
Property Testing on Linked Lists

Peyman Afshani
MADALGO∗, Aarhus University

peyman@cs.au.dk

Kevin Matulef†

Aarhus University
kmatulef@cs.au.dk

Bryan T. Wilkinson‡

MADALGO∗, Aarhus University
btw@cs.au.dk

November 11, 2013

Abstract

We define a new property testing model for algorithms that do not have arbitrary query
access to the input, but must instead traverse it in a manner that respects the underlying data
structure in which it is stored. In particular, we consider the case when the underlying data
structure is a linked list, and the testing algorithm is allowed to either sample randomly from
the list, or walk to nodes that are adjacent to those already visited. We study the well-known
monotonicity testing problem in this model, and show that Θ(n1/3) queries are both necessary
and sufficient to distinguish whether a list is sorted (monotone increasing) versus a constant
distance from sorted. Our bound is strictly greater than the Θ(log n) queries required in the
standard testing model, that allows element access indexed by rank, and strictly less than the
Θ(
√
n) queries required by a weak model that only allows random sampling.

1 Introduction

Over the last 15 years, property testing has emerged as an important model for studying decision
problems that are solvable in sublinear time (see, for instance, the surveys of [11, 15, 16]). In
the testing model, the input is a large object—perhaps a large graph, or a function on some large
domain. The testing algorithm must decide whether the object has a property or is “far” from
having the property, while minimizing the portion of the object that the algorithm accesses.

A fundamental assumption of most property testing algorithms is that they can access the
object by querying it arbitrarily. For instance, when testing functions, one typically assumes that
the algorithm can query the function on any point in its domain. And when testing dense graphs,
one typically assumes that the algorithm can query the graph’s adjacency matrix to determine
whether any particular (i, j) is an edge. The assumption of query access is rarely called into
question, even when it does not reflect reality.
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One notable exception to the assumption of arbitrary query access is the so-called “sparse graph
model,” in which the large object is a sparse graph represented with adjacency lists, rather than
an adjacency matrix [12]. A tester in this model can query for the identity of a neighbor of a given
vertex, but cannot query for the existence of an edge between arbitrary (i, j). Since many large
graphs in the real world, such as social networks, are sparse and stored as adjacency lists, this
model is more plausible for practical settings.

The sparse graph model is an example of testing with only limited query access to the input,
where the limitation comes from the underlying format in which the data is stored. Unfortunately,
outside of sparse graphs (and hybrid graph models, such as in [13]), the property testing literature
has largely ignored such real-world constraints. The purpose of this work is to initiate a study of
property testing on inputs that cannot be accessed arbitrarily, but instead must be accessed in a
way that respects the underlying data structure in which they are stored.

To illustrate this approach, we consider the classic problem of testing sortedness (a.k.a, mono-
tonicity in one dimension). In the well-known version of this problem, the input is modeled as a
function f : [n] → R, and the testing algorithm must minimize the number of queries it makes to
f . In this setting, it is known that Θ(ε−1 log n) queries are both necessary and sufficient [8, 9].

The classic version of testing sortedness models the situations where the input is stored as a
large array, since querying f is akin to accessing an array element. But in reality, not all data is
stored in arrays. What if the input is stored as a linked list instead? Then we no longer have the
ability to query f(i) for any particular i, and the known upper bounds, which crucially rely on this
ability, break down.

In this work, we define a model for property testing on linked lists. In the linked list model, a
testing algorithm can access a random element of the list, or walk to elements that are adjacent to
those it has already seen, but cannot access a specific element at some arbitrary rank i. Our main
technical results are tight upper and lower bounds for testing monotonicity in this model.

Theorem 1.1. For ε < 1/3, any adaptive, order-based algorithm (with full rank access) for testing
monotone versus ε-far from monotone in the linked list model has query complexity Ω(n1/3).

Theorem 1.2. There is a non-adaptive, order-based algorithm (with relative rank access) for testing
monotonicity in the linked list model which makes O(ε−1n1/3) queries.

These results show that the linked list model is strictly weaker than the standard model which
allows element access by rank, since, as previously mentioned, testing monotonicity in the standard
model only requires O(log n) queries. However, the linked list model is also strictly stronger than
one which only allows random samples, i.e. one in which the algorithm only learns the value of
f(i) for indices i chosen uniformly at random. Testing monotonicity in such a weak model requires
Ω(
√
n) queries, which is tight in terms of dependence on n.1

1.1 The Linked List Model

The basic premise of our model is simple: since linked lists do not support accessing elements at
arbitrary positions, we consider algorithms that can either sample random elements in the list, or
walk to elements that are adjacent to those it has already seen. Such a model has been studied
previously in the algorithms literature. For instance, Chazelle et. al. [5] consider this model in their
study of sublinear geometric algorithms.

