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Abstract

A Boolean function is called vertex-transitive, if the partition of the
Boolean cube into the preimage of 0 and the preimage of 1 is invariant
under a vertex-transitive group of isometric transformations of the Boolean
cube. The logarithm of the number of the vertex-transitive functions of n
variables is at least Q(n?) and at most O(n?logn). There is a polynomial
over Fy of any given degree, which defines a vertex-transitive function, and
quadratic polynomials with this property can be characterized. There is a
vertex-transitive function of n = 4% variables with sensitivity n'/2. Some
properties of the groups of the automorphisms of the vertex-transitive
functions are presented.

1 Introduction

A Boolean function of n variables is a function {0,1}" — {0,1}. Its domain,
the Boolean cube {0,1}"™, which is the set of the vertices of a hypercube of
dimension n, is considered as a metric space with the Hamming distance as the
metric. Isometric transformations of the Boolean cube are the permutations
of its vertices, which preserve the Hamming distance. These transformations
are exactly those transformations, which may be defined by a permutation of
the n variables and the negation of a subset of the variables. We investigate
non-constant Boolean functions f, for which the partition of the Boolean cube
to the sets f~1(0) and f~1(1) is invariant under a vertex-transitive group of
isometric transformations. Due to this property, the functions will be called
vertex-transitive functions or, for simplicity, transitive functions.
Vertex-transitive functions are defined in Section 2 as functions satisfying a
specific system of identities. Every linear function over the two-element field F5
is transitive for a simple reason and examples of non-linear transitive functions
are presented. Using a suitable representation, an arbitrary transitive function
can be evaluated for a given input in polynomial time. Section 2.3 presents a
comparison of vertex-transitive functions and a related, but different, notion,
which is called a transitive function in the literature. Section 3 presents several
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constructions of non-linear transitive functions, in particular, a general con-
struction of quadratic transitive functions. The number of transitive functions
of n variables is proved to be at least 29Un*) and at most 20(n*logn) Quadratic
polynomials over F5, which define a transitive function, are characterized in
Corollary 3.11. Further constructions of transitive functions include functions
defined by a polynomial over F5 of an arbitrary degree and for every k a tran-
sitive function of n = 4% variables, sensitivity n'/2 and block sensitivity n¢,
where € = log, 3.

In Section 4, it is proved that for every transitive function, there is a transi-
tive group G of its automorphisms, which is a 2-group or, equivalently, the size
of G is a power of 2. These groups are easier to analyze than general groups,
in particular, every finite 2-group is solvable. This may allow to investigate
vertex-transitive functions using group theoretic methods. Section 5 presents
some questions for further research.

2 Vertex-transitive functions

2.1 Definition and basic notions

For a permutation p € S,, and = = (z1,...,2,) € {0,1}", let

P = (qu(l), v 7Z'p71(n))

be the vector obtained from x by permuting its components according to p. Let
the composition p1ps of the permutations pi, ps be defined so that for every x,

we have
(2PL)P2 = gP1P2

Isometric transformation of {0,1}" is a permutation of the vertices of the hy-
percube, which preserves the Hamming distance. These mappings are exactly
the mappings of the form

r— 1P Ds,

where p € S, and s € {0,1}", and will be denoted as 7(p, s). The group of all
isometries 7(p, s) for all p € S,, and s € {0,1}" will be denoted 7T,,. Similarly, if
A is a set of indices of the variables, then T4 denotes the group of the isometric
transformations of {0,1}4. Clearly, |T;,| = n!2".

The composition of transformations 7,79 € T,, is denoted 77 and satisfies
(r1m2)(x) = Ta(71(x)). For every p1,p2 € Sy, and every s1,s2 € {0,1}", we have

(2P @ 51)P? @ 59 = PP @ 1”@ 59

and, hence,
7(p1, $1)7(p2, 52) = T(p1p2, S1° @ s2) .

Let P, be the subgroup of T}, consisting of the isometries defined by per-
mutations of the variables, formally, P, = {7(p,0) | p € S,}. Note that P,
is the stabilizer in T), of the point 0 € {0,1}". Let V;, be the subgroup of T),
consisting of the linear shifts, formally, V,, = {7(id,s) | s € {0,1}"}. As an



abstract group, P, is isomorphic to S,, and V,, is isomorphic to the additive
group of the linear space {0,1}" over F.

The elements of T,, may be represented as permutations of the literals, which
keep the blocks {z;, —x;}. In particular, the elements of P, permute the blocks,
while keeping the order of the literals in each block. The elements of V,, keep the
blocks as sets, but exchange the literals in some of them. This representation
is the wreath product of Z; and S,,, where §,, acts on Z5. For algorithmic
purposes, it may be represented as a subgroup of Ss,,.

Definition 2.1 A non-constant Boolean function f of n variables is vertex-
transitive, if for every s € {0,1}", there is a permutation p € S,, and a constant
a € {0,1}, such that the transformation 7 = 7(p,s) satisfies for every z €
{0,137

fr(@) =fx)Da. (1)

In this paper, the vertex-transitive functions will be called transitive for
simplicity, although, in the literature, the notion of a transitive function can
have a different meaning, see Section 2.3.

Clearly, a function f is transitive, if and only if =f = f@1 is transitive. Due
to this, we may, without loss of generality, restrict ourselves to the functions,
which satisfy f(0) = 0.

Definition 2.2 Let f be a Boolean function of n variables and 7 € T}, an
isometric transformation of {0,1}". Then, 7 is called an automorphism of f, if
there is a € {0, 1}, such that for all z, the identity (1) is satisfied.

Clearly, 7 is an automorphism of f, if the partition of the Boolean cube to
the sets f~1(0) and f~!(1) is invariant under 7. In other words, these two sets
form a block system for the automorphism group and the automorphisms either
keep or exchange the blocks depending on the constant a from (1). Properties
of the groups of automorphisms of a transitive function, which may be derived
using this block system, are investigated in Section 4.

Lemma 2.3 A non-constant Boolean function f is transitive, if and only if
there is a group of automorphisms of f, which is transitive on {0,1}".

Proof. The closure of the set of isometries 7 required by Definition 2.1 is a
group of automorphisms of f, which is transitive.

If G is a transitive group of automorphisms of f, then for every s € {0,1}",
there is an automorphism 7 € G, which satisfies 7(0) = s. Since 7 = 7(p, s) for
some p € S, the requirements of Definition 2.1 are satisfied. O

The system of the generators of a transitive group of automorphisms may
be small. The function hs in Example 2.10 is a function of 8 variables, for which
a transitive group of automorphisms with two generators exists.

Verification of the transitivity of a group of automorphisms given by its
generators may be avoided, if the system of generators consists of n identities
in the special form described in Theorem 2.5. For the proof of this theorem, we
use the following lemma. For groups H, K, let HK = {hk | h € H,k € K}.



Lemma 2.4 A subgroup G of T, is transitive, if and only if P,G =T,.

