 10(rank Π)4. �

4.2 Coordinate projection rounding

We now turn to showing the implications of the failure of projection rounding. We start by noting the
following technical lemma, that holds for both the expectation and counting inner products:

Lemma 4.5. Let x and y be two independent, vector-valued random variables. Then,

�〈x, y〉4 6
(
�〈x, x′〉4

)1/2
·
(
�〈y, y′〉4

)1/2
.

Moreover, this holds even if x, y come from a level ` > 10 pseudodistribution.

Proof. By Cauchy–Schwarz,

�̃
x,y
〈x, y〉4 = 〈�̃x x⊗4, �̃y y

⊗4〉

6 ‖�̃x x⊗4‖2 · ‖�̃y y
⊗4‖2 =

(
�̃x,x′〈x, x′〉4

)1/2
·
(
�̃y,y′〈y, y

′〉4
)1/2

.

We now consider the case of pseudodistributions. In this case the pseudoexpectation over two independent
x and x′ is obtained using Lemma A.5. Let X and Y be the n4-dimensional vectors �̃ x⊗4 and �̃ y⊗4

respectively.
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We can use the standard Cauchy–Schwarz to argue that X · Y 6 ‖X‖2 · ‖Y‖2, and so what is left is to argue
that ‖X‖22 = �̃x,x′〈x, x′〉4, and similarly for Y . This holds by linearity for the same reason this is true for actual
expectations, but for the sake of completeness, we do this calculation. We use the counting inner product for
convenience. Because the lemma’s statement is scale free, this will imply it also for the expectation norm.

�̃
x,x′
〈x, x′〉4 = �̃

x,x′

∑
i, j,k,l

�̃ xix jxkxlx′i x
′
jx
′
kx′l =

∑
i, j,k,l

(�̃
x

xix jxkxl)(�̃
x′

x′i x
′
jx
′
kx′l) ,

where the last equality holds by independence. But this is simply equal to∑
i, j,k,l

(�̃
x

xix jxkxl)2 = ‖X‖22

�

The following lemma shows a nontrivial consequence for ‖Πδω‖44 being small:

Lemma 4.6 (Coordinate projection rounding). For any distributionD over L2(U),

�
f∼D
‖Π f ‖44 6

(
� f , f ′∼D〈 f ,Π f ′〉4

)1/2
·
(
�ω‖Πδω‖

4
4

)1/2
.

Moreover, this holds even if D is a level ` > 104 pseudodistribution. (Note that ω is simply the uniform
distribution overU, and hence the last term of the right hand side always denotes an actual expectation.)

Proof. By the previous lemma,

�̃
f∼D
‖Π f ‖44 = �

f∼D
�
ω
〈δω,Π f 〉4 6

(
�̃ f , f ′∼D〈 f ,Π f ′〉4

)1/2
·
(
�ω,ω′〈δω,Πδω′〉

4
)1/2

=
(
�̃ f , f ′∼D〈 f ,Π f ′〉4

)1/2
·
(
�ω‖Πδω‖

4
4

)1/2
. �

4.3 Gaussian Rounding

In this subsection we analyze the gaussian rounding step. Let t be a random function with the Gaussian
distribution that matches the first two moments of a distributionD over L2(U).

Lemma 4.7. The 4th moment of ‖Πt‖4 satisfies

�
t
‖Πt‖44 = 3 �

f , f ′∼D

〈
(Π f )2, (Π f ′)2

〉
.

Moreover, this holds even ifD is a level ` > 100 pseudodistribution. (Note that even in this case t is still an
actual distribution.)

Proof.

�
t
‖Πt‖44 = �

t
�
ω

Πt(ω)4 = 3�
ω

(
�t Πt(ω)2

)2

= 3 �̃
ω

(
� f∼DΠ f (ω)2

)2
= 3 �̃

f , f ′∼D

〈
(Π f )2, (Π f ′)2

〉
. �

Fact 4.8. If {A, B,C,D} have Gaussian distribution, then

� ABCD = � AB · �CD + � AC · � BD + � BC · � AD .
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Lemma 4.9. The fourth moment of ‖Πt‖2 satisfies

�
t
‖Πt‖42 6 3

(
�

f∼D
‖Π f ‖22

)2

.

Moreover, this holds even ifD is a level ` > 4 pseudodistribution.

Proof. By the previous fact,

�
t
‖Πt‖42 = �

ω,ω′
�
t

Πt(ω)2 · Πt(ω′)2

= �
ω,ω′
�̃
f

Π f (ω)2 · �̃
f

Π f (ω′)2 + 2
(
�̃
f

Π f (ω)Π f (ω′)
)2

= 3
(
�̃
f
‖Π f ‖22

)2

. �

4.4 Conditioning

We now show the sense in which conditioning can make progress. LetD be a distribution over L2(U). For
ω ∈ U, letDω be the distributionD reweighed by f (ω)2 for f ∼ D. That is, �Dω{ f } ∝ f (ω)2 · �D{ f }, or in
other words, for every function P(·), � f∼Dω P( f ) = (� f simD f (ω)2P( f ))/(� f∼D f (ω)2). Similarly, we write
Dω1,...,ωr for the distributionD reweighed by f (ω1)2 · · · f (ωr)2.

Lemma 4.10 (Conditioning). For every even r ∈ �, there are points ω1, . . . , ωr ∈ U such that the reweighed
distributionD′ = Dω1,...,ωr satisfies

�
f ,g∼D′

〈
f 2, g2

〉
>

(
� f ,g∼D

〈
f 2, g2

〉r)1/r

Moreover, this holds even ifD is a level ` > r + 4 pseudodistribution.

Proof. We have that

max
ω1,...,ωr

�̃
f ,g∼Dω1 ,...,ωr

〈
f 2, g2

〉
= max

ω1,...,ωr

 �̃ f (ω1)2 · · · f (ωr)2 · g(ω1)2 · · · g(ωr)2
〈

f 2, g2
〉(

�̃ f f (ω1)2 · · · f (ωr)2
) (
�̃g g(ω1)2 · · · g(ωr)2

) 
but using �(X/Y) 6 (max X)/(max Y) and �ω1,...,ωr f (ω1)2 · · · f (ωr)2g(ω1)2 · · · g(ωr)2 =

〈
g2, f 2

〉r
, the RHS

is lower bounded by

�ω1,...,ωr �̃ f (ω1)2 · · · f (ωr)2 · g(ω1)2 · · · g(ωr)2
〈

f 2, g2
〉

�ω1,...,ωr

(
�̃ f f (ω1)2 · · · f (ωr)2

) (
�̃g g(ω1)2 · · · g(ωr)2

) =
� f ,g∼D

〈
f 2, g2

〉r+1

�̃ f ,g∼D
〈

f 2, g2〉r

Now, ifD was an actual expectation, then we could use Hölder’s inequality to lower bound the numerator

of the RHS by
(
� f ,g∼D

〈
f 2, g2

〉r)(r+1)/r
which would lower bound the RHS by

(
� f ,g∼D

〈
f 2, g2

〉r)1/r
. For

pseudoexpectations this follows by appealing to Lemma A.4. �

4.5 Truncating functions

The following observation would be useful for us for analyzing the case that the distribution is over functions
that are not completely inside the subspace. Note that if the function f is inside the subspace, we can just
take f = f in Lemma 4.11, and so the reader may want to skip this section in a first reading and just pretend
that f = f below.
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Lemma 4.11. Let ε < 1/400, Π be a projector on �U and suppose that f : U → {0, 1} satisfies that
�[ f (ω) = 1] = µ and ‖Π f ‖22 > (1 − ε)µ. Then there exists a function f : �U → � such that:

1. ‖Π f ‖44 > Ω(µ).

2. For every ω ∈ U, Π f (ω)2 > Ω(| f (ω)|).

Proof. Fix τ > 0 to be some sufficiently small constant (e.g., τ = 1/2 will do). Let f ′ = Π f . We define
f = f ′ · 1| f ′ |>τ (i.e., f (ω) = f ′(ω) if | f ′(ω)| > τ and f (ω) = 0 otherwise) and define f = f ′ · 1| f ′ |<τ. Clearly

f ′(ω)2 > τ| f (ω)| for every ω ∈ U.
Since f (x) , 0 if and only if f ′(x) ∈ (0, τ), clearly | f (x)| 6 | f (x) − f ′(x)| and hence ‖ f ‖22 6 εµ.

Using f ′ = f + f , we see that Π f = f + ( f ′ − f ) − f + (Π f − f ). Now since f ′ is in the subspace,

‖Π f − f ‖2 6 ‖ f ′ − f ‖2 = ‖ f ‖2 and hence for g = ( f ′ − f ) − f + (Π f − f ), ‖g‖2 6 3
√
εµ. Therefore

the probability that g(ω) > 10
√
ε is at most µ/2. This means that with probability at least µ/2 it holds

that f (ω) = 1 and g(ω) 6 10
√
ε, in which case f (ω) > 1 − 10

√
ε > 1/2. In particular, we get that

� f (ω)4 > Ω(µ). �

Remark 4.12 (Non-Boolean functions). The proof of Lemma 4.11 establishes much more than its statement.
In particular note that we did not make use of the fact that f is nonnegative, and a function f into {0,±1}
with �[ f (ω) , 0] = µ would work just the same. We also did not need the nonzero values to have magnitude
exactly one, since the proof would easily extend to the case where they are in [1/c, c] for some constant
c. One can also allow some nonzero values of the function to be outside that range, as long as their total
contribution to the 2-norm squared is much smaller than µ.

4.6 Putting things together

We now show how the above analysis yields a combining algorithm, and we then discuss the changes needed
to extend this argument to pseudodistributions, and hence obtain a rounding algorithm.

LetD be a distribution over Boolean functions f : U → {0, 1} with ‖ f ‖22 = µ and ‖Π f ‖22 > 0.99‖ f ‖22. The
goal is to compute a function t : U → � with ‖Πt‖4 � ‖t‖22, given the low-degree moments ofD.

Suppose that random-function rounding and coordinate-projection rounding fail to produce a function
t with ‖Πt‖44 > γ‖t‖

4
2. Then, �ω‖Πδω‖42 6 O(γ) · (rank Π)2 (from failure of random-function rounding and

Lemmas 4.3 and 4.4). By the failure of coordinate-projection rounding (and using Lemma 4.6 applied to the
distribution over f ) we get that(

�
f∼D
‖Π f ‖44

)2

6 O(γ) · �
f , f ′∼D

〈
f , f

′〉4
· �
ω
‖Πδω‖

4
2.

