
Autoreducibility and Mitoticity of

Logspace-Complete Sets for NP and Other Classes

Christian Glaßer∗ Maximilian Witek∗

13th December 2013

Abstract

We study the autoreducibility and mitoticity of complete sets for NP and other complexity
classes, where the main focus is on logspace reducibilities. In particular, we obtain:

• For NP and all other classes of the PH: each ≤log
m -complete set is ≤log

T -autoreducible.

• For P, ∆p
k, NEXP: each ≤log

m -complete set is a disjoint union of two ≤log
2-tt-complete sets.

• For PSPACE: each ≤p
dtt-complete set is a disjoint union of two ≤p

dtt-complete sets.

1 Introduction

Complete sets for NP and other complexity classes are one of the main objects of research in
theoretical computer science. However, basic questions regarding complete sets are still open.
For instance: Is it possible to split each complete set of a certain class into two complete sets?
If the answer is yes, then all complete sets of this class are in some sense redundant. In this
paper we study two types of redundancy of sets.

• Autoreducibility of A: A(x) can be efficiently computed from the values A(y) for y 6= x.
• Mitoticity of A: The set A is a disjoint union of two sets that are equivalent to A.

There are several notions of autoreducibility depending on the computing resources and the
number of values A(y) that we can ask for. For each reducibility ≤, a set A is ≤-autoreducible,
if there exists a ≤-reduction from A to A that on input x does not query x. Similarly, there
are several notions of mitoticity depending on the notion of equivalence that is used. For each
reducibility ≤, a set A is weakly ≤-mitotic, if there exists a set S such that A, A∩S, and A∩S
are pairwise ≤-equivalent. If in addition it holds that S ∈ P, then A is called ≤-mitotic.

Typical complete problems for NP, PSPACE, and other classes are not only polynomial-
time-complete, but even logspace-complete, which brings us to the main question of this paper:

Does logspace-completeness imply logspace-autoreducibility or logspace-mitoticity?

We study this question for general complexity classes and conclude results for P, NP, ∆p
k, Σp

k,
Πp

k, and NEXP.

Related Work. The notions of autoreducibility and mitoticity were originally studied in
computability theory. Trakhtenbrot [Tra70] defined a set A to be autoreducible if there exists
an oracle Turing machine M such that A = L(MA) and M on input x never queries x. Ladner
[Lad73] defined a set A to be mitotic if it is the disjoint union of two sets of the same degree.
He showed that a computably enumerable set is mitotic if and only if it is autoreducible.

Motivated by the hope to gain insight in the structure of sets in NP, Ambos-Spies [AS84]
introduced and studied the variants of autoreducibility and mitoticity that are defined by
polynomial-time many-one reducibility (≤p

m) and polynomial-time Turing reducibility (≤p
T).

∗Julius-Maximilians-Universität Würzburg, {glasser,witek}@informatik.uni-wuerzburg.de

1

ISSN 1433-8092

Electronic Colloquium on Computational Complexity, Report No. 188 (2013)

Moreover, he introduced the distinction between mitoticity (splitting by some S ∈ P) and weak
mitoticity (splitting by an arbitrary S). For the study of sets inside P one needs refined notions
of autoreducibility and mitoticity, which are obtained by using logspace reducibilities [GNR+13].

It is easy to see that in general, mitoticity implies autoreducibility. Ambos-Spies [AS84]
showed that ≤p

T-autoreducibility does not imply ≤p
T-mitoticity. Moreover, ≤p

m-autoreducibility
and ≤p

m-mitoticity are equivalent [GPSZ08]. The same paper showed that ≤p
T-autoreducibility

does not imply weak ≤p
T-mitoticity.

A matter of particular interest is the question of whether complete sets are autoreducible or
mitotic. Ladner [Lad73] showed that there are Turing-complete sets for RE that are not mitotic.
Over the years, researchers showed the polynomial-time mitoticity or at least the polynomial-
time autoreduciblity of complete sets of prominent complexity classes: Beigel and Feigenbaum
[BF92] proved that ≤p

T-complete sets for all levels of the polynomial hierarchy and PSPACE are
≤p

T-autoreducible. The same result holds for ≤p
m reducibility [GOP+07, GPSZ08]. Buhrman,

Hoene, and Torenvliet [BHT98] showed that ≤p
m-complete sets for EXP are weakly ≤p

m-mitotic,
which was later improved to ≤p

m-mitotic [BT05]. Buhrman et al. [BFvMT00] proved that all
≤p

T-complete sets for EXP are ≤p
T-autoreducible. Moreover, the same paper contains interesting

negative results like the existence of polynomial-time bounded-truth-table complete sets in EXP
that are not polynomial-time bounded-truth-table autoreducible. Nguyen and Selman [NS14]
showed negative autoreducibility results for NEXP. These and other results for polynomial-
time reducibilities are summarized in Table 2. In a recent paper [GNR+13], the authors studied
autoreducibility and mitoticity also for logspace reducibilities (cf. Table 1).

Our Contribution. We prove the following general results on the autoreducibility and mi-
toticity of complete sets. Let C ⊇ (DSPACE(log · log(c))∩P) be a complexity class that is closed
under intersection, for some c > 0.

(a) If A is ≤log
m -complete for C and ≤log

m -autoreducible, then A is weakly ≤log
2-dtt-mitotic.

(b) If A is ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible, then A is weakly ≤log
2-tt-mitotic.

(c) If A is ≤log
T -hard for P and ≤p

tt-autoreducible, then A is ≤log
T -autoreducible.

The results (a) and (b) are particularly interesting for P, the other ∆p
k levels of the polynomial

hierarchy, and NEXP. Previously it was known that ≤log
m -complete sets are ≤log

m -autoreducible
(resp., ≤log

1-tt-autoreducible). From (a) and (b) it follows:

• All ≤log
m -complete sets for P and all other ∆p

k levels are weakly ≤log
2-tt-mitotic.

• All ≤log
m -complete sets for NEXP are weakly ≤log

2-dtt-mitotic.

So each of these sets is a disjoint union of two ≤log
2-tt-complete sets (resp., ≤log

2-dtt-complete sets).

It remains an open question whether this can be improved to ≤log
m -mitoticity. This question is

interesting, since in contrast to ≤p
m reducibility, we do not know whether ≤log

m -autoreducibility
and ≤log

m -mitoticity are equivalent (they are inequivalent relative to some oracle [Gla10]).
The result (c) is particularly interesting for NP, coNP and the other Σp

k and Πp
k levels of

the polynomial hierarchy, where only the polynomial-time autoreducibility and mitoticity of
complete sets was known. Here we obtain logspace Turing autoreducibility:

• All ≤log
dtt-complete or ≤log

1-tt-complete sets for NP, coNP, Σp
k, Πp

k are ≤log
T -autoreducible.

Finally, with our technique we also obtain a new result for the polynomial-time setting. Previ-
ously it was known that all ≤p

dtt-complete sets for PSPACE are ≤p
dtt-autoreducible. We obtain:

• All ≤p
dtt-complete sets for PSPACE are weakly ≤p

dtt-mitotic.

Again this means that each such set is a disjoint union of two ≤p
dtt-complete sets.

2

Table 1 and Table 2 summarize known results [Ber77, BF92, BFvMT00, BHT98, BT05,
Buh93, GH92, GNR+13, GOP+07, GPSZ08, HKR93] for logspace and polynomial-time com-
plete sets and emphasize the new results we obtained in this paper.

2 Preliminaries

We use standard notation for intervals of natural numbers, i.e., [a, b] = {a, a+ 1, . . . , b},[a, b) =
{a, a + 1, . . . , b − 1}, (a, b] = {a + 1, a + 2, . . . , b}, and (a, b) = {a + 1, a + 2, . . . , b − 1} for
a, b ∈ N. A set is called trivial if it is either finite or cofinite, and non-trivial otherwise. We
will only consider non-trivial sets. For a set A let cA denote its characteristic function, i.e.,
cA(x) = 1 ⇐⇒ x ∈ A. We denote the Boolean exclusive or by ⊕. For functions f and
g, by (f ◦ g) we denote the composition of the functions, i.e., (f ◦ g)(x) := f(g(x)). Let
f (i) denote the i-th iteration of the function f . More formally, we define f (0)(x) := x, and
f (i)(x) := f(f (i−1)(x)) for i > 0. For a function f and some x, we will refer to the sequence
f (0)(x), f (1)(x), f (2)(x), . . . as f ’s trace on x. For k ≥ 1, we say that a set S is a k-ruling set
(for f) if for every x there exists some i ≤ k with x ∈ S ⇐⇒ f (i)(x) /∈ S. Let log denote
the logarithm to base 2. We will often use the iterated logarithm log(k) for some k > 0. For
the sake of simplicity, we define log(x) := 0 for all x < 1, hence log and its iterations are total
functions and are always greater than or equal to 0. For every x, by |x| we denote the length of
x’s binary representation, by abs(x) we denote its absolute value, and by sgn(x) we denote the
sign of x. We say that a function f is polynomially length-bounded if there exists a polynomial
p such that |f(x)| ≤ p(|x|) holds for all x. When we use functions s and t as space and time
bounds, we will assume that s and t are monotone functions.

Oracle Access. In general, Turing reducibility and truth-table reducibility are defined via
oracle Turing machines that ask adaptive or nonadaptive queries to their oracle. However, for
space-bounded relativized computations, there is no canonical way to define oracle access of
Turing machines and thus to define logspace Turing reducibility. Below we define our oracle
model and motivate the particular choice.

Ladner and Lynch [LL76] define logspace Turing reducibility by the restrictive oracle access
model where a logspace oracle Turing machine has a single one-way write-only oracle tape that
is erased after each query and that is not subject to space bounds. By Ladner [Lad75], logspace
Turing reducibility thus defined is reflexive and transitive, so this model is reasonable. However,
Ladner and Lynch [LL76] show that under this model, logspace Turing reducibility and logspace
truth-table reducibility are the same. Hence, this model is so restrictive that the oracle Turing
machine cannot really react on answers to queries it asked. So, in order to obtain adaptive
Turing reductions, we need to relax some of the restrictions.