Proof. Clearly, P,G C T,,. If G is transitive and 7 € T},, then v(0) = 7(0) for
some vy € G. Consequently, 7 = (77~ 1)y € P,G, since P, is the stabilizer of
0 € {0,1}". This implies P,G = T,,.

If P,G =T, and s € {0,1}", then 7(0) = s for some 7 = n7y € P,G, where
m € P, and v € G. Since w(0) = 0, we have v(0) = s. Hence, G is transitive. O

It is a well-known fact that a transitive group of automorphisms of an arbi-
trary vertex-transitive graph is generated by the set of automorphisms, which
map a given vertex to its neighbours. The next theorem follows from this, since
the standard basis vectors e;, i = 1,...,n are the neighbours of the zero vertex
of the Boolean cube. However, a self-contained proof is presented.

Theorem 2.5 A function f of n variables is transitive, if and only if for every

i =1,...,n, there is a permutation p; € S, and a constant a; € {0,1}, such
that

f@” @e) = f(z)Da;, (2)
where e; is the i-th standard basis vector. Moreover, if f satisfies f(0) = 0,
then it is uniquely determined by the parameters p;,a; fori=1,...,n.

Proof. If f is transitive, then the subset of the identities from Definition 2.1
for the vectors s satisfying |s| = 1 is the set of n identities required by the
statement of the theorem.

Let us prove the opposite direction. If the identities (2) are satisfied, then
the transformations 7, = 7(p;, e;) for i = 1,...,n are automorphisms of f and
let G be the group generated by them. In order to prove that G is transitive,
let us first prove the following.

Lemma 2.6 For every m € P, and i € {1,...,n}, there is @’ € P, and j €
{1,...,n}, such that
T = 7T/Tj . (3)

Proof. If 7 = 7(q,0) for ¢ € Sy, let j = q(i) and 7’ = T(p,-qu_l,O). Note that
el = e;. Using this, (3) may be verified by a simple calculation. O

Let m; = T(pi_l,()) for i = 1,...,n, so we have m;7; = 7(id, ¢;). Since the

tranformations 7(id, ;) generate V,,, we have T,, = (P,,V,) C (P,,G). Hence,
every element of T, is expressible as a word over the elements of P, and the
generators of G. By a repeated application of (3), this word may be transformed
to a word expressing the same transformation as an element of P,G. Hence,
P,G =T, and by Lemma 2.4, G is transitive. It follows that f is a transitive
function.

In order to prove uniqueness of the function f, consider an arbitrary s €
{0,1}"™. Since G is transitive, we can choose a sequence i1, ...,i; of indices
of the generators of G, such that 7 = 7;, ... 7;, satisfies 7(0) = s. For every
function f satisfying (2) this implies

f(s)=f(1(0)) = f(0) @ a;, ®...Pa, .



Since a condition of this form can be derived for every s, there is at most one
function satisfying f(0) =0 and (2). O

By Theorem 2.5, transitivity of a given function may be proven by demon-
strating a system of identities (2). In some cases, it is more natural to prove
identities of the form

fle@e) = fa%) D a;, (4)

which imply (2) with p; = q; L

The existence of a function satisfying (2) for given parameters p;, a; is not
guaranteed. However, if the parameters p;, a; define a transitive function f,
then it is possible to use them to compute f(z) for any = € {0,1}" in time
polynomial in n.

Theorem 2.7 Assume, f is a transitive function satisfying f(0) = 0 and let
pi, a; fori =1,...,n be as in Theorem 2.5. Then, for every x € {0,1}", it
is possible to compute f(x) in time O(n?) on RAM (random access machine)
with the unit cost measure, if p;, a; fori=1,...,n are part of the input.

Proof. Let x be the input and let 7 € V,, be such that 7(0) = z. Using the
notation from the proof of Theorem 2.5, there is a sequence i1, ...,%; such that

T =T Tiy -« T3, Tiy, -

This word will be successively transformed. In a general step, the word has the
form
T =T Tjy - ﬂ'ilTZ‘lO'TjHl e Th s

where o € P,. In particular, the initial word has this form with [ = k — 1
and o = m;,. Using (3), the product m;,7;,0 can be transformed into o'7;,, for
appropriate j; and o’ € P,. Repeating this with decreasing [ up to [ = 1, we
obtain

T:Ule"'Tjk

for an appropriate ¢ € P, and ji,...,ji. Let 7/ = 75 ...7;,. Clearly, z =
7(0) = 7/(¢(0)) = 7/(0) and, hence,

f) = f(7(0) = f0) ®aj, ®...Day, .
Computing the sequence ji, ..., ji requires O(n) operations with elements of

T,. Using the representation of T}, as a subgroup of Ss,, as described in Section
2.1, the total complexity is O(n?). O

2.2 Examples of transitive functions

For an arbitrary set A C {1,...,n}, let par,(z) denote the parity of the vari-
ables, whose indices belong to A.



Lemma 2.8 If A C {1,...,n}, then the linear function

par(z) = @ x;
€A
1s transitive.

Proof. The group V,, of the linear shifts is a group of automorphisms of
par 4(z), since for any s and x, the transformation 7 = 7(id, s) satisfies

par 4 (7(x)) = pary (z @ s) = par,(z) © pary(s) .

The following function hy is a quadratic transitive function over Fs, which
will be used later to construct more complex transitive functions.

Example 2.9 The function hy(x1, 22, x3,24) = (1 B x2) (23 D 14) B T2 B 1y iS
transitive.

Proof. One can easily verify that the function h;(z) satisfies

hi(x ®e1) = hi(xr, w2, 24,23) (5)
hi(x @ey) = hi(wy, 22,74, 23) D1 (6)
hi(x ®e3) = hi(xe,x1,23,24) (7)
hi(x @eq) = hi(wo,21,03,24) D1, (8)

which are the identities (4) and by a suitable permutation of the variables in
both sides of each of these identities, we obtain the identities (2). Hence, the
function h; is transitive by Theorem 2.5. O

The next example demonstrates a transitive function ho of 8 variables de-
fined by a polynomial of degree 3 over F5.

Example 2.10 Let g be the function defined by

91, Y1) = Y1Y2Y3 DY1Y2Ys D Y1Y3Ya D Y2 Y3 Ya -
Then, the function he defined by the formula

hg(ﬂ:l, e ,xg) = g(l’l @Jfg, T3 @1’4, xIs @1'6, X7 @Jjg)
D (r1 D3 D s ®axr)(xe ®xs ® 6D Xg)
@ (21 ® x2)(x3 D 4)
Dr3sPDre x5 Dy -

18 transitive.
Proof. One can verify that the function hy(z) satisfies the identities
ho(xs, x6, x7, T8, 1, T2 B 1, T4, T3) = ha(x)
hg(xl @1, xo, 3, x4 B 1, x3, 7, T§, x5) = hg(x) ®1.
The arguments of hy in the left hand sides of these identities represent two
automorphisms of hy, which generate a transitive group of isometries of {0, 1}%.

