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Abstract

Motivated by the fundamental lower bounds questions in proof complexity, we investigate
the complexity of generating identities of matrix rings, and related problems. Specifically, for a
field F let A be a non-commutative (associative) F-algebra (e.g., the algebra Matd(F) of d × d
matrices over F). We say that a non-commutative polynomial f(x1, . . . , xn) over F is an identity
of A, if for all c ∈ An, f(c) = 0. Let B be a set of non-commutative polynomials that forms a
basis for the identities of A, in the following sense: for every identity f of A there exist non-
commutative polynomials g1, . . . , gk, for some k, that are substitution instances of polynomials
from B, such that f is in the (two-sided) ideal 〈g1, . . . , gk〉. We study the following question:
Given A,B and f as above, what is the minimal number k of such generators g1, ..., gk for which
f ∈ 〈g1, . . . , gk〉?

In particular, we focus on the case where the algebra A is Matd(F), and F has characteristic
0. Our main technical contribution is a generalization of the lower bound presented in Hrubeš
[6] (for the case d = 1) to any d > 2:

For every natural number d > 2 and every finite basis B for the identities of Matd(F),
where F is of characteristic 0, there exists an identity fn with n variables, that requires
Ω(n2d) generators (i.e., substitution instances from B) to generate.

Note that for any d > 2, it is an open problem to find a basis for the identities of Matd(F) (while
the existence of a finite basis was proved by Kemer [11]). Nevertheless, using results from the
theory of algebras with polynomial identities (PI-algebras) together with a generalization of the
arguments in [6], we conclude the above lower bound for every finite basis B.

We then explore connections to lower bounds in proof complexity. We consider arithmetic
proofs of polynomial identities that operate with algebraic circuits and whose axioms are the
polynomial-ring axioms (which can be considered as an algebraic analogue of the Extended
Frege propositional proof system). We raise the following basic question: is it true that using
the generators of the (non-commutative) polynomial identities over Matd(F) as axiom (schemes)
is an optimal way to prove such identities, with respect to proof size? Namely, is it true that
proving matrix identities by reasoning with polynomials whose variables X1, . . . , Xn range over
matrices is as efficient as proving matrix identities using polynomials whose variables range over
the entries of the matrices X1, . . . , Xn? We show that a positive answer to this question may
lead, under further assumptions (which are generalization of the assumptions presented in [6]),
up to exponential-size lower bounds on arithmetic proofs.
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1 Introduction

1.1 Background

Proving super-polynomial size lower bounds on strong propositional proof systems, like the Ex-
tended Frege system, is one of the central problems of proof complexity, and in general is among
a handful of fundamental hardness questions in computational complexity theory. An Extended
Frege proof is simply a textbook logical proof system for establishing Boolean tautologies, in which
one starts from basic tautological axioms written as Boolean formulas, and derives, step by step,
new tautological formulas from previous ones by using a finite set of logical sound derivation rules;
including the so-called extension axiom enabling one to denote a possibly big formula by a single
new variable (where the variable is used neither before in the proof nor in the last line of the proof).
It is not hard to show (see [10]) that Extended Frege can equivalently be defined as a logical proof
system operating with Boolean circuits (and without the extension axiom1).

1An additional simple technical axiom is needed to formally define this proof system ([10]).

2



Lower bounds on Extended Frege proofs can be viewed as lower bounds on certain nondeter-
ministic algorithms for establishing the unsatisfiability of Boolean formulas (and thus as a progress
towards separating NP from coNP). It is also usually considered (somewhat informally) as re-
lated to establishing (explicit) Boolean circuit size lower bounds. In fact, it has also another highly
significant consequence, that places such a lower bound as a small step towards separating P from
NP: showing any super-polynomial lower bound on the size of Extended Frege proofs implies that,
at least with respect to “polynomial-time reasoning” (namely, reasoning in the formal theory of
arithmetic denoted S1

2), it is not possible to prove that P = NP; or in other words, it is consistent
with S1

2 that P 6=NP.
Accordingly, proving Extended Frege lower bounds is considered an extremely hard problem.

In fact, even conditional lower bounds on strong proof systems, including Extended Frege, are
not known and are considered very interesting; here, we mean a condition that is different from
NP 6= coNP (see [15]; the latter condition readily implies that any propositional proof system
admits a family of tautologies with no polynomial-size proofs [3]). For suggested conditional and
unconditional Extended Frege lower bounds approaches, see also the recent monograph by Kraj́ıček
[13]. The only size lower bound on Extended Frege proofs that is known to date is linear Ω(n) (where
n is the size of the tautological formula proved; see [12] for a proof). Establishing super-linear size
lower bounds on Extended Frege proofs is thus a highly interesting open problem.

Another feature of proof complexity is that, in contrast to circuit complexity, even the existence
of non-explicit hard instances for strong propositional proof systems, including Extended Frege, are
unknown. For instance, simple counting arguments cannot establish super-linear size lower bounds
on Extended Frege proofs.

Due to the lack of progress on establishing lower bounds on strong propositional proof sys-
tems, it is interesting, and potentially helpful, to turn our eyes to an algebraic analogue of strong
propositional proof systems, and try first to prove nontrivial size lower bounds in such settings.
Quite recently, such algebraic analogues of Extended Frege (and Frege, which is Extended Frege
without the extension axiom) were investigated by Hrubeš and the second author [7, 8]. These
proof systems denoted Pc(F), called simply arithmetic proofs, operate with algebraic equations of
the form F = G, where F and G are algebraic circuits over a given field F. An arithmetic proof of a
polynomial identity is a sequence of identities between algebraic circuits derived by means of simple
syntactic manipulation representing the polynomial-ring axioms (e.g., associativity, distributivity,
unit element, field identities, etc.). Although arithmetic proof systems are not propositional proof
systems, namely they do not prove propositional tautologies, they can be regarded nevertheless as
fragments of the propositional Extended Frege proof system when the field considered is GF (2).
That is, every arithmetic proof over GF (2) of a polynomial identity (considered as a propositional
tautology) can formally be viewed also as an Extended Frege proof.2

Apart from the hope that arithmetic proofs would shed light on propositional proof systems,
the study of arithmetic proofs is motivated by the Polynomial Identity Testing (PIT) problem,
namely the problem of deciding if a given algebraic circuit computes the zero polynomial. As a

2In fact, it is probably true (but was not formally verified) that arithmetic proofs serve as fragments of propo-
sitional proofs also over any other finite field, as well as over the field of rational numbers (when restricted to up
to exponentially big rational numbers). That is, it is probably true that every polynomial identity proved with an
arithmetic proof over the given field, can be proved with at most a polynomial increase in size in Extended Frege when
we fix a certain natural translation between polynomial identities over the field and propositional tautologies. The
reason for this is that one could plausibly polynomially simulate arithmetic proofs over such fields with propositional
proofs in which numbers are encoded as bit-strings.
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decision problem, polynomial identity testing can be solved by an efficient randomized algorithm
[19, 20], but no efficient deterministic algorithm is known. In fact, it is not even known whether
there is a polynomial time non-deterministic algorithm or, equivalently, whether PIT is in NP.
An arithmetic proof system can thus be interpreted as a specific non-deterministic algorithm for
PIT: in order to verify that an arithmetic circuit C computes the zero polynomial, it is sufficient to
guess an arithmetic proof of C = 0. Hence, if every true equality has a polynomial-size proof then
PIT is in NP. Conversely, the arithmetic proof system captures the common syntactic procedures
used to establish equality between algebraic expressions. Thus, showing the existence of identities
that require super-polynomial arithmetic proofs would imply that those syntactic procedures are
not enough to solve the PIT problem efficiently.3

The emphasis in [7, 8] was mainly on demonstrating non-trivial upper bounds for arithmetic
proofs (as well as lower bounds in very restricted settings). Since arithmetic proofs (at least over
GF (2)), can also be considered as propositional proofs, arithmetic proofs were found very useful
in establishing short propositional proofs for the determinant identities and other statements from
linear algebra [8]. As for lower bounds on arithmetic proofs (operating with arithmetic circuits),
the same basic linear size lower bound known for Extended Frege [12] can be shown to hold for Pc.
But any super-linear size lower bound, explicit or not, on Pc(F) proof size (for any field F) is open.
In [7] it was argued that proving lower bounds even on very restricted fragments of arithmetic
proofs is a highly nontrivial open problem.

The situation we have described up to now shows how little is known about (strong) proposi-
tional (and arithmetic) proof systems, and why it is highly interesting to introduce and develop
novel approaches for lower bounding proofs such as arithmetic proofs, even if these approaches yield
only conditional and possibly non-explicit lower bounds.

1.2 Overview of our work

The problem of proving quadratic size lower bounds on arithmetic proofs Pc was considered by
Hrubeš in [6]. The work in [6] gave several conditions and open problems, under which, quadratic
size lower bounds on arithmetic proofs would follow (and further, showed that the general framework
suggested may have potential, at least in theory, to yield Extended Frege quadratic-size lower
bounds). The current work is an attempt to extend the approach suggested in Hrubeš [6], from an
approach suitable for proving up to Ω(n2) size lower bounds on Pc proofs, to an approach for proving
much stronger lower bounds, namely an Ω(nd) lower bound on Pc(F) proofs, for every positive d > 2
and for every zero characteristic field F; and under stronger assumptions, exponential 2Ω(n) lower
bounds on Pc(F) proofs.

In the rest of this section we discuss in more details the main algebraic problem we investigate,
our result, how this work generalizes the previous work by Hrubeš’ [6], under which assumptions
this work can be applied to obtain strong proof complexity lower bounds and the questions left
open. For a more formal treatment, see subsequent sections.

3It is worth emphasizing again that arithmetic proofs are different than algebraic propositional proof systems like
the Polynomial Calculus [2] and related systems. The latter prove propositional tautologies (a coNP language) while
the former prove formal polynomial identities.
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1.2.1 The algebraic problem

For a field F let A be a non-commutative (associative) F-algebra; e.g., the algebra Matd(F) of
d × d matrices over F. We shall always assume, unless explicitly stated otherwise, that the field
F has characteristic 0. A non-commutative polynomial over the field F and with the variables
X := {x1, x2, . . .} is a formal sum of monomials where the product of variables is non-commuting.
Since most polynomials in this work are non-commutative when we talk about polynomials
we shall mean non-commutative polynomials, unless otherwise stated. The set of (non-
commutative) polynomials with variables X and over the field F is denoted F〈X〉.

We say that a polynomial f(x1, . . . , xn) over F is an identity of A, if for all c ∈ An, f(c) = 0. Let
B be a set of non-commutative polynomials that forms a basis for the identities of A, in the following
sense: for every identity f of A there exist non-commutative polynomials g1, ..., gk, for some k, that
are substitution instances of polynomials from B, such that f is in the two-sided ideal 〈g1, ..., gk〉 (a
substitution instance of a polynomial g(x1, . . . , xn) ∈ F〈X〉 is a polynomial g(h1, . . . , hn), for some
hi ∈ F〈X〉, i ∈ [n]).

Given an F-algebra A and an identity f of A, define QB(f) as the minimal number k such that
there exist g1, . . . , gk ∈ F〈X〉 for which f ∈ 〈g1, ..., gk〉, and every gi is a substitution instance of
some polynomial from B.
Example: Let F be an infinite field and consider the field F itself as an F-algebra, denoted A . Then
the identities of A are all the polynomials from F〈X〉 that evaluate to 0 under every assignment from
F to the variables X. Namely, these are the (non-commutative) polynomials that are identically
zero polynomials when considered as commutative polynomials. For instance, x1x2 − x2x1 is a
non-zero polynomial from F〈X〉 which is an identity over A .

It is not hard to show that the basis of the algebra A is the commutator x1x2 − x2x1, denoted
[x1, x2]. In other words, every identity of A is generated (in the two-sided ideal) by substitution
instances of the commutator. Considering Q{[x1,x2]}, we can now ask what is Q{[x1,x2]}(x1x3 −
x3x1+x2x3−x3x2)? The answer is 1 since (x1+x2)x3−x3(x1+x2) = x1x3−x3x1+x2x3−x3x2.

We can now present Hrubeš [6] lower bound, with the aid of our notations:

Theorem 1 ([6]). For any field and every n, there exists an identity f ∈ F〈X〉 of A with n
variables, such that Q{[x1,x2]}(f) = Ω(n2).

It is also not hard to show that Q{[x1,x2]}(f) = O(n2) for any identity f .

The generalization. For the sake of describing our generalization, let us treat (the F-algebra)
F as the matrix algebra Mat1(F) of 1× 1 matrices with entries from F. An algebra with polynomial
identities, or in short a PI-algebra (PI stands for Polynomial Identities), is simply an F-algebra
that has a non-trivial identity, that is, there is a nonzero f ∈ F〈X〉 that is an identity of the algebra.