1An upper bound of O(
√
n/ε) follows from the work of [10], and a lower bound of Ω(

√
n) from the following

(folklore) argument: take a sorted increasing list and “swap” consecutive pairs of elements, e.g. 2, 1, 4, 3, 6, 5, ..., n, n−
1. Then a violation is only detected if two elements in the same pair are discovered, and with only random samples, a
standard birthday paradox argument implies that Ω(

√
n) samples are required to get two elements in the same pair.
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However, when defining this model in the context of property testing, a subtlety arises. The
issue is whether the algorithm knows the rank of the elements it randomly samples. If the algorithm
asks for a random element of the list, and learns the value stored there, does it also know that it
is receiving the 101st element of the list? Or the 59th, etc.?

It is not hard to show that if the algorithm has no knowledge of ranks, then efficient mono-
tonicity testing is not possible. To briefly sketch the argument, consider, for instance, a list of
n nodes consisting of one third 0’s, followed by one third 1’s, followed by one third 0’s (i.e.
0, ..., 0, 1, ..., 1, 0, ..., 0). It is easy to see that such a list is (1/3)-far from sorted, and an algo-
rithm with access to the ranks can discover this with only a constant number of random samples (it
just needs to sample a single 1 from the middle block, and a single 0 from the last block). But an
algorithm without knowledge of the ranks cannot distinguish this from the list 0, ..., 0, 0, ..., 0, 1, ..., 1
unless it finds the single “drop” from 1 to 0. Without the ranks, all the 1’s are indistinguishable
from each other, so finding the “drop” with high probability requires walking through Ω(n) list
elements.

In our model, we require that the testing algorithm has at least partial knowledge of the ranks.
We say that an algorithm has full rank access if it learns the exact ranks of each of the elements it
queries. We say that an algorithm has relative rank access if it only learns the relative ranks of the
elements it queries (for instance, if it queries two elements and learns that the first occurs before
the second in the list, without learning exactly in which position either occurs). We note that with
respect to these two definitions, our upper and lower bounds are as tight as possible. The upper
bound of Theorem 1.2 only requires relative rank access, while the lower bound of Theorem 1.1
applies even to algorithms with full rank access.

The rank access assumptions do not rule out the applicability of the model to real-world situ-
ations. We note that it is well-known that linked lists can be augmented to answer relative rank
queries with only O(1) worst-case overhead (see the result of Dietz and Sleator [6], a solution to
the order-maintenance problem).

Even when a linked list is not explicitly designed to answer rank queries, our model may still be
applicable. For instance, suppose the list elements are records in a database. In some databases,
the records are not stored in contiguous memory blocks, but instead in the structure of a linked list.
Elements can be accessed (roughly) uniformly by jumping to different memory regions, but cannot
be accessed at arbitrary positions. If the records are known to be ordered by a particular field,
for instance a timestamp-based primary key, then we can use the values in that field to answer
relative rank queries, while testing one of the other fields for sortedness. This loosely models a
common situation in MongoDB, for instance, where collections of records are, by default, ordered
by an increasing, timestamp-based key. They can be traversed in order of increasing key, but not
accessed by their overall position [14].

1.2 Related Work

Monotonicity testing is one of the most studied problems in property testing, making it a natural
candidate for study in our model. The one-dimensional case was studied in [8], and the lower bound
was subsequently improved for adaptive algorithms in [9]. Functions on more general domains, such
as the Boolean cube, were considered in [10, 7, 1]. Tight upper and lower bounds of O(ε−1d log n)
are known for testing monotonicity over the hypergrid (i.e., functions of the form f : [n]d → R)
[3, 4]. The special case of functions with Boolean inputs and output (i.e., f : {−1, 1}d → {−1, 1})
is still an open problem; the best upper bound of [2] has an O(d7/8) dependence on d , while the
best lower bound (for one-sided error, nonadaptive algorithms) in [10] has an Ω(

√
d) dependence.
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1.3 Outline

In Section 2 we formally define our testing model. In Section 3 we prove the lower bound, Theorem
1.1. In Section 4 we prove the upper bound, Theorem 1.2.