Verification of this is left to the reader. As a consequence, hs is transitive by
Lemma 2.3. O



2.3 Variable-transitive functions

A function f will be called variable-transitive, if there is a transitive subgroup
G of S, such that for every p € G and every x € {0,1}", we have

f@?) = f(z).

In particular, every graph property of the undirected graphs on k vertices rep-
resents a variable-transitive Boolean function, whose n = (g) variables are indi-
cators of the presence of individual edges. A graph property is invariant under
any permutation of the k vertices and these permutations induce a transitive
group of the permutations of the n edges. In [14], a lower bound Q(n'/?) on
the sensitivity of any non-constant graph property is proven. The lower bound
of this magnitude does not hold for a general variable-transitive function. An
example of a variable-transitive function of n variables and sensitivity O(n'/3)
was presented in [2]. Variable-transitive functions are used as examples for
separating some decision tree complexity measures in [10].

Although the definition of variable-transitive and vertex-transitive functions
use similar notions, the corresponding classes of the functions are very differ-
ent. In particular, the number of the vertex-transitive functions is significantly
smaller than the number of the variable-transitive functions. The logarithm to
base 2 of the number of the functions, which are invariant, for example, under
the group of the cyclic shifts of the n variables, is at least 2" /n. On the other
hand, the logarithm of the number of vertex-transitive functions is at most
O(n?logy n), see Theorem 3.4. Moreover, the classes are almost disjoint in the
following sense.

Theorem 2.11 If a non-constant function f satisfies f(0) = 0 and is simul-
taneously variable-transitive and vertex-transitive, then f is the parity of all
variables.

Proof. For a variable-transitive function, there is a € {0, 1} such that f(e;) = a
for all i = 1,...,n. Hence, if f(0) =0 and x = 0, then for every i = 1,...,n,
we get

flx@e)=flz)®a.

For a vertex-transitive function, if there is a vertex x with this propery for all
i € {1,...,n}, then all the vertices x of the hypercube have this property. If
a = 0, this implies that the function is the zero function. If a = 1, this implies
that the function is the parity of all variables. O

In the rest of this paper, a transitive function means a vertex-transitive
function.
2.4 Combining transitive functions by parity

For an arbitrary set A C {1,...,n}, let x4 denote the subset of the variables,
whose indices belong to A.



Lemma 2.12 If A and B are disjoint sets of indices of the variables and f(x4)
and g(xp) are transitive functions, then also f(xa) ® g(xp) is a transitive
function.

Proof. Let G 4, resp. Gpg, be a transitive group of isometric transformations of
{0,1}4, resp. {0,1}7, which are automorphisms of f(x4), resp. g(zp). Then,
the direct product G4 x G considered as a group of isometries of {0, 1}AUB =
{0,1}4 x {0,1}7 is a transitive group of automorphisms of f(z4) @ g(zp). O

For a proof of a partial converse of this statement, we use a relationship
between the automorphisms of a function and its sensitivity on individual vari-
ables.

Definition 2.13 For any function f of n variables and any i, 1 < i < n, let
o(f,i) be the sensitivity of the function f on the variable x;, which is defined
as the probability of f(x @ e;) # f(x) or, equivalently, the expected value of
flz®e;)® f(x) as a real number, where x is chosen at random from the uniform
distribution on {0,1}".

For every f and i, 0 < o(f,i) < 1 and o(f,i) =0, if and only if f does not
depend on ;.

Lemma 2.14 The function f satisfies o(f,i) = 1, if and only if there is a
function g(x ), where i ¢ A, such that f(x) = g(xa) ® ;.

Proof. Note that the sensitivity of f on z; is o, if and only if the sensitivity

of g=f@xz;onx;isl—o0. O

Lemma 2.15 Let f be a function of n variables and let T = 7(p,s) for some
p € Sp, s € {0,1}" be an automorphism of f. If p(i) = j, then the function f
has the same sensitivity on the variables x; and x;.

Proof. For some a € {0,1} and for all z, we have
f@? @ s) = f(x)®a
and substituting = @ e; for z in both sides of this identity yields
fa’P@sdej)=flede)Da.
Together, this implies
far @ sae) e fa e s) = fw®e) o f(x) .

Since the mapping x +— 2P @ s preserves the uniform distribution on {0, 1}",
the lemma follows. O



Theorem 2.16 Let A and B be disjoint sets of indices of the variables and let
g(xa) be an arbitrary Boolean function. Then, g(x4) @ par(xp) is transitive if
and only if g(x4) is transitive.

Proof. If g(x4) is transitive, then the statement follows from Lemma 2.12. For
the opposite direction, assume that f(z4,2p) = g(xa) ® par(zp) is transitive
and consider two cases as follows.

For the first case, assume that the sensitivity of g(z4) on all z;, i € A, is
less than 1. The sensitivity of f(z4,xp) on the variables from x4 is the same
as the sensitivity of g(z4) and the sensitivity on the variables in zp is 1. Let G
be a group of automorphisms of f(x4,xp), which is transitive on {0, 1}4YB. If
7(p, s) € G, then by Lemma 2.15, the permutation p preserves each of the sets
A and B. Hence, G is a subgroup of the direct product T4 x Tp. Let G4 be
the projection of G to its T4 component. Since G is transitive on {0,1}4YB,
G 4 is transitive on {0, 1}4.

Let 74 € G4 and let 7 be an element of GG, whose T4 component is 74, so
7 = (1a,7B) for some 7 € Tp. Let id4 be the identity in T4. All elements of
Tp are automorphisms of par(zz), hence, (ida, 75") and also

(Ta,idg) = (74, 78)(ida, 75")

is an automorphism of f. This implies that 74 is an automorphism of g(z4),
which finishes the first case of the proof.

If ¢ has sensitivity 1 for some variables in x4, let D be the set of their
indices and let C' be the set of the indices of the variables from A, for which
the sensitivity of g is less than 1. Consider the decomposition

9(za) = ¢'(zc) @ par(zp)

obtained by a repeated application of Lemma 2.14 to the function g. The
function ¢’ satisfies the assumption of the first case of the proof. It follows that
g is transitive, if and only if ¢’ is transitive and, similarly, the function

f(za,zB) = ¢ (xc) ® par(xp) @ par(xp)

is transitive, if and only if ¢’ is transitive. Consequently, the theorem holds also
in the general case. O

3 Further constructions of transitive functions

3.1 Characterization of quadratic transitive functions

Any multivariate quadratic polynomial f(z) over Fy, which satisfies f(0) = 0,
can be written as
flx) =2'Uz® 'z, (9)

where U is an appropriate upper triangular matrix with zeros on the diagonal
and c is a column vector. It is useful to consider also the matrix Q = U @ U?,
which is symmetric and represents the adjacency matrix of a graph, whose edges
correspond to the products contained in the polynomial.