Lynch [Lyn78] notes that already minor modifications (nonerasure of oracle tapes, counting
space on the oracle tape, and more than one oracle tape, for instance) of the restrictive oracle
access model used in [LL76] can lead to a different reducibility notion (see also Hemaspaandra
and Jiang [HJ97] and Glaßer [Gla10] for further models and a comparison of their strength).

Since we want to distinguish between adaptive and nonadaptive reductions, we will use the
less restrictive multi-tape oracle access model proposed by Lynch [Lyn78]. In this setting, an
oracle Turing machine consists of a single read-write working tape that is subject to the space
bounds and an arbitrary but fixed number of write-only oracle tapes that are not subject to
the space bounds. In each step, the oracle Turing machine may ask the query that is written
on some particular oracle tape, after which the oracle Turing machine enters an answer state
accordingly, and erases the particular oracle tape again. Under this oracle access model, Lynch
[Lyn78] shows transitivity of logspace Turing reducibility and separates this notion from logspace

3

≤ P NP, coNP ∆p
k Σp

k,Π
p
k PSPACE EXP NEXP

≤log
m A

log
1-tt, W

log
2-tt A

log
1-tt, W

log
2-tt Mlog

m Mlog
m Alog

m , Wlog
2-dtt

≤log
l-ctt A

log
l-tt A

log
l-tt M

log
l-ctt M

log
l-ctt A

log
l-ctt

≤log
l-dtt A

log
l-tt A

log
l-tt M

log
l-dtt M

log
l-dtt A

log
l-dtt

≤log
ctt M

log
ctt M

log
ctt A

log
ctt

≤log
dtt A

log
T A

log
T M

log
dtt M

log
dtt A

log
dtt

≤log
1-tt A

log
2-tt A

log
T A

log
T Mlog

m Mlog
m Alog

m , Wlog
2-dtt

≤log
2-tt M

log
2-tt M

log
2-tt A

log
2-tt

≤log
btt A

log[1]
log-T A

log[1]
log-T X1 X2

≤log
tt A

log
tt A

log
tt

Table 1: Redundancy of logspace complete sets, where l ≥ 1 and k ≥ 2. For the cell in row ≤r and
column C, the entry As means that every ≤r-complete set for C is ≤s-autoreducible. Analogously, the
entry Ws means that every ≤r-complete set for C is weakly ≤s-mitotic, and the entry Ms means that
every ≤r-complete set for C is ≤s-mitotic. For the cells marked with X1 and X2, negative results are
known: There is a ≤log

btt-complete set for PSPACE that is not ≤log
btt-autoreducible [GNR+13] and a ≤log

btt-

complete set for EXP that is not ≤p
btt-autoreducible (and hence not ≤log

btt-autoreducible) [BFvMT00].
Results implied by universal relations between reductions are omitted, and results obtained in this paper
are framed. For the definitions of the reductions, see section 2.

≤ NP ∆p
k Σp

k,Π
p
k PSPACE EXP NEXP

≤p
m Mp

m Mp
m Mp

m Mp
m Mp

m Mp
m

≤p
1-tt M

p
1-tt M

p
1-tt M

p
1-tt M

p
1-tt Mp

m Mp
m

≤p
2-tt M

p
2-tt A

p
2-tt

≤p
l-ctt M

p
l-ctt A

p
l-ctt

≤p
l-dtt A

p
l-dtt A

p
l-dtt A

p
l-dtt A

p
l-dtt, W

p

l′-dtt
M

p
l-dtt A

p
l-dtt

≤p
btt X3

≤p
ctt M

p
ctt A

p
ctt

≤p
dtt A

p
dtt A

p
dtt A

p
dtt A

p
dtt, W

p
dtt M

p
dtt A

p
dtt

≤p
tt ABPP

tt A
p
tt ABPP

tt

≤p
T A

p
T A

p
T A

p
T A

p
T A

p
T

Table 2: Redundancy of polynomial-time complete sets, where l ≥ 1, l′ = l(l2 + l + 1), and k ≥ 2. The

entries of the table are read analogously to the entries in Table 1. Recall that there is a ≤log
btt-complete

(and hence also ≤p
btt-complete) set for EXP that is not ≤p

btt-autoreducible [BFvMT00], hence we have a
negative result marked by X3.

4

truth-table reducibility. Furthermore, in this setting, logspace reducibility implies polynomial-
time reducibility. We also note that the introduction of additional oracle tapes does not change
the computational power of polynomial-time oracle Turing machines, since within a polynomial
time bound, all queries can be stored on a working tape as well.

Reductions. For sets A and B we say that A is polynomial-time Turing reducible to B
(A ≤p

T B), if there exists a polynomial-time oracle Turing machine that accepts A with B
as its oracle. If M on input x asks at most O(log |x|) queries, then A is polynomial-time
log-Turing reducible to B (A ≤p

log-T B). If M ’s queries are nonadaptive (i.e., independent of

the oracle), then A is polynomial-time truth-table reducible to B (A ≤p
tt B). If M asks at

most k nonadaptive queries, then A is polynomial-time k-truth-table reducible to B (A ≤p
k-tt

B). A is polynomial-time bounded-truth-table reducible to B (A ≤p
btt B), if A ≤p

k-tt B for
some k. A is polynomial-time disjunctive-truth-table reducible to B (A ≤p

dtt B), if there
exists a polynomial-time-computable function f such that for all x, f(x) = 〈y1, y2, . . . , yn〉 for
some n ≥ 1 and (x ∈ A ⇐⇒ cB(y1) ∨ cB(y2) ∨ · · · ∨ cB(yn)). If n is bounded by some
constant k, then A is polynomial-time k-disjunctive-truth-table reducible to B (A ≤p

k-dtt B). A
is polynomial-time bounded-disjunctive-truth-table reducible to B (A ≤p

bdtt B), if A ≤p
k-dtt B

for some k. The polynomial-time conjunctive-truth-table reducibilities ≤p
ctt, ≤

p
k-ctt, and ≤p

bctt

are defined analogously. A is polynomial-time many-one reducible to B (A ≤p
m B), if there

exists a polynomial-time-computable function f such that (x ∈ A ⇐⇒ f(x) ∈ B). We also use
the following logspace reducibilities which are defined analogously in terms of logspace oracle
Turing machines and logspace-computable functions: ≤log

T , ≤log
log-T, ≤log

tt , ≤log
k-tt, ≤

log
btt, ≤

log
dtt, ≤

log
k-dtt,

≤log
bdtt, ≤

log
ctt , ≤

log
k-ctt, ≤

log
bctt, ≤

log
m .

We have already argued that in the polynomial-time setting, the number of oracle tapes is
not significant. Similarly, one can easily see that all truth-table reductions can be performed by
some oracle Turing machine that uses only one oracle tape. So, the number of oracle tapes used

is only significant for logspace Turing reductions. We further define A ≤log[k]
T B if A ≤log

T B

via some logspace oracle Turing machine with k oracle tapes, and furthermore A ≤log[k]
log-T B if

A ≤log[k]
T B with an oracle machine that on input x asks at most O(log(|x|)) queries. By Ladner

and Lynch [LL76] it holds that A ≤log[1]
T B ⇐⇒ A ≤log

tt B.

Autoreducibility. A set A is called ≤p
T-autoreducible if A ≤p

T A via some polynomial-time
oracle Turing machine M with the restriction that M on input x never queries x. For the

reductions ≤p
log-T, ≤p

tt, ≤
p
k-tt, ≤

p
btt, ≤

log
T , ≤log

log-T, ≤log[k]
T , ≤log[k]

log-T,≤
log
tt , ≤log

k-tt, ≤
log
btt, we define

autoreducibility analogously.
A set A is called ≤p

dtt-autoreducible if A ≤p
dtt A via some f ∈ FP where from f(x) =

〈y1, y2, . . . , yn〉 it follows that x /∈ {y1, y2, . . . , yn} for all x. We define autoreducibility analo-

gously for ≤p
k-dtt, ≤

p
bdtt, ≤

p
ctt, ≤

p
k-ctt, ≤

p
bctt, ≤

p
m, ≤log

dtt, ≤
log
k-dtt, ≤

log
bdtt, ≤

log
ctt , ≤

log
k-ctt, ≤

log
bctt, ≤

log
m .

Mitoticity and Weak Mitoticity. A set A is called weakly ≤p
T-mitotic if A ≡p

T A ∩ S ≡p
T

A ∩ S for some set S. We refer to S as a separator. If in addition it holds that S ∈ P, we call
A ≤p

T-mitotic. For the reductions ≤p
log-T, ≤p

tt, ≤
p
k-tt, ≤

p
btt, ≤

p
dtt, ≤

p
k-dtt, ≤

p
bdtt, ≤

p
ctt, ≤

p
k-ctt, ≤

p
bctt,

≤p
m, mitoticity and weak mitoticity are defined analogously, where, in the case of non-transitive

reductions, we require that the sets A, A ∩ S, and A ∩ S are pairwise equivalent.

For the reductions ≤log
T , ≤log[k]

T , ≤log
log-T, ≤log[k]

log-T, ≤log
tt , ≤log

k-tt, ≤
log
btt, ≤

log
dtt, ≤

log
k-dtt, ≤

log
bdtt, ≤

log
ctt ,

≤log
k-ctt, ≤

log
bctt, ≤

log
m , weak mitoticity is defined analogously to the polynomial-time setting, and

for mitoticity we further require that the separator is logspace decidable.

5

3 Ruling Sets for Autoreductions

For transforming many-one autoreducibility into mitoticity, we consider the trace of words
obtained by the repeated application of the autoreduction to some input x. Now the challenge
is to define a set S of low complexity such that when we follow such a trace for r steps, then
we visit at least one word in S and at least one word in S. Cole and Vishkin [CV86] developed
the deterministic coin tossing, which is a technique for the construction of such S. In their
terminology, the set S is called an r-ruling set.

In this section we show that we can obtain a 2-ruling set S from autoreduction functions,
where S is only slightly more complex than f . The proof of the following lemma is a general-
ization of a proof presented in [Gla10].