2 Preliminaries

We define a linked list of length n as a tuple L = (S,value, rank,next), where S is collection
of n labels, value is a function from S → R, rank is a bijection from S → [n], and next is the
function from S → S that maps the label s ∈ S such that rank(s) = i to the label s′ ∈ S such
that rank(s′) = i + 1 (if rank(s) = n, we define next(s) = s). That is, a linked list consists of n
nodes with unique identifiers, where each node is located at a specific rank in the linked list and
stores some specific value (here we are using real-numbered values, though they could be elements
from any totally ordered set). One can think of S as a set of memory addresses for the nodes of
the linked list.

For a given linked list L, we define the function fL : [n]→ R which maps ranks to values such
that fL(i) = value(rank−1(i)). For notational convenience, we will often drop the subscript and
simply use f to refer to the linked list itself. We define the distance between two lists L1 and L2

as the fraction of i in [n] such that fL1(i) 6= fL2(i). We consider two lists equivalent if they have
distance 0.

A property P is a set of linked lists that are defined by a family of functions F from [n] → R.
Specifically, for such a family F , a list L is in the property defined by F if and only if fL ∈ F .
Note that this implies linked list properties are independent of the labels in S. For instance, the
property of monotonicity is the subset of linked lists that satisfy f(i) ≤ f(j) for all i ≤ j. We say
that a linked list L is ε-far from property P if its distance from every list in P is at least εn.

A tester for a linked list property P is a randomized algorithm that can perform arbitrary
computation on the information that it has accessed, but is limited in how it can access information.
Initially, a tester has no labels with which to identify any of the linked list’s nodes. However, the
tester may call a rand oracle which returns a label uniformly at random from S. Once the tester
has some labels, it can also obtain new labels via the linked list’s next function.

When the tester has some labels with which to identify linked list nodes, it can get information
about the ranks and values stored at those nodes. We define different variants of the model
depending on the type of access the tester has to this information. Let the Boolean functions
less : S×S → {−1, 1} and before : S×S → {−1, 1} compare the values and ranks, respectively, of
two nodes given their labels (in other words, less(x, y) returns 1 if and only if value(x) < value(y),
and before(x, y) returns 1 if and only if rank(x) < rank(y)). We say that a tester has full rank
access if it can directly query rank, but only relative rank access if it can only query before.
Similarly, we say that a tester is value-based if it can directly query value, but only order-based if
it can only query less.

The tester must output Accept with probability at least 2/3 if the list is in P and Reject with
probability at least 2/3 if it is ε-far from P . Here the probability is taken over both the random
coin flips of the algorithm, and the uniformly random output of rand.

The query complexity of a tester is defined as the maximum number of distinct labels of S
returned by rand or next over any run of the algorithm.

The above restricted definition of a tester applies to our upper bound. We prove our lower
bound for a stronger class of testers. We want our lower bound to subsume the setting in which
the linked list nodes are stored contiguously in memory but not necessarily in rank order, as in [5].
In this setting, the labels are memory addresses and nodes can be accessed arbitrarily by memory

4



address. Memory addresses may be dereferenced and tested for equality. Therefore, the additional
features that we need in our lower bound model are an array A containing the labels of S in some
arbitrary order and a Boolean function same which checks two labels for equality. In this case, the
query complexity of the tester also includes labels read from A. Note that these stronger testers do
not need the rand oracle as they can simulate it by randomly reading a cell of the array containing
S. For the lower bound, we also allow our testers full rank access. Note that the before function
is thus redundant in this case.

As in the standard property testing model, we say an algorithm makes one-sided error if it
always accepts lists which have the property. We say than an algorithm is nonadaptive if it decides
all queries to make before learning the results of any queries.

A violation of sortedness is a pair of nodes (s1, s2) such that rank(s1) < rank(s2) and
value(s2) < value(s1). A local violation is a violation (s1, s2) such that next(s1) = s2.

3 Lower Bound

We define an arbitrary-access tester to be a tester with access to the next, less, rank, and same
functions as well as an array A containing the elements of S in arbitrary order. We define a random-
access tester to be a tester with access to the rand, next, less, rank, and same functions. The
following lemma shows that arbitrary-access testers are not any more powerful than random-access
testers.

Lemma 3.1. Given an arbitrary-access tester Ta with query complexity q ≤ n/2, there exists a
random-access tester Tr with query complexity O(q).