Combining the two bounds, we get

�
f , f ′∼D

〈
f , f

′〉4
> Ω(1/(γ rank Π)2)

(
�

f∼D
‖Π f ‖44

)2

Since (by Lemma 4.11), (Π f )(ω)2 > Ω(| f (ω)|) for every ω ∈ U and f in the support of D, we have
〈(Π f )2, (Π f ′)2〉 > Ω(〈 f , f

′
〉) for all f , f ′ in the support. Thus,

�
f , f ′∼D

〈
(Π f )2, (Π f ′)2

〉4
> Ω(1/(γ rank Π)2)

(
�

f∼D
‖Π f ‖44

)2
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By the reweighing lemma, there exists ω1, . . . , ω4 ∈ U such that the reweighted distributionD′ = Dω1,...,ω4

satisfies

�
f , f ′∼D′

〈
(Π f )2, (Π f ′)2

〉
>

(
�

f , f ′∼D

〈
(Π f )2, (Π f ′)2

〉4
)1/4

> Ω(1/(γ rank Π))1/2
(
�

f∼D
‖Π f ]‖44

)1/2

The failure of Gaussian rounding (applied toD′) implies

�
f , f ′∼D′

〈
(Π f )2, (Π f ′)2

〉
6 O(γ)

(
�

f∼D′
‖Π f ‖22

)2

.

Combining these two bounds, we get

�
f∼D
‖Π f ‖44 6 O(γ3 rank Π) ·

(
�

f∼D′
‖Π f ‖22

)4

By the properties ofD and Lemma 4.11, the left-hand side is Ω(µ) and the right-hand side is O(γ3 rank Πµ4).
Therefore, we get

γ > Ω

(
1

(rank Π)1/3µ

)
Extending to pseudodistributions. We now consider the case that D is a pseudodistribution of level
` > 10. Most of the statements above just go through as is, given that the analysis of all individual steps does
extend (as noted) for pseudoexpectations. One issue is that the truncation operation used to obtain f is not
a low degree polynomial. While it may be possible to approximate it with such a polynomial, we sidestep
the issue by simply adding f as additional auxiliary variables to our program, and enforcing the conclusions
of Lemma 4.11 as constraints that the pseudoexpectation operator must be consistent with. This is another
example of how we design our relaxation to fit the rounding/combining algorithm, rather than the other way
around. With this step, we can replace statements such as “(*) holds for all functions in the support ofD”
(where (*) is some equality or inequality constraint in the variables f , f ) with the statement “D is consistent
with (*)” and thus complete the proof. �

5 Finding planted sparse vectors

As an application of our work, we show how we can find sparse (or analytically sparse) vectors in-
side a sufficiently generic subspace. In particular, this improves upon a recent result of Demanet and
Hand [DH13] who used the L∞/L1 optimization procedure of Spielman et al. [SWW12] to show one can
recover a µ-sparse vector planted in a random d-dimension subspace V ′ ⊆ �n when µ � 1/

√
d. Our

result, combined with the bound on the SDP value of the 2 → 4 norm of a random subspace from
[BBH+12], implies that if d = O(

√
n) then we can in fact recover such a vector as long as µ � 1.

Problem: PlantedRecovery(µ, d, |U|, ε)

Input: An arbitrary basis for a linear subspace V = span (V ′ ∪ { f0}), where:

– V ′ ⊆ �U is a random d-dimensional subspace, chosen as the span of d vectors drawn indepen-
dently from the standard Gaussian distribution on �U , and

– f0 is an arbitrary µ-sparse vector, i.e., S = supp( f0) has |S | 6 µ|U|.

Goal: Find a vector f ∈ V with 〈 f , f0〉2 > (1 − ε) ‖ f ‖2 ‖ f0‖2.
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The goal here should be thought of as recovering f0 to arbitrarily high precision (“exactly”), and thus the
running time of an algorithm should be logarithmic in 1/ε. We note that f0 is not required to be random, and
it may be chosen adversarially based on the choice of V ′. We will prove the following theorem, which is this
section’s main result:

Theorem 5.1. (Theorem 1.4, restated) For some absolute constant K > 0, there is an algorithm that solves
PlantedRecovery(µ, d, |U|, ε) with high probability in time poly(|U|, log(1/ε)) for any µ < Kµ0(d), where

µ0(d) =

1 if d 6
√
U, and

n/d2 if d >
√
U.

Our algorithm will work in two stages. It will first solve a constant-degree sum-of-squares relaxation to
find a somewhat noisy approximate solution. It will then solve an auxiliary linear program that converts any
sufficiently good approximate solution into an exact one.

The first stage is based on the following theorem (proven in Section 5.1), which shows that we can
approximately recover a vector when it is planted in a subspace consisting of vectors with substantially smaller
L4/L2 ratio, provided that we can certify this property of the subspace using a low-degree sum-of-squares
proof. To avoid unnecessary notation, we will use a degree 4 certificate in the statement and proof of the
theorem; the proof goes through in greater generality, but this suffices for our application.

Theorem 5.2. Let V = span (V ′ ∪ { f0}), where f0 ∈ �U is a vector with ‖ f0‖4/‖ f0‖2 > C, and V ′ ⊆ �U is a
linear subspace with

max
0, f∈V′

‖ f ‖4
‖ f ‖2
6 c. (5.1)

Furthermore, assume that (5.1) has a degree 4 sum-of-squares proof, i.e., that

‖ΠV′ f ‖44 = c4 ‖ΠV′ f ‖42 − S , (5.2)

where ΠV′ is the orthogonal projection onto V ′, and S is a degree 4 sum of squares.
There is a polynomial-time algorithm based on a constant-degree sum-of-squares relaxation that returns

a vector f ∈ V with 〈 f , f0〉2 >
(
1 − (c/C)Ω(1)

)
‖ f0‖2 ‖ f ‖2.

If V ′ is a random subspace of dimension d, [BBH+12, Theorem 7.1] showed that (5.1) has a degree 4
sum-of-squares proof with high probability for c = O(1) when d 6

√
|U|, and for c = O

(
d1/2/|U|1/4

)
when

d >
√
|U|.13 We can concisely write these two cases together in our present notation as c = O

(
µ0(d)−1/4

)
.

Since f0 is µ-sparse, we know that ‖ f0‖4 > µ
−1/4 ‖ f0‖2, so we can take C = µ−1/4. We can thus solve a

constant-degree sum-of-squares program to obtain a vector f with 〈 f , f0〉 = (1 − O(1)) ‖ f0‖2 ‖ f ‖2 whenever
c � O(µ−1/4), i.e., when

µ � O
(

1
c4

)
= O (µ0(d)) . (5.3)

For the second stage, we will consider the following linear program, which can be thought of as searching
for a sparse vector in V with a large inner product with f :

arg min
y∈V

‖y‖1 such that 〈y, f 〉 = 1. (5.4)

In Section 5.2, we will prove the following theorem, which provides conditions under which the linear
program will exactly recover f0 from any f that is reasonably correlated to it:

13Their proof actually directly shows that the polynomial P in the RHS of (5.2) has ‖P‖spectral 6 c4, which corresponds to a degree
4 SOS proof via Lemma A.12.
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Theorem 5.3. Let V = span (V ′ ∪ { f0}), and suppose that the following conditions hold:

– supp( f0) = S , |S | = µn [ f0 is a µ-sparse vector]

– ‖V ′‖2:1 6 α where ‖V ′‖2:1 = max‖ f ′‖2/‖ f ′‖1 for all 0 , f ′ ∈ V ′) [V ′ doesn’t contain any 1/α2

L2/L1-sparse vectors]

– 〈 f0, f 〉 > (1 − ε) ‖ f0‖2 ‖ f ‖2 [ f is correlated with f0]

– 〈 f ′, f 〉 6 η ‖ f ′‖2 ‖ f ‖2 for all f ′ ∈ V ′ [ f is not very correlated with anything in V ′].

If
η

1 − ε
<

1
α
√
µ
− 2,

then f0/〈 f0, f 〉 is the unique optimal solution to (5.4).

Remark 5.4. Because we believe the result might be useful elsewhere, we state the theorem in much more
generality than needed for our application. In particular in our application we only need the trivial bound
η 6 1. Also, a bound on ‖V ′‖2:1 can also be derived using the relations between the 4 norm and the 2 norm on
vectors in V ′.

To prove Theorem 5.1, we take f to be the vector with 〈 f ′, f 〉 >
(
1 − (c/C)Ω(1)

)
‖ f0‖2 ‖ f ‖2 given by

Theorem 5.2 and solve the linear program from Equation (5.4). The theorem is vacuous for d >
√

Kn, so
we may assume that d is less than any fixed constant times n. In this case, the following classic result on
almost-spherical sections of the `1 ball ([Kas77, FLM77], as stated in [DH13]) guarantees that ‖V ′‖2:1 6 O(1):

Lemma 5.5. Fix δ ∈ (0, 1), let d 6 δn, and let W ⊆ �U be a random d-dimensional subspace given by the
span of d independent standard Gaussians. There exists a constant Cδ > 0 and absolute constants γ1, γ2 > 0
such that

Cδ

∥∥∥ f ′
∥∥∥2

2 6
∥∥∥ f ′

∥∥∥2
1 6

∥∥∥ f ′
∥∥∥2

2

for all f ′ ∈ W with probability 1 − γ1e−γ2n.

By Cauchy-Schwarz, we have 〈 f ′, f 〉 6 ‖ f ′‖2 ‖ f ‖2, so Theorem 5.3 implies that we recover f0 exactly as
long as14

1
(1 − O(c/C))

<

√
Cδ

µ
− 2. (5.5)

Cδ is a constant for any fixed δ, so, by taking K sufficiently small in the statement of the theorem, we may
assume that µ < Cδ/16, and thus that the right-hand side of (5.5) is at least 2. In this case, we can recover f0
as long as c � O(C). Combining this with Equation (5.3) and choosing K appropriately thus completes the
proof of Theorem 5.1. �

It thus suffices to prove Theorems 5.2 and 5.3, which we will do in sections 5.1 and 5.2, respectively.
We note that Theorems 5.2 and 5.3 hold for any V ′ that meets certain norm requirements, and they do not
require V ′ to be a uniformly random subspace. As such, the results of this section hold in a broader context.
(For example, they immediately generalize to other distributions of subspaces that meet the norm bounds.)
We hope that the technical results of this section will find other uses, so we have stated them in a somewhat
general way to facilitate their application in other settings.

14 We note that the last two bounds were somewhat weak: Lemma 5.5 holds for subspaces of linear dimension, but we only
applied it to a subspace with d 6

√
|U|; and the application of Cauchy-Schwarz could have been tightened using a better analysis.