Lemma 3.1 Let f be a polynomially length-bounded function such that f(x) 6= x for all x. For
all k ≥ 1 there exists a set S, a constant c0, and a polynomial q such that:

1. For all x there exists some i ≤ c0 · (log(k)(|x|) + 1) such that x ∈ S ⇐⇒ f (i)(x) /∈ S, and
for all j ≤ i it holds that |f (j)(x)| ≤ q(|x|).

2. If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s).
3. If t(n) ≥ n and f ∈ FTIME(t), then S ∈ DTIME(O(t ◦ q)).

Proof Let f be a function and p(n) = nc + c be a polynomial such that f(x) 6= x and
|f(x)| ≤ p(|x|) for all x. We assume that c ≥ 2 is large enough such that log(k)(p(3)(n)) ≥ 3
holds for all n. According to this length bound we now define the tower function

l(i) :=

{
2 if i = 0, and

p(p(l(i− 1))) otherwise.

Note that for the inverse tower function l−1(n) := min{i | l(i) ≥ n} and for all n,

l−1(p(p(n))) = l−1(n) + 1. (1)

So from f ’s length bound we obtain for all x,

l−1(|f(x)|) ≤ l−1(|x|) + 1 and l−1(|f(f(x))|) ≤ l−1(|x|) + 1. (2)

We partition the set of all words as follows.

S0 := {x | l−1(|x|) ≡ 0 mod 2}
S1 := {x | l−1(|x|) ≡ 1 mod 2}

We can decide S0 and S1 as follows. On input x, compute and store n = |x|. Then, starting
with m = 2, determine how often we need to apply p(2) to m until we obtain a value larger
than n. For this we only need to store values less than or equal to n, which is possible in space
log(|x|). Hence S0, S1 ∈ L.

We use the following distance function for integers.

d(x, y) :=

{
0 if x = y, and

sgn(y − x) · blog(2abs(y − x))c otherwise.

Note that d ∈ FL, and furthermore, d(x, y) = 0 if and only if x = y.

6

Claim 3.2 If z1, z2, and z3 are integers such that d(z1, z2) = d(z2, z3) 6= 0, then there exist
i, j ∈ [1, 3] such that for r

df
= d(z1, z2),

bzi/2abs(r)c is even ⇔ bzj/2abs(r)c is odd.

Proof Assume that the claim does not hold and let z1, z2, and z3 be counter examples. Let
r := d(z1, z2) = d(z2, z3), a1 := bz1/2abs(r)c, a2 := bz2/2abs(r)c, and a3 := bz3/2abs(r)c. So by
assumption, either a1, a2, and a3 are all even or a1, a2, and a3 are all odd. Without loss of
generality let us assume that a1, a2, and a3 are even (the other case is analogous).

Case 1: Assume r > 0. So z1 < z2 < z3 and hence a1 ≤ a2 ≤ a3.
Assume a1 = a3. From d(z1, z2) = r it follows that log(2abs(z2 − z1)) ≥ r and hence

z2 − z1 ≥ 2r−1. The same argument shows z3 − z2 ≥ 2r−1. So z3 ≥ z1 + 2r = z1 + 2abs(r) and
hence a3 ≥ a1 + 1 which contradicts the assumption a1 = a3.

So it holds that a1 < a3. This implies a3 − a1 ≥ 2, since both values are even. Since a2 is
even as well, we obtain a2 − a1 ≥ 2 or a3 − a2 ≥ 2. If a2 − a1 ≥ 2, then z2 − z1 > 2r and so
d(z1, z2) ≥ r + 1. If a3 − a2 ≥ 2, then z3 − z2 > 2r and so d(z2, z3) ≥ r + 1. Both conclusions
contradict the definition of r.

Case 2: Assume r < 0. So z1 > z2 > z3 and hence a1 ≥ a2 ≥ a3.
Assume a1 = a3. From d(z1, z2) = r it follows that log(2abs(z2 − z1)) ≥ abs(r) and hence

z1 − z2 ≥ 2abs(r)−1. The same argument shows z2 − z3 ≥ 2abs(r)−1. So z1 ≥ z3 + 2abs(r) and
hence a1 ≥ a3 + 1 which contradicts the assumption a1 = a3.

So it holds that a1 > a3. This implies a1 − a3 ≥ 2, since both values are even. Since a2
is even as well, we obtain a1 − a2 ≥ 2 or a2 − a3 ≥ 2. If a1 − a2 ≥ 2, then z1 − z2 > 2abs(r)

and so d(z1, z2) ≤ −abs(r) − 1 < r. If a2 − a3 ≥ 2, then z2 − z3 > 2abs(r) and so d(z2, z3) ≤
−abs(r)− 1 < r. Both conclusions contradict the definition of r. This proves Claim 3.2. 2

We will iteratively apply the distance function to some value x and its successors in f . We
define

di(x) :=

{
d(di−1(x), di−1(f(x))) if i > 0, and

x if i = 0,

for all x and all i ≥ 0. Next, we define S to be the set decided by the algorithm described in
Figure 1.

On input x:

1. let y := f(1)(x) and z := f(2)(x)
2. if |x| < |y| and cS0(x) = cS1(y) then accept

3. if |y| < |z| and cS0(y) = cS1(z) then reject

4. if dk+1(x) > dk+1(y) then accept

5. if dk+1(x) < dk+1(y) then reject

6. for j := k + 1 downto 1 do

7. if dj(x) 6= 0 then accept ⇐⇒ bdj−1(x)/2abs(dj(x))c is even

8. reject

Figure 1: Algorithm for the set S.

Claim 3.3 If t(n) ≥ n and f ∈ FTIME(t), then S ∈ DTIME(O(t(q(n)))) for a polynomial q.

Proof Let t(n) ≥ n such that f ∈ FTIME(t). On input x, let n = |x|. We can proceed
by computing and storing f (1)(x), f (2)(x), . . . , f (k+2)(x). Since k is constant, this takes time

7

O((k + 2) · t(q′(n))) = O(t(q′(n))), where q′ is a polynomial such that q′(n) bounds the length
of each f (i)(x) for i ≤ k + 2.

Next, consider lines 2 and 3. Those lines can be executed in time O(q′′(n)) for some poly-
nomial q′′, because x, y, z are stored on some tape, are polynomially long, and S0, S1 ∈ L ⊆ P.

Observe that for each i ≤ k + 1, di(x) (and di(y)) can be computed by iteratively applying
d ∈ FL ⊆ FP at most (k + 1)2 times. This means that lines 4 and 5 can be executed in time
O((k+1)2 ·q′′′(n)) = O(q′′′(n)) for some polynomial q′′′. Moreover, the remaining loop is iterated
at most k + 1 times, and again, the values that are computed inside the loop can be computed
in time O(q′′′(n)), hence the entire loop can be executed in time O((k+ 1) · q′′′(n)) = O(q′′′(n)).

Overall, the set S can be decided in time O(t(q(n))) for some polynomial q. 2

Claim 3.4 If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s).

Proof Let s(n) ≥ log(n) such that f ∈ FSPACE(s). First, observe that for all i ≤ k + 2
we have f (i)(x) ∈ FSPACE(s), which is shown by induction on i using the facts that s ≥ log
and that f is polynomially length-bounded. By the polynomial length bound of f (i), and by
f (i) ∈ FSPACE(s) and d ∈ FL, we also obtain di ∈ FSPACE(s) for all i ≤ k + 1. Hence, all
variables and functions can be computed in FSPACE(s). Also recall that S0, S1 ∈ L, so we can
decide x, y, z ∈ S0, S1 in DSPACE(s). 2

By the above two claims, item 2 and item 3 of the lemma hold (for some polynomial q). We
now continue to prove the first item as well. First, choose some constant c′ large enough such
that

2 · log(k−1)(3c · log(n + 3c)) ≤ c′ · (log(k)(n) + 1) (3)

holds for all n. We further define h as the function computed by the algorithm described in
Figure 2.

On input x:

1. n := |x|, m := 6c′ · dlog(k)(n) + 1e+ k + 7

2. for i := 1 to m

3. // here |f(i)(x)| ≤ p(3)(n)
4. if x ∈ S ⇔ f(i)(x) /∈ S then return f(i)(x)
5. next i

6. // this line is never reached

Figure 2: Algorithm for the function h.

Claim 3.5 In the algorithm for h, the invariant in line 3 holds.

Proof Assume there exists an i ∈ [1,m] such that the algorithm reaches the i-th iteration of the
loop and there it holds that |f (i)(x)| > p(3)(n). Choose the smallest such i and let r = l−1(n).
Note that i ≥ 4, since f ’s length is bounded by p(n).

Observe that by (1), l−1(|f (i)(x)|) ≥ l−1(p(p(n))) = r + 1. From (1) we also obtain that
either

l−1(p(n)) = r and l−1(p(p(n))) = r + 1 (4)

or
l−1(p(n)) = l−1(p(p(n))) = r + 1 and l−1(p(3)(n)) = r + 2. (5)

8

Recall that by (2), if j0 < j2 such that l−1(|f (j0)(x)|) = r and l−1(|f (j2)(x)|) = r + 2, then
there exists j1 ∈ (j0, j2− 2] such that l−1(|f (j1)(x)|) = r+ 1 and l−1(|f (j1+1)(x)|) = r+ 1. If (4)
holds, then l−1(|f(x)|) ≤ r and so there exists j ∈ [2, i] such that for u = f (j−2)(x), v = f (j−1)(x)
and w = f (j)(x) it holds that l−1(|u|) = l−1(|v|) = r and l−1(|w|) = r + 1. If (5) holds, then
there exists j ∈ [2, i] such that for u = f (j−2)(x), v = f (j−1)(x) and w = f (j)(x) it holds that
l−1(|u|) = l−1(|v|) = r + 1 and l−1(|w|) = r + 2. In both cases we have (u ∈ S0 ⇔ v ∈ S0) and
(v ∈ S0 ⇔ w ∈ S1). If we consider the algorithm for S, then we see that u /∈ S and v ∈ S.
Therefore, in the algorithm for h, the condition in line 4 is either satisfied for i = j − 2 or is
satisfied for i = j − 1. This contradicts our assumption that we reach the i-th iteration of the
loop and proves the claim. 2

Claim 3.6 The algorithm for h never reaches line 6.