In this work, we exploit known results about the structure of the identities of matrix algebras
and the general theory of PI-algebras to completely generalize Hrubeš [6] lower bound above, from a
lower bound of Ω(n2) for generating identities of Mat1(F) to a lower bound of Ω(n2d) for generating
identities of Matd(F), for any d > 2 and any field F of characteristic 0:

Theorem 5. Let F be any field of characteristic 0. For every natural number d > 2 and every
finite basis B of the identities of Matd(F), there exists an identity f over Matd(F) of degree 2d+ 1
with n variables, such that QB(f) = Ω(n2d).

5



Notice that similar to [6], the lower bound in this theorem is non-explicit. We do not know of
an upper bound that holds on QB(f), for every identity f with n variables.

We now discuss shortly the proof of Theorem 5.
The study of algebras with polynomial identities is a fairly developed subject in algebra (see

the monographs by Drensky [5] and Rowen [18] on this topic). Within it, perhaps the most well
known works are about the identities of matrix algebras. In particular, the well-known theorem of
Amitsur and Levitzky from 1950 [1] is the following:

Amitsur-Levitzki Theorem ([1]). Let Sd be the permutation group on d elements and let
Sd(x1, x2, . . . , xd) denote the standard identity of degree d as follows:

Sd(x1, x2, . . . , xd) :=
∑

σ∈Sd
sgn(σ)

d
∏

i=1

xσ(i).

Then, for any natural number d and any field F (in fact, any commutative ring) the standard
identity S2d(x1, x2, . . . , x2d) of degree 2d is an identity of Matd(F).

The first step in proving Theorem 5 is to use the Amitsur-Levitzki Theorem: we show that
when E = {S2d(x1, . . . , x2d)} then there exists an f ∈ F〈X〉 with 2n variables and degree 2d + 1,
such that QE(f) = Ω(n2d). To this end, we use a counting argument which is a generalization of
the counting argument in [6]. In several places the argument is slightly more involved than in [6];
e.g., when we need to show the existence of a single polynomial that achieves the lower bound (see
Lemma 12).

Note that E = {S2d(x1, . . . , x2d)} is not a basis of Matd(F), namely there are identities of
Matd(F) that are not generated by substitution instances of S2d (also notice that QB(f) can be
defined for any B ⊆ F〈X〉). Thus, the second step in the proof of Theorem 5 is dedicated to showing
that for all finite bases B of the identities of Matd(F) the following holds for the hard identity f
considered in the theorem: QB(f) = Θ(QE(f)). For this purpose, we use several structural results
from the theory of algebras with polynomial identities (see Section 4.1.3).

One interesting feature of our proof (and theorem), is that it is in fact an open problem to
describe bases of the identities of Matd(F), for any d > 2 . For the case d = 2 the basis is known by
a result of Drensky [4] (see Section 6.3). However, a highly nontrivial result of Kemer [11], shows
that for any natural d there exists a finite basis for Matd(F). Our proof shows roughly that for the
hard instances f in Theorem 5 no generators different from the S2d generators can contribute to
the generation of f .

We also demonstrate that turning the non-explicit hard identities f from Theorem 5 into explicit
ones, means finding explicit tensors with high tensor-rank:

Theorem (informal). For any d ≥ 1, if the hard identity f of Matd(F) in Theorem 5 is explicit,
then there exists an explicit tensor A : [n]2d+1 → {0, 1} with tensor-rank Ω(n2d).

This is a generalization (to any order), of a similar observation made in [6] for order 3 tensors.
This corollary can be interpreted as an evidence that the specific hard instances we provide in
Theorem 5 are not good candidates for proof complexity hardness (see about connections to proof
complexity below), because we expect these instances not to have small circuits. Nevertheless,
this does not rule out that other hard instances (namely, hard for the QB) are suitable to achieve
hardness results in proof complexity.
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1.2.2 Potential applications to proof complexity

The lower bound described above, though interesting in itself, is motivated by possible applications
to proof complexity lower bounds. As observed in [6], for the case of d = 1, it is relatively immediate
to prove that the minimal number of generators needed to generate an identity f over Matd(F) is
a lower bound on the number of distinct instances of commutativity axioms h · g = g · h needed
in any arithmetic proof of f . Thus, one can hope to get up to quadratic lower bounds on the
number of lines (and equivalently the size) in Pc proofs this way (due to the quadratic upper bound
Q{[x1,x2]}(f) = O(n2)).

Conditional lower bounds on fragments of arithmetic proofs. We can show that for each
d > 1, there is a connection between the measure QB(·) and fragments of arithmetic proofs, as
explained in what follows.

For each d ≥ 1, denote by PMatd(F) the following arithmetic proof system operating with equa-
tions between algebraic circuits: consider the proof systems Pc(F) and replace the commutativity
axiom h · g = g · h by a finite basis B of the identities of Matd(F) (namely, add a new axiom H = 0
for each polynomial h in the basis, where H is a (non-commutative algebraic) circuit computing
h).4 It is not hard to show the following:

Theorem. For every identity F = 0, where F is a non-commutative circuit that computes a non-
commutative polynomial f which is an identity of Matd(F), the number of lines of a PMatd(F)-proof
of F = 0 is lower bounded up to a constant factor (depending on the choice of finite basis B) by
QB(f).

Thus, as a corollary of this theorem, we get the following conditional lower bound:

Assumption: for any fixed d ≥ 1, assume that

1. there exists a family of identities fn ∈ F〈X〉 of Matd(F), with n variables, such that QB(f) =
Ω(nd), for some basis B of the identities of Matd(F); and

2. the size of fn is O(nr), for some constant r < d.

Conclusion: A lower bound of Ω(nd−r) (in terms of the circuit equation proved) on the size of
PMatd(F) proofs.

Note that we know by Theorem 5 that Assumption 1 is true for a specific f . But we do not
know whether this f conforms to Assumption 2 (it seems plausible to assume that this specific f
does not, because of the connection to tensor-rank mentioned above).

Apart from formulating the systems PMatd(F), which constitute a hierarchy (for increasing d’s)
of weaker and weaker fragments of Pc(F)

5, we also formulate proof systems for the free-trace
algebra [17] (see Section 6.3).

4Formally, we should fix a specific finite basis B for the sake of definiteness of PMatd(F). However, different choices
of bases can only increase the number of lines in a PMatd(F)-proof by a constant factor.

5Though not necessarily a proper hierarchy: we do not know if PMatd−1
(F) has any speed-up over PMatd(F) for

identities of Matd(F).
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Conditional polynomial-size lower bounds on the size of arithmetic proofs and the

main open problem. Here we investigate the possibility to achieve arbitrary polynomial-size
lower bounds on Pc(F) proofs using the measure QB(·). We introduce a seemingly very natural
way to achieve this goal, namely to demonstrate a connection between QB(·) (for arbitrary d > 1
and a basis B of the identities of Matd(F)) and the size of Pc(F) proofs. However, we fall short of
actually proving the connection and we leave it as an intriguing open problem, that we show may
lead, under further assumptions, up to exponential-size lower bounds on arithmetic proofs.

Informally, the question we raise is this: can it be shown that proving matrix identities by
reasoning with polynomials whose variables X1, . . . , Xn range over matrices is as efficient as prov-
ing matrix identities using polynomials whose variables range over the entries of the matrices
X1, . . . , Xn? We explain our approach in what follows.

First, note that although, for any fixed d > 1 and every identity f of Matd(F), it is possible to
use QB(f) to lower bound the size of PMatd(F) proofs (as described above), it is not clear if and
how we can use QB(f) to bound Pc(F) proof sizes (observe that any identity of Matd(F), for any
d, can be generated with O(n2) instances of the commutator ; though this is provably not true by
Theorem 5, for “higher-order commutators”, namely, when considering generators for the identities
of Matd(F), for d > 1).

Thus, it seems that the most plausible way to connect QB(f) for d > 1 with the size of Pc proofs
is via the following translation: consider a nonzero identity f of Matd(F), for some d > 1. Then f
is a nonzero non-commutative polynomial in F〈X〉. If we substitute each (matrix) variable xi in f
by a d × d matrix of entry-variables {xijk}j,k∈[d], then now f corresponds to d2 commutative zero
polynomials: f = 0 says that for every (i, j) and for every possible assignment of field F elements to
the (i, j)-entry of each of the matrix variables in f (when the product and addition of matrices are
done in the standard way) the (i, j)-entry evaluates to 0. Accordingly, let F be a non-commutative
circuit computing f . Then under the above substitution of d2 entry-variables to each variable in
F , we get d2 non-commutative circuits, each computing the zero polynomial when considered as
commutative polynomials (see Definition 15). We denote the set of d2 circuits corresponding to the
identity F by JF Kd (and we can extend it naturally to equations between circuits: JF = GKd)).

Example: let d = 2 and let f = xy − yx (it is obviously not an identity of Mat2(F), but we
use it only for the sake of example). And let F = xy − yx be the corresponding circuit (in fact,
formula) computing f . Then we substitute matrices for x, y to get:

(

x11 x12
x21 x22

)

·
(

y11 y12
y21 y22

)

−
(

y11 y12
y21 y22

)

·
(

x11 x12
x21 x22

)

.

And the (1, 1)-entry non-commutative circuit (in fact formula) corresponding to this is: (x11y11 +
x12y21)− (y11x11 + y12x21).

It is not hard to show that
∣

∣JF Kd
∣

∣ = O
(

d3|F |
)

, for every non-commutative circuit F (where
∣

∣JF Kd
∣

∣ is the total sizes of all circuits in JF Kd).
The main question we raise in this work is the following:

Main Open Problem. Let d be a positive natural number and let B be a (finite) basis of the
identities of Matd(F). Assume that f ∈ F〈X〉 is an identity of Matd(F), and let F be a non-
commutative algebraic circuit computing f . Then, the minimal number of lines in an arithmetic
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proof of the collection of d2 (entry-wise) equations JF = 0Kd corresponding to F is lower bounded
(up to a constant factor) by QB(f). And in symbols:

∣

∣ ⊢Pc(F) JF = 0Kd
∣

∣ = Ω(QB(f)). (1)

(Where
∣

∣ ⊢Pc(F) JF = 0Kd
∣

∣ is the minimal size of a Pc(F) proof containing all the circuit-equations
in JF = 0Kd.)

The conditional lower bound we get is now similar to that in the previous sub-section, except
that it holds for Pc and not only for fragments of Pc:

Assumptions: for any fixed d ≥ 1, assume that

1. there exists a family of identities of fn ∈ F〈X〉 of Matd(F), with n variables, such that
QB(f) = Ω(nd), for some basis B of the identities of Matd(F); and

2. the size of fn is O(nr), for some constant r < d; and

3. Equation 12 holds.

Conclusion: A lower bound of Ω(nd−r) (in terms of the circuit equation proved) on the size of
Pc(F) proofs.

We also present a straight forward propositional version of the Main Open Problem, by simply
considering F to be GF (2), adding to Pc(F) the Boolean axioms x2i + xi and considering matrix
identities over Matd(F) (see Section 6.2).

Conditional exponential-size lower bounds on arithmetic proofs. Assuming the answer
to the Main Open Question above is positive (i.e., Equation 12 holds), we show under which further
conditions we get exponential-size lower bounds on arithmetic proofs Pc(F).

The idea is simply to take the dimension d of the matrix algebras as a parameter by itself.

Assumptions:

1. Assume that for any d and any basis Bd of the identities of Matd(F) the number of lines in
any Pc(F) proof of JF = 0Kd is at least CBd

·QBd
(f), where CBd

is a number depending on Bd

(this is the Main Open Problem; where there CBd
is a constant).

2. Assume that for any d and any basis Bd of the identities of Matd(F), there exists a number cBd

such that for all sufficiently large n there exists an identity fn,d such that QBd
(fn,d) ≥ cBd

·n2d.
(The existence of such identities are known from our lower bound.)

3. Assume that cBd
· CBd

= Ω
(

1
poly(n)

)

.

4. Assume that the algebraic circuit size of fn,d is is at most poly(n).

9



Consequence: By the assumptions, every Pc(F)-proof of Jfn,d = 0Kd has size at least cBd
·CBd

·n2d.
Consider the family {fn,d}∞n=1, where d is a function of n, and we take d = n/4. Then, we get the
following lower bound on the number of lines in Pc(F)-proofs of the family {fn,d}∞n=1:

cBd
· CBd

· n2d =
1

poly(n/4)
nn/2 = 2Ω(n),

which (by assumption 4) is exponential in the size of the identities fn,d proved.

We wish to justify to a certain extent the new Assumptions 3 above (which lets us obtain
the exponential lower bound). We shall use the special hard polynomials f that we proved exist
in Theorem 5 for this purpose. First, note that Assumption 2 holds for the case of these f , by
Theorem 5. We can also show (see Section 6.1) that the function cBd

does not decrease too fast.
That is, for the polynomial f we can prove the following:

QBn/4
(f) = Ω

(

2n

n5/2 lnn

)

.