However, these were sufficient to prove Theorem 5.1.
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5.1 Recovering f0 approximately (Proof of Theorem 5.2)

In this section, we prove Theorem 5.2, which allows us to recover a vector that is reasonably well-correlated
with f0. The basic idea is that f0 has a much larger L4/L2 ratio than anything in V ′, so maximizing the the
L4/L2 ratio should give a vector near f0.

The key ingredient of the theorem is the following lemma about (pseudo-)distributions supported on
L4/L2-sparse functions in V ′. Note that this lemma does not need the space to be random, but only that it can
be certified to have no L4/L2 sparse vectors by the SOS SDP.

Lemma 5.6. Let V ′ ⊆ �U be a linear subspace such that

max
0, f∈V′

‖ f ‖4
‖ f ‖2
6 c (5.6)

Let f0 be a unit function in V ′⊥ with ‖ f0‖4 = C > 100c, and let X be a distribution over �U over unit
functions f ∈ SpanV ′ ∪ { f0} satisfying ‖ f ‖4 > C. Then

�〈x, f0〉2 > 1 − O(c/C) .

Moreover this holds even if X is a pseudodistribution of level ` > 8, as long as (5.6) has a degree 4
sum-of-squares proof.

We can obtain a pseudodistribution X meeting the requirements in Lemma 5.6 by solving a degree 8
sum-of-squares program that maximizes ‖ f ‖44 over f ∈ V with ‖ f ‖22 = 1. If we sample a random Gaussian
consistent with the first two moments of X, then we will obtain a vector g whose expected 2-norm squared is
1 and whose expected inner product with f0 is (1 − o(1)) ‖ f0‖, so Lemma 5.6 therefore implies Theorem 5.2.

Proof of Lemma 5.6. Write every vector f in the support of X in the form f = α f0 + f ′ where f ′ ∈ V ′ and
α = 〈 f , f0〉. We know that

C = ‖ f ‖4 6 α‖ f0‖4 + ‖ f ′‖4 6 αC + c‖ f ′‖2 6 αC + c, (5.7)

so
α > 1 − c/C .

This concludes the proof for actual expectations. To argue about pseudoexpectations, we need to use only
constraints involving polynomials, and therefore we use

C4 = ‖ f ‖44 = �̃
f
�
ω

(α f0(ω) + f ′(ω))4

which equals
�̃
f
α4‖ f0‖44 + 4 �̃α3〈 f 3

0 , f ′〉 + 6 �̃α2〈 f 2
0 , f ′2〉 + 4 �̃α〈 f0, f ′3〉 + �̃‖ f ′‖44 .

The existence of a degree 4 sum-of-squares proof of (5.7) implies thatXmust be consistent with the constraint
‖ f ‖44 6 c4. We can thus use Cauchy–Schwarz and Hölder’s inequality (Lemma A.10 and Corollary A.11), to
bound all of the terms except the first one by a constant times |α|3C3c, and so we get

C4 6 �̃α4C4 + 15|α|3C3c.

Using the fact that the expectation is consistent with the constraint |α| 6 1, we obtain

�̃α4 > 1 − 15c/C .

Since we satisfy |α| 6 1, we know that �̃α6 6 1, so we can apply Cauchy-Schwarz to show that

�̃α4 6
√
�̃α2

√
�̃α6 6

√
�̃α2 ,

which allows us to conclude that
�̃α2 > 1 − 30c/C. �
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5.2 Recovering f0 exactly (Proof of Theorem 5.3)

In this section, we prove Theorem 5.3, which allows us to use a vector near f0 to recover f0 exactly (up to
the precision used when solving the linear program). Intuitively, this is relies on the same tendency towards
sparsity of vectors with minimal 1-norm that underlies the earlier works that are based on L∞/L1-sparsity.
Minimizing the L∞/L1-sparsity amounts to solving the linear program in (5.4) with y equal to each of the
unit basis vectors, and then taking the best of the |U| solutions. When f0 is sparse enough, it will have at
least one fairly large coefficient, and f0 will then be sufficiently correlated with the corresponding unit basis
vector for the linear program to find it. This breaks down when µ = Ω(1/

√
d), at which point any one basis

vector is expected to be more correlated with some vector in V ′ than it is with f0. Here, instead of using the
unit basis vectors, we use a vector y that shares many coordinates with f0, which then lets us handle a much
broader range of µ.

Proof of Theorem 5.3. To analyze the optimum of (5.4), we decompose y ∈ V as y = t f0 + f ′ for t ∈ � and
f ′ ∈ V ′. We will show that

‖ f0‖1
〈 f0, f 〉

6
‖y‖1
〈y, f 〉

=
‖t f0 + f ′‖1

t〈 f0, f 〉 + 〈 f ′, f 〉
(5.8)

for all y ∈ V , with equality only if f ′ = 0, which immediately implies Theorem 5.3.
Let f ′S and f ′

S
be the vectors obtained from f ′ by zeroing out the coordinates outside S and S , respectively,

so that f ′ = f ′S + f ′
S
. Since f0 is zero outside of S , we have∥∥∥t f0 + f ′

∥∥∥
1 =

∥∥∥t f0 − f ′S
∥∥∥

1 +
∥∥∥∥ f ′

S

∥∥∥∥
1
> t ‖ f0‖1 −

∥∥∥ f ′S
∥∥∥

1 +
∥∥∥∥ f ′

S

∥∥∥∥
1
. (5.9)

Equation (5.9) and the inequality
A + B
C + D

> min
{A

B
,

C
D

}
give

‖t f0 + f ′‖1
t〈 f0, f 〉 + 〈 f ′, f 〉

>
t ‖ f0‖1 −

∥∥∥ f ′S
∥∥∥

1 +
∥∥∥∥ f ′

S

∥∥∥∥
1

t〈 f0, f 〉 + 〈 f ′, f 〉
> min

 ‖ f0‖1〈 f0, f 〉
,

∥∥∥∥ f ′
S

∥∥∥∥
1
−

∥∥∥ f ′S
∥∥∥

1

〈 f ′, f 〉

 , (5.10)

where the second inequality in (5.10) is strict unless the two terms inside the min are equal. To prove the
inequality asserted in (5.8), and thus Theorem 5.3, it therefore suffices to show that

‖ f0‖1
〈 f0, f 〉

<

∥∥∥∥ f ′
S

∥∥∥∥
1
−

∥∥∥ f ′S
∥∥∥

1

〈 f ′, f 〉
(5.11)

for all 0 , f ′ ∈ V ′.
We can bound the left-hand side of (5.11) using the assumptions that 〈 f0, f 〉 > 1 − ε and that f0 is

µ-sparse:
‖ f0‖1
〈 f0, f 〉

6
‖ f0‖1

(1 − ε) ‖ f0‖2 ‖ f ‖2
6

√
µ ‖ f0‖2

(1 − ε) ‖ f0‖2 ‖ f ‖2
=

√
µ

(1 − ε) ‖ f ‖2
.

To bound the numerator of the right-hand side of (5.11), we need to show that f ′ cannot have too large a
fraction of its 1-norm concentrated in the coordinates in S . We first note that, if this occurred, it would lead
to a large contribution to the 2-norm:

∥∥∥ f ′S
∥∥∥

1 = µ �
i∈S
| f ′(i)| 6 µ

√
�
i∈S

f ′(i)2 6 µ

√
1
µ
�
i

f ′(i)2 =
√
µ‖ f ′‖2.
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Combining this with our assumption that ‖V ′‖2:1 6 α, gives∥∥∥∥ f ′
S

∥∥∥∥
1
−

∥∥∥ f ′S
∥∥∥

1 =
∥∥∥ f ′

∥∥∥
1 − 2

∥∥∥ f ′S
∥∥∥

1 > α
−1

∥∥∥ f ′
∥∥∥

2 − 2
√
µ
∥∥∥ f ′

∥∥∥
2 =

(
α−1 − 2

√
µ
) ∥∥∥ f ′

∥∥∥
2 ,

and thus ∥∥∥∥ f ′
S

∥∥∥∥
1
−

∥∥∥ f ′S
∥∥∥

1

〈 f ′, f 〉
>

(
α−1 − 2

√
µ
)
‖ f ′‖2

η ‖ f ′‖2 ‖ f ‖2
=

(
α−1 − 2

√
µ
)

η ‖ f ‖2
.

If η
1−ε < (α

√
µ)−1 − 2, this implies that∥∥∥∥ f ′

S

∥∥∥∥
1
−

∥∥∥ f ′S
∥∥∥

1

〈 f ′, f 〉
>

(
α−1 − 2

√
µ
)

(1 − ε)
(
(α
√
µ)−1 − 2

)
‖ f ‖2

=

√
µ

(1 − ε) ‖ f ‖2
>
‖ f0‖1
〈 f0, f 〉

,

from which our desired result follows. �

6 Results for Small Set Expansion

As stated in Corollaries 1.3 and 1.6, our results imply two consequences for the Small Set Expansion
problem of [RS10]. This is the problem of deciding, given an input graph G and parameters δ, ε, whether
there is a measure-δ subset S of G’s vertices where all but an ε fraction of S ’s edges stay inside it, or that G
is a small set expander in the sense that every sufficiently small set has almost all its edges leaving it. Beyond
being a natural problem in its own right, Small Set Expansion is also closely related to the Unique Games
problem whose conjectured hardness is known as Khot’s “Unique Games Conjecture” [Kho02]. [RS10] gave
a reduction from Small Set Expansion to Unique Games. While a reduction in the other direction is not
known, all currently known algorithmic and integrality gap results apply to both problems equally well (e.g.,
[ABS10, RST10, BGH+12, BBH+12]), and thus they are likely to be computationally equivalent.

We give an algorithm to solve Small Set Expansion in quasipolynomial time on an interesting family of
Cayley graphs, and a new polynomial-time approximation algorithm for this problem on general graphs, with
the approximation guarantee depending on the dimension of the input graph’s top eigenspace.

6.1 Small-set expansion of Cayley graphs

We consider the problem of solving the small set expansion problem on Cayley graphs over �`2. One reason
to consider such graphs is that, until recently, the hardest looking instances for this problem were graphs
of this type (i.e., the noisy hypercube [KV05] and the “short code” graph [BGH+12]). [BBH+12] showed
that these instances can in fact be solved via constant rounds of the SOS hierarchy, but we still do not have
any other good candidate hard instances, and so it is natural to ask whether Cayley graphs can provide such
candidates. Also, since the SOS algorithm does not make use of the algebraic structure of Cayley graphs, it is
plausible that if this algorithm can efficiently solve the Small-Set Expansion on Cayley graphs, then it can in
fact solve it on all graphs.