Lemma 3.1 If f is a quadratic polynomial in the form (9), Q = U ® U and
s € {0,1}™, then for every x, we have

e es) = f(z) @ 5'Qu @ f(s) .
Proof. Using (9), we obtain
f@es)=@@es)U@xos)dc(rds).

Expanding the right hand side, we obtain 6 terms, which can be combined to
the three expressions

dUz@cde = f(z)
ssUzr @ 2'Us = s'Ux @ s'U'z = s'Qu
ssUs@ s = f(s).

The lemma follows. O

Definition 3.2 A quadratic polynomial f of n = 2k variables is called special,
if there is a homogeneous quadratic polynomial g of k variables, such that

k
f(@) =g(x1 D32, 3B 24, ..., Tn1 D Tn) @@:Ezi .
i=1

Special quadratic polynomials can also be characterized by the form of the
corresponding matrix Q = U @ U?. Let II be the partition of the set of the
indices of the n variables into k£ two-element blocks {1,2},{3,4},...,{n—1,n}.
Consider the matrix @ as a block matrix by partitioning both the rows and
the columns according to II. Then, the matrix consists of & x k blocks, each
of which has dimension 2 x 2. Moreover, we consider the vector ¢ splitted to k
blocks of length 2 according to II. A quadratic polynomial in the form (9) is a
special quadratic polynomial, if and only if the following three conditions are
satisfied

e the diagonal blocks of () are zero,

e for each of the non-diagonal blocks of @), either all of the components are
zero or all of them are equal to one,

e the vector ¢ consists of &k blocks of the form (0,1).
Lemma 3.3 Fvery special quadratic polynomial is transitive.

Proof. Let f be a special quadratic polynomial of n = 2k variables, let U and
¢ be as in (9) and let Q =U & U*.

In order to prove that f is a transitive function, we prove that for every
i=1,...,n, the function f(z @ e;) has the form (4). By Lemma 3.1, we have

fle@e) = f(z)®eiQr o f(e) -

10



This implies that f(x@®e;) has the same quadratic terms as f and possibly differs
in the linear and constant terms. The linear part of f(z @ ¢;) is (¢! @ elQ)z.
Since @ is a symmetric matrix, this is (¢ ® Qe;)'z. Due to the block structure
of Q and ¢ described above, the vector ¢ = (c® Qe;)! consists of k blocks, each
of which is either (0,1) or (1,0). Let g; be the permutation, which exchanges
the indices in the blocks {25 — 1,25}, 7 € {1,...,k}, where ¢ is equal to (1,0).
Clearly, ¢ = ¢%. Let us prove

flx@e) = fa®) @ flei) .

Since f is a special quadratic polynomial, its quadratic part is invariant under
the permutation ¢; of the variables, so the quadratic terms are the same on
both sides. Since ¢ = ¢%, the coefficients of the linear terms are given by ¢ on
both sides, so they are also equal. Since also the constant terms coincide, the
function f is transitive by Theorem 2.5 and identities (4). O

Using the special quadratic polynomials and a characterization of the tran-
sitive functions from the previous section, we obtain the following bounds.

Theorem 3.4 The number of transitive functions of n wvariables is at least
2n*) and at most 20(n*logzn)

Proof. The number of quadratic transitive functions of n variables is at least
the number of the special quadratic polynomials of 2k variables, where k =
|n/2]. This number is equal to the number of the homogeneous quadratic
polynomials of k variables, which is

2(’;) _ 9n?/8+0(n)

This implies the lower bound.

By Theorem 2.5, every transitive function of n variables satisfying f(0) =0
can be uniquely described by n permutations and n additional bits. Hence the
number of all transitive functions is at most

2 (2 . n')n — 2O(n2 log, 1) )

This implies the upper bound in the theorem. O

Lemma 3.5 The sensitivity of a quadratic polynomial on any variable is 0,
1/2, or 1.

Proof. The sensitivity of f on the variable z; is equal to the probability of
flx®e;) @ f(x) # 0 for & chosen from the uniform distribution on {0, 1}". If f
is quadratic, then for every 7, the function f(x @ e;) ® f(x) is a linear function
over F5. Hence, the probability of f(z®e;)® f(x) # 0is 0, 1/2, or 1 as required.
Od

Recall that the sensitivity of f on the variable z; is denoted o(f,i) for
i € {1,...,n}. The sensitivity of a function in a vertex is defined as follows.

11



Definition 3.6 The sensitivity of a function f in a vertex z € {0,1}" will be
denoted o(f,z) and defined as the number of indices i = 1,...,n, such that

flz@e) # fl).

Let o(f) be the maximum of o(f,z) over all z € {0,1}". Clearly, for
a transitive function f, the sensitivity o(f,z) is the same for all vertices x.
Hence, o(f) is also the average value of the sensitivity over all vertices. Due to
this, we have

o) = g Tolhe) = g3 X S md(fw 0e) £ 1)

where ind is the indicator functlon for a condition. Since
i) = g S nd(fe @) # 5@)
we finally have

)= o(fi) . (10)
i=1

Lemma 3.7 If f is a quadratic transitive function (9) of n variables, which has
sensitivity 1/2 on every variable, then for every s € {0,1}™, the vector ¢ ® Qs
contains n/2 non-zero components.

Proof. By the assumption, for all ¢ = 1,...,n, o(f,7) = 1/2. Hence, (10)
implies o(f) = n/2. Since f is transitive, we have o(f) = o(f,s) for all
s € {0,1}". In particular, n/2 is an integer. The sensitivity o(f,s) is equal to
the sensitivity in the zero vertex of f(z @ s) as a function of z. The sensitivity
of a polynomial in the zero vertex is equal to the number of its nonzero linear
terms. By Lemma 3.1, the linear part of f(x @ s) is

dr@s'Qr = (coQs)'x

Hence, the number of non-zero components of the vector ¢ @ Qs is n/2 as
required. O

For every 0, 1-matrix M, let A(M) be the affine set generated by the affine
combinations of the rows of M over F5, which are the linear combinations,
whose sum of the coefficients is 1. Equivalently, A(M) is the set of the sums of
odd size subsets of the rows of M. Every affine subset A of a vector space can
be obtained as a + W, where a is an element of A and W is the linear subspace
formed by the differences of the elements of A. The dimension of W will be
called the dimension of the affine set A. For a subset A of {0,1}" and p € S,,,
let AP be the set of 2P for z € A.

Lemma 3.8 If A is an affine subset of {0,1}", whose elements have n/2 non-
zero components, then there is a permutation p € S,, such that the affine set
AP is a subset of the solutions of the system of the linear equations

T1 D T2 =1
T3 D xg = 1 (11)
Tp_19Px, = 1.
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Proof. Let k be the smallest number of affine generators of A and let B = {b; ;},
where ¢ = 1,...,k and 7 = 1,...,n, be a k X n matrix, whose rows form
such a system of the generators. In particular, A = A(B). Moreover, let
bi,...,b, € {0,1}* be the columns of B.