We can use the fact that cBd
does not decrease too fast to get the following (conditional expo-

nential lower bound):

Proposition 2. Assume the Main Open Problem as written in Assumption 1 above and suppose
that CBn/4

= Ω(1/poly(n)). Then, there exists a family of non-commutative circuits {Fn}∞n=1

(computing the family of polynomials {fn}∞n=1) such that the number of lines in any Pc(F) proof of

JFn = 0Kn/4 is at least CBn/4
Ω
(

2n

n5/2 lnn
)

= Ω
(

2n

poly(n)

)

= 2Ω(n).

Note that this will give us a (conditional) exponential-size lower bound on Pc(F) proofs only if
moreover the algebraic circuit size of {Fn}∞n=1 is small enough (e.g., if Assumption 4 above holds).
Though we do not believe that the algebraic circuit size of {Fn}∞n=1 is small, the proposition above
shows that at least potentially the parameters of our suggested framework can be accommodated
to yield exponential lower bounds.

1.3 Summary

We summarize shortly several of the novel parts of our work:

1. The generalization of Hrubeš [6] work to “higher order commutativity axioms”; Obtaining a
possible stronger lower bounds on proof systems;

2. The novel technical feature: the use of results from PI-theory to conclude the lower bound
for any finite basis of the identities of Matd(F), for any d;

3. Putting forth, and formulating in a precise manner, the Main Open Problem: what is the
relative efficiency between (i) proof systems establishing matrix identities by proving (non-
commutative) identities whose variables range over matrices, and (ii) proof systems establish-
ing matrix identities as entry-wise (commutative) polynomials.

4. Suggesting a new hierarchy of weaker and weaker (but not necessarily strictly) proof systems,
that are fragments of arithmetic proofs; namely, the proof systems PMatd(F), for increasing
d’s.
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1.4 Connection to previous works

Apart from the connection to [6], we may consider the relation of the current work to the work of
Hrubeš and Tzameret [8] that obtained polynomial-size (arithmetic and propositional) proofs for
certain identities concerning matrices. As far as we see, there are no direct relations between these
two works: in the current work we are studying matrix identities whose number of matrices (i.e.,
variables) grows with the number of variables n (if the number of matrices in the matrix identities
over Matd(F) is m then the number of variables in the translation of the identities to a set of d2

identities is d2 · n). Whereas in [8] the number of matrices was fixed and only the dimension of the
matrices grows.

Note also that the matrix identities studied in [8] are not even translation (via J·K) of matrix
identities over Matd(F): for instance

det

(

a b
c d

)

· det
(

e f
g h

)

= det

(

ae+ bg af + bh
ce+ dg cf + dh

)

is equal to (ad − bc) · (eh − fg) = (ae + bg)(cf + dh) − (af + bh)(ce + dg). But note that, e.g., in
a translation of a matrix identity over Matd(F), variables of the same matrix cannot product each
other.

2 Preliminaries

2.1 Algebras with polynomial identities

For a natural number n, put [n] := {1, 2, ..., n}. We use lower case letters a, b, c for constants from
the underlying field, x, y, z for variables and x, y, z for vectors of variables, f, g, h, ℓ or upper case
letters such as A,B, P,Q for polynomials and f, g, h, ℓ, A,B, P ,Q, for vectors of polynomials (when
the arity of the vector is clear from the context).

A polynomial is a formal sum of monomials, where a monomial is a product of (possibly non-
commuting) variables and a constant from the underlying field. For two polynomials f(x1, . . . , xn)
and g we say that g is a substitution instance of f if g = f(h1, . . . , hn) for some polynomials
h1, . . . , hn; and we sometimes denote f(h1, . . . , hn) by f(h). For a polynomial f(x1, . . . , xn) ∈ F〈X〉,
f
∣

∣

xi1
←gi1 ,...,xik

←gik
denotes the polynomial that replaces xi1 , . . . , xik by gi1 , . . . , gik in f, respectively,

where gi1 , . . . , gik ∈ F〈X〉, i1, . . . , ik are distinct numbers from [n] and k ∈ [n].
For a vector H of polynomials H1, . . . , Hk ∈ F〈X〉 where k is positive integer, we also use the

notation H|Hj←f , to denote the vector of polynomials that replace the jth coordinate Hj in H by
a polynomial f ∈ F〈X〉, where j ∈ [k].

Definition 1. Let A be a vector space over a field F and · : A×A → A be a distributive multipli-
cation operation. If · is associative, that is, a1 · (a2 · a3) = (a1 · a2) · a3 for all a1, a2, a3 in A, then
the pair (A, ·) is called an associative algebra over F, or an F-algebra, for short.6

Perhaps the most prominent example of an F-algebra is the algebra of d × d matrices, for
some positive natural number d, with entries from F (with the usual addition and multiplication of

6In general an F-algebra can be non-associative, but since we only talk about associative algebras in this paper
we use the notion of F-algebra to imply that the algebra is associative.
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matrices). We denote this algebra by Matd(F). Note indeed that Matd(F) is an associative algebra
but not a commutative one (i.e., the multiplication of matrices is non-commutative because AB
does not necessarily equal BA, for two d× d matrices A,B).

Definition 2. Let F〈X〉 denote the associative algebra of all polynomials such that the variables
X := {x1, x2, . . .} are non-commutative with respect to multiplication. We call F〈X〉 the free
algebra (over X).

For example, x1x2 − x2x1 + x3x2x
2
3 − x2x

3
3, x1x2 − x2x1 and 0 are three distinct polynomials

in F〈X〉.
Note that the set F〈X〉 forms a non-commutative ring. We sometimes call F〈X〉 the ring of

non-commutative polynomials and call the polynomials from F〈X〉 non-commutative polynomials.
Throughout this paper, unless otherwise stated, a polynomial is meant to be a non-commutative
polynomial, namely a polynomial from the free algebra F〈X〉.

We now introduce the concept of a polynomial identity algebra, PI-algebra for short:

Definition 3. Let A be an F-algebra. An identity of A is a polynomial f(x1, ..., xn) ∈ F〈X〉 such
that:

f(a1, ..., an) = 0, for all a1, ..., an ∈ A.

A PI-algebra is simply an algebra that has a non-trivial identity, that is, there is a nonzero
f ∈ F〈X〉 that is an identity of the algebra.

For example, every commutative F-algebra A is also a PI-algebra: for any a, b ∈ A, it holds that
ab − ba = 0, and so xixj − xjxi is a nonzero polynomial identity of A, for any positive i 6= j ∈ N.
A concrete example of a commutative algebra is the usual ring of (commutative) polynomials with
coefficients from a field F and variables X = {x1, x2, . . .}, denoted usually F[X].

An example of an algebra that is not a PI-algebra is the free algebra F〈X〉 itself. This is because
a nonzero polynomial f ∈ F〈X〉 cannot be an identity of F〈X〉 (since the assignment that maps
each variable to itself does not nullify f).

A two-sided ideal I of an F-algebra A is a subset of A such that for any (not necessarily distinct)
elements f1, ..., fn from I we have

∑n
i=1 gi · fi · hi ∈ I, for all g1, ..., gn, h1, ..., hn ∈ A.

Definition 4. A T-ideal T is a two-sided ideal of F〈X〉 that is closed under all endomorphisms7,
namely, is closed under all substitutions of variables by polynomials.

In other words, a T-ideal is a two-sided ideal T , such that if f(x1, ..., xn) ∈ T then f(g1, ..., gn) ∈
T , for any g1, ..., gn ∈ F〈X〉.

It is easy to see the following:

Fact 3. The set of identities of an (associative) algebra is a T-ideal.

A basis of a T-ideal T is a set of polynomials whose substitution instances generate T as an
ideal :

Definition 5. Let B ⊆ F〈X〉 be a set of polynomials and let T be a T-ideal in F〈X〉. We say that
B is a basis for T or that T is generated as a T-ideal by B, if every f ∈ T can be written
as:

f =
∑

i∈I
hi ·Bi(gi1, ..., gini) · ℓi ,

7An algebra endomorphism of A is an (algebra) homomorphism A → A.
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for hi, ℓi, gi1, ..., gini ∈ F〈X〉 and Bi ∈ B (for all i ∈ I).

Given B ⊆ F〈X〉, we write T (B) to denote the T-ideal generated by B. Thus, a T-ideal T is
generated by B ⊆ F〈X〉 if T = T (B).

Examples: T (x1) is simply the set of all polynomials from F〈X〉. T (x1x2 − x2x1) is the set of all
non-commutative polynomials that are zero if considered as commutative polynomials.

Note that the concept of a T-ideal is already somewhat reminiscent of logical proof systems,
where generators of the T-ideal T are like axioms schemes and generators of a two-sided ideal
containing f are like substitution instances of the axioms.

A polynomial is homogenous if all its monomials have the same total degree. Given a polynomial
f , the homogenous part of degree j of f , denoted f (j) is the sum of all monomials with total degree

j. We write (C)(j) to denote the jth-homogeneous part of the circuit C and the vector
(

C
)(j)

denotes the vector consisting of the jth-homogeneous parts of the circuits C1, C2, . . . , C2d.

Definition 6. Sd(x1, x2, . . . , xd) denotes the standard identity of degree d as follows:

Sd(x1, x2, . . . , xd) :=
∑

σ∈Sd
sgn(σ)

d
∏

i=1

xσ(i) ,

where Sd denotes the symmetric group on d elements and sgn(σ) is the sign of the permutation σ.

For n polynomials f1, . . . , fn where n ≥ 2, n ∈ Z, we define the generalized-commutator
[f1, . . . , fn] as follows:

[f1, f2] := f1f2 − f2f1, (in case n = 2)

and [f1, . . . , fn−1, fn] := [[f1, . . . , fn−1], fn], for n > 2.

A polynomial f ∈ F〈X〉 with n variables is homogenous with degrees (1, . . . , 1) (n times) if
in every monomial the power of every variable x1, . . . , xn is precisely 1. In other words, every
monomial is of the form α ·∏n

i=1 xσ(i), for some permutation σ of order n and some scalar α. For
the sake of simplicity, we shall talk in the sequel about polynomial of degree n, when referring to
polynomial with degrees (1, . . . , 1) (n times). Thus, any polynomial with n variables is homogenous
of total-degree n.

2.2 Algebraic circuit

Definition 7. Let F be a field, and let X = {x1, . . . , xn} be a set of input variables. An arithmetic
(or algebraic) circuit is a directed acyclic graph, where the in-degree of nodes is at most 2. Every
leaf of the graph (namely, a node of in-degree 0) is labelled with either an input variable or a field
element. Every other node of the graph is labelled with either + or ×(in the first case the node
is a sum-gate and in the second case a product-gate). Every edge in the graph is labelled with an
arbitrary field element. A node of out-degree 0 is called an output-gate of the circuit.

Every node and every edge in an arithmetic circuit computes a polynomial in the commutative
polynomial-ring F[X] in the following way. A leaf just computes the input variable or field element
that labels it. the sum of the polynomials computed by the two edges that reach it. A product-
gate computes the product of the polynomials computed by the two edges that reach it. We say
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that a polynomial g ∈ F[X] is computed by the circuit if it is computed by one of the circuit’s
output-gates.

The size of a circuit Φ is defined to be the number of edges in Φ, and is denoted by |Φ|.

Definition 8. Let F be a field, and let X = {x1, . . . , xn} be a set of input variables. A non-
commutative arithmetic circuits is similarly to the arithmetic circuits defined above, with the
following additional feature: given any ×-gate of fanin 2, its children are labeled by a fixed order.

Every node and every edge in a non-commutative arithmetic circuit computes a noncommutative
polynomial in the free algebra F〈X〉 in exactly the same way as the arithmetic circuit does, except
that at each × − gate, the ordering among the children is taken into account in defining the
polynomial computed at the gate.

The size of a noncommutative circuit Φ is also defined to be the number of vertices in Φ, and
is denoted by |Φ|.

3 The Complexity Measure

Let A be a PI-algebra (Definition 3) and let T be the T-ideal (Definition 4) consisting of all identities
of A (see Fact 3). Assume that B is a basis for the T-ideal T , that is, T (B) = T . Then every f ∈ T
is a consequence of B, namely, can be written as a linear combination of substitution instance of
polynomials from B as follows:

f =
∑

i∈I
hi ·Bi(gi1, ..., gini) · ℓi , (2)

for hi, ℓi, gi1, ..., gini ∈ F〈X〉 and Bi ∈ B (for all i ∈ I).
A very natural question, from the complexity point of view, is the following: What is the

minimal number of distinct substitution instances Bi(gi1, . . . , gini) of generators from B that must
occur in (2)? Or in other words, how many distinct substitution instances of generators are needed
to generate f above?