Proof Assume that for some input x, the algorithm reaches line 6. Let n = |x| and m =
6c′ · dlog(k)(n) + 1e + k + 7, and xi = f (i)(x) for i ≥ 0. Hence, for all i ∈ [1,m] it holds that
x ∈ S ⇔ xi ∈ S. Without loss of generality let us assume that xi ∈ S for all i ∈ [0,m].

All remaining arguments refer to the algorithm for S. For i ∈ [1,m] it holds that the
algorithm on input xi does not stop in line 2, since otherwise the algorithm on input xi−1 stops
in line 3 which contradicts the assumption xi−1 ∈ S. (Here one has to note that if the algorithm
on input xi stops in line 2, then by (2), on input xi−1 it cannot stop in line 2 as well.) So for
all i ∈ [1,m], the algorithm on input xi reaches line 4.

For i ≥ 1, let yi and zi denote the values of the program variables y and z when the algorithm
for S works on input xi. We show that there are not too many elements i ∈ [1,m] such that
the algorithm on input xi stops in line 4.

By Claim 3.5, for i ∈ [1,m], |xi| ≤ p(3)(n). First, we inductively show that for all j ∈ [0, k]
and all i ∈ [1,m− j − 1] it holds that abs(dj+1(xi)) ≤ 2 · log(j)(p(3)(n)).

• Let j = 0 and i ∈ [1,m− 1]. For abs(dj+1(xi)) we obtain:

abs(d1(xi)) = abs(d(d0(xi), d0(xi+1))) = blog(2 · abs(d0(xi+1)− d0(xi))c

≤ log(2 · 2p(3)(n)) = 1 + p(3)(n) ≤ 2 · p(3)(n) = 2 · log(0)(p(3)(n))

• Let 0 < j ≤ k and suppose the inequality holds for j − 1 and all i ∈ [1,m− (j − 1)− 1] =
[1,m− j]. For i ∈ [1,m− j − 1] we obtain:

abs(dj+1(xi)) = abs(d(dj(xi), dj(xi+1))) = blog(2 · abs(dj(xi+1)− dj(xi))c
≤ log(2 · (abs(dj(xi+1)) + abs(dj(xi))))

≤ log(2 · 2 · (2 · log(j−1)(p(3)(n))))

≤ 3 + log(· log(j−1)(p(3)(n)))

≤ 2 · log(j)(p(3)(n))

Note that the last step holds because we have chosen c (and hence p) large enough such
that it holds that log(k)(p(3)(n)) ≥ 3 for all n.

We obtain that for all i ∈ [1,m− k − 1] it holds that

abs(dk+1(xi)) ≤ 2 · log(k)(p(3)(n)) = 2 · log(k)(((nc + c)c + c)c + c)

≤ 2 · log(k−1)(log((n + 3c)3c)) = 2 · log(k−1)(3c · log(n + 3c))

≤ c′ · (log(k)(n) + 1),

9

where the last step holds because of inequation (3).
We now consider the sequence of dk+1(xi) for i ∈ [1,m − k − 4]. This sequence is not

increasing, since otherwise we stop in line 5 which contradicts the assumption xi ∈ S. We have
seen that the values in this sequence are integers in [−c′ · (log(k)(n) + 1), c′ · (log(k)(n) + 1)]. So
the number of positions where the sequence decreases is at most

2c′ · (log(k)(n) + 1) ≤ m− k − 7

3
.

This shows that the number of i ∈ [1,m − k − 4] such that the algorithm on input xi stops in
line 4 is at most (m − k − 7)/3 = (m − k − 4)/3 − 1. By a pigeon hole argument, there exists
an i ∈ [1,m− k − 4] such that the algorithm reaches the loop in line 6 for the inputs xi, xi+1,
and xi+2. We finish the proof of the claim with the following case distinction:

Case 1: On some u ∈ {xi, xi+1, xi+2}, the algorithm terminates after less than k+1 iterations.
Choose v ∈ {xi, xi+1, xi+2} such that the algorithm on input v terminates after k0 < k + 1
iterations, and for each w ∈ {xi, xi+1, xi+2}, the algorithm on input w does not terminate after
less than k0 iterations. Let j0 denote the value of the variable j of the algorithm on input v in
the iteration where the algorithm terminates. Hence we have dj0(v) 6= 0.

Next we will show that for all w ∈ {xi, xi+1, xi+2} we have dj0+1(w) = 0. If j0 = k + 1 we
have dj0+1(w) = dk+2(w) = d(dk+1(w), dk+1(f(w))) = 0, because for w we reach the loop and
do not terminate in line 4 or line 5, which is only possible if dk+1(w) = dk+1(f(w)). If j0 < k+1
we have dj0+1(w) = 0, because, by the choice of v, the algorithm on input w does not terminate
after less than k0 iterations. So for all w ∈ {xi, xi+1, xi+2} we have dj0+1(w) = 0.

This means dj0(xi) = dj0(xi+1) = dj0(xi+2). Together with dj0(v) 6= 0 we obtain dj0(xi) =
dj0(xi+1) = dj0(xi+2) 6= 0, hence d(dj0−1(xi), dj0−1(xi+1)) = d(dj0−1(xi+1), dj0−1(xi+2)) 6= 0.

By Claim 3.2 it follows that there are i1, i2 ∈ [i, i + 2] such that

bdj0−1(xi1)/2abs(dj0 (xi1
))c is even ⇐⇒ bdj0−1(xi2)/2abs(dj0 (xi2

))c is odd.

Hence the algorithm accepts xi1 if and only if it rejects xi2 . This contradicts xi1 , xi2 ∈ S.

Case 2: On each u ∈ {xi, xi+1, xi+2}, the algorithm reaches the (k + 1)-st iteration. Recall
that k ≥ 1. Since the algorithm does not stop in the k-th iteration we have d2(xi) = d2(xi+1) =
d2(xi+2) = 0, which means that d1(xi) = d1(xi+1) = d1(xi+2) = d(xi, xi+1). Since f is an
autoreduction we have xi 6= xi+1, hence d1(xi) = d1(xi+1) = d1(xi+2) 6= 0. By Claim 3.2 it
follows that there are i1, i2 ∈ [i, i + 2] where

bxi1/2abs(d1(xi1
))c is even ⇐⇒ bxi2/2abs(d1(xi2

))c is odd.

Hence the algorithm accepts xi1 if and only if it rejects xi2 . This contradicts xi1 , xi2 ∈ S.

In each case we obtain a contradiction, so our assumption was wrong, and the claim holds. 2

Given the last two claims, we can now finish our proof of item 1 as well. By Claim 3.6, there
must exist some iteration with i ≤ m = 6c′ ·dlog(k)(n)+1e+k+7 ≤ (12c′+k+7) ·(log(k)(n)+1)
where the algorithm for h on input x stops, hence x ∈ S ⇐⇒ f (i)(x) /∈ S. By Claim 3.5 it
holds that |f (j)(x)| ≤ p(3)(|x|) for all j ≤ i. Hence also item 1 of the lemma holds. Finally, note
that we have shown item 1 and item 3 for different polynomials. Clearly we can choose a single
polynomial q for which both items hold. 2

10

Lemma 3.7 Let f be a polynomially length-bounded function such that f(x) 6= x for all x. For
every k ≥ 1 there exist a set S and a function g with the following properties:

1. g(x) ∈ S ⇐⇒ f(g(x)) /∈ S
2. g(x) ∈ {x, f(x)}
3. If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s · log(k)) and g ∈ FSPACE(s).
4. If t(n) ≥ n and f ∈ FTIME(t), then S ∈ DTIME(O(t ◦ q)) and g ∈ FTIME(O(t ◦ q)),

where q is some polynomial.

Proof Let f be a function and p be a polynomial with f(x) 6= x and |f(x)| ≤ p(|x|) for all
x. By Lemma 3.1 there exist a set S′, a polynomial p′, and some constant c such that for all x
there exists some i ≤ c · (1 + log(k)(|x|)) with x ∈ S′ ⇐⇒ f (i)(x) /∈ S′ and |f (j)(x)| ≤ p′(|x|)
for all j ≤ i. We define S to be the set decided by the algorithm described in Figure 3.

On input x:

1. y := x, i := 0

2. while (y /∈ S′ or f(y) ∈ S′):
3. y := f(y), i := i + 1

4. accept ⇐⇒ i is even

Figure 3: Algorithm for the set S.

Furthermore, we define the function g by

g(x) :=

{
f(x) if x ∈ S′ and f(x) /∈ S′

x otherwise

for all x. Note that by this definition, item 2 of the lemma holds for g.
We will next show that item 1 of the lemma holds. Let x be some arbitrary input. Note that

after at most O(log(k)(|x|)) iterations of f , the membership to S′ changes. Choose the minimal l
such that f (l)(x) ∈ S′ and f (l+1)(x) /∈ S′. Note that l ∈ O(log(k)(|x|)) and |f (l′)(x)| ≤ p′(p′(|x|))
for all l′ ≤ l. By the choice of l, for all l′ < l it holds that f (l′)(x) /∈ S′ or f (l′+1)(x) ∈ S′. This
means that the algorithm stops after exactly l iterations. We distinguish the following cases:

Case 1: l > 0. Then, for l′ = l − 1 it holds that f (l′)(f(x)) ∈ S′ and f (l′+1)(f(x)) /∈ S′, and
l′ is minimal with this property. Hence, on input f(x), the algorithm for S stops after l − 1
iterations, and we obtain g(x) ∈ S ⇐⇒ x ∈ S ⇐⇒ l is even ⇐⇒ l− 1 is odd ⇐⇒ f(x) /∈
S ⇐⇒ f(g(x)) /∈ S.