Let L = {¢1,} be the 2¥ x 2¥ matrix, such that the row indices I are subsets
of {1,...,k} and the column indices y are vectors y € {0,1}¥. The rows are
linear functions over the column index specified by the row index. More exactly,
for every I and y, we have

lry = @ Yi -

el

Let H = {hr 4} be the matrix, whose elements are
h[,y = (_1)61'?; .

The matrix H is a Hadamard matrix known as Sylvester’s construction.

The set of the rows of L is a linear space over F5, whose elements are vectors
of length 2* with components indexed by {0,1}*. Let ¢ : L — {0, 1}" be defined
for every row z of L as

&(2) = (Zbys- -3 2p,) - (12)
For every I, let 1 be the row of L with index I. Let V' be the set of k rows £;
for i = 1,...,k. The rows in V represent the linear functions depending on a

single bit of the column index y. Using this, one can verify that ¢(£(;;) is the
i-th row of the matrix B, since

@(E{Z}) - (E{i}7b17 e ag{i},bn) - (bi,17 e ;bi,n) .

This implies that ¢ maps V' to the rows of B and, hence, also maps the affine
set A(V) onto the affine set A = A(B). Since the dimension of both these affine
sets is k — 1, the linear map ¢ is a bijection between A(V') and A = A(B).

By the assumption, for every z € A(V), the vector ¢(z) € A has n/2
components equal to one. Since ¢(z) is defined by (12) as a selection of some
of the components of z, possibly with repetitions, the number of ones in ¢(z),
denoted as |¢(z)|, can be expressed by the scalar product in the real numbers

p(2)| =w -z, (13)

where w is an integer vector, whose components are given by

wy = {7 € {L,....n}; b =y} . (14)

Clearly,

Z .wy:n. (15)

Lemma 3.9 For every y € {0,1}*, we have wy = wy, where 7 is the compo-
nentwise complement of y.
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Proof. Since H has the full rank over the real numbers, the vector w is a linear
combination of the rows of H. Consider any row 2’ of H and the corresponding
row z of L, so we have in the real numbers

7 =1-2z,

where 1 denotes the vector of all ones. If z € A(V) C L, then ¢(z) € A and we
have |¢(z)| = n/2 by the assumption. Using (13) and (15), we obtain

w-Z=n—-2w-2)=0.

Since H is an orthogonal matrix, this implies that w is a linear combination
over the real numbers of the rows of H, which do not correspond to the rows
A(V') of L. Since the rows in V are the linear functions over F» of a single bit
of y, the set A(V) consists exactly of the linear functions, which are the parity
of an odd number of the bits of y. Hence, the rows of L, which do not belong to
A(V'), are the parities of an even number of the bits of y. The parity of an even
number of the bits is the same for y and 3. Hence, if z is a row of L, which is
not in A(V), then zy = z, for all y € {0, 1}*. Clearly, the same is satisfied for
the row 1 —2z of H. Since all the rows of H, which contribute to the expression
of w, satisfy this symmetry, the lemma follows. O

Lemma 3.9 and (14) imply that for every y, the number of the occurences
of the column y in B is equal to the number of the occurences of the column
7. Hence, there is a permutation p € 5,, such that the n columns of BP form
n/2 pairs of complementary consecutive columns. Hence, if z is a row of BP,
the equations (11) are satisfied. These identities clearly extend to the elements
of A(BP). Since AP = A(BP), the proof of Lemma 3.8 is completed. O

The main result of this section is the following theorem and its corollary.

Theorem 3.10 If f is a transitive function defined by a quadratic polynomial
(9) of n wvariables, which has sensitivity 1/2 on each variable, then there is
p € Sy, such that f(x) = g(xP) for a special quadratic polynomial g.

Proof. Let U be as in (9) and let Q = U @& U'. By Lemma 3.7, the affine set
A={c®Qs;se{0,1}"}

satisfies the assumptions of Lemma 3.8. Let p be the permutation guaranteed
by Lemma 3.8. The elements of AP satisfy (11). In particular, ¢? satisfies these
identities. Hence, if the vector P is splitted into blocks of size 2 according to II,
it consists of the blocks (0,1) and (1,0). Since the equations (11) are invariant
under exchanging the variables in any block, we can choose p so that ¢ = P
has the form (0,1,0,1,...,0,1). Let Q" be the matrix obtained by reordering
of both the columns and the rows of @ according to p. The matrix Q' is a
symmetric matrix with zero diagonal, since @Q has these properties. Let U’ be
the upper triangular part of Q' and let g be the function

g(z) =2'U'z @ (d)x .

14



One can easily verify that g(aP) = f(x) for every x.

The sum in Fy of ¢ = (0,1,...,0,1)" and any column of Q' belongs to
AP. Hence, if any column of @’ is splitted according to II, it consists of the
blocks (0,0) and (1,1). It follows that the matrix Q" consists of n/2 pairs of
equal consecutive rows. Since it is symmetric, it consists of /2 x n/2 blocks of
dimension 2 X 2, each of which contains either all ones or all zeros. Moreover,
the diagonal blocks are zero, since the diagonal of the matrix is zero. Hence, @',
U’ and ¢ have the form, which implies that g is a special quadratic polynomial
as required. O

Corollary 3.11 A quadratic polynomial defines a transitive function, if and
only if it can be obtained from a special quadratic polynomial by a permutation
of the variables and possibly removing irrelevant ones.

Proof. A polynomial obtained in the specified way defines a transitive function
by Lemma 3.3. For the opposite direction, let f be a transitive function defined
by quadratic polynomial, which depends on all its variables. By a repeated
application of Lemma 2.14, we can split the indices of the variables into disjoint
sets A and B, such that f(x) = g(xa) @ par(zp) and g has sensitivity less
than 1 on all its variables. By Lemma 3.5, ¢ has sensitivity 1/2 on all its
variables. Moreover, by Theorem 2.16, the function g(z4) is transitive. Hence,
by Theorem 3.10, g is a special quadratic polynomial up to a permutation of
the variables. The function par(zp) can be expressed as a special quadratic
polynomial of 2|B| variables, which depends only on |B| of them and contains
no quadratic terms. Since the parity of two special quadratic polynomials on
disjoint sets of variables is a special quadratic polynomial, the theorem follows.
O

3.2 Transitive functions of an arbitrary degree

Let hy be the quadratic transitive function from Example 2.9.

Lemma 3.12 For i = 1,2, let g; be a transitive function of k; variables and
degree d;. For i = 1,2 and j = 1,2, let z;; be a vector of k; variables, such
that the sets of variables in the four vectors x;; are mutually disjoint. Then,

hi(g1(z1,1), 91(x1,2), 92(x2,1), g2(22,2)) is a transitive function of 2(ki + k2) vari-
ables and degree dy + ds.