Formally, we have the following:

Definition 9 (QB(f)). For a set of polynomials B ⊆ F〈X〉, define QB(f) as the smallest (finite)
k such that there exist substitution instances g1, g2, . . . , gk of polynomials from B with

f ∈ 〈g1, g2, . . . , gk〉,

where 〈g1, g2, . . . , gk〉 is the two-sided ideal generated by g1, g2, . . . , gk.

If the set B is a singleton B = {h}, we shall sometimes write Qh(·) instead of Q{h}(·).
Accordingly, we extend Definition 9 to a sequence of polynomials and let QB(f1, . . . , fn) be the

smallest k such that there exist some substitution instances g1, g2, . . . , gk of polynomials from B
with

fi ∈ 〈g1, g2, . . . , gk〉, for all i ∈ [k].

Note that QB(f) is interesting only if f is not already in the generating set. Hence, we need
to make sure that the generating set does not contain f and the easiest way to do this (when
considering asymptotic growth of measure) is by stipulating the the generating set is finite. Given
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an algebra, the question whether there exists a finite generating set of the T-ideal of the identities of
the algebra is a highly non-trivial problem, that goes by the name The Specht Problem. Fortunately,
for matrix algebras we can use the solution of the Specht problem given by Kemer [11]. Kemer
showed that for every matrix algebra A there exists a finite basis of the T-ideal of the identities
of A. The problem to actually find such a finite basis for most matrix algebras (namely for most
values of d, for Matd(F)) is open.

We have the following simple proposition (which is analogous to a certain extent to the fact
that every two Frege proof systems polynomially simulate each other; see e.g. [12]):

Proposition 4. Let A be some F-algebra and let B0 and B1 be two finite bases for the identities
of A. Then, there exists a constant c (that depends only on B0, B1) such that for any identity f of
A:

QB0(f) ≤ c ·QB1(f).

Proof. Assume that B0 = {A1, A2, . . . , Ak} and B1 = {B1, B2, . . . , Bℓ}. And suppose that
QB1(f) = q and f ∈

〈

Bi1(g1), . . . , Biq(gq)
〉

, for ij ∈ [ℓ] and where gj ∈ F〈X〉 are the substitu-
tions of polynomials for the variables of Bij . By assumption that both B0 and B1 are bases for

A, there exists a constant r such that Bij ∈
〈

Aj1(hj1), ..., Ajr(hjr)
〉

, for all j ∈ [q], and where

hjl ∈ F〈X〉 are the substitutions of polynomials for the variables of Ajl , for any l ∈ [r] (formally,
r = max{QB0(Bi) : i ∈ [ℓ]}).

Note that if Bij ∈
〈

Aj1(hj1), . . . , Ajr(hjr)
〉

, then for any substitution gj (of polynomials to

the variables X) we have Bij (gj) ∈
〈(

Aj1(hj1)
)

(gj), . . . ,
(

Ajr(hjr)
)

(gj)
〉

. Thus, every Bij (gj) is
generated by r substitution instances of polynomials from B0, for any j ∈ [q]. Therefore, f can be
generated with at most r · q substitution instances of generators from B0, that is,

QB0(f) ≤ r ·QB1(f) where r = max{QB0(Bi) : i ∈ [ℓ]}. (3)

QED

4 Matrix Algebras

Hrubeš’ work. For an identity f in a commutative algebra, we define the notation Q{[x,y]}(f)
as the minimal number of substitution instances of the commutativity axioms [x, y] = 0 we need
to generate f in the two-sided ideal.

For example, Q[x,y](x1x2 − x2x1) is 1. And Q[x,y](x1x2 − x2x1 + x1x3 − x3x1) is also 1 since the
formula x1x2 − x2x1 + x1x3 − x3x1 equals [x2 + x3, x1]. In [6] it was concluded that there is an
identity f with n variables, such that:

Q[x,y](f) = Ω(n2).

We wish to extend this result to matrix algebras. Let Matd(F) denote the d× d matrix algebra
over F, that is, the set of all n×nmatrices with entries from F, with the usual operations of matrices.
First of all, we extend the notation Q[x,y](f), which only count the instances of one axiom, to the
notation QA1,A2,...,An which count the instances of n axioms A1 = 0, A2 = 0, . . . , An = 0.

Concerning matrix algebras, the following is the famous Amitsur-Levitzky Theorem:
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Amitsur-Levitzki Theorem ([1]). For any natural number d and any field F (in fact, any com-
mutative ring) the standard identity S2d(x1, x2, . . . , x2d) of degree 2d is an identity of Matd(F).

Further, it can be shown that Matd(F) does not have identities of degree smaller than 2d.
And that the identities of Matd(F) can be finitely generated [11]. That is, there must be a finite
generating set for Matd(F). By Lemma 4 no matter which finite generating set {A1, A2, ..., Ak} for
Matd(F) we choose, the value QA1,A2,...Ak

is the same up to a constant factor.
Our main theorem is the following:

Theorem 5. Let F be any field of characteristic 0. For every natural number d > 2 and for every
finite basis B of the T-ideal of identities of Matd(F), there exists an identity P over Matd(F) of
degree 2d+ 1 with n variables, such that QB(P ) = Ω(n2d).

It is interesting to point out that although we do not necessarily know what is the (finite)
generating set of Matd(F) we still can lower bound the number of generators needed to generate
certain identities.

4.1 The lower bound

We start by proving a lower bound on QS2d
, that is, we prove a lower bound on the number of

substitution instances of S2d identities needed to generate a certain identity (though S2d is not
known to be the basis of the T-ideal of the identities over Matd(F)) .

Lemma 6. For any natural d ≥ 1 and any field F of characteristic 0 there exists a polynomial
P ∈ Matd(F) of degree 2d+ 1 with n variables such that QS2d

(P ) = Ω(n2d).

Comment: It can be shown that the lemma also holds for any finite field F. Since in Section
4.1.3 we need to assume that the field is of characteristic 0, we prove the lemma only for fields of
characteristic 0 .

For proving the lemma, we introduce the following definition:

Definition 10. A polynomial P ∈ F〈X〉 with n variables x1, . . . , xn is called an s-polynomial if:

P =
∑

j1<j2<...<j2d∈[n]
cj1j2...j2d · S2d (xj1 , xj2 . . . xj2d) ,

for some natural d and constants cj1j2....j2d ∈ {0, 1}, for j1 < j2 < . . . < j2d ∈ [n].

Lemma 7. For any P1, P2, . . . , P2d ∈ F〈X〉 where d is a positive integer, S2d(P1, P2, . . . , P2d) is the
zero polynomial if there exists i ∈ [2d] such that Pi is a constant.

Proof. For a fixed I ∈ [2d], we have PI = c ∈ F.
For convenience, write the set {x ∈ [2d]|x 6= I} as [2d]/I, the permutation

(

1 2 . . . m− 1 m m+ 1 . . . 2d
i1 i2 . . . im−1 I im . . . i2d−1

)

as σm where {i1, . . . , i2d−1} = [2d]/I.
Then

S2d(P1, P2, . . . , P2d) =
∑

σ∈S2d
sgn(σ)

2d
∏

i=1

Pσ(i)
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=
∏

{i1,i2,...,i2d−1}=[2d]/I

2d
∑

m=1

sgn(σm)
m−1
∏

j=1

PijPI

2d−1
∏

j=m

Pij

=
∏

{i1,i2,...,i2d−1}=[2d]/I

2d
∑

m=1

sgn(σm)c
2d−1
∏

j=1

Pij

=c
∏

{i1,i2,...,i2d−1}=[2d]/I

(

2d
∑

m=1

sgn(σm)

)

2d−1
∏

j=1

Pij

=c
∏

{i1,i2,...,i2d−1}=[2d]/I

(

d
∑

m=1

(sgn(σ2m−1) + sgn(σ2m))

)

2d−1
∏

j=1

Pij

=c
∏

{i1,i2,...,i2d−1}=[2d]/I

(

d
∑

m=1

0

)

2d−1
∏

j=1

Pij

=0.

QED

Any s-polynomial has the following property:

Lemma 8. Let f be an s-polynomial. If there exist vectors of polynomials P1, . . . , Pr with

f ∈
〈

S2d(P1), . . . , S2d(Pr)
〉

,

then

f =
r
∑

i=1

ciS2d

(

(

Pi

)(1)
)

.

Proof. Notice that the s-formula f is 2d−homogenous. Thus,

f = (f)(2d) ∈
{

(h)(2d)
∣

∣ h ∈
〈

S2d(P1), . . . , S2d(Pr)
〉

}

.

That is

f ∈
〈

S2d(P1)
(2d), . . . , S2d(Pr)

(2d)
〉

.

By Lemma 7, for some j ∈ [r], i ∈ [2d], the polynomial S2d(P j) equals to the zero polynomial if

some P ji is a constant. Namely S2d(Pj)
(2d) = S2d

(

(

Pj

)(1)
)

, for all j ∈ [r]. Then,

f ∈
〈

S2d

(

(

P1

)(1)
)

, . . . , S2d

(

(

Pr

)(1)
)〉

.

That is,

f =
r
∑

j=1

tj
∑

i=1

AjiS2d

(

(

Pj

)(1)
)

Bji, for some Aji, Bji ∈ F〈X〉.
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Moreover,
(

AjiS2d

(

(

Pj

)(1)
)

Bji

)(2d)
= (AjiBji)

(0) S2d

(

(

Pj

)(1)
)

.

Thus

f =
r
∑

j=1

cjS2d

(

(

Pj

)(1)
)

,

where cj is the constant
∑tj

i=1 (AjiBji)
(0), for any j ∈ [r]. QED

4.1.1 The counting argument

Notation. If B ⊆ F〈X〉 contains only one polynomial g, then we write Qg(·) instead of QB(·),
to simplify the writing. Note that B may not be a basis for the algebra considered (e.g., we may
consider identities of the Matd(F) generated by some B, where B is not a basis for (all) the identities
of Matd(F)).

Lemma 9. For any field F of characteristic 0, there exist s-polynomials P1, . . . , Pn which are
identities of Matd(F) in n variables, such that QS2d

(P1, . . . , Pn) = Ω(n2d) (and QS2d
(P1, . . . , Pn) is

finite).

In Section 4.1.3 we show that, if F is of characteristic 0 then this lower bound holds for any
finite basis of Matd(F), namely for QB, where B is any finite basis of Matd(F).

Proof. We prove by a generalization of the counting argument from [6] that there exists a sequence
of polynomials P1, P2, . . . , Pn that require Ω

(

n2d
)

substitution instances of the S2d(x1, . . . , x2d)
identities to generate (all of the polynomials in the sequence) in a two-sided ideal.

Recall that an s-polynomial (Definition 10) is of the following form:

∑

j1<j2<...<j2d∈[n]
cij1j2···j2dS2d(xj1 , xj2 , . . . , xj2d), where cij1j2···j2d ∈ {0, 1} . (4)

Assume that

ℓ = max {QS2d
(P1, . . . , Pn) : Pi is an s-polynomial, for all i ∈ [n]} .

Then for any choice of n s-polynomials P1, . . . , Pn there are ℓ vectors of polynomials Q1, . . . , Qℓ

from F〈X〉, such that
P1, . . . , Pn ∈

〈

S2d(Q1), . . . , S2d(Qℓ)
〉

.

By Lemma 8, for any choice of P1, . . . , Pn and Q1, . . . , Qℓ, for every i ∈ [n]:

Pi =
ℓ
∑

j=1

cijS2d

(

Qj
(1)
)

=
ℓ
∑

j=1

cijS2d

(

n
∑

m=1

amj1xm,
n
∑

m=1

amj2xm, . . . ,
n
∑

m=1

amj2dxm

)

(for some cij , amjk ∈ F).

Consider a vector (c1j , . . . , cnj , ak1m, . . . , ak(2d)m) (m ∈ [n], k ∈ [ℓ]). By linearity of S2d:

ℓ
∑

k=1

cikS2d

(

n
∑

m=1

ak1mxm,
n
∑

m=1

ak2mxm, . . . ,
n
∑

m=1

ak(2d)mxm

)

= (5)
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∑

j1<j2<...<j2d∈[n]
cij1j2···j2dS2d(xj1 , xj2 , . . . , xj2d) (where cij1j2···j2d ∈ F). (6)

A polynomial map µ : Fn → F
m of degree d > 0, is a map µ = (µ1, . . . , µm), where each µi is a

(commutative) polynomial of degree d with n variables.

Claim. Consider the coefficients c1j , . . . , cnj , ak1m, . . . , ak(2d)m and the coefficients cij1j2···j2d in

Equation 5 as variables. Then, Equation 5 defines a degree-(2d+1) polynomial map φ : F(2d+1)nl →
F
n( n

2d) that maps each vector

(c1j , . . . , cnj , ak1m, . . . , ak(2d)m), for m ∈ [n], k ∈ [ℓ],

to
(c1j1j2···j2d , . . . , cnj1j2···j2d

), for j1 < j2 < . . . < j2d ∈ [n].