Case 2: l = 0. Hence, g(x) = f(x), and x ∈ S′ and f(x) /∈ S′. So, for the smallest l′ ≥ 0 with
f (l′)(f(x)) ∈ S′ and f (l′+1)(f(x)) /∈ S′ it holds that l′ > 0, and the argumentation of the first
case shows that g(x) ∈ S ⇐⇒ f(x) ∈ S ⇐⇒ f(f(x)) /∈ S ⇐⇒ f(g(x)) /∈ S.

In each case we obtain g(x) ∈ S ⇐⇒ f(g(x)) /∈ S, so item 1 of the lemma holds for g.
It remains to argue for the running time and the space requirements of the algorithm. We

have the following claims.

Claim 3.8 If f ∈ FTIME(t) for some t with t(n) ≥ n, then S ∈ DTIME(O(t(q(n)))) and
g ∈ FTIME(O(t(q(n)))), where q is some polynomial.

11

Proof Suppose that t(n) ≥ n and f ∈ FTIME(t). By Lemma 3.1 we have S′ ∈
DTIME(O(t(q′(n)))) for some polynomial q′. Then, g ∈ FTIME(O(t(q′′(n)))) for some polyno-
mial q′′. Next, we consider the algorithm for S. There exists a constant c′ such that we iterate
at most

l ≤ c · (1 + log(k)(|x|)) + c · (1 + log(k)(p′(p′(|x|)))) ≤ c′ · (1 + log(k)(|x|))

times. In each iteration, we compute f and decide S′ on inputs of length at most p′(p′(|x|)),
which is possible in time O(t(p′(p′(|x|)))) and O(t(q′(p′(p′(|x|))))), respectively. Hence there
exists a polynomial q′′ such that the entire loop can be executed in time O(c′ · (1 + log(k)(n)) ·
t(q′′(n))), and thus there exists a polynomial q such that the entire algorithm can be executed
in time O(t(q(n))). 2

Claim 3.9 If s(n) ≥ log(n) and f ∈ FSPACE(s), then S ∈ DSPACE(s · log(k)) and g ∈
FSPACE(s).

Proof Suppose that s(n) ≥ log(n) and f ∈ FSPACE(s). By Lemma 3.1 we have S′ ∈
DSPACE(s), hence g ∈ FSPACE(s) (here we need to recompute each bit of the function f on
input x, which is possible since |f(x)| ≤ p(|x|) and s(n) ≥ log(n)).

Next, consider the algorithm for S. We have already argued that we iterate at most c′ ·
(1 + log(k)(|x|)) times, and that in each iteration, the length of y is bounded by p′(p′(|x|)),
and hence in each iteration, the single bits of y can be addressed by O(log(|x|)) many bits.
So by a blockwise recomputation we obtain S ∈ DSPACE(O(s(n) · c′ · (1 + log(k)(n)))) =
DSPACE(s(n) · log(k)(n)). This shows the claim. 2

2

4 Weak Mitoticity

We show how autoreducibility of complete sets for general classes implies weak mitoticity. This
gives progress towards the general question of whether complete sets are mitotic.

General Approach and Results. Given a many-one autoreduction f for some set A com-
plete for some class C, we apply the results of the previous section to generate a 2-ruling set
S for f . Since the complexity of S is only slightly higher than the complexity of f , we obtain
A∩S ∈ C and A∩S ∈ C. Considering some input x, we then find two elements y, z on f ’s trace
on x with the same membership to A as x such that exactly one is contained in S. Hence, y, z
are a 2-dtt-reduction from A to A ∩ S and A ∩ S. So A is many-one complete for C, and A ∩ S
and A ∩ S are 2-dtt complete, which shows weak 2-dtt mitoticity of A.

The approach can be generalized to further reducibility notions, including disjunctive truth-
table reductions and truth-table reductions with exactly one query.

Particular Results. Together with previously known autoreducibility results for complete
sets, we obtain the following mitoticity results:

1. Every ≤log
m -complete set and every ≤log

1-tt-complete set for NEXP is weakly ≤log
2-dtt-mitotic.

2. Every ≤log
m -complete set for ∆p

k (and for P in particular) is weakly ≤log
2-tt-mitotic.

3. Every ≤p
k-dtt-complete set for PSPACE is weakly ≤p

k(k2 + k + 1)-dtt
-mitotic.

4. Every ≤p
bdtt-complete set for PSPACE is weakly ≤p

bdtt-mitotic.
5. Every ≤p

dtt-complete set for PSPACE is weakly ≤p
dtt-mitotic.

12

4.1 Many-One Complete Sets

We first consider logspace many-one autoreducible, complete sets for classes that contain the
intersection of P and some space class slightly higher than L. Since the classes will be closed
under intersection, the intersection of the complete set with the separator and its complement
remain in the same complexity class.

Theorem 4.1 Let C ⊇ (DSPACE(log · log(c)) ∩ P) for some c ≥ 1 be some complexity class

that is closed under intersection. If A is ≤log
m -complete for C and ≤log

m -autoreducible, then A is
weakly ≤log

2-dtt-mitotic.

Proof Let f ∈ FL be a ≤log
m -autoreduction for A. From Lemma 3.7 we obtain a set S ∈

(DSPACE(log · log(c)) ∩ P) and a function g ∈ FL such that

g(x) ∈ S ⇐⇒ f(g(x)) /∈ S (6)

g(x) ∈ {x, f(x)} (7)

for all x. We will show that A ∩ S and A ∩ S are ≤log
2-dtt-complete for C.

Note that (DSPACE(log · log(c)) ∩ P) is closed under complementation, hence it holds that
S, S ∈ C. Furthermore, since C is closed under intersection, we obtain A∩S ∈ C and A∩S ∈ C.
So it remains to argue for the ≤log

2-dtt-hardness of A ∩ S and A ∩ S for C. Since A is ≤log
m -hard

for C, it remains to show A ≤log
2-dtt A ∩ S and A ≤log

2-dtt A ∩ S.
Observe that cA(x) = cA(g(x)) = cA(f(g(x))) and {g(x), f(g(x))} ∩ S 6= ∅. Let h(x) :=

{g(x), f(g(x))}. If x ∈ A, then h(x) ⊆ A, hence h(x)∩ (S ∩A) = (h(x)∩A)∩S = h(x)∩S 6= ∅.
If x /∈ A, then h(x)∩ (A∩S) ⊆ h(x)∩A = ∅. Hence, h shows that A ≤log

2-dtt A∩S. Analogously,

h shows that A ≤log
2-dtt A ∩ S. We hence obtain that A is ≤log

m -complete and that A ∩ S and

A ∩ S are ≤log
2-dtt-complete for C. Therefore, A is weakly ≤log

2-dtt-mitotic. 2

Corollary 4.2 1. Every ≤log
m -complete set for NEXP is weakly ≤log

2-dtt-mitotic.

2. Every ≤log
1-tt-complete set for NEXP is weakly ≤log

2-dtt-mitotic.

Proof We start with the first item, so let A be≤log
m -complete for NEXP. Glaßer et al. [GNR+13]

show that A is ≤log
m -autoreducible. P ⊆ NEXP and NEXP is closed under intersection, hence

we can apply Theorem 4.1 and obtain that A is weakly ≤log
2-dtt-mitotic.

To also show the second item, note that every ≤log
1-tt-complete set for NEXP is also ≤log

m -

complete for NEXP. By the previous item we obtain weak ≤log
2-dtt-mitoticity. 2

4.2 Truth-Table Complete Sets with One Query

Our approach for many-one autoreductions can be generalized to truth-table autoreductions
that ask exactly one query. We can think of such a truth-table autoreduction for some set A
as two functions f, f ′, where f ′ maps to the set of all unary Boolean functions, such that for
all x it holds that f(x) 6= x and cA(x) = f ′(x)(cA(f(x))). If A is non-trivial, we can modify
f ′ such that it never maps to a constant unary Boolean function. We will further modify the
autoreduction such that on each input it either has a long part in its trace that behaves like
a many-one autoreduction, or ends up after a few steps in a small cycle. Those cycles can be
treated directly, and on the long parts of the trace that behave like a many-one autoreduction
we can proceed similar to the many-one case.

13

Theorem 4.3 Let C ⊇ (DSPACE(log · log(c)) ∩ P) for some c ≥ 1 be some complexity class

that is closed under intersection. If A is ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible, then A is

weakly ≤log
2-tt-mitotic.

Proof Since A is ≤log
1-tt-autoreducible, there are functions f, f ′ ∈ FL such that f ′ maps to the set

of all unary Boolean functions, and for all x it holds that x 6= f(x) and cA(x) = f ′(x)(cA(f(x))).
Note that we can assume that A is non-trivial (otherwise the result trivially holds), and hence
that further f ′(x) ∈ {id, not} for all x. Given the autoreduction f , we define a function g as
follows. For each x,

g(x) := f (k)(x) for the smallest k ≤ 3 with x 6= f (k)(x) and cA(x) = cA(f (k)(x)),
if such a k exists, and

(8)

g(x) := f(x) otherwise. (9)

Observe that g ∈ FL (because we can decide cA(x) = cA(f (k)(x)) for k ≤ 3 by looking at f and
f ′) and g(x) 6= x for all x. Furthermore, for every x we have the following observation:

cA(x) = cA(g(x)) ⇐⇒ g(x) is defined according to (8) (10)

Claim 4.4 For every x, at least one of the following holds:

• g(2)(x) = g(4)(x)
• cA(g(k)(x)) = cA(g(k+1)(x)) = cA(g(k+2)(x)), for some k ≤ 2

Proof Consider some x, and for each i, denote xi := g(i)(x). Suppose for x, the claim does
not hold, hence x2 6= x4 (and hence x1 6= x3 and x0 6= x2), and

for all k ≤ 2 it holds that cA(xk) = cA(xk+1) =⇒ cA(xk+1) 6= cA(xk+2). (11)

We distinguish the following cases:

Case 1: cA(xk) 6= cA(xk+1) and cA(xk+1) 6= cA(xk+2) for some k ≤ 2. This means that
cA(xk) 6= cA(g(xk)) and cA(xk+1) 6= cA(g(xk+1)). By (10), this means that g(xk) and g(xk+1)
are defined according to (9). Hence we have g(xk) = f(xk) and g(xk+1) = f(xk+1). This means
that xk+2 = g(xk+1) = f(xk+1) = f(g(xk)) = f(f(xk)) = f (2)(xk).