Let G be a Cayley graph on �`2 with n = 2` vertices. Let V>λ be the linear subspace spanned by
the eigenfunctions of G with eigenvalue at least λ. (We identify G here with its random-walk matrix.)
Let Pλ be the degree-4 polynomial Pλ( f ) = ‖Π>λ f ‖44, where Π>λ is the projector into V>λ. We define
Kλ(G) = ‖Pλ‖spectral. In this section, we describe approximation algorithms with running times that depend
on Kλ(G). The algorithms run in quasipolynomial time if Kλ(G) is polylogarithmic. We will show interesting
families of graphs with Kλ(G) = O(1). (See Theorem 6.3.)

27



The following theorem shows that low-degree sum-of-squares relaxations can detect L4/L2-sparse
functions in the subspaces V>λ (in the case when Kλ(G) is not too large). This result follows from Theorem 3.1
and the fact that the polynomial Pλ has nonnegative coefficients in an appropriate basis.

Theorem 6.1. Sum-of-squares relaxations of degree ε−O(1)Kλ(G)O(1) log n provide an additive ε-
approximation to the maximum of ‖ f ‖4/‖ f ‖2 over all non-zero functions f ∈ V>λ.

Proof. The problem of maximizing ‖ f ‖4/‖ f ‖2 over the subspace V>λ is equivalent to maximizing the
polynomial Pλ over functions with norm 1. (Also notice that ‖ f ‖4 > ‖ f ‖2 for every function f .) In order to
apply Theorem 3.1, we need to verify that Pλ has nonnegative coefficients in an appropriate basis. Since G is
a Cayley graph over �`2, we can take the characters {χα}α∈�`2 as an eigenbasis. (Here, χα(x) = (−1)

∑
i αi xi .) If

we represent f =
∑
α f̂αχα in this eigenbasis and let S >λ = {α | λα > λ} be the indices of the eigenfunctions

with eigenvalue at least λ, then

Pλ( f ) = ‖Π>λ f ‖44 = �
( ∑
α∈S >λ

f̂αχα
)4

=
∑

α,β,α′,β′∈S >λ

f̂α f̂β f̂α′ f̂β′ � χαχβχα′χβ′ =
∑

α,β,α′,β′∈S >λ
α+β=α′+β′

f̂α f̂β f̂α′ f̂β′ .

It follows that Pλ has nonnegative coefficients in the monomial basis corresponding to the eigenfunctions
of G. By Theorem 3.1, sum-of-squares relaxations of degree ε−O(1)‖Pλ‖

O(1)
spectral log n provides an additive

approximation to the maximum of Pλ over functions with ‖ f ‖2 =
∑
α f̂ 2

α = 1. �

Using the characterization of small-set expansion in terms of L4/L2-sparse functions [BBH+12], The-
orem 6.1 implies the following approximation algorithm for small-set expansion on Cayley graphs. This
theorem implies Corollary 1.3.

Theorem 6.2. For some absolute constant C > 1 and all µ, ε > 0 small enough, sum-of-squares relaxations
of degree Kλ(G)O(1) log n can distinguish between the following two cases with λ = 1 −Cε.

Yes: The Cayley graph G contains a vertex set of measure at most µ and expansion at most ε.

No: All vertex sets of measure at most C/
√
µ in G have expansion at least 1 − 1/C.

Proof. We will show that the maximum of ‖ f ‖4/‖ f ‖2 over f ∈ V>λ distinguishes the two cases (by a constant
margin). Therefore, Theorem 6.1 implies that we can distinguish between the cases using sum-of-squares
relaxations.

Yes-case: Let f be the indicator function of a set with measure at most µ and expansion at most ε. Then,
‖Π>λ f ‖2 > 0.99‖ f ‖2. It follows that ‖Π>λ f ‖44 > 0.9‖ f ‖44. (See Lemma 4.11.) Therefore, ‖Π>λ f ‖44/‖Π>λ f ‖42 >
Ω(1)‖ f ‖44/‖ f ‖

4
2 = Ω(1) · 1/µ.

No-case: Let µ′ = C/
√
µ. By [BBH+12, Theorem 2.4], graphs with this kind of small-set expansion

satisfy ‖ f ‖44/‖ f ‖
4
2 6 O(1)/(µ′)2 � 1/µ for all functions f ∈ V>λ(G). �

The following theorem shows that there are interesting Cayley graphs that satisfy Kλ(G) = O(1) for
λ = Ω(1). We consider constructions based on the long code and the short code [BGH+12]. These
constructions are parameterized by the size of the graph and its eigenvalue gap. In the context of the Unique
Games Conjecture and the Small-Set Expansion Hypothesis, the most relevant case is that the eigenvalue gap
is a constant. (The eigenvalue gap corresponds to the gap to perfect completeness.)

Theorem 6.3. Long-code and short-code based graphs with constant eigenvalue gap satisfy Kλ(G) = O(1)
for all λ = Ω(1).

Proof. By [BBH+12, Lemma 5.1], there exists a constant C such that Pλ( f ) = C‖ f ‖42 − S ( f ) where S (·) is
a sum of squares (the same constant C works for both graph constructions). Therefore, by Lemma A.12,
‖Pλ‖spectral 6 C. �
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6.2 Approximating small-set expansion using ASVP

The approximation algorithm for the analytical sparse vector problem (Theorem 4.1) implies the following
approximation algorithm for small-set expansion. An algorithm for the same problem with the factor
(dim V>λ)1/3 replaced by a constant would refute the Small-Set Expansion Hypothesis [RS10, RST12].15

Theorem 6.4. For some absolute constant C > 1 and all µ, ε > 0 small enough, sum-of-squares relaxations
with constant degree can solve the promise problem on regular graphs G:

Yes: The graph contains a vertex with measure at most µ/(dim V>λ)1/3 and expansion at most ε, where
λ = 1 −C · ε.

No: All vertex sets of measure at most C
√
µ have expansion at least 1 − 1/C.

Proof. Suppose G satisfies the Yes property. Let f be the indicator functions of a set with measure at most
µ′ = µ/(dim V>λ)1/3 and expansion at most ε. Then, ‖Π>λ f ‖22 > (1 − 1/C′)‖ f ‖22, where we can make C′ as
large as we like by making C larger. By Theorem 4.1, constant-degree sum-of-squares relaxations allow us
to find an L4/L2-sparse function g ∈ V>λ, so that ‖g‖44 > Ω(1/µ)‖g‖42. By [BBH+12, Theorem 2.4] (see also
Appendix D), such a function certifies that we are not in the No case. �

7 Discussion and open questions

A general open question is to find other applications of our approach for rounding sum-of-squares relaxations.
Natural candidates would be problems where it seems that they do not display a “dichotomy” behavior, where
beating some simple algorithm is likely to be exponentially hard, but rather suggest more of a smooth tradeoff

between time and performance. As far as we are aware, all known “robust”16 lower-bound results for the
sum-of-squares method are non-constructive, i.e., they show that hard instances for the sos method exist but do
not give an efficient way of constructing them. More concretely, the results use the probabilistic method and
show that with high probability, random instances are hard for sum-of-squares relaxations [Gri01b, Sch08].
Therefore, SOS seems promising for problems where random instances do not seem to be the most difficult,
e.g., problems related to the Unique Games Conjecture. A concrete problem of that type to look at is Sparsest
Cut. In particular, can we obtain even a small improvement17 to [ARV04]’s algorithm using more SOS
levels? In fact, we believe that even finding a natural reinterpretation of [ARV04] result in our framework
would be interesting. That said, our result for finding a planted sparse vector shows that SOS can be useful
for average-case problems as well, and in particular we believe SOS might be a strong tool for solving
unsupervised learning problems, especially for nonlinear models.

A relaxation-based approximation algorithm can be thought of as having three components: the relaxation,
the rounding algorithm, and its analysis. In our approach there is almost no creativity in choosing the
relaxation, which is simply taken to be a sufficiently high level of the SOS hierarchy. (Though there may be
some flexibility in how we represent solutions.) Can we similarly show a “universal” rounding algorithm,
thus pushing all the creative choices into the analysis? A related question is whether one can formulate a
theorem giving a translation from combining algorithms into rounding algorithms under sufficiently general

15 It’s plausible that, under standard complexity assumptions such as NP * SUBEXP, even a smaller improvement to a
(dim V>λ)o(1) factor instead of (dim V>λ)1/3 would refute this hypothesis, though we have no proof of such an implication.

16For knapsack-like problems, there exist explicit lower bounds [Gri01a], but here low-degree sum-of-squares proofs provide very
good approximation (in this sense, the lower bound is not robust).

17An approach to obtain constant-factor approximations for sparsest cut in subexponential time is outlined in the disserta-
tion [Ste10a, Chapter 9]. However, this approach also works with weaker hierarchies. An approach tailored to sum-of-squares would
be interesting.
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conditions, so that results like ours would follow as special cases, and as mentioned in Section 1.4, have
already made some progress in this direction.

The notion of “analytically sparse” vectors seems potentially useful for more applications. It would
be interesting to explore the different choices for Lq/Lp sparsity, and what tradeoffs they yield in terms of
computation time versus usefulness as a proxy for actual sparsity. In particular, for the planted sparse vector
question, it is natural to conjecture that there is an analytical relaxation that we can optimize over in nO(`)

time, and can detect sparse vectors in random subspaces of dimension n1−1/`.
In the context of the Small-Set-Expansion Hypothesis / Unique Games Conjecture, the most important

question is whether our results of Section 4 can be further improved. We do not know of any candidate hard
instances for this problem (in the relevant range of parameters) and so conjecture that our algorithm (or at
least our analysis of it) is not optimal and can be improved further.

Related to the question of finding hard instances, our work suggests a different type of negative results for
convex relaxations. While integrality gaps are instances that are hard for a particular relaxation, regardless of
the rounding algorithm, one can consider the notion of “combining gaps”. These will be instances where
there is a distribution of good solutions, but a particular combining algorithm C fails to find one. Hence,
viewing C as a rounding algorithm, such a result shows that C will fail regardless of the relaxation used.
(Karloff’s work [Kar99] on hard instances for the [GW95] hyperplane cut rounding algorithms can be viewed
as such an example.) Studying such gaps can shed more light on our approach and computational difficulty in
general. In particular, it might be interesting to consider this question for random satisfiable instances of SAT
or other constraint satisfaction problems.
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A Pseudoexpectation toolkit

We recall here the definition of pseudoexpectation from [BBH+12] and prove some of its useful properties.
Some of these were already proven in [BBH+12] but others are new.

Definition A.1. Let �̃ be a functional that maps polynomial P over �n of degree at most r into a real number
which we denote by �̃x P(x) or �̃ P for short. We say that �̃ is a level-r pseudo-expectation functional (r-p.e.f.
for short) if it satisfies:

Linearity For every polynomials P,Q of degree at most r and α, β ∈ �, �̃(αP + βQ) = α �̃ P + β �̃Q.