We omit the details of the proof of this claim. We have the following lemma:

Lemma 10 ([9], Lemma 5). For any field F, if µ : F
n → F

m is a polynomial map of degree d > 0,
then |µ(Fn)

⋂{0, 1}m| ≤ (2d)n.

Thus, for the degree-(2d+ 1) polynomial map φ : F(2d+1)nl → F
n( n

2d), we have

|φ(F(2d+1)nl)
⋂

{0, 1}n(
n
2d) | ≤ (2(2d+ 1))(2d+1)nl.

Recall that for any choice of n s-polynomials P1, . . . , Pn there are ℓ vectors of polynomials
Q1, . . . , Qℓ from F〈X〉, such that

P1, . . . , Pn ∈
〈

S2d(Q1), . . . , S2d(Qℓ)
〉

.

For convenience, we use C for the 0 − 1 vector (c1j1j2···j2d , . . . , cnj1j2···j2d
), where cij1j2···j2d ∈

{0, 1} , i ∈ [n], j1 < j2 < . . . < j2d ∈ [n]. Since for every possible C, the following polynomials are
s-polynomials:

∑

j1<j2<...<j2d∈[n]
C1j1j2···j2dS2d(xj1 , xj2 , . . . , xj2d), . . . ,

∑

j1<j2<...<j2d∈[n]
Cnj1j2···j2d

S2d(xj1 , xj2 , . . . , xj2d),

there exist ℓ vectors of polynomials Q1, . . . , Qℓ in F〈X〉, such that

∑

j1<j2<...<j2d∈[n]
Cij1j2···j2dS2d(xj1 , xj2 , . . . , xj2d) ∈

〈

S2d(Q1), . . . , S2d(Qℓ)
〉

, i ∈ [n].

That is, there exists a vector (c1j , . . . , cnj , ak1m, . . . , ak(2d)m) (m ∈ [n], k ∈ [ℓ]), such that

φ(c1j , . . . , cnj , ak1m, . . . , ak(2d)m) = C.

Therefore, every possible C belongs to φ(F(2d+1)nl)
⋂ {0, 1}n(

n
2d) .

Further there are 2n(
n
2d) distinct vectors C = (c1j1j2···j2d , . . . , cnj1j2···j2d

), where cij1j2···j2d ∈
{0, 1} , i ∈ [n], j1 <, . . . , < j2d ∈ [n]. Hence,

|φ(F(2d+1)nl)
⋂

{0, 1}n(
n
2d) | ≥ 2n(

n
2d).
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This implies that

(2(2d+ 1))(2d+1)nl ≥ 2n(
n
2d). (7)

Using the ln function on both sides:

(2d+ 1)nl ln(2(2d+ 1)) ≥ n

(

n

2d

)

ln 2.

Hence,

l >

(

n
2d

)

ln 2

(2d+ 1) ln(4d+ 2)
. (8)

Namely

l > c

(

n

2d

)

= c
n(n− 1) . . . (n− 2d+ 1)

d!
= Ω

(

n2d
)

(where c ∈ F), hence

l = Ω
(

n2d
)

.

QED

4.1.2 Combining the polynomials into one

Here we show that there exists already a single polynomial, denoted P ⋆ such that QS2d
(P ⋆) =

Ω(n2d). This is done in a manner which is similar to the work of Hrubeš [6]; however, there is a
further complication here, which is dealt via the technical Lemma 12.

Lemma 11. Let P1, . . . , Pn be s-polynomials in n variables x1, . . . , xn, and let z1, . . . , zn be new
variables, different from x1, . . . , xn. Let P ⋆:=

∑n
i=1 ziPi. Then

QS2d
(P ⋆) ≥ 1

2d+ 1
QS2d

(P1, . . . , Pn). (9)

Specifically, for any field F of characteristic 0 and every d ≥ 1, there exists a polynomial with n
variables such that QS2d

(P ⋆) = Ω(n2d).

Proof. For convenience, call the new variables z1, . . . , zn the Z-variables. Given a polynomial f ,

the Z-homogenous part of degree j of f , denoted (f)
(j)
Z , is the sum of all monomials where

the total degree of the Z-variables is j. For example if f = z1xy + z2z1 + z3x + 1 + x, then
(f)1Z = z1xy + z3x, (f)

2
Z = z2z1, (f)

0
Z = 1+ x. A polynomial that does not contain any Z-variable

is said to be Z-independent.
First, we claim the P ⋆ has the following property:

Claim. For any ℓ Z-independent polynomials G1, G2, . . . , Gℓ ∈ F〈X〉, if

P ⋆ ∈
〈

S2d(G1), . . . , S2d(Gℓ)
〉

,

then
P1, . . . , Pn ∈

〈

S2d(G1), . . . , S2d(Gℓ)
〉

.
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Proof of claim: Since P ⋆ ∈
〈

S2d(G1), . . . , S2d(Gℓ)
〉

,

P ⋆ =
n
∑

i=1

ziPi =
ℓ
∑

j=1

tj
∑

i=1

fjiS2d(Gj)gji, for some fji, gji ∈ F〈X〉.

Now, assign z1 = 1, z2 = z3 = · · · = zn = 0 in P ⋆. Since G1, . . . , Gℓ do not contain z1, . . . , zn, the
G1, . . . , Gℓ will remain the same. Thus,

P1 =
ℓ
∑

j=1

tj
∑

i=1

f ′jiS2d(Gj)g
′
ji,

where f ′ji = fji|z1←1,z2←0,...,zn←0, g
′
ji = gji|z1←1,z2←0,...,zn←0. Namely, P1 ∈

〈

S2d(G1), . . . , S2d(Gℓ)
〉

.

Similarly, we can show P2, . . . , Pn ∈
〈

S2d(G1), . . . , S2d(Gℓ)
〉

. Therefore,

P1, . . . , Pn ∈
〈

S2d(G1), . . . , S2d(Gℓ)
〉

.

Claim

In the following, assume QS2d
(P ⋆) = ℓ. That is, there are k vectors of polynomials

G1, G2, . . . , Gℓ such that
P ⋆ ∈

〈

S2d(G1), . . . , S2d(Gℓ)
〉

.

Namely

P ⋆ =
n
∑

i=1

ziPi =
ℓ
∑

j=1

tj
∑

i=1

fjiS2d(Gj)gji, for some fji, gji ∈ F〈X〉.

If we can find (2d+ 1) · ℓ Z-independent vector of polynomials G1, G2, . . . , G(2d+1)·ℓ such that

P ⋆ =

ℓ
∑

j=1

tj
∑

i=1

fjiS2d(Gj)gji ∈
〈

S2d(G1), . . . , S2d(G(2d+1)·ℓ)
〉

.

then we can, by the above claim, show that

P1, . . . , Pn ∈
〈

S2d(G1), . . . , S2d(G(2d+1)·ℓ)
〉

,

which is the conclusion we want to prove:

QS2d
(P1, . . . , Pn) ≤ (2d+ 1) · ℓ.

Now, to find the (2d + 1) · ℓ Z-independent vectors of polynomials G1, G2, . . . , G(2d+1)·ℓ which
generate P ⋆, let [·] be a map that maps a polynomial P ∈ F〈X〉 to a polynomial [P ] that is defined
by the following three properties:

1. The map [·] is linear, namely [αG+ βH] = α [G] + β [H] for any polynomials G,H and α, β
∈ F; and
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2. Let M be a monomial whose Z-homogenous part is of degree 1. Thus, M can be uniquely
written as M1ziM2, zi ∈ Z, where M1,M2 are Z-independent. Then

[M ] = [M1zM2] = zM2M1 ; and

3. For a monomial M whose Z-homogenous part is not of degree 1, [M ] = 0.

For convenience, in what follows, given the polynomials f, g and the vector of polynomials H,
we denote (f)0Z , (H)0Z , (g)

0
Z by F ,H,G, respectively.

Claim. For any polynomials f1, g1, . . . , fk, gk and vector of polynomials H with variables
X1, . . . , Xn, z1, . . . , zn:

[

k
∑

i=1

fiS2d(H)gi

]

∈
〈

S2d(H), S2d(H|Hj←
∑k

i=1 GiFi
)
〉

, for any j ∈ [2d].

Proof of claim: Consider the following:

[

k
∑

i=1

fiS2d(H)gi

]

=

[

(
k
∑

i=1

fiS2d(H)gi)
1
Z

]

by Property 3 of [·]

=





k
∑

i=1

(fi)
1
ZS2d(H)Gi +

k
∑

i=1

2d
∑

j=1

FiS2d

(

H|Hj←(Hj)1Z

)

Gi +
k
∑

i=1

FiS2d(H)(gi)
1
Z





(by linearity of [·]) =
k
∑

i=1

[

(fi)
1
ZS2d(H)Gi

]

+
2d
∑

j=1

[

k
∑

i=1

FiS2d

(

H|Hj←(Hj)1Z

)

Gi

]

+
k
∑

i=1

[

FiS2d(H)(gi)
1
Z

]

.

For every i ∈ [n], assume (fi)
1
Z = h1zh2 where h1, h2 are Z-independent polynomials and z is a

Z-variable, then

[

(fi)
1
ZS2d(H)Gi

]

=
[

h1zh2S2d(H)Gi

]

= zh2S2d(H)Gih1 ∈
〈

S2d(H)
〉

where the right most equality stems from Property 2 of the map [·]. Similarly, for every i ∈ [n], we
can show

[

FiS2d(H)(gi)
1
Z

]

∈
〈

S2d(H)
〉

.

By Lemma 12, which is proved below, we have

[

k
∑

i=1

FiS2d(H|Hj←(Hj)1Z
)Gi

]

∈
〈

S2d(H|Hj←
∑k

i=1 GiFi
)
〉

, for any j ∈ [2d].

Thus
[

∑k
i=1 fiS2d(H)gi

]

∈
〈

S2d(H), S2d(H|Hj←
∑k

i=1 GiFi
)
〉

for any j ∈ [2d]. Claim

Note that P ⋆ = (P ⋆)1Z . By the properties of [·] we have:

P ⋆ = [P ⋆]
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=





ℓ
∑

j=1

tj
∑

i=1

fjiS2d(Hj)gji





=
ℓ
∑

j=1





tj
∑

i=1

fjiS2d(Hj)gji





∈
〈

S2d(Hj), S2d(Hj |
Hjq←

∑tj
m=1 GjmFjm

)

〉

for any j ∈ [ℓ], q ∈ [2d].

Namely for P ⋆ =
∑ℓ

j=1

∑tj
i=1 fjiS2d(Hj)gji, we have (2d+1) ·ℓ Z-independent polynomials that

generate P ⋆, concluding the theorem. QED

Lemma 12. Let X = {x1, x2, . . . , xn} and f1, g1, . . . , fk, gk ∈ F〈X〉. Let Z = {z, z1, z2, . . . , zn}
and assume that n is an even positive integer, and let P be a vector of polynomials (P1, P2, . . . , Pn)
with variable set X ∪ Z. We denote (P )0Z , (fi)

0
Z , (gi)

0
Z by P,Fi,Gi, i ∈ [k], respectively. Then, for

any j ∈ [n], it holds that

[

k
∑

i=1

FiSn(P|Pj←(Pj)1Z
)Gi

]

∈
〈

Sn(P|Pj←
∑k

i=1 GiFi
)
〉

.

For example, when n = 2, the above lemma shows the following:

[

k
∑

i=1

FiS2((P1)
1
Z ,P2)Gi

]

∈
〈

S2(
k
∑

i=1

GiFi, P2)

〉

,

[

k
∑

i=1

FiS2(P1, (P2)
1
Z)Gi

]

∈
〈

S2(P1,
k
∑

i=1

GiFi)

〉

.

Proof. For a fixed I ∈ [n], we have (PI)1Z = UzV , where z ∈ Z, U ,V ∈ F〈X〉 and U ,V are
Z-independent.

For a permutation σ ∈ Sn and the polynomial vector P = (P1, . . . , Pn), we let

(P )σ[i,j] =

{
∏j

m=i Pσ(m), i ≤ j;

1, i > j.

We write Sn/m to denote the set {σ ∈ Sn | σ(m) = I}.
And define

πm =

(

1 2 ... n−m n−m+ 1 n−m+ 2 ... n
m+ 1 m+ 2 ... n m 1 ... m− 1

)

∀m ∈ [n].

Fact 13. sgn(πm) = (−1)m(n−m)+m−1 = (−1)nm−m(m−1)−1 = −1.

Fact 14. P σ[m+1,n] · P σ[1,m−1] = P σπm[1,n−m] · P σπm[n−m+2,n], for all σ ∈ Sn/m.