We now argue that xk+2 = xk. Suppose this is not the case, hence xk+2 6= xk. By our
hypothesis, cA(xk+2) = cA(xk). So g(xk) is defined according to (8), hence cA(xk) = cA(g(xk)).
This contradicts cA(xk) 6= cA(g(xk)), so we have xk+2 = xk.

Since k ≤ 2, this contradicts either x0 6= x2, x1 6= x3, or x2 6= x4. Hence this case cannot
occur.

Case 2: cA(xk) = cA(xk+1) or cA(xk+1) = cA(xk+2) for all k ≤ 2. If cA(x0) 6= cA(x1), then
cA(x1) = cA(x2), hence cA(x2) 6= cA(x3) by (11). If cA(x0) = cA(x1), then cA(x1) 6= cA(x2) by
(11), hence cA(x2) = cA(x3), and hence cA(x3) 6= cA(x4) by (11). So in either case there exists
some k ≤ 1 such that cA(xk) 6= cA(xk+1), cA(xk+1) = cA(xk+2), and cA(xk+2) 6= cA(xk+3).

Then, g(xk+1) is defined according to (8), and g(xk) and g(xk+2) are defined according to
(9). Hence we have g(xk) = f(xk) and g(xk+2) = f(xk+2).

We first argue that g(xk+1) = f(xk+1) holds. So suppose that g(xk+1) 6= f(xk+1), we show
that this implies a contradiction. Since g(xk+1) is defined according to (8), but g(xk+1) 6=
f(xk+1) holds, we know that cA(xk+1) 6= cA(f(xk+1)). Recall that cA(xk) 6= cA(xk+1), hence
we obtain cA(xk) = cA(f(xk+1)) = cA(f(g(xk))) = cA(f(f(xk))) = cA(f (2)(xk)). We now

14

argue that both xk 6= f (2)(xk) and xk = f (2)(xk) lead to a contradiction. If xk 6= f (2)(xk),
then g(xk) is defined according to (8), which contradicts cA(xk) 6= cA(xk+1). If xk = f (2)(xk),
then xk = xk+2, which contradicts either x0 6= x2 or x1 6= x3. So in both cases we obtain a
contradiction, hence g(xk+1) = f(xk+1). This means that xk+3 = g(3)(xk) = f (3)(xk).

We now argue that xk+3 = xk. Suppose this is not the case, hence xk+3 6= xk. From
cA(xk) 6= cA(xk+1) = cA(xk+2) 6= cA(xk+3) we obtain cA(xk) = cA(xk+3). So g(xk) is defined
according to (8). But this contradicts cA(xk) 6= cA(xk+1), hence xk+3 = xk.

This means that f (2)(xk+2) = f(f(xk+2)) = f(g(xk+2)) = f(xk+3) = f(xk) = xk+1. Recall
that xk+2 = g(xk+1) = f(xk+1). Since f is an autoreduction, we have xk+1 6= xk+2. Further-
more, we have cA(xk+1) = cA(xk+2). So g(xk+2) is defined according to (8). This contradicts
cA(xk+2) 6= cA(g(xk+2)). Hence this case cannot occur.

So in each case we obtain a contradiction. Hence the claim must hold. 2

From Lemma 3.7 we obtain a set S ∈ (DSPACE(log · log(c))∩P) and a function h ∈ FL such
that

h(x) ∈ S ⇐⇒ g(h(x)) /∈ S (12)

h(x) ∈ {x, g(x)} (13)

for all x. Define the set

S′ := {x ∈ S | x 6= g(2)(x)} ∪ {x | x = g(2)(x) and x < g(x)}

and observe that also S′ ∈ (DSPACE(log · log(c)) ∩ P) holds. We will show that A ∩ S′ and

A ∩ S′ are ≤log
2-tt-complete for C.

Note that (DSPACE(log · log(c)) ∩ P) is closed under complement, thus S′, S′ ∈ C. And,
since C is closed under intersection, we obtain A ∩ S′ ∈ C and A ∩ S′ ∈ C. So it remains to
argue for the ≤log

2-tt-hardness of A ∩ S′ and A ∩ S′ for C. Since A is ≤log
1-tt-hard for C, it remains

to show A ≤log
2-tt A ∩ S′ and A ≤log

2-tt A ∩ S′. We show A ≤log
2-tt A ∩ S′. Let x be some input. We

distinguish the following cases:

Case 1: g(2)(x) = g(4)(x). Recall that g(2)(x) 6= g(3)(x). Let i ∈ {0, 1} such that g(2+i)(x) <
g(3−i)(x). Then we have g(2+i)(x) ∈ S′. Let b ∈ {0, 1} such that cA(x) = b⊕cA(g(2+i)(x)). Note
that we can determine i and b by a constant number of applications of f and f ′. We obtain
cA(x) = b⊕ cA(g(2+i)(x)) = b⊕ cA∩S′(g

(2+i)(x)).

Case 2: g(2)(x) 6= g(4)(x). In this case, by Claim 4.4, there exists some minimal k ≤ 2
such that cA(g(k)(x)) = cA(g(k+1)(x)) = cA(g(k+2)(x)). Let b ∈ {0, 1} such that cA(x) =
b ⊕ cA(g(k)(x)). Let y := h(g(k)(x)). By (13) it holds that b ⊕ cA(x) = cA(g(k)(x)) = cA(y) =
cA(g(y)). By (12) it holds that cS′(y) = 1 − cS′(g(y)). We obtain cA(x) = b ⊕ (cA∩S′(y) ∨
cA∩S′(g(y))).

Hence, a logspace computation with at most two nonadaptive queries to A ∩ S′ is sufficient to
determine cA(x). This shows A ≤log

2-tt A ∩ S′. The proof for A ≤log
2-tt A ∩ S′ works analogously.

Hence A is weakly ≤log
2-tt-mitotic. 2

Corollary 4.5 Let C ⊇ (DSPACE(log · log(c)) ∩ P) for some c ≥ 1 be a complexity class closed

under intersection and complementation. If A is ≤log
m -complete for C, then A is weakly ≤log

2-tt-
mitotic.

15

Proof If A is ≤log
m -complete for C, then A ∈ C by the closure properties, and we have A ≤log

m A
via some f ∈ FL. This means that cA(x) = 1−cA(x) = 1−cA(f(x)), which in particular means

that f(x) 6= x. So, A is ≤log
1-tt-complete for C and ≤log

1-tt-autoreducible. From Theorem 4.3 we

obtain that A is weakly ≤log
2-tt-mitotic. 2

Since P ⊆ ∆p
k for all k ≥ 0, and each ∆p

k is closed under complementation and intersection,

we immediately have the following corollary. Note that this includes the ≤log
m -complete sets for

P as the special case where k = 0.

Corollary 4.6 For every k ≥ 0, every ≤log
m -complete set for ∆p

k is weakly ≤log
2-tt-mitotic.

4.3 Disjunctive Truth-Table Complete Sets for PSPACE

We can further generalize our approach to disjunctive truth-table autoreductions of complete
sets for some higher complexity classes. Here, we consider the reduction graph of some disjunc-
tive truth-table autoreduction f . If we grant the separator enough resources, for each input x,
it can determine the smallest equivalent y ∈ f(x) and hence treat f like a many-one reduction.
For most higher classes, a diagonalization method can already show (strong) mitoticity results.
For PSPACE in the polynomial-time reducibility setting, however, only autoreducibility results
are known. Here, our approach as described above shows weak mitoticity.

Lemma 4.7 Let A ∈ PSPACE and f ∈ FP be a ≤p
dtt-autoreduction for A such that f never

maps to the empty set. Then there exists a set S ∈ PSPACE such that for all x there exist
y ∈ f(x) and z ∈ f(y) with the following properties:

1. cA(x) = cA(y) = cA(z)
2. ∅ (({x, y, z} ∩ S) ({x, y, z}

Proof Let A ∈ DSPACE(p) for some polynomial p, and f ∈ FP be a ≤p
dtt-autoreduction for

A that never maps to the empty set. Hence, for every x there exists some k ≥ 1 such that
f(x) = 〈y1, . . . , yk〉. We consider the function g with

g(x) :=

{
yi if f(x) = 〈y1, . . . , yk〉 ∧ yi ∈ A ∧ yj /∈ A for all j < i , and

y1 if f(x) = 〈y1, . . . , yk〉 ∧ yj /∈ A for all j ≤ k,

for all x. Since A ∈ DSPACE(p), there exists a polynomial q such that g ∈ FSPACE(q).
Furthermore, since g maps to values of f , we have g(x) 6= x for all x, and we can modify q such
that |g(x)| ≤ q(|x|).

We apply Lemma 3.7 and obtain a set S and a function h with the following properties:

1. S ∈ DSPACE(q · log(c)) ⊆ PSPACE (where c ≥ 1 is some constant)
2. h(x) ∈ {x, g(x)}
3. h(x) ∈ S ⇐⇒ g(h(x)) /∈ S

Let y := g(x) and z := g(y). Hence y ∈ f(x) and z ∈ f(y), and cA(x) = cA(y) = cA(z).
Furthermore, h(x) ∈ {x, y}, so we either have x ∈ S ⇐⇒ y /∈ S, or y ∈ S ⇐⇒ z /∈ S. 2

Theorem 4.8 1. All ≤p
k-dtt-complete sets for PSPACE are weakly ≤p

k(k2 + k + 1)-dtt
-mitotic.

2. All ≤p
bdtt-complete sets for PSPACE are weakly ≤p

bdtt-mitotic.
3. All ≤p

dtt-complete sets for PSPACE are weakly ≤p
dtt-mitotic.

16

Proof We show the first statement, the other statements are shown analogously. So let L be
≤p

k-dtt-complete for PSPACE for some k ≥ 1. Then, L is ≤p
k-dtt-autoreducible [GOP+07]. Let

f be some ≤p
k-dtt-autoreduction for L. Note that L is non-trivial, hence we can assume that f

never maps to the empty set. We apply Lemma 4.7 and obtain S ∈ PSPACE with the specified
properties.