Proof. We define the random-access tester Tr by simulating the arbitrary-access tester Ta. In
particular, we simulate the array A with an injective and surjective partial function M from indices
into A to labels in S that we build incrementally throughout the simulation. Initially, M ’s domain
is empty. When Ta requests access to some cell A[i] and i is already in M ’s domain, Tr returns
M [i]. Otherwise, Tr calls rand until it finds a label s that is not already in M ’s range (we need
the same function here). Finding s requires only a constant expected number of calls to rand
since q ≤ n/2. Tr then adds the mapping from i to s into M . When Ta requests next(u) for some
label u, Tr also calls next(u) to obtain a label v. If v is already in M ’s range, Tr simply returns v.
Otherwise, it arbitrarily chooses an index i into A that is not yet in M ’s domain, adds the mapping
from i to v into M , and finally returns v. In this way, Tr uses M to simulate A for some random
ordering of the labels in A. Since the correctness of Ta holds for any ordering of the labels in A, Tr
is also correct.

Lemma 3.1 implies that a lower bound on the query complexity of random-access testers is also
a lower bound on the query complexity of arbitrary-access testers. So we now restrict our attention
to random-access testers. In fact, we further restrict our attention to reasonable testers. A tester is
reasonable if it computes the rank of every node that it visits and immediately outputs Reject if
it sees a violation—that is, if it calls less(s1, s2) for s1, s2 ∈ S such that rank(s2) < rank(s1). We
can assume without loss of generality that the tester we are lower bounding is reasonable, since the
calls to rank do not affect the query complexity, and making more queries after seeing a violation
can only increase the tester’s query complexity.

We will prove our lower bound via the typical approach of using Yao’s minimax lemma. We
define two distributions, DY ES and DNO, over inputs that are monotone and ε-far from mono-
tone, respectively. We then show that any deterministic algorithm making too few queries cannot
distinguish the two distributions with probability great than 1/3.
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Figure 1: A representation of four blocks of a hard input where the x-axis represents node ranks
and the y-axis represents node values.

The distribution DY ES is over a single monotone list defined as follows. Let b = n2/3 and define
an input on b “blocks,” each of length n

b , where all the values in block i ∈ [b] are equal to 2i.
The distribution DNO is defined similarly, except every block i has a contiguous sub-block of

length n
3b containing the value 2i−1. See Figure 1 for an example. Note that there is only one local

violation of sortedness (a node with value 2i pointing to a node with value 2i − 1) in each block.
The distribution DNO is defined by choosing the location of each local violation independently and
uniformly at random amongst the nodes with ranks n

3b to 2n
3b within the sublist defined by the block.

Note that there are n
3b = 1

3n
1/3 different possible locations for each local violation and there are no

violations of sortedness whatsoever between blocks. It is easy to see that every input in DNO is
1/3-far from sorted.

The correctness of our lower bound, Theorem 1.1, then follows from the following lemma:

Lemma 3.2. Fix an arbitrary, order-based tester A making at most q ≤ cn1/3 queries (where c is
some absolute constant to be specified later). Then A cannot distinguish between DY ES and DNO
with probability greater than 1/3.

Proof. Assume A makes t calls to rand. Let the ranks of the resulting nodes be r1, r2, . . . , rt. We
call this sequence of ranks given by rand the rank sequence. Fix an arbitrary rank sequence.

Although A may be adaptive, since it is reasonable and order-based, for a fixed rank sequence
its behavior is identical for all inputs, unless it discovers two nodes in the same block, one with
value 2i and the other with value 2i− 1. We will bound the probability that this happens.

The nodes that A visits can be specified by K1,K2, . . . ,Kt, where Ki is one plus the number of
times A iteratively calls next starting from the node with rank ri. Thus, q =

∑
iKi is the query

complexity of A.
First we analyze the probability that all the nodes A visits via rand calls lie in different blocks.

Note that each block has size n
b , so if the ranks of the nodes returned by rand differ pairwise by

at least that amount, this implies that they all lie in different blocks.
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Pr[∀i,j |ri − rj | > n/b′] = 1− Pr[∃i,j |ri − rj | ≤ n/b]

≥ 1−
∑
i<j

Pr[|ri − rj | ≤ n/b]

= 1−
∑
i<j

1/b

≥ 1− t2/2b
≥ 1− q2/2b
≥ 1− c2/2

By setting c sufficiently small, we can make this probability arbitrarily close to 1 (say at least
0.9).

We now assume that each ri is in a different block. In this case the only way that A may
encounter a violation of sortedness is if one of the walks Ki crosses a local violation. Observe that
the walk from the node with rank ri can only reach the local violation in its block. Since the location
of each such violation is chosen randomly from a set of size 1

3n
1/3, the probability that the violation

in the ith block overlaps with the walk Ki is at most 3n−1/3Ki. The probability that none of the
violations overlap with any of the walks is at least

∏
i(1− 3n−1/3Ki) ≥ 1− 3n−1/3

∑
iKi = 1− 3c.

