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Abstract

A Boolean function is called vertex-transitive, if the partition of the
Boolean cube into the preimage of 0 and the preimage of 1 is invariant un-
der a vertex-transitive group of isometric transformations of the Boolean
cube. Although this is a very restrictive condition, there are non-trivial
functions satisfying this property. The logarithm of the number of the
vertex-transitive functions of n variables is Θ(n2). There is a polynomial
over GF(2) of any given degree, which defines a vertex-transitive function,
and quadratic polynomials with this property can be characterized. There
are vertex-transitive functions of n variables with sensitivity and block
sensitivity Θ(log n). For every vertex-transitive function, there is a repre-
sentation of roughly quadratic size in n, which can be used to evaluate the
function for a given input in time O(n2) on random access machine.

1 Introduction

One of the first classes of the Boolean functions, whose complexity was investi-
gated, are the symmetric functions, see [18, 12]. A function is symmetric, if it
is invariant under any permutation of its variables. A symmetric function of n
variables is uniquely determined by a vector of values c0, . . . , cn ∈ {0, 1}, such
that for inputs x with i components equal to 1, we have f(x) = ci. Hence, the
number of the symmetric functions of n variables is 2n+1.

A significantly larger class of Boolean functions defined by their symmetry
are weakly symmetric functions, which are invariant under a transitive group
of the permutations of the variables. Weakly symmetric functions were inves-
tigated, for example, in the context of decision tree complexity measures, see
[12, 10].

Every graph property of the undirected graphs on k vertices can be un-
derstood as a Boolean function, whose n =

(k
2

)

variables are indicators of the
presence of individual edges and are indexed by pairs of vertices. A graph prop-
erty is invariant under any permutation of the k vertices. These permutations
induce a transitive group of the permutations of the n pairs of the vertices and,
hence, a transitive group of the permutations of the variables. Consequently,
every graph property represents a weakly symmetric Boolean function.
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In [16], a lower bound Ω(n1/2) on the sensitivity of any non-trivial graph
property is proven and the graph property “no vertex is isolated” with sensi-
tivity k − 1 = Θ(n1/2) is presented. The lower bound of this magnitude does
not hold for a general weakly symmetric function. An example of a weakly
symmetric function of n variables and sensitivity O(n1/3) was presented in [2]
and [3]. The block sensitivity of a non-trivial weakly symmetric function is at
least Ω(n1/3) by [15]. An example of a weakly symmetric function with block
sensitivity O(n3/7 log n) is presented in [15] and an improved construction with
block sensitivity O(n3/7 log1/7 n) is presented in [8]. Let us point out that the
minimum sensitivity and block sensitivity of a general Boolean function, which
depends on n variables, is Θ(log n), see [12].

The purpose of this paper is to describe a class of Boolean functions, which
are invariant under a more general type of transformations than the permuta-
tions of the variables and prove some of its properties. Several specific examples
and infinite families of such functions are presented, including functions with
logarithmic sensitivity.

The domain of the Boolean functions of n variables, the Boolean cube
{0, 1}n, will be considered as a metric space with the Hamming distance as
the metric. Isometric transformations of the Boolean cube are the permuta-
tions of its vertices, which preserve the Hamming distance. These transforma-
tions are exactly the transformations, which can be defined by a permutation
of the n variables and the negation of a subset of the variables. We investigate
non-constant Boolean functions f , for which the partition of the Boolean cube
to the sets f−1(0) and f−1(1) is invariant under a vertex-transitive group of
isometric transformations. Due to this property, the functions will be called
vertex-transitive functions or, for simplicity, transitive functions.

Vertex-transitive functions are defined in Section 2 as functions satisfying
a specific system of identities. Every linear function over the two-element field
GF(2) is transitive for a simple reason and examples of non-linear transitive
functions are presented. For every transitive function of n variables, there is
an n-tuple of permutations and n additional bits, which represent the function.
If a given n-tuple of permutations and bits represents a transitive function,
then the function can be evaluated for any given input in time O(n2) on RAM
(random access machine) with the unit cost measure. Section 2.4 presents a
comparison of vertex-transitive functions and weakly symmetric functions.

Section 3 presents several constructions of non-linear transitive functions.
In particular, quadratic polynomials over GF(2), which define a transitive func-
tion, are characterized in Corollary 3.10. There are polynomials over GF(2) of
an arbitrary degree, which define a transitive function. An infinite sequence of
transitive functions with sensitivity and block sensitivity Θ(log n), where n is
the number of their variables, is presented.