We will show that L∩S is ≤p
k(k2 + k + 1)-dtt

-complete for PSPACE. Clearly, L∩S ∈ PSPACE,

so it remains to show the hardness for PSPACE. For arbitrary A ∈ PSPACE we already know
that A ≤p

k-dtt L, hence it suffices to show L ≤p
(k2 + k + 1)-dtt

L ∩ S.

On input x, return Qx := {x} ∪ f(x) ∪
⋃

y∈f(x) f(y), which can be computed in polynomial

time. The number of the elements in the output is bounded by (k2 +k+ 1). To show that Qx is
a reduction as claimed above, choose y, z as in the lemma. We distinguish the following cases:

• If x ∈ L, then {x, y, z} ⊆ L. Since {x, y, z} ∩ S 6= ∅ and {x, y, z} ⊆ Qx we obtain
(L ∩ S) ∩Qx ⊇ (L ∩ S) ∩ {x, y, z} = S ∩ {x, y, z} 6= ∅.
• If x /∈ L, then (L ∩ S) ∩Qx ⊆ L ∩Qx = ∅.

This shows that L∩S is ≤p
k(k2 + k + 1)-dtt

-hard and hence ≤p
k(k2 + k + 1)-dtt

-complete for PSPACE.

For L∩S we can show the completeness for PSPACE analogously. From the completeness results
we obtain that L is weakly ≤p

k(k2 + k + 1)-dtt
-mitotic. 2

5 Logspace Autoreducibility for NP

In this section we consider logspace complete sets for NP. In this setting, neither can we apply
diagonalization (here, NP is too weak to diagonalize against logspace reductions), nor can we
trace entire computation paths in the nondeterministic computation tree (because logspace
reductions have too little storage). However, we know that logspace complete sets for NP
are redundant in the polynomial-time setting, which gives us access to particular deterministic
polynomial-time computations. We will consider the transcripts of those computations to obtain
logspace redundancy results.

5.1 Autoreducibility by the Tableau Method

Theorem 5.1 Let A be ≤log[k]
T -hard for P. If A is ≤p

tt-autoreducible, then A is ≤log[2k+1]
T -

autoreducible.

Proof Since A is ≤p
tt-autoreducible, there are functions f, g ∈ FP such that for all x there exists

some m such that f(x) = 〈y1, . . . , ym〉, x /∈ {y1, . . . , ym} and cA(x) = g(x, cA(y1), . . . , cA(ym)).
Let M1 be a polynomial-time Turing transducer that computes f , and let M2 be a

polynomial-time Turing transducer that computes g. We will consider the transcripts of the
Turing transducers, which are bit string representations of the sequence of configurations of
the transducer on some input, starting with the input itself, and ending on the function value
computed. Given a transcript of polynomial size in n, we can verify the consistency of each bit
of the transcript in space log(n) by looking at constantly many previous bits of the transcript.

On input x, let Fx denote the transcript of M1, and let Gx denote the transcript of M2. We
assume that there are polynomials p and q such that |Fx| = p(|x|) and |Gx| = q(|x|). Let c be
some constant such that each bit in Fx and Gx can be verified by reading at most c previous
bits in the transcript.

Let Fx[i] denote bit i in Fx, and let Gx[i] denote bit i in Gx. We define the sets B := {〈x, i〉 |
Fx[i] = 1} and C := {〈x, i〉 | Gx[i] = 1}. Since Fx and Gx are transcripts of polynomial-time

17

computations, we have B,C ∈ P. Since A is ≤log[k]
T -hard for C, there exist logspace oracle Turing

machines N1, N2 with k oracle tapes such that B = L(NA
1) and C = L(NA

2). We consider the
algorithm described in Figure 4.

On input x:

1. for i := 1 to p(|x|):
2. compute Ux[i] := N

A∪{x}
1 (〈x, i〉)

3. verify Ux[i] by reading Ux[j1], Ux[j2], . . . , Ux[jc] for some j1, . . . , jc < i

4. if the verification fails, reject

5. // here it holds that Ux = Fx

6. compute m such that f(x) = 〈y1, . . . , ym〉 and let y := (x, cA(y1), . . . , cA(ym))
7. for i := 1 to q(|y|):
8. compute Vy[i] := N

A∪{x}
2 (〈y, i〉)

9. verify Vy[i] by reading Vy[j1], Vy[j2], . . . , Vy[jc] for some j1, . . . , jc < i

10. if the verification fails, reject

11. // here it holds that Vy = Gy = G(x,cA(y1),...,cA(ym))

12. if Vy[q(|y|)] = 1 then accept, otherwise reject

Figure 4: Autoreduction for A.

Claim 5.2 The algorithm correctly decides A.

Proof Let x be some input to the above algorithm, and let f(x) = 〈y1, . . . , ym〉 and y =
(x, cA(y1), . . . , cA(ym)), hence cA(x) = g(x, cA(y1), . . . , cA(ym)). We distinguish the following
cases.

Case 1: x ∈ A. In this case, A = A ∪ {x}, hence in line 2, in each iteration we compute
NA

1 (〈x, i〉) = Fx[i]. So in iteration i we have Ux[j] = Fx[j] for all j ≤ i, hence the verification of
bit i succeeds. Hence we never reject in line 4. By a similar argumentation, we never reject in
line 10. This means that we reach line 12, where Vy = G(x,cA(y1),...,cA(ym)) holds. Since x ∈ A,
we have 1 = cA(x) = g(x, cA(y1), . . . , cA(ym)) = G(x,cA(y1),...,cA(ym))[q(|y|)] = Vy[q(|y|)], hence
we accept correctly.

Case 2: x /∈ A. The algorithm either correctly rejects in line 2 or in line 10, or it reaches
line 12. In the latter case, we have verified that Ux = Fx and Vy = G(x,cA(y1),...,cA(ym)). Since
x /∈ A, we have 0 = cA(x) = g(x, cA(y1), . . . , cA(ym)) = G(x,cA(y1),...,cA(ym))[q(|y|)] = Vy[q(|y|)],
hence we reject correctly. 2

Claim 5.3 On input x, the algorithm can be executed in space log(|x|) with oracle A and (2k+1)
oracle tapes, such that it never queries x.

Proof Let x be some input of the above algorithm where n = |x|, and let f(x) = 〈y1, . . . , ym〉
and y = (x, cA(y1), . . . , cA(ym)). We assume that the algorithm reaches line 12, since this
argumentation includes the case where we reject earlier as well. We consider the parts of the
algorithm separately.

18

Lines 1 to 5: The variable of the loop in line 1 can be stored in space O(log(n)), so con-

sider some particular iteration i. In line 2 we compute N
A∪{x}
1 (〈x, i〉), which is possible in

space O(log(n)) with oracle A and k oracle tapes by simulation of N1 without querying x.
The computed value Ux[i] is verified in line 3, where for the verification we need the val-
ues Ux[j1], Ux[j2], . . . , Ux[jc] for some j1, . . . , jc < i. The values j1, . . . , jc can be computed in
space O(log(n)). Since j1, . . . , jc < i, the verification of Ux[j1], . . . , Ux[jc] already succeeded

in previous iterations, so we can sequentially simulate N
A∪{x}
1 on 〈x, j1〉, . . . , 〈x, jc〉 to obtain

Ux[j1], . . . , Ux[jc] in logspace, again with k oracle tapes and without querying x. In particular,
since c is a constant, we can store the values Ux[j1], . . . , Ux[jc] temporarily for the verification
on the working tape, and we are not required to store the entire bit string Ux. With the values
Ux[j1], . . . , Ux[jc] we proceed to verify Ux[i], which again works in space O(log(n)).

Hence the entire loop in line 1 can be executed in space O(log(n)) with oracle A and k oracle
tapes, such that we never query x, and after we exit the loop it holds that Ux = Fx.

Note that we do not store the bit string Ux.

Line 6: Having verified that Ux = Fx holds, we now have access to each single bit in Fx, say bit

i, by simulating N
A∪{x}
1 (〈x, i〉), which takes space O(log(n)) and occupies k oracle tapes. Recall

that the function value f(x) is encoded in the last bits of Fx. So by sequentially simulating

N
A∪{x}
1 on 〈x, 1〉, . . . , 〈x, p(|x|)〉, we also have access to each single bit of f(x) = 〈y1, . . . , ym〉,

and hence to each bit of yj for each j. So in logspace we can compute m with k oracle tapes
where we never query x.

Note that the value of m can be polynomially in n, hence again we cannot store y =
(x, cA(y1), . . . , cA(ym)) directly on a working tape. As argued above, in space O(log(n)) we can
compute each bit of yj with k oracle tapes such that we never query x. We sequentially compute
each bit of yj and copy it on the (k + 1)-st oracle tape. Since f is an autoreduction, yj 6= x. So
after yj is written to the oracle tape, we can query yj and obtain cA(yj).

Hence each bit of y can be computed in space O(log(n)) with (k + 1) oracle tapes and
without querying x.

Lines 7 to 11: The variable of the loop in line 7 can be stored in space O(log(n)), so consider

some particular iteration i. In line 8 we compute N
A∪{x}
2 (〈y, i〉). Note that we have not stored

y on the working tape, but instead in space O(log(n)) we have access to each bit of y, which
occupies (k + 1) oracle tapes. Hence, by recomputing the bits of y whenever necessary, we

can compute N
A∪{x}
2 (〈y, i〉) in space O(log(n)) with oracle A and (2k + 1) oracle tapes by

simulation of N2 without querying x. The thus computed value Vy[i] is verified in line 9,
where for the verification we need the values Vy[j1], Vy[j2], . . . , Vy[jc] for some j1, . . . , jc < i.
The values j1, . . . , jc can be computed in space O(log(n)). Since j1, . . . , jc < i, the verification
of Vy[j1], . . . , Vy[jc] already succeeded in previous iterations, so we can sequentially simulate

N
A∪{x}
2 on 〈y, j1〉, . . . , 〈y, jc〉 to obtain Vy[j1], . . . , Vy[jc] in logspace, again with (2k + 1) oracle

tapes and without querying x. In particular, since c is a constant, we can store the values
Vy[j1], . . . , Vy[jc] temporarily for the verification on the working tape, and we are not required
to store the entire bit string Vy. With the values Vy[j1], . . . , Vy[jc] we proceed to verify Vy[i],
which again works in space O(log(n)).