Again, we can make this probability arbitrarily close to 1 (say at least 0.9) by setting c sufficiently
small. Thus, the overall probability that A never encounters a violation, and hence behaves the
same on DY ES and DNO, is at least 0.8 > 2/3.

4 Upper Bound

The capabilities of the linked list model suggest two naive strategies for finding violations. One
strategy is to perform walks along the linked list from random starting points, checking for local
violations. The pseudocode for such a tester is given in Algorithm 1. Another simple strategy
is to randomly sample a set of nodes and check them pairwise for violations of sortedness. The
pseudocode for such a tester is given in Algorithm 2.

Our algorithm is a hybrid tester that uses both of these strategies in two phases. In the first
phase, it repeats the walking strategy 3/δ times with walks of length ` (where δ = ε/2). If no
violation is found, it continues to the second phase. In the second phase, it performs the sampling

strategy with a sample size of
100
√
n/`

ε . The pseudocode for our hybrid tester is given in Algorithm 3.

The query complexity of our algorithm is O( `ε +

√
n/`

ε ), which is minimized to O(n
1/3

ε ) when

` = n1/3.
We now analyze our algorithm for correctness. By the definition of the algorithm, it is clear that

the algorithm has one-sided error, since it always accepts sorted lists. Thus, to prove Theorem 1.2,
we need only show that the hybrid tester rejects lists that are ε-far from sorted with probability at
least 2/3. To show this, our overall strategy will be to show that if a list is ε-far from sorted, either
there are many local violations of sortedness, in which case the walking tester will detect one, or
the list consists of few long runs (i.e., sorted sub-lists). In the latter case, we prove a structural
theorem, showing that portions of the runs can be “paired up,” in such a way that any two nodes,
one from each member of a pair, form a violation. In that case, if we sample a node in each member
of a pair, we have found a violation, and we can use a birthday paradox-style argument to reason
about the number of random elements we must sample before we hit both members of a single pair.
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Algorithm 1 Walking Tester

function Walk(`, δ)
for all i ∈ [3/δ] do

u← rand()
for all j ∈ [`] do

v ← next(u)
if less(v, u) then

return Reject
end if
u← v

end for
return Accept

end for
end function

Algorithm 2 Sampling Tester

function Sample(r)
U ← ∅
for all i ∈ [r] do

U ← U ∪ {rand()}
end for
if U contains a violation then

return Reject
else

return Accept
end if

end function

Algorithm 3 Hybrid Tester

function MonotonicityTest(ε, n)
`← n1/3

if Walk(`, ε/2) = Reject then
return Reject

else

return Sample(
100
√
n/`

ε )
end if

end function

8



To prove our structural theorem, first we must argue about lists that do not have many local
violations of sortedness. We define the notion of a run, or a sorted sub-list of a list L. A run of
length ` is simply a set of ` elements with consecutive ranks that do not violated sortedness.

Lemma 4.1. If the Walking Tester accepts a list of length n with probability at least 1/10, then
there exists a set of disjoint runs, all of length at least `, covering at least (1 − δ)n points in the
list.

Proof. For a list L, we say that a rank i ∈ [n] is bad if a walk of length ` starting at rank i discovers
a violation of L’s sortedness. Let B ⊆ [n] be the set of bad ranks. By definition, for a single walk
performed by the walk tester, the probability that it outputs Reject is exactly |B|/n.

If |B| > δn, then after 3/δ random walks, the probability that the tester accepts is at most
(1− δ)3/δ < e−3 < 1/10. Thus, we assume |B| ≤ δn.

Define G := [n] \ B to be the set of good ranks. By definition, all the points in G lie at the
beginning of runs of length at least `. So if we analyze the set G′ := {r + i | r ∈ G and i ∈ [`]}, it
is clear that G′ is the union of runs of length at least `, and moreover |G′| ≥ |G| ≥ (1− δ)n.

Next we argue that if a list consists of many long runs, but is still far from sorted, then portions
of these runs can be paired up in such a way that each pair includes a large number of violations.