Proof. The concatenation of all the blocks z; ; will be denoted as z. Let f be
the considered function, so we have

f(x) = f(r11, 212, 22,1, 222) = hi(g1(21,1), 91(21,2), 92(22,1), g2(22,2)) -

Let e; j; be the standard basis vector of length 2(k; + k2), which contains 1 at
the [-th position of the block corresponding to x; ;. In order to prove transitivity
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of f using Theorem 2.5 and identities (4), we show that for every i, j,[, there
is a permutation p € Sy(x, 4,) and a € {0,1} such that

fle@eiji) =fa")@a. (16)

If (4,5) = (1,1), then we consider ej ;;, which has 1 at the I-th position of the
block z1,; and is zero in all other blocks. Hence, we have

flx@er1y) =hi(gi(z11 ®e), g1(x12), 92(221), 92(x2,2)) -

Since g; is a transitive function, there are g € Si, and b € {0, 1}, such that
gi(r11 @) = gi(x];) Db,
which implies
fle@ernn) =hi(gi(x] ;) ®b,g1(212), 92(2,1), g2 (w2,2)) -
If b = 0, this implies
fle@erny) = f(af 1, 212,21,222) ,

which has the required form (16). If b = 1, we additionally use (5) to obtain

fle@ern) = hi(g1(z] 1), 91(21,2), 92(22,2), 92(2,1))

and, finally,
fle@erny) = f(af 1,212,222, 221) ,
which has the form (16).
If (4,5) = (1,2), then we consider e; 2, which has 1 at the [-th position of

the block x1 2 and is zero in all other blocks. Similarly as in the previous case,
we obtain

flx®@erg) =hi(g1(r11), 91(x] ) ® b, g2(w2,1), g2(w2,2))

with ¢ € Sk, and b € {0,1} guaranteed by identities (4) for g;. If b = 0, this
may be rewritten to the form (16) as in the previous case. If b = 1, we use (6)
to obtain

flx@erar) = h(g1(r1,1),91(21 5), g2(x2,2), g2 (221)) € 1,

and, finally,
flx®ern)) = flwr1,2] 9,220, 721) @1,
which has the form (16).

The cases (i,7) = (2,1) and (4,7) = (2,2) are similar and left to the reader.
O

Theorem 3.13 For every integer d > 1, there is a transitive function of at
most 2d? wvariables represented by a polynomial over Fy of degree d.
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Proof. Consider a binary tree with d leaves and the depth k = [log, d]. We
assign a transitive function to every node in the tree as follows. The leaves are
assigned to different variables. An internal node, both successors of which are
already assigned, is assigned to the function obtained by the previous lemma
from the functions in the two successors. This is repeated until the function
assigned to the root of the tree is obtained. It is easy to see that the degree of
this function is d and the number of the variables of this function is at most
d2F <2d?. O

3.3 Transitive functions with small sensitivity

Let us consider the sensitivity and the block sensitivity of Boolean functions.
Both these sensitivities are first defined in every vertex of the hypercube and
the sensitivity of the function is the maximum of the corresponding sensitivity
over all vertices, see, for example, [1, 2]. The sensitivity of f in a vertex z is
denoted as o(f,x), see Definition 3.6.

The block sensitivity of f in a vertex x is the maximum number m, such
that there are vectors vj, j = 1,...,m, such that the sets of indices of non-zero
components in these vectors are pairwise disjoint and for every j = 1,...,m, we
have f(x @ v;) # f(x). Clearly, the block sensitivity in a vertex is at least the
sensitivity in the vertex, since the vectors v; may be the vectors e;, for which
flx @e;) # f(x). For a transitive function, the block sensitivity is the same in
all the vertices, so the maximum is also the common value, similarly as for the
sensitivity.

It is easy to construct a Boolean function depending on n variables with sen-
sitivity O(logn). A simple graph property is used in [14] to construct a variable-
transitive function of sensitivity @(nl/ 2). It is significantly harder to find
variable-transitive functions of smaller sensitivity. The best currently known
construction is a variable-transitive function with sensitivity O(n'/?) presented
in [2] and [3] and it is not known, whether the bound is optimal. The block sen-
sitivity of a variable-transitive function is at least Q(n'/3) by [13]. An example
of a variable-transitive function with block sensitivity O(n%/7logn) is presented
in [13] and an improved construction with block sensitivity O(n3/7log!/" n) is
presented in [8].

Vertex-transitive and variable-transitive functions have a different type of
symmetry. However, the results mentioned in the previous paragraph suggest
that, in general, one cannot expect a small sensitivity or block sensitivity of
funtions with a high degree of symmetry. Below, a vertex-transitive function of
n variables, sensitivity n'/2 and block sensitivity n¢ for e &~ 0.7925 is presented.

Let ¢; be a formula in the form of a balanced 4-ary tree of depth 7, whose
internal nodes compute the connective hy from Example 2.9 and the leaves are
different variables. Let g; be the function of 4° variables, which is represented
by ¢;. In particular, g; is the function h; and the function g5 is

g2(x1,...,216) = hi(hi(z1, ... 24), ..., hi(z13,. .., 216)) -

Since hj is transitive, its sensitivity is equal to its sensitivity in the zero
vertex, which is 2, since hy(e2) = hi(eq) = 1 and hy(0) = hi(e1) = hi(eg) = 0.
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The block sensitivity of hy in the zero vertex is at least 3, since hy(e2) = hi(eq) =
hi(er @ e3) = 1. Moreover, the set of the indices of non-zero components of
every vector v, which satisfies hq(v) # h1(0), contains at least one of the sets
{2}, {4}, and {1,3}. This implies that the block sensitivity of h; in the zero
vertex is 3. The same argument proves the implication

1 1
h1($1,$2,333,334) =1 = 5:171 + x9 + 5333 +x4>1, (17)

which will be used later.

Theorem 3.14 For every i > 0, g; is a transitive funtion of n = 4* variables,
whose sensitivity is n*/? = 2t and block sensitivity is n® = 3¢, where & = log, 3.

Proof. For every i > 0, the function g; is transitive by an induction argument
using Lemma 3.12. As mentioned above, this implies that the sensitivity and
block sensitivity of g; is equal to the corresponding sensitivity in the zero vertex,
which is the assignment of all 4° variables to 0. Consider the tree structure of
the formula ¢;, which defines g;. Every internal node of the tree computes
the connective hy, whose arguments correspond to the 4 successors of the node
in the tree. In this sense, every edge in the tree corresponds to one of the
arguments of h; and we refer to these arguments using their indices.

The value of g; for the zero input is 0. There are 2¢ variables of g;, such
that the path from the root of the formula to the considered variable consists
only of edges, which correspond to arguments 2 and 4 of h;. Clearly, changing
any of these variables to 1 leads to an assignment, for which the value of g; is 1.
Hence, the sensitivity of ¢; in the zero vertex is at least 2°. One can also verify
that changing any other variable to 1 in the zero assignment does not change
the value of the formula. Hence, the sensitivity of ¢; in the zero vertex is 2¢.