Fact 15. (Sn/m)πm = Sn/(n−m+ 1).
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So we have the following:

[

k
∑

i=1

Fisn(P|PI←UzV)Gi

]

=

[

k
∑

i=1

Fi

∑

σ∈Sn
sgn(σ)(Pσ[1,n])|PI←UzVGi

]

=

















k
∑

i=1

Fi

n
∑

m=1

∑

σ ∈ Sn

σ−1(i) = m

sgn(σ)(−1)m(Pσ[1,m−1]Pσ(m)Pσ[m+1,n])|PI←UzVGi

















=





k
∑

i=1

Fi

n
∑

m=1

∑

σ∈Sn/m
sgn(σ)(−1)m(Pσ[1,m−1]PIPσ[m+1,n])|PI←UzVGi





=





k
∑

i=1

Fi

n
∑

m=1

∑

σ∈Sn/m
sgn(σ)(−1)m(Pσ[1,m−1]UzVPσ[m+1,n])Gi





=zV
n
∑

m=1

∑

σ∈Sn/m
sgn(σ)(−1)mPσ[m+1,n]

(

k
∑

i=1

GiFi

)

Pσ[1,m−1]U

=zV
n
∑

m=1

∑

σ∈Sn/m
sgn(σ)(−1)mPσπm[1,n−m]

(

k
∑

i=1

GiFi

)

Pσπm[n−m+2,n]U by Fact 14

=zV
n
∑

m=1

∑

σ∈Sn/m
sgn(σπm)sgn(πm)(−1)mPσπm[1,n−m]

(

k
∑

i=1

GiFi

)

Pσπm[n−m+2,n]U .

let π = σπm, then ππ−1m = σ,

=zV
n
∑

m=1

∑

ππ−1
m ∈Sn/m

sgn(π)(−1)(−1)mPπ[1,n−m]

(

k
∑

i=1

GiFi

)

Pπ[n−m+2,n]U by Fact 13

=− zV
n
∑

m=1

∑

π∈Sn/(n−m+1)

sgn(π)(−1)mPπ[1,n−m]

(

k
∑

i=1

GiFi

)

Pπ[n−m+2,n]U by Fact 15

let m′ = n−m+ 1, then m = n−m′ − 1,

=− zV
n
∑

m′=1

∑

π∈Sn/m′

sgn(π)(−1)n−m
′+1Pπ[1,m′−1]

(

k
∑

i=1

GiFi

)

Pπ[m′+1,n]U

=− (−1)n+1zV
n
∑

m′=1

∑

π∈Sn/m′

sgn(π)(−1)m
′Pπ[1,m′−1]

(

k
∑

i=1

GiFi

)

Pπ[m′+1,n]U

=zVSn(P|PI←
∑k

i=1 GiFi
)U
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∈
〈

Sn(P|PI←
∑k

i=1 GiFi
)
〉

.

QED

4.1.3 Concluding the lower bound for every basis of the identities of Matd(F)

Here we show that the Ω(n2d) lower bound proved in previous sections holds (for every d > 2 and)
every finite basis of the identities of Matd(F), when F is of characteristic 0. To this end, we use
several results from the theory of PI-algebras (for more on PI-theory see the monographs [18, 5]).

A polynomial f ∈ F〈X〉 with n variables is multi-homogenous with degrees (1, . . . , 1) (n
times) if in every monomial the power of every variable x1, . . . , xn is precisely 1. In other words,
every monomial is of the form α ·∏n

i=1 xσ(i), for some permutation σ of order n and some scalar
α. For the sake of simplicity, we shall talk in the sequel about a multi-homogenous polynomial
of degree n, when referring to a multi-homogenous polynomial with degrees (1, . . . , 1) (n times).
Thus, any multi-homogenous polynomial with n variables is homogenous of total-degree n.

We need the following definition:

Definition 11. A polynomial f ∈ F〈X〉 is called a commutator polynomial if it is a linear
combination of products of generalized-commutators. (We assume that 1 is a product of an empty
set of commutators.)

For example, [x1, x2] · [x3, x4] + [x1, x2, x3] is a commutator polynomial.
We need the following proposition:

Proposition 16 (Proposition 4.3.3 in [5]). If R is a unitary PI-algebra over a field F of charac-
teristic 0, then every identity of R can be generated by multi-homogenous commutator polynomials.

Remark. Multi-homogenous and commutator polynomials, in the current paper, are called mul-
tilinear and proper polynomials in [5], respectively.

Lemma 17. Let R be a unitary PI-algebra and let T be the T-ideal consisting of all identities of R.
Then T has a finite basis in which every polynomial is a multi-homogenous commutator polynomial.

Proof. By Kemer [11], the identities of any F-algebra, for any F, can be generated by a finite set
of identities. Namely T has a finite basis {A1, , . . . , Ak}, for some positive integer k.

By Proposition 16, for a fixed identity of R, we can find finite many multi-homogenous com-
mutator polynomials to generate. Thus, each Ai, i ∈ [k], can be generated by finite many multi-
homogenous commutator polynomials. Then there are finite many multi-homogenous commutator
polynomials generating the basis {A1, , . . . , Ak} of T , and hence, also finite many multi-homogenous
commutator identities generating T .

QED

Lemma 18. Let f ∈ F〈X〉 be a multi-homogenous commutator polynomial with n variables. If xi
is a constant for some i ∈ [n], then f(x1, . . . , xn) ≡ 0 (that is, f is the zero polynomial).

Proof. In the proof, when we talk about the commutator, we mean the non-zero polynomial
[xt1 , . . . , xts ] for all possible t1, . . . , ts ∈ [n] and some natural number s ≥ 2. It is easy to check that
if we replace a variable by a constant c ∈ F in the commutator [xt1 , . . . , xts ], then the commutator
equals 0.
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By the definition of commutator polynomial, we know

f =
m
∑

i=1

ci

ki
∏

j=1

Bij ,

where 0 6= ci ∈ F and m,n ∈ N, and Bij is some commutator [xi1 , . . . , xis ].

For a fixed I ∈ [n], by the definition of multi-homogenous polynomial, f must be linear in xI ,
namely ci

∏ki
j=1Bij must be linear in xI for every i ∈ [m]. Then there must be a j0 ∈ [k] such

that Bij0 is linear in xI . That is, Bij0 |xI←c = 0. Furthermore,
∏ki

j=1Bij |xI←c = 0 for all i ∈ [m].
Namely f |xI←c = 0. QED

By lemma 9 and lemma 11, we know that there exist s-polynomials P1, . . . , Pn in n variables
x1, . . . , xn that are identities over Matd(F), such that putting P ⋆:=

∑n
i=1 ziPi, where z1, . . . , zn are

new variables, we have:

QS2d
(P ⋆) ≥ 1

2d+ 1
·QS2d

(P1, . . . , Pn) = Ω(n2d).

The following is the main lemma of this section:

Lemma 19. Let d > 2, and let B be some basis for the T-ideals of the identities of Matd(F). Then,
there are constants c, c′ such that for any identity P over Matd(F) of degree 2d+ 1:

cQS2d
(P ) ≤ QB(P ) ≤ c′QS2d

(P ).

To prove this theorem we need the following two lemmata.

Lemma 20. For any natural number d > 2, every multi-homogenous identity (with any number of
variables) over Matd(F) of degree at most 2d+ 1 is a consequence of the standard identity S2d.

Proof. By Leron [14], we know that for any d > 2 every multi-homogenous identity of Matd(F)
with degree 2d+1 is a consequence of the standard identity S2d. By Exercise 7.1.2 in [5], there are
no identities of degree less than 2d in Matd(F) and every multi-homogenous polynomial identity of
degree 2d in Matd(F) is also a consequence of the standard identity S2d. QED

By Lemma 17, there is a basis {A1, A2, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-
homogenous commutator identities (Definition 11).

Lemma 21. Let P be an identity of Matd(F) of degree 2d+1 and let G be a basis {A1, A2, . . . , Am}
of Matd(F), where A1, . . . , Am are all multi-homogenous commutator identities of Matd(F). And
assume QG(P ) = k, that is, k is the minimal number such that exist k substitution instances
B1, B2, . . . , Bk of A1, A2, . . . , Am, for which:

P ∈ 〈B1, B2, . . . , Bk〉 .

Then, no Bℓ, for ℓ ∈ [k], is a substitution instance of a basis element Aj whose degree is greater
than 2d+ 1.
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Proof. Assume there is Aj (for j ∈ [m]) in the basis G such that the degree of Aj(x) is greater than
2d+ 1. In the following, we show that none of Bℓ (ℓ ∈ [k]) is a substitution instance of Aj .

Assume otherwise. Hence, there is a BI , I ∈ [k], such that BI is the substitution instance of
Aj . Since Aj(x) is homogeneous, every term in Aj(x) is of degree greater than 2d+ 1.

We consider the following two cases:

Case 1: Every term in the Aj(Q), which is a substitution instances of Aj(x), is of degree greater
than 2d+ 1.

For convenience, given a polynomial f , we denote by f≤j the polynomial
∑j

i=0 (f)
(i), namely

the sum of all homogenous parts of f of degree at most j. We consider the 2d+1 homogenous part,
that is:

P = (P )(2d+1)

∈
{

(h)(2d+1)
∣

∣ h ∈ 〈B1, B2, . . . , Bk〉
}

⊂
〈

(B1)
(≤2d+1) , . . . , (Bk)

(≤2d+1)
〉

.

But (BI)
(≤2d+1) =

(

Aj(Q)
)(≤2d+1)

= 0, because, in this case, every term in Aj(Q)
is of degree greater than 2d + 1. So P can also belong to the ideal generated by
{

(B1)
(≤2d+1) , (B2)

(≤2d+1) , . . . , (Bk)
(≤2d+1)

}

\ (BI)
(≤2d+1). This means QG(P ) = k − 1 which

contradicts QG(P ) = k. Thus the assumption is false.

Case 2: There is a term of degree at most 2d + 1 in Aj(Q), which is a substitution instance of
Aj(x).

But we assumed that every term in Aj(x) must be of degree greater than 2d + 1. This means
one of the coordinates of Q must be a constant. That is, Aj(Q) = 0 (by Lemma 18). So P can be
generated by {B1, B2, . . . , Bk} \ Bi. Hence, QG(P ) = k − 1, which contradicts QG(P ) = k. Thus
the assumption is false.

Now we can conclude that the assumption that there is a BI , I ∈ [k], such that BI is a
substitution instance of Aj is false. So none of Bℓ (ℓ ∈ [k]) is a substitution instance of Aj .

QED

We are now back to the proof of Lemma 19:

Proof. Let B be a basis {A1, A2, . . . , Am} of Matd(F), where A1, . . . , Am are all multi-homogenous
commutator identities of Matd(F). Let

(B)(≤2d+1) := {Ai ∈ B | the degree of Ai is no more than 2d+ 1}.

For any identity P of Matd(F) of degree 2d+ 1, by Lemma 21,

Q
(B)(≤2d+1)(P ) = QB(P ).

This also means that every identity of Matd(F) of degree at most 2d + 1 can be gener-

ated by (B)(≤2d+1). Thus, S2d can be generated by (B)(≤2d+1). Write (B)(≤2d+1) as the set
{A′1, A′2, . . . , A′m′}, m′ ≤ m, where the degree of A′i (∀i ∈ [m′]) is less than 2d + 1. By Lemma
20, A′1, . . . , Am′ is generated by S2d. Then, by Equation 3 in Proposition 4, for any identity P over
Matd(F) of degree 2d+ 1:

1

Q
(B)(≤2d+1)(S2d)

QS2d
(P ) ≤ Q

(B)(≤2d+1)(P ) ≤
(

max
B∈B′

QS2d
(B)

)

QS2d
(P ) d > 2. (10)
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Namely, for every identity P of Matd(F) of degree 2d+ 1,there are constants c, c′ such that:

cQS2d
(P ) ≤ QB(P ) ≤ c′QS2d

(P ) d > 2.

QED

We can now conclude the main theorem of this section, Theorem 4.1.3, which we restate for
convenience:

Theorem. Let F be any field of characteristic 0. For every natural number d > 2 and for every
finite basis B of the T-ideal of identities of Matd(F), there exists an identity P over Matd(F) of
degree 2d+ 1 with n variables, such that QB(P ) = Ω(n2d).

Note on the case of d = 2. When d = 2, Lemma 19 is not true. For example, the polynomial
f = [[x1, x2][x3, x4] + [x3, x4][x1, x2], x5] is an identity over Mat2(F), but it is possible to show
(though it is not entirely trivial) that f cannot be generated by S4.

5 Relations to tensor-rank

Here we show that in order to make the hard (non-explicit) instances f from Theorem 5 into explicit
ones, means finding explicit tensors with high tensor-rank. This generalizes (to any order) a similar
observation made in [6] for order 3 tensors. This means that the specific hard instances we provide
in Theorem 5 are not good candidates for proof complexity hardness, because it is reasonable to
assume they do not have small size circuits.