We define a balanced pair decomposition as a set of pairs of sets of nodes, (A1, B1), (A2, B2), . . . ,
(At, Bt), such that all the Ai’s and Bi’s are disjoint, and each pair (Ai, Bi) satisfies the following
properties:

• each (u, v) ∈ Ai ×Bi is a violation of sortedness

• |Ai| = |Bi|

The size of a balanced pair decomposition is t, the number of balanced pairs, and the weight of
a balanced pair decomposition is

∑t
i=1(|Ai|+ |Bi|).

Lemma 4.2. If L has distance d from sorted and consists of m maximal runs, then there is a
balanced pair decomposition of L of size at most m and weight at least d.

Proof. We proceed by induction on m. In the base case, m = 1 and a vacuous decomposition is
sufficient as d must then be 0.

Otherwise, consider the first maximal run R. Let Ri be the ith node from the end of R. Let
Mi be the set of nodes s such that rank(s) > rank(R1) and value(s) < value(Ri). Let x be the
largest index such that x ≤ |Mx|. We create a pair (A,B) such that A contains R1, . . . , Rx and B
contains the x nodes with smallest values in Mx. We create a list L′ by deleting the nodes of A
and B from L.

If x happens to be the last index into R, deleting A from L deletes an entire maximal run. So,
L has m′ < m maximal runs and distance d′ ≥ d − 2x from sorted. By the induction hypothesis,
there is a balanced pair decomposition of L′ of size at most m′ and weight at least d′ ≥ d− 2x. We
obtain our desired decomposition by adding pair (A,B) to the decomposition of L′.

It remains to handle the case in which x is not the last index into R. Observe that by our
selection of x, it must be that x + 1 > |Mx+1| and |Mx+1| ≤ x. So, B must contain all of Mx+1.
Thus, the nodes of R that remain in L′ have lesser values than all other nodes in L′. This means
that the remainder of R fuses with the next maximal run remaining in L′. Again the number of
maximal runs has reduced by at least one so the same inductive argument holds.

Finally, we put the pieces together:
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Proof of Theorem 1.2. It is obvious that if L is sorted, the tester accepts with probability 1. So we
assume L is ε-far from sorted.

If the Walking Tester rejects with probability at least 9/10, we are done. So suppose the walking
tester accepts with probability at least 1/10. In this case, we invoke Lemma 4.1 (with δ = ε

2) and
conclude that there exists a sub-list L′ of size at least (1− ε

2)n such that L′ consists of disjoint runs
of length at least `. Furthermore, since L was ε-far from sorted and L′ was defined by removing at
most εn

2 points from L, we know L′ is ε
2 -far from sorted.

We now invoke Lemma 4.2 (with L′ playing the role of L and d = ε
2). Note that the runs

all have length at most `, so there are m ≤ n
` of them. Thus Lemma 4.2 implies that there is a

decomposition of L′ of size at most m and weight at least εn
2 .

Write the decomposition of L′ as (A1, B1), . . . , (At, Bt) where t ≤ m. Suppose we draw k
random samples uniformly from L′. Conditioned on two samples falling in the same pair (Ai, Bi),
the probability that we detect a violation is at least 1/2 (since Ai and Bi have the same size).
Note also that, conditioned on k samples falling within some Ai or Bi, the probability that two of
those samples fall into the same pair is minimized when |Ai| + |Bi| is the same for all i (i.e., the
uniform distribution minimizes collision probability, which can be proven using Schur-convexity),
so we assume that each |Ai|+ |Bi| is equal for all i and that t = m. Using the fact that the weight
of the decomposition is at least εn

2 , we have that |Ai|+ |Bi| ≥ εn
2m = ε`

2 for all i.
Now suppose the Sampling Tester makes r calls to rand. Note that the expected number of

samples that fall in some Ai or Bi is at least rε
2 . Let F be the event that fewer than rε

4 samples fall
in some Ai or Bi, and let C be the event that no two samples fall in the same (Ai, Bi) pair. Then
we have

Pr[C] ≤ Pr[F ] + Pr[C|F̄ ]

≤ e−O(n) +

rε/4∏
i=0

(1− i

m
)

≤ e−O(n) + e
∑rε/4
i=0

−i
m

≤ e−O(n) + e−(rε/4)(rε/4−1)/m

≤ e−O(n) + e−(rε/4−1)
2/m

Setting r > 100
√
m

ε makes Pr[C] < 0.1. Thus the probability of detecting a violation is at least
1
2(1−Pr[C]) and repeating the sampling test a constant number of times can boost this probability
to 0.9. Finally, since the Walking Test and the Sampling Test both fail to find a violation with
probability at most 0.1, by a union bound the total error probability is at most 0.2 < 1/3.
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