Hence the entire loop in line 7 works in space O(log(n)) with oracle A and (2k + 1) oracle
tapes, such that we never query x, and after the loop it holds that Vy = Gy.

Again note that we do not store the bit string Vy.

19

Line 12: It remains to compute bit q(|y|) in Vy, which again is possible in space O(log(n)),
with (2k + 1) oracle tapes and without querying x.

This means that we can execute the entire algorithm in space O(log(n)) and hence in space
log(n) with oracle A and (2k + 1) oracle tapes, such that on input x we never query x. 2

From Claim 5.2 and Claim 5.3 it follows that the set A is ≤log[2k+1]
T -autoreducible. 2

Corollary 5.4 Let A be ≤log
T -hard for P. If A is ≤p

tt-autoreducible, then A is ≤log
T -autoreducible.

Proof Let B be ≤log
m -complete for P. Since A is ≤log

T -hard for P, there exists some k such

that B ≤log[k]
T A. Hence, A is ≤log[k]

T -hard for P. By Theorem 5.1, A is ≤log[2k+1]
T -autoreducible,

hence A is ≤log
T -autoreducible. 2

Theorem 5.5 ([GOP+07]) Let C be one of the following classes:

• PSPACE
• the levels Σp

k,Π
p
k,∆

p
k of the polynomial-time hierarchy

• 1NP
• the levels of the Boolean hierarchy over NP
• the levels of the MODPH hierarchy

Let r be one of the following reductions: ≤p
m, ≤p

1-tt, ≤
p
dtt, and ≤

p
k-dtt for k ≥ 2. Then every

nontrivial set that is r-complete for C is r-autoreducible.

Note that each of the classes mentioned in Theorem 5.5 contains P, so here we can apply
Corollary 5.4. While for PSPACE and the ∆p

k-levels of the polynomial hierarchy, autoreducibil-
ity and mitoticity results are already known, we obtain new autoreducibility results for the Σp

k

and Πp
k levels of the polynomial-time hierarchy, including NP and coNP.

Corollary 5.6 Let C be one of the following classes:

• the levels Σp
k and Πp

k of the polynomial-time hierarchy
• 1NP
• the levels of the Boolean hierarchy over NP
• the levels of the MODPH hierarchy

Let r be one of the following reductions: ≤log
m , ≤log

1-tt, ≤
log
dtt, and ≤

log
k-dtt for k ≥ 2. Then every

nontrivial r-complete set for C is ≤log
T -autoreducible.

Proof Let A be nontrivial and r-complete for C. So, A is ≤log
T -hard for C. This in particular

means that A is ≤log
T -hard for P.

If A is ≤log
m -complete or ≤log

k-dtt-complete for C, then A is ≤log
dtt-complete for C. So, A is

either ≤log
1-tt-complete or ≤log

dtt-complete for C. If A is ≤log
1-tt-complete for C, then A is ≤p

1-tt-

complete for C, and if A is ≤log
dtt-complete for C, then A is ≤p

dtt-complete for C. Hence, A is
either ≤p

1-tt-complete or ≤p
dtt-complete for C. By Theorem 5.5, A is either ≤p

1-tt-autoreducible
or ≤p

dtt-autoreducible. This means that A is ≤p
tt-autoreducible.

We apply Corollary 5.4 and obtain that A is ≤log
T -autoreducible. Note that A is actually

≤log[1]
T -hard for C, so from Theorem 5.1 we obtain that the Turing autoreduction uses at most

three oracle tapes. 2

Note that Corollary 5.6 includes the classes NP and coNP as special cases.

20

6 Summary

We summarize results obtained in this paper and outline future research and open problems.

Autoreducibility for NP and all other classes of the PH. We have shown that all ≤log
m -

complete sets for NP and all other classes of the polynomial hierarchy are ≤log
T -autoreducible.

Our proof builds on several known results on polynomial-time autoreducibility and mitoticity.
It seems to be difficult to obtain a short self-contained proof, because on the one hand, the
classes of the polynomial hierarchy are too weak to simulate arbitrary logspace reductions, and
hence diagonalization techniques do not apply here, yet the classes are complex enough such
that logspace reductions cannot verify their computations (for instance, in logspace, we cannot
simulate an accepting NP computation path).

Observe that the obtained logspace Turing autoreduction uses at most three oracle tapes.
Can we reduce the number of oracle tapes to two or even one? In the latter case, all ≤log

m -
complete sets for NP are ≤log

tt -autoreducible.

Mitoticity for P, the ∆-levels of the PH, and NEXP. We have further obtained that
all ≤log

m -complete sets for P and the levels ∆p
k of the polynomial hierarchy (k ≥ 2) are weakly

≤log
2-tt-mitotic, and all ≤log

1-tt-complete sets for NEXP are weakly ≤log
2-dtt-mitotic.

Recall that all ≤log
m -complete sets for PSPACE and EXP are ≤log

m -mitotic. We would like
to know whether the same holds for NEXP. Can we at least show ≤log

2-dtt-mitoticity or (weak)

≤log
m -mitoticity for NEXP? Furthermore, can we generalize our results to further completeness

notions, for instance to ≤log
dtt-complete or ≤log

ctt-complete sets?

Mitoticity for PSPACE. For PSPACE we have shown that all ≤p
dtt-complete sets are weakly

≤p
dtt-mitotic. Again, PSPACE is too weak to simulate arbitrary polynomial-time reductions, so

standard diagonalization techniques fail to show mitoticity. Instead, we shift complexity from
the reduction to the separator to obtain weak mitoticity.

It remains an open question whether all ≤p
dtt-complete sets for PSPACE are ≤p

dtt-mitotic,
i.e., if one can find a separator set in P. Furthermore, it remains open if a similar result holds
for ≤p

ctt-reductions.

References

[AS84] K. Ambos-Spies. P-mitotic sets. In E. Börger, G. Hasenjäger, and D. Roding,
editors, Logic and Machines, volume 171 of Lecture Notes in Computer Science,
pages 1–23. Springer Verlag, 1984.

[Ber77] L. Berman. Polynomial Reducibilities and Complete Sets. PhD thesis, Cornell
University, Ithaca, NY, 1977.

[BF92] R. Beigel and J. Feigenbaum. On being incoherent without being very hard. Com-
putational Complexity, 2:1–17, 1992.

[BFvMT00] H. Buhrman, L. Fortnow, D. van Melkebeek, and L. Torenvliet. Separating com-
plexity classes using autoreducibility. SIAM Journal on Computing, 29(5):1497–
1520, 2000.

[BHT98] H. Buhrman, A. Hoene, and L. Torenvliet. Splittings, robustness, and structure of
complete sets. SIAM Journal on Computing, 27(3):637–653, 1998.

21

[BT05] H. Buhrman and L. Torenvliet. A Post’s program for complexity theory. Bulletin
of the EATCS, 85:41–51, 2005.

[Buh93] H. Buhrman. Resource Bounded Reductions. PhD thesis, University of Amsterdam,
1993.

[CV86] R. Cole and U. Vishkin. Deterministic coin tossing with applications to optimal
parallel list ranking. Information and Control, 70(1):32–53, 1986.

[GH92] K. Ganesan and S. Homer. Complete problems and strong polynomial reducibili-
ties. SIAM Journal on Computing, 21(4):733–742, 1992.

[Gla10] C. Glaßer. Space-efficient informational redundancy. Journal of Computer and
System Sciences, 76(8):792–811, 2010.

[GNR+13] C. Glaßer, D. T. Nguyen, C. Reitwießner, A. L. Selman, and M. Witek. Au-
toreducibility of complete sets for log-space and polynomial-time reductions. In
Proceedings 40th International Colloquium on Automata, Languages and Program-
ming (ICALP), Lecture Notes in Computer Science, pages 473–484. Springer Ver-
lag, 2013.

[GOP+07] C. Glaßer, M. Ogihara, A. Pavan, A. L. Selman, and L. Zhang. Autoreducibility,
mitoticity, and immunity. Journal of Computer and System Sciences, 73(5):735–
754, 2007.

[GPSZ08] C. Glaßer, A. Pavan, A. L. Selman, and L. Zhang. Splitting NP-complete sets.
SIAM Journal on Computing, 37(5):1517–1535, 2008.

[HJ97] L. A. Hemaspaandra and Z. Jiang. Logspace reducibility: Models and equivalences.
International Journal of Foundations of Computer Science, 08(01):95–108, 1997.

[HKR93] S. Homer, S. A. Kurtz, and J. S. Royer. On 1-truth-table-hard languages. Theo-
retical Computer Science, 115(2):383–389, 1993.

[Lad73] R. E. Ladner. Mitotic recursively enumerable sets. Journal of Symbolic Logic,
38(2):199–211, 1973.

[Lad75] R. E. Ladner. On the structure of polynomial-time reducibility. Journal of the
ACM, 22(1):155–171, 1975.

[LL76] R. E. Ladner and N. A. Lynch. Relativization of questions about log space com-
putability. Mathematical Systems Theory, 10:19–32, 1976.

[Lyn78] N. A. Lynch. Log space machines with multiple oracle tapes. Theoretical Computer
Science, 6:25–39, 1978.

[NS14] D. T. Nguyen and A. L. Selman. Non-autoreducible sets for NEXP. In Proceedings
31st Symposium on Theoretical Aspects of Computer Science, Lecture Notes in
Computer Science. Springer Verlag, 2014. To appear.

[Tra70] B. Trakhtenbrot. On autoreducibility. Dokl. Akad. Nauk SSSR, 192(6):1224–1227,
1970. Translation in Soviet Math. Dokl. 11(3): 814–817, 1970.

22

ECCC ISSN 1433-8092

http://eccc.hpi-web.de