Positivity For every polynomial P of degree at most r/2, �̃ P2 > 0.

Normalization �̃ 1 = 1 where on the RHS, 1 denotes the degree-0 polynomial that is the constant 1.

The functional �̃ can be represented by a table of size nO(r) containing the pseudo-expectations of every
monomial of degree at most r (or some other linear basis for polynomials of degree at most r). For a linear
functional �̃, the map P 7→ �̃ P2 is a quadratic form. Hence, �̃ satisfies the positivity condition if and
only if the corresponding quadratic form is positive semidefinite. It follows that the convex set of level-r
pseudo-expectation functionals over �n admits an nO(r)-time separation oracle, and hence the r-round SoS
relaxation can be solved up to accuracy ε in time (mn · log(1/ε))O(r).

For every random variable X over �n, the functional �̃ P := � P(X) is a level-r pseudo-expectation
functional for every r. As r → ∞, this hierarchy of pseudo-expectations will converge to the expectations of
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a true random variable [Las01], in general the convergence is not guaranteed to happen in a finite number
of steps [DKL11], although for most problems of interest in TCS, n levels would suffice for either exact
convergence or sufficiently close approximation.

We now record various useful ways in which pseudoexpectations behave close to actual expectations.
For two polynomials P and Q, we write P � Q if Q = P +

∑m
i=1 R2

i for some polynomials R1, . . . ,Rm.
If P and Q have degree at most r, then P � Q implies that �̃ P 6 �̃Q every r-p.e.f. �̃. This follows using

linearity and positivity, as well as the (not too hard to verify) observation that if Q − P =
∑

i R2
i then it must

hold that deg(Ri) 6 max{deg(P), deg(Q)}/2 for every i.
One of the most useful properties of pseudo-expectation is that it satisfies the Cauchy–Schwarz inequality:

Lemma A.2 (Pseudo Cauchy–Schwarz,[BBH+12]). Let P and Q be two polynomials of degree at most r.
Then, �̃ PQ 6

√
�̃ P2 ·

√
�̃Q2 for any degree-2r pseudo-expectation functional �̃.

Proof. We first consider the case �̃ P2, �̃Q2 > 0. Then, by linearity of �̃, we may assume that �̃ P2 = �̃Q2 =

1. Since 2PQ � P2 + Q2 (by expanding the square (P − Q)2), it follows that �̃ PQ 6 1
2 �̃ P2 + 1

2 �̃Q2 = 1
as desired. It remains to consider the case �̃ P2 = 0. In this case, 2αPQ � P2 + α2Q2 implies that
�̃ PQ 6 α · 1

2 �̃Q2 for all α > 0. Thus �̃ PQ = 0, as desired. �

In particular this implies the following corollary

Corollary A.3 ([BBH+12]). If P is a polynomial of degree 6 r, and �̃x is a 2r-p.e.f. such that �̃ P(x)2 = 0,
then �̃ P(x)Q(x) = 0 for every Q of degree 6 r.

Proof. By Lemma A.2,

�̃ PQ 6
√
�̃ P2

√
�̃Q2 = 0

�

In this paper we also need the following variant of Hölder’s inequality:

Lemma A.4 (Pseudoexpectation Hölder). Let d, c, k ∈ �,D be a level ` > 10dck pseudodistribution over
�n, and P a sum of squares n-variate polynomial of degree d, then

�̃
X∼D

P(X)r′ >
(
�̃

X∼D
P(X)r

)r′/r

where r = ck and r′ = (c + 1)k.

Proof. We’ll do the proof by induction on r. The base case is r = c in which case this is simply the
pseudoexpectation Cauchy Schwarz that �̃ P(X)2c > (�̃ P(X)c)2. Define D′ to be the pseudodistribution
obtained by reweighingD according to P(X)r−c. Using �̃D′ P(X)2c >

(
�̃D′ P(X)c

)2
we can write

�̃D P(X)r+x

�̃D P(X)r−c
=
�̃D P(X)r−cP(X)2c

�̃D P(X)r−c
>

(
�̃D P(X)r−cP(X)c

�̃D P(X)r−c

)2

moving things around we get that

�̃
D

P(X)r+c >
(
�̃
D

P(X)r
)2
/ �̃
D

P(X)r−c

which using our induction hypothesis on r vs r − c, we can lower bound by(
�̃
D

P(X)r
)2
/
(
�̃
D

P(X)r
)(r−c)/r

=

(
�̃
D

P(X)r
)(r+c)/r

�
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We sometime would need to extend a pseudoexpectation of one random variable to a pseudoexpectation
of two independent copies of it. The following lemma would be useful there

Lemma A.5. Suppose that X and Y are two pseudodistributions of level `. Then we can define a level
` pseudoexpectation operator on X,Y such that for every two polynomials P Q of degree at most `/2,
�̃ P(X)Q(Y) = (�̃ P(X))(�̃Q(Y)).

Proof. We define the pseudoexpectation operator in the obvious way—for every set of ` indices
i1, . . . , ik, jk+1, . . . , j` we let pEXi1 · · · Xik ·Y jk+1 · · · Y jd = (�̃ Xi1 · · · Xik ) · (�̃Y jk+1 · · · Y jd ) and extend it linearly
to all monomials. Clearly �̃ 1 = 1 and so the only thing left to do is to prove that for every polynomial P of
degree 6 `/2 in the X,Y variables �̃ P(X,Y)2 > 0.

Write P(X,Y) =
∑

Mi(X)Ni(Y) where Mi,Ni are monomials, then P(X,Y)2 =∑
i, j Mi(X)M j(X)Ni(Y)N j(Y) and so under our definition

�̃ P(X,Y)2 =
∑
i, j

(�̃Mi(X)M j(X))(�̃Ni(Y)N j(Y)) = 〈A, B〉

where A and B are the matrices defined by Ai, j = �̃Mi(X)M j(X) and Bi, j = �̃Ni(Y)N j(Y). But the
pseudoexpectation conditions on X,Y implies that both these matrices are p.s.d and so their dot product is
nonnegative. �

We would like to understand how polynomials behave on linear subspaces of �n. A map P : �n → � is
polynomial over a linear subspace V ⊆ �n if P restricted to V agrees with a polynomial in the coefficients for
some basis of V . Concretely, if g1, . . . , gm is an (orthonormal) basis of V , then P is polynomial over V if P( f )
agrees with a polynomial in 〈 f , g1〉, . . . , 〈 f , gm〉. We say that P � Q holds over a subspace V if P − Q, as a
polynomial over V , is a sum of squares.

Lemma A.6 ([BBH+12]). Let P and Q be two polynomials over �n of degree at most r, and let B : �n → �k

be a linear operator. Suppose that P � Q holds over the kernel of B. Then, �̃ P 6 �̃Q holds for any r-p.e.f.
�̃ over �n that satisfies �̃ f ‖B f ‖2 = 0.

Proof. Since P � Q over the kernel of B, we can write Q( f ) = P( f ) +
∑m

i=1 R2
i ( f ) +

∑k
j=1(B f ) jS j( f ) for

polynomials R1, . . . ,Rm and S 1, . . . , S k over �n. By positivity, �̃ f R2
i ( f ) > 0 for all i ∈ [m]. We claim that

�̃ f (B f ) jS j( f ) = 0 for all j ∈ [k] (which would finish the proof). This claim follows from the fact that
�̃ f (B f )2

j = 0 for all j ∈ [k] and Lemma A.2. �

Lemma A.7 ([BBH+12]). The relation P2 � P holds if and only if 0 � P � 1. Furthermore, if P2 � P and
0 � Q � P, then Q2 � Q.

Proof. If P � 0, then P � 1 implies P2 � P. (Multiplying both sides with a sum of squares preserves the
order.) On the other hand, suppose P2 � P. Since P2 � 0, we also have P � 0. Since 1−P = P−P2 + (1−P)2,
the relation P2 � P also implies P � 1.

For the second part of the lemma, suppose P2 � P and 0 � Q � P. Using the first part of the lemma, we
have P � 1. It follows that 0 � Q � 1, which in turn implies Q2 � Q (using the other direction of the first
part of the lemma). �

Fact A.8. If f is a d-f.r.v. over�U and {Pv}v∈U are polynomials of degree at most k, then g with g(v) = Pv( f ) is
a level-(d/k) pseudodistribution over �U . (For a polynomial Q of degree at most d/k, the pseudo-expectation
is defined as �̃g Q({g(v)}v∈U) := �̃ f Q({Pv( f )}v∈U) .)
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Lemma A.9 ([BBH+12]). For f , g ∈ L2(U),

〈 f , g〉 � 1
2‖ f ‖

2 + 1
2‖g‖

2 .

Proof. The right-hand side minus the LHS equals the square polynomial 1
2 〈 f − g, f − g〉 �

Here is another form of the Cauchy–Schwarz inequality.

Lemma A.10 (Function Cauchy–Schwarz inequality,[BBH+12]). If ( f , g) is a level-2 p.d. over �U ×�U,
then

�̃
f ,g
〈 f , g〉 6

√
�̃
f
‖ f ‖2 ·

√
�̃
g
‖g‖2 .

Proof. Let f̄ = f /
√
�̃ f ‖ f ‖2 and ḡ = g/

√
�̃g‖g‖2. Note �̃ f̄ ‖ f̄ ‖

2 = �̃ḡ‖ḡ‖
2 = 1. Since by Lemma A.9,

〈 f̄ , ḡ〉 � 1/2‖ f̄ ‖2 + 1/2‖ḡ‖2, we can conclude the desired inequality,

�̃
f ,g
〈 f , g〉 =

√
�̃
f
‖ f ‖2 ·

√
�̃
g
‖g‖2 �̃

f̄ ,ḡ
〈 f̄ , ḡ〉 6

√
�̃
f
‖ f ‖2 ·

√
�̃
g
‖g‖2 ·

(
1
2 �̃f̄
‖ f̄ ‖2 + 1

2 �ḡ
‖ḡ‖2

)
︸                    ︷︷                    ︸

=1

. �

And it implies another form of Hölder’s inequality

Corollary A.11 (Function Hölder’s inequality,[BBH+12]). If ( f , g) is a level 4 p.d. over �U ×�U , then

�̃
f ,g
�
ω∈U

f (ω)g(ω)3 6

(
�̃
f
‖ f ‖44

)1/4 (
�̃
g
‖g‖44

)3/4

.

Proof. Using Lemma A.2 twice, we have

�̃
f ,g
�
ω∈U

f (ω)g(ω)3 6

(
�̃
f ,g
�
ω∈U

f (ω)2g(ω)2
)1/2 (

�̃
g
‖g‖44

)1/2

6

(
�̃
f
‖ f ‖44

)1/4 (
�̃
g
‖g‖44

)3/4

.