Definition 12. A tensor A : [n]r → F is a simple tensor if there exist r vectors a1, . . . , ar :
[n] → F such that A = a1 ⊗ · · · ⊗ ar, where ⊗ denotes tensor product, that is, A is defined by
A(i1, i2, . . . , ir) = a1(i1) · · · ar(ir).

Definition 13. For a tensor A, the tensor rank rank(A) is the minimal k such that there exist
k simple tensors A1, A2, . . . , Ak : [n]r → F such that A =

∑k
i=1Ai.

Definition 14. For a natural number n, let A be a tensor [n]r+1 → F. We define the correspond-
ing polynomials (from F〈X〉) of the tensor A as follows:

fj0 :=
∑

j1,j2,...,jr∈[n]
A(j0, j1, . . . , jr)Sr(xj1 , xj2 , . . . , xjr), ∀j0 ∈ [n].

By the following theorem, if we find an collection of explicit8 s-polynomials f1, . . . , fn over
Matd(F) such that QS2d

(f1, . . . , fn) is Ω(n2d), then we can find an explicit9 tensor A : [n]2d+1 →
{0, 1} with rank Ω(n2d), where the corresponding polynomials of A are the s-polynomials f1, . . . , fn.

Theorem 22. For a natural number n, let Af1,...,fn be a tensor [n]r+1 → F and let f1, . . . , fn ∈ F〈X〉
be the corresponding polynomials of Af1,...,fn, then:

QS2d
(f1, . . . , fn) ≤ rank(Af1,...,fn).

8A polynomial is said to be explicit if the coefficient of a monomial of degree d is computable by algebraic circuits
of size at most poly(d), where d is a natural number.

9A tensor T : [n]r → F is called explicit if T (i1, . . . , ir) can be computed by algebraic circuits of size at most
polynomial in poly(r lg n), that is, at most polynomial in the size of the input (i1, . . . , ir).}
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Proof. Assume rank(Af1,...,fn) = R. Namely we can find R simple tensors A1, A2, . . . , AR such that

Af1,...,fn =
R
∑

i=1

Ai. (11)

For every i ∈ [R], by simple tensor’s definition, there exist 2d+1 vectors a
(i)
0 , a

(i)
1 , . . . , a

(i)
2d : [n] →

F such that Ai = a
(i)
0 ⊗ a

(i)
1 ⊗ · · · ⊗ a

(i)
2d . Namely Ai(i0, i1, i2, . . . , i2d) = a

(i)
0 (i0)a

(i)
1 (i1) · · · a(i)2d (i2d),

where i0, . . . , i2d ∈ [n].
Concerning the corresponding polynomials f1, . . . , fn of Af1,...,fn , for every j0 ∈ [n],

fj0 =
∑

j1,j2,...,jr∈[n]
Af1,...,fn(j0, . . . , j2d)S2d(xj1 , . . . , xj2d)

=
∑

j1,j2,...,jr∈[n]

R
∑

i=1

Ai(j0, . . . , j2d)S2d(xj1 , . . . , xj2d) (by 11)

=
R
∑

i=1

∑

j1,j2,...,jr∈[n]
Ai(j0, . . . , j2d)S2d(xj1 , . . . , xj2d)

=

R
∑

i=1

a
(i)
0 (j0)

∑

j1,j2,...,jr∈[n]
a
(i)
1 (j1) · · · a(i)2d (j2d)S2d(xj1 , xj2 , . . . , xj2d)

=
R
∑

i=1

a
(i)
0 (j0)S2d





∑

1≤j≤n
a
(i)
1 (j)xj ,

∑

1≤j≤n
a
(i)
2 (j)xj , . . . ,

∑

1≤j≤n
a
(i)
2d (j)xj





=
R
∑

i=1

a
(i)
0 (j0)S2d(P i)

(For convenience, write
(

∑

1≤j≤n a
(i)
1 (j)xj ,

∑

1≤j≤n a
(i)
2 (j)xj , . . . ,

∑

1≤j≤n a
(i)
2d (j)xj

)

as P i, for any

i ∈ [R]).
Namely

f1, . . . , fn ∈
〈

S2d

(

P 1

)

, . . . , S2d

(

PR

)〉

.

Thus QS2d
(f1, . . . , fn) ≤ R, namely QS2d

(f1, . . . , fn) ≤ rank(Af1,...,fn). QED

By the above theorem, we have the following:

Corollary 23. If there exists a n explicit collection of s-polynomials f1, . . . , fn (that are all
identities of) Matd(F), such that QS2d

(f1, . . . , fn) = Ω(n2d), then there exists an explicit tensor
A : [n]2d+1 → {0, 1} with tensor-rank Ω(n2d).

6 Relations to proof complexity and the main open problem

Here we seek to find connections between the work we have done above to the problem of proving
lower bounds in proof complexity.
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Consider a matrix identity f over Matd(F). It is a non-commutative polynomial. Let f be a
nonzero polynomial identity over Matd(F). Then f is a nonzero non-commutative polynomial from
F〈X〉. If we substitute each (matrix) variable xi in f by a d×dmatrix of entry-variables {xijk}j,k∈[n],
then now f corresponds to d2 commutative zero polynomials, one for each entry computed by f .
Accordingly, let F be a non-commutative circuit computing f . Then under the above substitution
of d2 entry-variables to each variable in F , we get d2 non-commutative circuits, each computing
the zero polynomial when considered as commutative polynomials. Formally, we define the set of
d2 non-commutative circuits corresponding to the non-commutative circuit F as follows:

Definition 15 (JF Kd, JF = 0Kd). Let F be a non-commutative circuit computing the polynomial
f ∈ F〈X〉, such that f is an identity of Matd(F). We define JF Kd as the set of d2 circuits which
are generated from bottom to top in the circuit of F according to the following rules:

1. every variable x in F corresponds to d2 new variables xij , i, j ∈ [d];

2. every plus gate X ⊕ Y , where X,Y represent two circuits, in F corresponds to d2 plus gates
⊕ij , i, j ∈ [d] where each plus gate ⊕ij connects the corresponding circuit Xij and Yij which
have been generated before;

3. every multiplication gate X⊗Y in F corresponds to d2 plus gates ⊕ij , i, j ∈ [d] where each plus
gate ⊕ij is connected to d multiplication gates ⊗k, k ∈ [d] which represent the multiplication
of two corresponding circuit Xik and Ykj that have been generated before. (Formally, plus
gates have fan-in two, and so ⊕ij is the root of a binary tree whose internal nodes are all plus
gates and whose d leaves are the product gates ⊗k, k ∈ [d].)

We define JF = 0Kd to be the set of equations between circuits, where each circuit in JF Kd equals
the circuit 0.

Fact 24. Since every gate in F corresponds to at most d3 gates in JF Kd, we have:

∣

∣JF Kd
∣

∣ = O
(

d3|F |
)

(where |F | denotes the size of F , that is the number of nodes in F and
∣

∣JF Kd
∣

∣ denotes the sum of
size of all circuits in JF Kd). Thus, if we fix the dimension of a matrix as a constant, then we can
claim that |JfKd| = Θ(|f |).

First, we recall the arithmetic proof system Pc(F) (introduced in [8], and almost similarly in [7])
for deriving (commutative) polynomial identities over a field F. The system manipulate arithmetic
equations, that is, expressions of the form F = G where F,G are circuits. Let F be a field. The
system Pc(F) proves equations of the form F = G, where F,G are circuits over F. The inference
rules are:

F = G

G = F

F = G G = H

F = H
F1 = G1 F2 = G2

F1 + F2 = G1 +G2

F1 = G1 F2 = G2

F1 × F2 = G1 ×G2
.

The axioms are equations of the following form, with F,G,H ranging over circuits:

Identity : F = F
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Multiplication commutativity : F ·G = G · F
Addition commutativity : F +G = G+ F

Associativity : F + (G+H) = (F +G) +H F · (G ·H) = (F ·G) ·H
Distributivity : F · (G+H) = F ·G+ F ·H
Zero element : F + 0 = F F · 0 = 0

Unit element : F · 1 = F

Field identities : c = a+ b d = a′ · b′

where in the Field identities a, a′, b, b′, c, d ∈ F, such that the equations hold in F.

Circuit axiom : F = F ′ if F and F ′ are (syntactically) identical when

both are un-winded into formulas.

Note that the Circuit axiom can be verified in polynomial time (see e.g., [10]).
A proof π in Pc(F) is a sequence of equations F1 = G1, F2 = G2, . . . , Fk = Gk, with Fi, Gi

circuits, such that every equation is either an axiom, or was obtained from previous equations by
one of the derivation rules. An equation Fi = Gi appearing in a proof is also called a proof-line.
Denote by | ⊢Pc(F) F | the minimum number of lines in a Pc proof of F = 0. We say that π is a Pc

proof of a set of equations if π is a Pc and it contains all the equations in the set as proof-lines).
For F an infinite field, f is an identity in Matd(F) iff JF = 0Kd has a Pc(F) proof. This is easy

to prove as follows: assume by contradiction otherwise, then there must be an assignment A that
makes g 6= 0. This follows since the field is infinite (and so every non zero polynomial has an
assignment that does not nullifies the polynomial). But this assignment A (extended in any way
to all entries) makes the matrix identity nonzero, in contradiction to the assumption that it is a
matrix identity.

The main open question we raise in this work is the following:

Main Open Problem. Let d be a positive natural number and let B be a (finite) basis of the
T-ideal of the identities of Matd(F). Assume that f ∈ F〈X〉 is an identity over Matd(F), and let
F be a non-commutative algebraic circuit computing f . Then, the minimal number of lines in an
arithmetic proof of the collection of d2 (entry-wise) equations JF = 0Kd corresponding to F is lower
bounded (up to a constant factor) in QB(f). And in symbols:

∣

∣ ⊢Pc(F) JF = 0Kd
∣

∣ = Ω(QB(f)).

6.1 Conditions for exponential lower bounds

Can we, even potentially, obtain exponential lower bounds on Pc(F) proof size using the measure
QB(·) and assuming the Main Open Question has a positive answer? The answer is yes, under
certain assumptions. We write the assumptions formally:

Assumptions:

1. Assume that for any d and any basis Bd of the identities of Matd(F) the number of lines in
any Pc(F) proof of JF = 0Kd is at least CBd

·QBd
(f), where CBd

is a number depending on Bd

(this is the Main Open Problem; where there CBd
is a constant).
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2. Assume that for any d and any basis Bd of the identities of Matd(F), there exists a number cBd

such that for all sufficiently large n there exists an identity fn,d such that QBd
(fn,d) ≥ cBd

·n2d.
(The existence of such identities are known from our lower bound.)

3. Assume that cBd
· CBd

= Ω
(

1
poly(n)

)

.

4. Assume that the algebraic circuit size of fn,d is is at most poly(n).

Consequence: By the assumptions, every Pc(F)-proof of Jfn,d = 0Kd has size at least cBd
·CBd

·n2d.
Consider the family {fn,d}∞n=1, where d is a function of n, and we take d = n/4. Then, we get the
following lower bound on the number of lines in Pc(F)-proofs of the family {fn,d}∞n=1:

cBd
· CBd

· n2d =
1

poly(n/4)
nn/2 = 2Ω(n),

which (by assumption 4) is exponential in the size of the identities fn,d proved.

We wish to justify to a certain extent the new Assumptions 3 above (which lets us obtain the
exponential lower bound). We shall use the s-polynomials for this. First, note that Assumption 2
holds for the case of the s-polynomials, by Theorem 5.

We now show that the function cBd
does not decrease too fast. By Equations 8,9 and 10 in

Section 4.1, we know that for any natural number d, there is an s-polynomial f, such that:

QBd
(f) ≥ 1

Q
(Bd)

(≤2d+1)(S2d)

1

2d+ 1

(

n
2d

)

ln 2

(2d+ 1) ln(4d+ 2)
.

Let Bd be a set of identities of Matd(F) that contains the S2d identities. Hence,

Q
(Bd)(≤2d+1)(S2d) = 1.

Thus

QBd(f) ≥
1

2d+ 1

(

n
2d

)

ln 2

(2d+ 1) ln(4d+ 2)
.

If we let d = n/4, then

QBn/4
(f) ≥ 1

n/2 + 1

(

n
n/2

)

ln 2

(n/2 + 1) ln(n+ 2)
.

By Stirling’s formula, we get that n! ∼
√
2πn(ne )

n. Hence,
(

n
n/2

)

∼ 2n+1/2√
nπ

. Then

QBn/4
(f) = Ω

(

2n

n5/2 lnn

)

.

This shows that the function cBd
does not decrease too fast.