In the rest of the proof, we use the following notation. For any set of
variables A of g;, let u4 be the assignment, which assigns 1 to the variables in
A and 0 to the remaining variables.

In order to get a lower bound on the block sensitivity of g; in the zero vertex,
consider the subtrees of the formula, which contain the root of the formula, the
leaves of the subtree are leaves of the formula and the following is satisfied. For
every internal node of the subtree, the set of the indices of the successors, which
are contained in the subtree, is precisely one of the sets {2}, {4}, and {1, 3}.
Moreover, the choice of the set of the successors is the same for all nodes at
the same level of the tree. Since there are ¢ levels in the tree and for each of
them, we choose one of the three sets, there are 3’ such subtrees and the sets
of the leaves of these subtrees are disjoint. Hence, the sets of the leaves of the
subtrees define 3/ non-empty sets of variables, which are disjoint. If A is one of
these sets, then g;(uys) = 1. Hence, the block sensitivity of g; in the zero vertex
is at least 3°.

For an upper bound on the block sensitivity of g; in the zero vertex, consider
the weights of the arguments of hy, which appear as coefficients in (17). Every
edge of the tree ¢; corresponds to an argument of hq, so, we may assign these
weights also to the edges of the tree. Moreover, we assign to every variable of
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g; the weight, which is the product of the weights of the edges, which form the
path from the root of ¢; to the leaf with the considered variable. Since the sum
of the weights of the edges from any given vertex is 3, the sum of the weights
of all variables is 3. Consider the sets of variables A, such that g;(ua) = 1.
In the next paragraph, we prove that the sum of the weights of the variables
in every such A is at least 1. Since the total sum over all variables is 3!, this
implies that there are at most 3¢ disjoint sets A satisfying g;(u4) = 1. This
implies the upper bound 3? on the block sensitivity of g;.

In order to prove a lower bound on the sum of the weigths of the variables
in a set A satisfying g;(u4) = 1, we may assume that A is an inclusion minimal
set with this property. Consider the subtree, which is the union of the paths
from the root to the variables in A. Since A is inclusion minimal, every node of
the subtree evaluates to 1 for the assignment u4. Using (17), we obtain that for
every node of the subtree, the sum of the weights of the edges to the successors
of the node, which also belong to the subtree, is at least 1. Hence, the sum of
the weights of the variables in A is at least 1. O

4 Groups of automorphisms

In Section 2.1, a transitive function was defined as a Boolean function, which
satisfies a system of identities corresponding to a transitive group of automor-
phisms of the function. In this section, we investigate the properties of these
groups themselves. As already mentioned, an isometry 7 € T, is an automor-
phism of f, if the partition of the vertices of the Boolean cube into the sets
f710) and f~%(1) is invariant under 7.

A block for a group G of permutations of a domain 2 is a non-empty subset
B C Q, such that for every m € G, we have either B™ = B or B™"N B = (),
where B™ = {b™; b € B}. A block system for G is a partition of 2, which is
preserved by G. Clearly, the elements of a block system are blocks in the sense
above. If GG is transitive on 2 and B is a block, then the sets B™ for m € G
are blocks and the set of the different blocks of this form is a partition of 2.
Moreover, this partition is preserved by G and, hence, is a block system. These
considerations are the basis for part (i) of Lemma 4.1, which summarizes well-
known facts used later. Part (iii) is used only for groups satisfying |G : H| = 2.
For more information on block systems for the permutation groups, see, for
example, [5, 11, 7].

Lemma 4.1 Let G be a transitive group of permutations of a domain Q and
u € ). Then, the following three statements hold.

(i) Every block system for G is uniquely specified by the block in it, which
contains u.

(i) A subset B of Q2 containing u is a block of G, if and only if B = Orbity (u)
for a subgroup H, which contains Stabg(u). Moreover, there is a bijection
between the blocks of G, which contain u, and the subgroups H of G, which
contain Stabg(u).
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(i5i) If H is a normal subgroup of G, then the orbits of H form a block system
of G. In particular, the orbits of H have the same size.

Lemma 4.2 A non-constant function f of n variables is transitive, if and only
if there is a transitive group G C T, such that the partition of {0,1}" to the
sets {f71(0), f71(1)} is a block system of G.

Proof. Let f be transitive. Clearly, the group generated by the isometries,
which appear as 7 in (1), is a transitive subgroup of T,, satisfying the require-
ment.

For the opposite direction, let f be any non-constant function of n variables
and G a transitive subgroup of T}, for which the partition {f~1(0), f~1(1)} is a
block system. Let s € {0, 1}" be arbitrary. Since G is transitive, there is 7 € G,
such that 7(0) = s. Since 7 satisfies (1) for some a € {0,1}, f is transitive by
Definition 2.1. O

A transitive group may have several two-element block systems and they de-
fine different transitive functions. The parity of all variables represents a block
system for T}, and, clearly, also for any of its subgroups. Hence, a transitive
group of automorphisms of any function except of the parity of all variables
admits at least two different two element block systems. A unique block sys-
tem may be specified by considering the subgroup H of G, which is the set-wise
stabilizer of the blocks. Clearly, H is not transitive and for every 7 € H and
x € {0,1}", we have f(7(z)) = f(x).

Lemma 4.3 Let G and H be groups of isometries of {0,1}" such that
e (7 is transitive,
e H<G, |G:H|=2,
e H is not transitive.

Then, for every verter u, we have |Orbity(u)| = 2! and Stabg(u) < H.
Consequently, H has two orbits and they form a block system of G.

Proof. Let G and H be groups satisfying the assumptions and let u € {0,1}".
Since |G : H| = 2, H is normal in G and by Lemma 4.1(iii), the orbits of H
form a block system of G. The orbit-stabilizer theorem implies

Gl

= IStabg(u)] ~ °

|Orbite (u)|

and
|H| (€]

" |Stabg ()| 2[Staby(u)|
Since Stabg(u) = H N Stabg(u), we have either Stabg(u) = Stabg(u) or
|Stab (u)| < 3|Stabg(u)|. In the latter case, we would have |Orbity (u)| = 2",

which is not possible, since H is intransitive. Hence, Stabgy(u) = Stabg(u),
which implies |Orbity (u)| = 2"~! and Stabg(u) < H. O

|Orbit g (u)]

This lemma implies correctness of the following definition.
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Definition 4.4 Let f be a non-constant Boolean function of n variables and
let G and H be subgroups of T, such that

e (5 is transitive,
e H<G,|G:H|=2,
e for every 7 € H and z € {0,1}", we have f(r(x)) = f(z).

Moreover, if u € {0,1}", such that f(u) = 0, then, we say that G, H and u
define f.