�

A.1 Spectral norm and SOS proofs

Here we note the following alternative characterization of the spectral norm of a polynomial:

Lemma A.12. Let P be a degree-4 homogenous polynomial , then ‖P‖spectral 6 c if and only if there is a sum
of squares degree 4 polynomial S such that P(x) = c‖x‖42 − S (x).

Proof. Suppose that ‖P‖spectral 6 C. Then there is an n2 × n2 matrix M such that M · x⊗4 = P(x) for all x
M = cI − S where I is the n2 × n2 identity and S is a positive semidefinite matrix. That is, S =

∑
λiQ⊗2

i for
some λi > 0 and Qi ∈ �

n2
. Now, if we consider S as a degree 4 polynomial S (x) = S · x⊗4 then it equals∑

λi(Qi · x⊗2)2 and hence it is a sum of squares, and it satisfies

P(x) = cI · x⊗4 − S (x) = c
∑
i, j

x2
i x2

j − S (x) = c‖x‖42 − S (x) .

On the other hand, suppose that P(x) = c‖x‖42 −
∑

Ri(x)2 where the Ri’s are quadratic polynomials. We
can let ri ∈ �

n2
be such that ri · x⊗2 = Ri(x), and then let M be the quadratic operator on Rn2

such that
M(y) = c‖y‖22 −

∑
(ri · y)2 for every y ∈ �n2

. One can easily verify that the spectral norm of M is at most c
and M · x⊗4 = P(x) for every x ∈ �n. �
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B Low-Rank Tensor Optimization

For a vector x ∈ �n, let ‖x‖ denote the Euclidean norm of x. For a polynomial P ∈ �[X1, . . . , Xn], we define
its norm as ‖P‖ def

= max{|P(x)| | ‖x‖ = 1}.
Consider an n-variate degree-4 polynomial P of the form P(x) =

∑r
i=1 Qi(x)2 for quadratic polynomials

Q1, . . . ,Qr .

Theorem B.1. There exists an algorithm that, given P and ε, computes ‖P‖ up to multiplicative error ε in
time exp(poly(r, ε)).

Proof. For λ ∈ �n, consider the polynomial Qλ(x) =
∑r

i=1 λiQi(x).
First, we claim that max‖λ‖=1‖Qλ‖ = ‖P‖1/2. On the one hand, ‖Qλ‖ 6 ‖λ‖ · ‖P‖1/2 by Cauchy–Schwarz.

On the other hand, if λ = 1
P(x∗)1/2 (Q1(x), . . . ,Qr(x)) for some vector x∗ ∈ �n, then Qλ(x∗) = P(x∗)1/2.

Therefore, if we choose x∗ as a unit vector that maximizes P, then ‖Qλ‖ > P(x∗)1/2 = ‖P‖1/2.
Next, we claim that we can compute max‖λ‖=1‖Qλ‖ up to error ε in time exp(poly(r, ε)). Since Qλ is

quadratic, we can compute ‖Qλ‖ in polynomial time. (The norm of Qλ is equal to the largest singular value
of the coefficient matrix of Qλ.) The idea is to compute ‖Qλ‖ for all vectors λ ∈ Nε, where Nε is an ε-net of
the unit ball in �r. Let λ∗ be the vector that achieves the maximum, x∗ be the corresponding input, and u∗ be
the vector (Q1(x∗), . . . ,Qr(x∗)). Thus max‖λ‖=1‖Qλ‖

2 = 〈λ∗, u∗〉2 and ‖u∗‖ = ‖P‖. Therefore, for every λ

‖Qλ‖
2 > ‖Qλ(x∗)‖2 = 〈λ, u∗〉2 .

But if ‖λ − λ∗‖ 6 ε then
|〈λ∗, u∗〉 − 〈λ, u∗〉| 6 ‖λ − λ∗‖‖u∗‖ = ‖λ − λ∗‖‖P‖ .

Thus if ‖λ − λ′‖ 6 ε then we get a 1 − O(ε) multiplicative approximation to ‖P‖. �

Corollary B.2. If M is a symmetric n2 × n2 PSD matrix with Frobenius norm at most 1 then we can compute
an ε additive approximation to

max
‖x‖=1
〈M, x⊗4〉

in poly(n) exp(poly(1/ε)) time.

Proof. Write M in its eigenbasis as M =
∑
λiQ⊗2

i for n × n matrices {Qi} with Frobenius norm at most
1, and let M′ =

∑
λi>ε λiQ⊗2

i . Since
∑
λ2

i = 1 we know that the rank of M′ is at most 1/ε2, and therefore
we can compute a 1 ± ε multiplicative approximation to the maximum of 〈M′, x⊗4〉 over unit x (which in
particular implies an ε additive approximation since this value is bounded by 1). But this implies an ε-additive
approximation for this maximum over M since these quantities can differ by at most ε. �

C LOCC Polynomial Optimization

Let P ∈ �[X]4 be a degree-4 homogeneous polynomial of the form P(X) = A1(X) ·B1(X)+ · · ·+Am(X) ·Bm(X)
for quadratic polynomials A1, . . . , Am ∈ �[X]2 with 0 � Ai � ‖X‖2 and quadratic polynomials B1, . . . , Bm ∈

�[X]2 with Bi � 0 and
∑

i Bi � ‖X‖2. Note that this corresponds to the tensor corresponding to P having a
one-way local operations and classical communication (LOCC) norm bounded by 1 [BCY11]. Without loss
of generality, we may assume

∑
i Bi = ‖X‖2. (We can choose Am = 0 and choose Bm appropriately without

changing P.) Our goal is to compute the norm of P, defined as ‖P‖ = max‖x‖=1|P(x)|. In the quantum setting,
this corresponds to finding the maximum probability of acceptance by a separable state for the measurement
operator P.
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In this section, we will show that sum-of-squares relaxations provide good approximation for the norm of
polynomials of the form above. (For the case that the variables of A1, . . . , Am are disjoint from the variables
for B1, . . . , Bm, the theorem is due to Brandão, Christandl, and Yard [BCY11]. Up to the Gaussian rounding
step, the proof here is essentially the same as the proof by Brandão and Harrow [BH13].)

Theorem C.1. Sum-of-squares relaxations with degree d achieve the following approximations for the norm
of degree-4 polynomials P of the form above:

– the value of the relaxation is at most 3‖P‖ + ε for degree d > O(1/ε2) · log n.

– in the case that the variables in A1, . . . , Am are disjoint from the variables in B1, . . . , Bm, the value of
the relaxation is at most ‖P‖ + ε for degree d > O(1/ε2) log n.

Direct Rounding. As direct rounding for a distribution {X}, we choose a Gaussian variable with the same
first two moments as {X}. To analyze this rounding procedure, the following lemma is useful.

The lemma considers an arbitrary distribution over unit vectors in �n (intended to maximize P). We
express the second moment ρ = � XX> of this distribution as convex combination ρ =

∑
i βiρi for βi =

�X Bi(X) and ρi = �X XXT Bi(X)/βi. By the assumptions on the distribution {X}, the matrices ρ and ρ1, . . . , ρm

are positive semidefinite and have trace 1 (density matrices). The quantum entropy H(ρ) = −Tr ρ log ρ is
concave so that H(ρ) >

∑
i βiH(ρi). The assumption of the lemma is that the inequality is approximately

tight. Roughly speaking, this condition means that the ρi matrices are close ρ. For the distribution {X}, this
condition means that reweighing by the polynomials Bi does not affect second moments of the distribution.
We say that the distribution has low global correlation with respect to the polynomials B1, . . . , Bm. (This
notion is related to but distinct from the notion of global correlation in [BRS11]). The lemma asserts that
if the distribution {X} has low global correlation with respect to the polynomials B1, . . . , Bm, then sampling
X independently for the A-part and B-part of the polynomial P gives roughly the same value as sampling
X in a correlated way. (The next lemma explains why our direct rounding achieves at least the quantity
corresponding to sampling X independently for the two parts.)

Lemma C.2. Let {X} be a distribution over �n that satisfies the constraint ‖X‖2 = 1. Suppose
∑

i βiH(ρi) >
H(

∑
i βiρi) − ε2 for ρi = �X XX>Bi(X)/βi and βi = �X Bi(X). Then,∑

i

�
X

Ai(X) · �
X

Bi(X) >
∑

i

�
X

Ai(X)Bi(X) − ε .

Moreover, the statement holds if {X} is a degree-4 pseudo-distribution.

Proof. Consider the block-diagonal density matrix ρ =
∑

i βiρi ⊗ eie>i , and the block-diagonal measurement
matrix A =

∑
i Ai ⊗ eie>i . (In this construction, we identify the quadratic polynomial A with its representation

as a symmetric square matrix.) Furthermore, consider the partial traces ρA = TrB ρ =
∑

i βiρi and ρB =

TrA ρ =
∑

i βieieT
i . We can express the two sides of the conclusion of the lemma as follows,∑

i

�
X

Ai(X) · Bi(X) = Tr Aρ ,∑
i

�
X

Ai(X) · �
X

Bi(X) = Tr A(ρA ⊗ ρB) .

Since A has spectral norm at most 1, we can bound the difference by|Tr A(ρ − ρA ⊗ ρB)| 6 ‖ρ − ρA ⊗ ρB‖∗.
(Here, ‖·‖∗ is the trace norm—the dual of the spectral norm.) By Pinsker’s inequality, ‖ρ − ρA ⊗ ρB‖

2 6
H(ρA) + H(ρB) − H(ρ). By the chain rule, H(ρ) = H(ρB) +

∑
i βiH(ρi). The assumption of the lemma allows

us to bound the trace norm by ‖ρ − ρA ⊗ ρB‖
2 6 H(

∑
i βiρi) −

∑
i βiH(ρi) 6 ε2. At this point, the conclusion

of the lemma follows from the bound |Tr A(ρ − ρA ⊗ ρB)| 6 ‖ρ − ρA ⊗ ρB‖∗ 6 ε. �
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The following lemma shows that Gaussian rounding achieves a value at least as large as the value achieved
by sampling {X} independently for the A-part and B-part of the polynomial P.

Lemma C.3. Let {X} be a distribution over �n that satisfies the constraint ‖X‖2 = 1. Suppose {X′} is a
Gaussian distribution with the same first two moments as {X}. Then, {X′} satisfies�X′‖X′‖2 = 1,�X′‖X′‖4 = 3,
and

�
X′

∑
i

Ai(X′) · Bi(X′) >
∑

i

�
X

Ai(X) · �
X

Bi(X) .

Moreover, the statement holds if {X} is a degree-4 pseudo-distribution.