We can use the fact that cBd
does not decrease too fast to get the following (conditional expo-

nential lower bound):
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Proposition 25. Assume the Main Open Problem as written in Assumption 1 above and suppose
that CBn/4

= Ω(1/poly(n)). Then, there exists a family {fn}∞n=1 of s-polynomials such that the

number of lines in any Pc(F) proof of JFn = 0Kn/4 is at least CBn/4
Ω
(

2n

n5/2 lnn
)

= Ω
(

2n

poly(n)

)

=

2Ω(n).

(Note that we get a exponential lower bound for the lines of proofs in Pc in the above consequence
without considering about the size of the s-polynomials.)

6.2 A propositional version of the Main Open Problem

We wish to comment on the applicability of our suggested framework, for achieving propositional
Extended Frege lower bounds.

It seems that the most natural way to connect the complexity, measure QB(·) to the number of
lines in an Extended Frege (see, e.g., [12] or [10] for a formal definition of Extended Frege) proof is
to require that the Main Open Problem states an even stronger statement. Admittedly, this makes
the new assumption, shown below, quite speculative at the moment.

Given a commutative algebraic circuit C over GF (2), we can think of the circuit equation
C = 0 as a Boolean circuit computing a tautology, instead of an algebraic circuit: interpreting + as
XOR, · as ∧, and = as logical equivalence ≡ (that is, ↔). Accordingly, we can consider arithmetic
proofs over GF (2) augmented with the Boolean axioms x2i + xi, for each variables xi, to obtain
a propositional proof system which formally is an Extended Frege proof system (see [8]). Denote
this system Pc(F) + {x2i + xi : xi ∈ X}.

Then, there is no clear reason to rule out the following:

Main Open Problem—the Propositional Case over GF (2). Let F = GF (2), let d be a
positive natural number and let B be a (finite) basis of the identities of Matd(F). Assume that
f ∈ F〈X〉 is an identity of Matd(F), and let F be a non-commutative algebraic circuit computing
f . Then, the minimal number of lines in a Pc(F) + {x2i + xi : xi ∈ X} proof of the collection of
d2 (entry-wise) equations JF = 0Kd corresponding to F is lower bounded (up to a constant factor)
by QB(f). And in symbols:

∣

∣ ⊢
Pc(F)+{x2

i+xi : xi∈X} JF = 0Kd
∣

∣ = Ω(QB(f)). (12)

(Where, as before,
∣

∣ ⊢
Pc(F)+{x2

i+xi : xi∈X} JF = 0Kd
∣

∣ is the minimal size of a Pc(F) + {x2i + xi :

xi ∈ X} proof containing all the circuit-equations in JF = 0Kd.)

Comment: One can plausibly consider the same propositional version of the main open problem,
with F being the rational numbers, and hence of characteristic 0 (for we which we have more
knowledge about QB(·), as obtained in our work). However, the way to translate arithmetic proofs
Pc over the rationals is less immediate than the same translation for the case of GF (2), and we
have not verified formally the details of such a translation.

6.3 Proof systems for matrix identities

The proof system Pc(F) works for proving identities over commutative fields. Here we formulate
a fragment of Pc(F) that proves matrix Matd(F) identities, for every given d. In what follows, F
always denotes the field of characteristic 0.
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We can define a new proof system PMatd(F) for proving identities over Matd(F). Since, for
d > 2, the set of generators for the identities over Matd(F) are still not well understood, we shall
formulate a system only for PMat2(F), since for the identities of Mat2(F) Drensky [4] has found a
basis.

Definition 16 (The system PMat2(F): proofs of identities over Mat2(F) ). PMat2(F) is the equational
circuit proof system whose set of proper axioms consists of the following equations:

Addition commutativity : f + g = g + f

Associativity : f + (g + h) = (f + g) + f f · (g · h) = (f · g) · h
Distributivity : f · (g + h) = f · g + f · h
Zero element : f + 0 = f f · 0 = 0

Unit element : f · 1 = f

Genertators : S4(x, y, z, w) = 0 [[x, y]2, z] = 0

Field identities : c = a+ b d = a′ · b′

where in the Field identities a, a′, b, b′, c, d ∈ F, such that the equations hold in F.

Circuit axiom : F = F ′ if F and F ′ are (syntactically) identical when

both are un-winded into formulas.

Denote πMat2(f) : PMat2(F) ⊢ f = 0 by the shortest proof for the equation f = 0 in system
PMat2(F) and denote |πMat2(f)| by the number of lines in πMat2(f).

7 Proof systems for identities of different algebras

We can consider proof systems for identities of algebras different than matrix algebras. Specifically,
we can enlarge the language of polynomial identities from F〈X〉 to the free trace polynomial algebra
TrF〈X〉, as we now describe (see Razmyslov [16]).

First, define the trace function Tr(·) : F〈X〉 → F as a function with the following congruence:

[Tr(f), g] = 0,

[Tr(f), T r(g)] = 0,

T r(fg) = Tr(gf),

T r(αf + βg) = αTr(f) + βTr(g),

where f and g range over F〈X〉 and α and β range over the field F. For any k ∈ N and any
B1, . . . , Bk ∈ F〈X〉, define the trace monomial as the following product:

B1Tr(B2)Tr(B3) · · ·Tr(Bk).

A trace polynomial is defined to be a sum of trace monomials.

Definition 17. Let TrF〈X〉 denote the associative algebra of trace polynomials such that the vari-
ables X := {x1, x2, . . .} are non-commutative with respect to multiplication. We call TrF〈X〉 the
free trace polynomial algebra (over X). (More precisely, we have distributivity and associativ-
ity of product; and commutativity and associativity of additions in the free trace polynomial algebra,
which are defined in the same way as for the free algebra F〈X〉.)

34



From now on, we only talk about the free trace polynomial over a matrix algebra, and we will
only consider the function Tr(·) as the ordinary trace function. Namely for a matrix M , the value
Tr(M) is the sum of diagonal elements of M .

Then a trace polynomial f(x1, . . . , xn) ∈ TrF〈X〉 is called a trace identity of Matd(F) if
f(B1, . . . , Bn) = 0 for any matrices B1, . . . , Bn ∈ Matd(F).

It is easy to see that the free algebra F〈X〉 is contained in TrF〈X〉. Actually we construct the
free trace polynomial algebra TrF〈X〉 as a generalized free algebra, which will play the same role
for trace identities as the free algebra plays for ordinary identities.

Furthermore, a two-sided ideal T of the free trace polynomial algebra TrF〈X〉 is called a trace
T-ideal if for any trace polynomial f(x1, . . . , xn) contained in T and any g1, . . . , gn ∈ F〈X〉, the
trace polynomial f(g1, . . . , gn) is contained in T . Let B ∈ TrF〈X〉 be a set of trace polynomials
and let T be a trace T-ideal. We say that T is generated by B, if every f ∈ T can be written as:

f =
∑

i∈I
hi ·Bi(gi1, ..., gini) · ℓi ,

for hi, ℓi ∈ TrF〈X〉, gi1, ..., gini ∈ F〈X〉 and Bi ∈ B (for all i ∈ I). A trace identity f = 0 is called
a consequence of (or generated by) the trace identities g = 0, where g ranges over B, if f ∈ T .

We have the following theorem:

Theorem 26 (Razmyslov [16], Theorem 2). All trace identities of the Matd(F) are consequences
of the Cayley-Hamilton identity fd which can be computed by the following recurrence:

f1 = y − Tr(y), fn = fn−1y −
1

n
Tr(fn−1y), n ≥ 2.

We can thus construct a proof system PTrd(F) for proving the trace identities over Matd(F).
For the sake of comparison with PMat2(F), we shall give only the definition of PTr2(F), as follows:

Definition 18 (The system PTr2(F): proofs of trace identities over Mat2(F)). PTr2(F) is the arith-
metic proof system operating with equations between circuits whose set of proper axioms consists of
the following equations:

Addition Commutativity : f + g = g + f

Associativity : f + (g + h) = (f + g) + h f · (g · h) = (f · g) · h
Distributivity : f · (g + h) = f · g + f · h
Zero element : f + 0 = f f · 0 = 0

Unit element : f · 1 = f

Genertator : x2 − Tr(x)x+
1

2
(Tr2(x)− Tr(x2))I = 0

Trace Commutativity : [Tr(f), T r(g)] = 0 [Tr(f), g] = 0

Tr(f · g) = Tr(g · f)
Trace Linearity : Tr(αf + βg) = αTr(f) + βTr(g)

where f and g range over F〈X〉and α and β range over the field F

Field identities : c = a+ b d = a′ · b′

where in the Field identities a, a′, b, b′, c, d ∈ F, such that the equations hold in F.
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Circuit axiom : F = F ′ if F and F ′ are (syntactically) identical when

both are un-winded into formulas.

Denote by πTr2(f) : PTr2(F) ⊢ f = 0 the smallest proof of the equation f = 0 in the system
PTr2(F) and denote by |πTr2(f)| the number of lines in πTr2(f). Also, denote by |πC(JfKd)| the
minimal number of lines in a Pc(F) proof of all the equations in JfKd. We have the following:

Proposition 27.

|πMat2(f)| = Ω(|πTr2(f)|).
|πMat2(f)| = Ω(|πC(JfKd)|).

Observation: we can obtain the standard identity S4 and the Hall identity [[x, y]2, z] from the
Cayley-Hamilton Theorem by constant many steps.

We now prove this observation. For the standard identity: since for any matrix variable x which
belongs to Mat2(F), we already know the following polynomial is zero polynomial

P (x) := x2 − Tr(x)x+
1

2
(Tr2(x)− Tr(x2))I.

And we linearize the identity and get the following

P (x+y)−P (x)−P (y) = (xy+yx)−(Tr(x)y+Tr(y)x)+
1

2
((Tr(x)Tr(y)+Tr(y)Tr(x))−Tr(xy+yx))I.

Since
Tr(x)Tr(y) = Tr(y)Tr(x), T r(xy) = Tr(yx),

we see that M2(F) also satisfies the trace identity:

f(x, y) = (xy + yx)− (Tr(x)y + Tr(y)x) + (Tr(x)Tr(y)− Tr(xy))I.

Now we replace x, y by zσ1zσ2 , zσ3zσ4 where σ is a permutation from the symmeTric group S4 :

0 =
∑

σ∈S4
sgn(σ)f(zσ1zσ2 , zσ3zσ4)

=
∑

σ∈S4
sgn(σ)[zσ1zσ2zσ3zσ4 + zσ3zσ4zσ1zσ2−

Tr(zσ1zσ2)zσ3zσ4 − Tr(zσ3zσ4)zσ1zσ2+

Tr(zσ1zσ2)Tr(zσ3zσ4)I − Tr(zσ1zσ2zσ3zσ4)I]

= 2
∑

σ∈S4
sgn(σ)zσ1zσ2zσ3zσ4 .

For the Hall identity:

P ([x, y]) = [x, y]2 − Tr([x, y])[x, y] +
1

2
(Tr2([x, y])− Tr([x, y]2))I.

Since
Tr([x, y]) = Tr(xy)− Tr(yx) = 0,

P ([x, y]) = [x, y]2 − 1

2
Tr([x, y]2)I.

Namely [x, y]2 = 1
2Tr([x, y]

2)I, that is [[x, y]2, z] = [12Tr([x, y]
2)I, z] = 0.
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[6] Pavel Hrubeš. How much commutativity is needed to prove polynomial identities? Elec-
tronic Colloquium on Computational Complexity, ECCC, (Report no.: TR11-088), June 2011.
(document), 1.2, 1.2.1, 1, 1.2.1, 1.2.2, 1, 1.4, 4, 4.1.1, 4.1.2, 5
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[13] Jan Kraj́ıček. Forcing with random variables and proof complexity, volume 382 of London
Mathematical Society Lecture Notes Series. Cambridge Press, 2010. 1.1

[14] Uri Leron. Multilinear identities of the matrix ring. Transactions of the American Mathematical
Society, 183:175–202, Sep. 1973. 4.1.3

[15] Pavel Pudlák. Twelve problems in proof complexity. In Proceedings of CSR, 2008. 1.1

[16] Ju. P. Razmyslov. Identities with trace in full matrix algebras over a field of characteristic.
zero. Izv. Akad. Nauk SSSR Ser. Mat., 38:723–756, 1974. 7, 26

[17] Yu P Razmyslov. Trace identities and central polynomials in the matrix superalgebras mn,k.
Sbornik: Mathematics, 56(1):187–206, 1987. 1.2.2

[18] Louis Halle Rowen. Polynomial identities in ring theory. Pure and Applied Mathematics.
Academic Press, 1980. 1.2.1, 4.1.3

[19] Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
Journal of the ACM, 27(4):701–717, 1980. 1.1

[20] Richard Zippel. Probabilistic algorithms for sparse polynomials. In Proceedings of the Inter-
national Symposium on Symbolic and Algebraic Computation, pages 216–226. Springer-Verlag,
1979. 1.1

38

 

ECCC                 ISSN 1433-8092 

http://eccc.hpi-web.de 