By Lemma 4.3, H has two orbits and the function is constant on each of
them. Hence, the function is uniquely determined. Moreover, the functions,
which may be defined in this way, are precisely the transitive functions.

Theorem 4.5 A non-constant Boolean function is transitive, if and only if it
is defined by some subgroups G and H of T,, and a vertex u € {0,1}".

Proof. Assume, G, H, and u define a function f. By Lemma 4.3, H has two
orbits and they form a block system of G. Since f is constant on each of these
blocks, it is transitive by Lemma 4.2.

Let f be a non-constant transitive function. By Lemma 4.2, the partition
{f71(0), f71(1)} is a block system for a transitive group G of isometries. Let
H be the set-wise stabilizer of f~1(0) and let u be any element of f~1(0). One
can easily verify that the groups G, H, and vertex u define f. O

A minimally transitive group is a permutation group, which is transitive,
but no its proper subgroup is transitive.

Lemma 4.6 For every non-constant transitive function f, there are groups G
and H and a vertex w, which define f, and G is minimally transitive.

Proof. If f is transitive, then Theorem 4.5 guarantees the existence of groups
G and H and a vertex wu, which define f. If G is not minimally transitive, let
G’ be a minimally transitive subgroup of G and H = H N G’. Since H' is
intransitive, it follows that |G’ : H'| > 1. Moreover, since |G’ : H'| < |G : H|,
we have |G’ : H'| = 2. Clearly, f(7(z)) = f(x) for every 7 € H'. Hence, the
groups G’ and H' define the same function as the groups G and H. O

The minimally transitive groups G satisfy further conditions, which are
based on the following consequence of a more general Theorem 3.4 from [15].

Theorem 4.7 (Wielandt, 1964) If G is a transitive group of permutations
of a domain Q, such that |Q] = p", where p is a prime, then every Sylow
p-subgroup of G is also transitive on €.

Specifically, we use the following consequence of this theorem.

Corollary 4.8 Every minimally transitive subgroup of T}, is a 2-group.
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Proof. Let G be a minimally transitive subgroup of T,,. If G is not a 2-group,
then every its Sylow 2-subgroup is a proper subgroup, which is also transitive
by Theorem 4.7. This contradicts the assumptions, hence G is a 2-group. O

This allows to strengthen the characterization of the transitive functions.

Theorem 4.9 A Boolean function f is transitive if and only if there are groups
G and H and a vertex u, which define f, and such that G is a minimally
transitive 2-group.

Proof. Let u be any vertex satisfying f(u) = 0. By Lemma 4.6, the function
f is defined by GG, H and u, such that G is minimally transitive and, hence, a
2-group. O

For a minimally transitive group G of isometries of {0,1}", the character-
ization of the subgroups H of G, which define a transitive function, can be
simplified, since every maximal proper subgroup H of G is intransitive and has
index 2 in G. The intersection of all the maximal subgroups of G is the Frattini
subgroup ®(G). Using the properties of the Frattini subgroup of a p-group, see
for example [12, 4], we obtain the following theorem.

Theorem 4.10 Let G be a minimally transitive subgroup of T,. If k is the
manimal number of its generators, then there are 28 — 1 mazimal proper sub-
groups of G. Ifu is a vertex, then there are 2% — 1 different transitive functions
defined by G, some of its mazimal subgroups H, and u.

Proof. Let u be a vertex. Since GG is a minimally transitive 2-group, every
maximal proper subgroup H of G has index |G : H| = 2 and is intransitive.
Hence, by Lemma 4.3, every maximal proper subgroup H of G defines, together
with G and u, a transitive function. Moreover, different subgroups H define
different transitive functions by Lemma 4.1(ii).

There is a bijection between the maximal subgroups of G and the maximal
subgroups of G/®(G). Since G is a 2-group, the factor group G/®(G) is isomor-
phic to Z§ , see [12, 4]. There is a bijection between the maximal subgroups of
Z¥% and the subspaces of Fy of dimension k — 1. The number of these subspaces
is 2 — 1. Hence, also the number of the maximal subgroups of G is 2 — 1. O

The following theorem is useful for a computer search for the transitive
functions, since it allows to obtain a transitive function from a group in a
straightforward way.

Theorem 4.11 A Boolean function f of n variables is transitive, if and only
if the set f~1(0) is an orbit of a subgroup of T}, and |f~1(0)| = 2771,

Proof. Let B = f~!(0) and u € B. By assumption, there is a subgroup H of
T, such that B = Orbitg(u). Since |B| is a power of 2, there is a 2-group H
with this property by Theorem 4.7. Assume, H is a maximal 2-subgroup of 715,
satisfying B = Orbity(u). By Sylow theorems, there is a Sylow 2-subgroup K3
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of Ty, such that H < K;. Since K is transitive on {0,1}", we actually have
H < K. Since K is a finite 2-group, it satisfies the normalizer condition and,
hence, the normalizer Ko of H in K7 satisfies H < K. Let g € K5 be such that
gH is an element of Ky/H of order 2. Let G = H U gH be the group generated
by H and g.

Since H is a maximal 2-group satisfying the property above and G is a
larger 2-group, we have 2"~! < |Orbitg(u)|. The size of the orbit is a power of
2, hence, G is transitive on the vertices of the hypercube. The groups G and H
satisfy the assumptions of Lemma 4.3 and hence, B is a block of G. It follows
that f is transitive by Lemma 4.2. O

5 Further research

If G is a transitive subgroup of T},, then its size is a multiple of 2", since G is a
transitive group of permutations of {0,1}" and, hence, its size is [Stabg(u)[2"
for any vertex u of the hypercube. Some of the transitive functions have a
transitive group of automorphisms of size equal to 2", which is simply transitive.

Definition 5.1 A Boolean function is simply transitive, if it is defined by
groups G and H and a vertex u, such that G is simply transitive or, equiv-
alently, is a regular group of the permutations of the vertices of the hypercube.

It is easy to prove that every linear and quadratic transitive function is
simply transitive. In fact, the groups of isometries used to verify transitivity of
these functions in the previous sections have size 2". A limited random search
using GAP computer algebra system [9] produced 73 non-isomorphic transitive
functions of 12 variables and degree 3, which are irreducible in the sense that
they cannot be obtained as a parity of simpler functions on disjoint sets of
variables as in Lemma 2.12. Each of these functions appeared to be simply
transitive, although not every minimally transitive group defining a transitive
function is simply transitive.

Regular subgroups of T,, are precisely the groups, whose Cayley graph with
an appropriate generating set is the Boolean cube. See [6] for the details and
for a classification of such groups for n < 6.

Question. Is there a vertex-transitive function, which is not simply transitive?

Theorem 3.14 demonstrates a vertex-transitive function on n variables with
1/2

the sensitiviy n
Question. Is there a vertex-transitive function of n variables with sensitivity
less than nl/2?
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