Proof. Using the assumption Ai, Bi � 0, the lemma follows from the fact that Gaussian variables P,Q satisfy
� P2Q2 > � P2�Q2. �

The previous two lemmas together yield the following corollary.

Corollary C.4. Let {X} be a distribution over �n that satisfies the constraint ‖X‖2 = 1. Suppose {X′} and
ε > 0 are as in the previous two lemmas, that is, {X′} is a Gaussian distribution with the same first two
moments as {X} and

∑
i βiH(ρi) > H(

∑
i βiρi) − ε2 for ρi = �X XX>Bi(X)/βi and βi = �X Bi(X). Then,

�
X′

P(X′) > �
X

P(X) − ε and �
X′
‖X′‖4 = 3 .

Moreover, the statement holds if {X} is a degree-4 pseudo-distribution.

Making progress. The following lemma shows that there exists a low-degree polynomial so that reweighing
by the polynomial results in a distribution that has low global correlation with respect to the polynomials
B1, . . . , Bm.

Lemma C.5. Let {X} be a distribution over �n that satisfies the constraint ‖X‖2 = 1. Then, there exists
a polynomial B ∈ �[X]2d of the form B = Bi(1) · · · Bi(d) with d = O(1/ε2) log n such that

∑
i βiH(ρi) >

H(
∑

i βiρi) − ε2 for ρi = �X XX>B(X)Bi(X)/βi and βi = �X B(X)Bi(X). Moreover, the statement holds if {X}
is a degree-d + 4 pseudo-distribution.

Proof. By contraposition, suppose that
∑

i βiH(ρi) < H(
∑

i βiρi) − η holds for all polynomials B of the form
B = Bi(1) · · · Bi(d′) with d′ 6 d = 10/ε2 · log n. Then, we can greedily construct a sequence of polynomial
Bi∗(1), . . . , Bi∗(d) such that in each step the entropy decreases by at least η. In particular, H(ρ∗) 6 H(ρ) − η · d
for ρ∗ ∝ �X XX>Bi∗(1) · · · Bi∗(d)(X) and ρ = �X XX>. Since H(ρ) 6 log n and H(ρ∗) > 0, we have η >
1/d · log n = ε2/10. As desired it follows that there exists a polynomial B of the desired form such that∑

i βiH(ρi) > H(
∑

i βiρi) − ε2. �

Putting things together. The following lemma combines the conclusion about direct-rounding and making-
progress.

Lemma C.6. Let {X} be a distribution over �n that satisfies the constraints ‖X‖2 = 1 and P(X) > c. Then,
there exists a polynomial B ∈ �[X]2d of the form B = Bi(1) · · · Bi(d) with d = O(1/ε2) log n such that the
Gaussian distribution X′ that matches the first two moments of {X} reweighted by B(X) satisfies

�
X′

P(X) > c − ε and �
X′
‖X′‖4 = 3 .

(Concretely, {X′} is the Gaussian distribution that satisfies �X′ Q(X′) = �X Q(X)B(X)/�X B(X) for quadratic
polynomial Q). Moreover, the statement holds for degree-2d + 4 pseudo-distributions.
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Proof. Take the polynomial B as in Lemma C.5. Reweigh the distribution {X} by the polynomial B. Apply
Corollary C.4 to the resulting distribution. �

At this time, we have all ingredients for the proof of Theorem C.1.

Proof of Theorem C.1. Let {X} be a degree-d + 4 pseudo-distribution over �n that satisfies the constraints
‖X‖2 = 1 and P(X) > c for d = O(1/ε2) log n. By the previous lemma, there exists a distribution {X′} over �n

such that �X′ P(X′)/�X′‖X′‖4 > c/3−ε. It follows that there exists a vector x ∈ �n with P(x)/‖x‖4 > c/3−ε.
(We can also find such a vector efficiently because we can sample from the distribution {X′} efficiently and
the random variables P(X′) and ‖X′‖ are well-behaved.) By homogeneity, we get ‖P‖ > c/3 − ε.

In the case that the variables Y in A1, . . . , Am are disjoint from the variables Z in B1, . . . , Bm, we can
modify the direct-rounding distribution {X′} = {(Y ′,Z′)} slightly and sample the variables Y ′ for the Ai

polynomials independently from the variables Z′ for the Bi polynomials. By Lemma C.2, we still have
�X′ P(X′) > c − ε. We can assume that �‖Y ′‖2 = �‖Z′‖2 = 1/2 (by adding the corresponding constraint to
the sos relaxation). Therefore, �‖Y ′‖2‖X′‖2 = 1/4. It follows that there exists a vector x = (y, z) in �n with
P(y, z)/(‖y‖2 · ‖z‖2) > 4(c − ε). By homogeneity, we can assume that ‖y‖2 = 1/2 and ‖z‖2 = 1/2. In this case,
‖x‖2 = 1 and P(x)gc − ε as desired. �

D The 2-to-q norm and small-set expansion

This appendix reproduces from [BBH+12] the proof that a graph is a small-set expander if and only if the
projector to the subspace of its adjacency matrix’s top eigenvalues has a bounded 2→ q norm for even q > 4.
We also note that while [BBH+12] stated their result for the decision question, it does yield an efficient
algorithm to transform a vector in the top eigenspace with large 4 norm into a small set that does not expand.

Notation. For a regular graph G = (V, E) and a subset S ⊆ V , we define the measure of S to be µ(S ) =

|S |/|V | and we define G(S ) to be the distribution obtained by picking a random x ∈ S and then outputting a
random neighbor y of x. We define the expansion of S , to be ΦG(S ) = �y∈G(S )[y < S ], where y is a random
neighbor of x. For δ ∈ (0, 1), we define ΦG(δ) = minS⊆V:µ(S )6δ ΦG(S ). We often drop the subscript G from
ΦG when it is clear from context. We identify G with its normalized adjacency (i.e., random walk) matrix.
For every λ ∈ [−1, 1], we denote by V>λ(G) the subspace spanned by the eigenvectors of G with eigenvalue
at least λ. The projector into this subspace is denoted P>λ(G). For a distribution D, we let cp(D) denote the
collision probability of D (the probability that two independent samples from D are identical).

Our main theorem of this section is the following:

Theorem D.1. For every regular graph G, λ > 0 and even q,

1. (Norm bound implies expansion) For all δ > 0, ε > 0, ‖P>λ(G)‖2→q 6 ε/δ(q−2)/2q implies that
ΦG(δ) > 1 − λ − ε2.

2. (Expansion implies norm bound) There is a constant c such that for all δ > 0, ΦG(δ) > 1−λ2−cq implies
‖P>λ(G)‖2→q 6 2/

√
δ. Moreover there is an efficient algorithm such that given a function f ∈ V>λ(G)

such that ‖ f ‖q > 2‖ f ‖2/
√
δ finds a set S of measure less than δ such that ΦG(S ) 6 1 − λ2−cq.

Corollary D.2. If there is a polynomial-time computable relaxation R yielding good approximation for the
2→ q, then the Small-Set Expansion Hypothesis of [RS10] is false.

Proof. Using [RST12], to refute the small-set expansion hypothesis it is enough to come up with an efficient
algorithm that given an input graph G and sufficiently small δ > 0, can distinguish between the Yes case:
ΦG(δ) < 0.1 and the No case ΦG(δ′) > 1 − 2−c log(1/δ′) for any δ′ > δ and some constant c. In particular for all
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η > 0 and constant d, if δ is small enough then in the No case ΦG(δ0.4) > 1 − η. Using Theorem D.1, in the
Yes case we know ‖V1/2(G)‖2→4 > 1/(10δ1/4), while in the No case, if we choose η to be smaller then η(1/2)
in the Theorem, then we know that ‖V1/2(G)‖2→4 6 2/

√
δ0.2. Clearly, if we have a good approximation for

the 2→ 4 norm then, for sufficiently small δ we can distinguish between these two cases. �

The first (easier) part of Theorem D.1 is proven in Section D.1. The second part will follow from the
following lemma:

Lemma D.3. Set e = e(λ, q) := 2cq/λ, with a constant c 6 100. Then for every λ > 0 and 1 > δ > 0, if G is a
graph that satisfies

cp(G(S )) 6 1/(e|S |) (D.1)

for all S with µ(S ) 6 δ, then ‖ f ‖q 6 2‖ f ‖2/
√
δ for all f ∈ V>λ(G). Moreover, there is an efficient algorithm

that given a function f ∈ V>λ(G) such that ‖ f ‖q > 2‖ f ‖2/
√
δ finds a set S that violates (D.1).

Proving the second part of Theorem D.1 from Lemma D.3. We use the variant of the local Cheeger
bound obtained in [Ste10b, Theorem 2.1], stating that if ΦG(δ) > 1 − η then for every f ∈ L2(V) satisfying
‖ f ‖21 6 δ‖ f ‖

2
2, ‖G f ‖22 6 c

√
η‖ f ‖22. The proof follows by noting that for every set S , if f is the characteristic

function of S then ‖ f ‖1 = ‖ f ‖22 = µ(S ), and cp(G(S )) = ‖G f ‖22/(µ(S )|S |). Because this local Cheeger bound
is algorithmic (and transforms a function with large L2/L1 ratio into a set by simply using a threshold cut),
this part is algorithmic as well. �

Proof of Lemma D.3. Fix λ > 0. We assume that the graph satisfies the condition of the Lemma with
e = 2cq/λ, for a constant c that we’ll set later. Let G = (V, E) be such a graph, and f be function in V>λ(G)
with ‖ f ‖2 = 1 that maximizes ‖ f ‖q. We write f =

∑m
i=1 αiχi where χ1, . . . , χm denote the eigenfunctions of G

with values λ1, . . . , λm that are at least λ. Assume towards a contradiction that ‖ f ‖q > 2/
√
δ. We’ll prove that

g =
∑m

i=1(αi/λi)χi satisfies ‖g‖q > 10‖ f ‖q/λ. This is a contradiction since (using λi ∈ [λ, 1]) ‖g‖2 6 ‖ f ‖2/λ,
and we assumed f is a function in V>λ(G) with a maximal ratio of ‖ f ‖q/‖ f ‖2. (To prove the “moreover” part,
where we don’t assume f is the maximal function, we repeat this process with g until we get stuck.)

Let U ⊆ V be the set of vertices such that | f (x)| > 1/
√
δ for all x ∈ U. Using Markov and the fact that

�x∈V [ f (x)2] = 1, we know that µ(U) = |U |/|V | 6 δ, meaning that under our assumptions any subset S ⊆ U
satisfies cp(G(S )) 6 1/(e|S |). On the other hand, because ‖ f ‖qq > 2q/δq/2, we know that U contributes at least
half of the term ‖ f ‖qq = �x∈V f (x)q. That is, if we define α to be µ(U)�x∈U f (x)q then α > ‖ f ‖qq/2. We’ll
prove the lemma by showing that ‖g‖qq > 10α/λ.

Let c be a sufficiently large constant (c = 100 will do). We define Ui to be the set {x ∈ U : f (x) ∈
[ci/
√
δ, ci+1/

√
δ)}, and let I be the maximal i such that Ui is non-empty. Thus, the sets U0, . . . ,UI form a

partition of U (where some of these sets may be empty). We let αi be the contribution of Ui to α. That is,
αi = µi�x∈Ui f (x)q, where µi = µ(Ui). Note that α = α0 + · · · + αI . We’ll show that there are some indices
i1, . . . , iJ such that:

(i) αi1 + · · · + αiJ > α/(2c10).

(ii) For all j ∈ [J], there is a nonnegative function g j : V → � such that �x∈V g j(x)q > eαi j/(10c2)q/2.

(iii) For every x ∈ V , g1(x) + · · · + gJ(x) 6 |g(x)|.

Showing these will complete the proof, since it is easy to see that for two nonnegative functions and even
q, g′, g′′, �(g′(x) + g′′(x))q > � g′(x)q + � g′′(x)q, and hence (ii) and (iii) imply that

‖g‖44 = � g(x)4 > (e/(10c2)q/2)
∑

j

αi j . (D.2)
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Using (i) we conclude that for e > (10c)q/λ, the right-hand side of (D.2) will be larger than 10α/λ.
We find the indices i1, . . . , iJ iteratively. We let I be initially the set {0..I} of all indices. For j = 1, 2, ...

we do the following as long as I is not empty:

1. Let i j be the largest index in I.

2. Remove from I every index i such that αi 6 c10αi j/2
i−i j .

We let J denote the step when we stop. Note that our indices i1, . . . , iJ are sorted in descending order. For
every step j, the total of the αi’s for all indices we removed is less than c10αi j and hence we satisfy (i). The
crux of our argument will be to show (ii) and (iii). They will follow from the following claim:

Claim D.4. Let S ⊆ V and β > 0 be such that |S | 6 δ and | f (x)| > β for all x ∈ S . Then there is a set T of
size at least e|S | such that �x∈T g(x)2 > β2/4.

The claim will follow from the following lemma:

Lemma D.5. Let D be a distribution with cp(D) 6 1/N and g be some function. Then there is a set T of size
N such that �x∈T g(x)2 > (� g(D))2/4.

Proof. Identify the support of D with the set [M] for some M, we let pi denote the probability that D outputs
i, and sort the pi’s such that p1 > p2 · · · pM. We let β′ denote � g(D); that is, β′ =

∑M
i=1 pig(i). We separate

to two cases. If
∑

i>N pig(i) > β′/2, we define the distribution D′ as follows: we set �[D′ = i] to be pi

for i > N, and we let all i 6 N be equiprobable (that is be output with probability (
∑N

i=1 pi)/N). Clearly,
� |g(D′)| >

∑
i>N pig(i) > β′/2, but on the other hand, since the maximum probability of any element in D′ is

at most 1/N, it can be expressed as a convex combination of flat distributions over sets of size N, implying
that one of these sets T satisfies �x∈T |g(x)| > β′/2, and hence �x∈T g(x)2 > β′2/4.

The other case is that
∑N

i=1 pig(i) > β′/2. In this case we use Cauchy–Schwarz and argue that

β′2/4 6

 N∑
i=1

p2
i


 N∑

i=1

g(i)2

 . (D.3)

But using our bound on the collision probability, the right-hand side of (D.3) is upper bounded by
1
N

∑N
i=1 g(i)2 = �x∈[N] g(x)2. �

Proof of Claim D.4 from Lemma D.5. By construction f = Gg, and hence we know that for every x, f (x) =

�y∼x g(y). This means that if we let D be the distribution G(S ) then

� |g(D)| = �
x∈S
�
y∼x
|g(y)| > �

x∈S
| �
y∼x

g(y)| = �
x∈S
| f (x)| > β .

By the expansion property of G, cp(D) 6 1/(e|S |) and thus by Lemma D.5 there is a set T of size e|S |
satisfying �x∈T g(x)2 > β2/4. �

We will construct the functions g1, . . . , gJ by applying iteratively Claim D.4. We do the following for
j = 1, . . . , J:

1. Let T j be the set of size e|Ui j | that is obtained by applying Claim D.4 to the function f and the set Ui j .
Note that �x∈T j g(x)2 > β2

i j
/4, where we let βi = ci/

√
δ (and hence for every x ∈ Ui, βi 6 | f (x)| 6 cβi).

2. Let g′j be the function on input x that outputs γ · |g(x)| if x ∈ T j and 0 otherwise, where γ 6 1 is a
scaling factor that ensures that �x∈T j g

′(x)2 equals exactly β2
i j
/4.
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3. We define g j(x) = max{0, g′j(x) −
∑

k< j gk(x)}.

Note that the second step ensures that g′j(x) 6 |g(x)|, while the third step ensures that g1(x) + · · ·+ g j(x) 6
g′j(x) for all j, and in particular g1(x) + · · ·+ gJ(x) 6 |g(x)|. Hence the only thing left to prove is the following:

Claim D.6. �x∈V g j(x)q > eαi j/(10c)q/2

Proof. Recall that for every i, αi = µi�x∈Ui f (x)q, and hence (using f (x) ∈ [βi, cβi) for x ∈ Ui):

µiβ
q
i 6 αi 6 µicqβ

q
i . (D.4)

Now fix T = T j. Since �x∈V g j(x)q is at least (in fact equal) µ(T )�x∈T g j(x)q and µ(T ) = eµ(Ui j), we can
use (D.4) and �x∈T g j(x)q > (Ex∈Tg j(x)2)q/2, to reduce proving the claim to showing the following:

�
x∈T

g j(x)2 > (cβi j)
2/(10c2) = β2

i j
/10 . (D.5)

We know that �x∈T g
′
j(x)2 = β2

i j
/4. We claim that (D.5) will follow by showing that for every k < j,

�
x∈T

g′k(x)2 6 100−i′ · β2
i j
/4 , (D.6)

where i′ = ik − i j. (Note that i′ > 0 since in our construction the indices i1, . . . , iJ are sorted in descending
order.)

Indeed, (D.6) means that if we let momentarily ‖g j‖ denote
√
�x∈T g j(x)2 then

‖g j‖ > ‖g
′
j‖ − ‖

∑
k< j gk‖ > ‖g

′
j‖ −

∑
k< j

‖gk‖ > ‖g
′
j‖(1 −

∞∑
i′=1

10−i′) > 0.8‖g′j‖ . (D.7)

The first inequality holds because we can write g j as g′j − h j, where h j = min{g′j,
∑

k< j gk}. Then, on the one
hand, ‖g j‖ > ‖g

′
j‖ − ‖h j‖, and on the other hand, ‖h j‖ 6 ‖

∑
k< j gk‖ since g′j > 0. The second inequality holds

because ‖gk‖ 6 ‖g
′
k‖. By squaring (D.7) and plugging in the value of ‖g′j‖

2 we get (D.5).

Proof of (D.6). By our construction, it must hold that

c10αik/2
i′ 6 αi j , (D.8)

since otherwise the index i j would have been removed from the I at the kth step. Since βik = βi jc
i′ , we can

plug (D.4) in (D.8) to get
µik c

10+4i′/2i′ 6 c4µi j

or
µik 6 µi j(2/c)4i′c−6 .

Since |Ti| = e|Ui| for all i, it follows that |Tk|/|T | 6 (2/c)4i′c−6. On the other hand, we know that
�x∈Tk g

′
k(x)2 = β2

ik
/4 = c2i′β2

i j
/4. Thus,

�
x∈T

g′k(x)2 6 24i′c2i′−4i′−6β2
i j
/4 6 (24/c2)i′β2

i j
/4 ,

and now we just choose c sufficiently large so that c2/24 > 100. �

�
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D.1 Norm bound implies small-set expansion

In this section, we show that an upper bound on 2→ q norm of the projector to the top eigenspace of a graph
implies that the graph is a small-set expander. This proof appeared elsewhere implicitly [KV05, O’D07] or
explicitly [BGH+12, BBH+12] and is presented here only for completeness. Fix a graph G (identified with
its normalized adjacency matrix), and λ ∈ (0, 1), letting V>λ denote the subspace spanned by eigenfunctions
with eigenvalue at least λ.

If p, q satisfy 1/p + 1/q = 1 then ‖x‖p = maxy:‖y‖q61 |〈x, y〉|. Indeed, |〈x, y〉| 6 ‖x‖p‖y‖q by Hölder’s
inequality, and by choosing yi = sign(xi)|xi|

p−1 and normalizing one can see this equality is tight. In particular,
for every x ∈ L(U), ‖x‖q = maxy:‖y‖q/(q−1)61 |〈x, y〉| and ‖y‖q/(q−1) = max‖x‖q61 |〈x, y〉|. As a consequence

‖A‖2→q = max
‖x‖261

‖Ax‖q = max
‖x‖261,‖y‖q/(q−1)61

|〈Ax, y〉| = max
‖y‖q/(q−1)61

|〈ATy, x〉| = ‖AT ‖q/(q−1)→2

Note that if A is a projection operator, A = AT . Thus, part 1 of Theorem D.1 follows from the following
lemma:

Lemma D.7. Let G = (V, E) be regular graph and λ ∈ (0, 1). Then, for every S ⊆ V,

Φ(S ) > 1 − λ − ‖Vλ‖2q/(q−1)→2µ(S )(q−2)/q

Proof. Let f be the characteristic function of S , and write f = f ′ + f ′′ where f ′ ∈ Vλ and f ′′ = f − f ′ is the
projection to the eigenvectors with value less than λ. Let µ = µ(S ). We know that

Φ(S ) = 1 − 〈 f ,G f 〉/‖ f ‖22 = 1 − 〈 f ,G f 〉/µ , (D.9)

And ‖ f ‖q/(q−1) =
(
� f (x)q/(q−1)

)(q−1)/q
= µ(q−1)/q, meaning that ‖ f ′‖ 6 ‖Vλ‖q/(q−1)→2µ

(q−1)/q. We now write

〈 f ,G f 〉 = 〈 f ′,G f ′〉 + 〈 f ′′,G f ′′〉 6 ‖ f ′‖22 + λ‖ f ′′‖22 6 ‖V‖2q/(q−1)→2‖ f ‖
2
q/(q−1) + λµ

6 ‖V‖22→qµ
2(q−1)/q + λµ . (D.10)

Plugging this into (D.9) yields the result. �
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