In Section 4, it is proved that for every transitive function, there is a tran-
sitive group G of its automorphisms, which is a 2-group. Since the groups are
finite, this is equivalent to the condition that the size of G is a power of 2.
These groups are easier to analyze than general groups, in particular, every fi-
nite 2-group is solvable. In Section 5 the representation by a 2-group is used to
prove that the number of transitive functions of n variables is 2Θ(n2). Section 6
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discusses the existence of a simply transitive group of automorphisms of some
transitive functions.

2 Vertex-transitive functions

2.1 Transformations of the Boolean cube

For a permutation p ∈ Sn and x = (x1, . . . , xn) ∈ {0, 1}n, let xp be the vector

xp = (xp−1(1), . . . , xp−1(n))

obtained from x by permuting its components according to p so that the i-th
component of x is equal to the p(i)-th component of xp. The composition p1p2

of the permutations p1, p2 is defined so that for every x, we have

(xp1)p2 = xp1p2 .

Isometric transformation of {0, 1}n is a permutation of the vertices of the
Boolean cube, which preserves the Hamming distance. The set of all such trans-
formations is closed under composition and forms a group with this operation.
One can verify that the isometric transformations are exactly the mappings of
the form

x 7→ xp ⊕ s ,

where p ∈ Sn and s ∈ {0, 1}n, and will be denoted as τ(p, s). The group
of all isometries τ(p, s) for p ∈ Sn and s ∈ {0, 1}n with composition as the
operation will be denoted Tn. Similarly, if A is a set of indices of the variables,
then TA denotes the group of the isometric transformations of {0, 1}A. Clearly,
|Tn| = n! 2n.

The composition of transformations τ1, τ2 ∈ Tn is denoted τ1τ2 and satisfies
(τ1τ2)(x) = τ2(τ1(x)). For every p1, p2 ∈ Sn and every s1, s2 ∈ {0, 1}n, we have

(xp1 ⊕ s1)
p2 ⊕ s2 = xp1p2 ⊕ sp2

1 ⊕ s2

and, hence,
τ(p1, s1)τ(p2, s2) = τ(p1p2, s

p2

1 ⊕ s2) .

Let Pn be the subgroup of Tn consisting of the isometries defined by permu-
tations of the variables, formally, Pn = {τ(p, 0) | p ∈ Sn}. Note that Pn is the
stabilizer in Tn of the point 0 ∈ {0, 1}n. Let Vn be the subgroup of Tn consist-
ing of the linear shifts, formally, Vn = {τ(id, s) | s ∈ {0, 1}n}. As an abstract
group, Pn is isomorphic to Sn and Vn is isomorphic to the additive group of the
linear space {0, 1}n over GF(2). Let us remark that Tn is a semidirect product
of Pn and Vn, since Tn = PnVn, Pn ∩ Vn is the trivial subgroup of Tn and Vn is
a normal subgroup of Tn.

The elements of Tn can be represented as permutations of the literals, which
keep the blocks {xi,¬xi}, see also [6]. In particular, the elements of Pn permute
the blocks, while keeping the order of the literals in each block. The elements
of Vn keep the blocks as sets, but exchange the literals in some of them. This
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representation is isomorphic to the wreath product of Z2 and Sn, where Sn acts
on Zn

2 . For algorithmic purposes, this wreath product can be represented as
a subgroup of S2n, which will be denoted T ∗

n , consisting of the permutations,
which preserve the partition {1, 2}, {3, 4}, . . . , {2n− 1, 2n}. Let u be the vector
of length 2n of the form (0, 1, 0, 1, . . . , 0, 1). The orbit of this vector under
the permutation action of T ∗

n has size 2n and the action of T ∗
n on this orbit is

isomorphic to the action of Tn on {0, 1}n, where we can identify u with the zero
vector in {0, 1}n. The subgroups of T ∗

n corresponding to Pn and Vn in Tn will
be denoted as P ∗

n and V ∗
n .

2.2 Definition and basic properties

If f is a Boolean function of n variables and s ∈ {0, 1}n, then f(x ⊕ s) is the
function obtained from f(x) by negating the variables corresponding to non-
zero entries in s. This paper investigates functions f , for which any function
of the form f(x ⊕ s) is either equal to f(x) or to its negation f(x) ⊕ 1 up to a
permutation of the variables.

Definition 2.1 A non-constant Boolean function f of n variables is vertex-
transitive, if for every s ∈ {0, 1}n, there is a permutation q ∈ Sn and a constant
a ∈ {0, 1}, such that for every x ∈ {0, 1}n, we have

f(x ⊕ s) = f(xq) ⊕ a . (1)

Denoting p = q−1 and substituting xp for x in both sides of (1), we obtain

f(xp ⊕ s) = f(x) ⊕ a ,

which can be written as
f(τ(x)) = f(x) ⊕ a , (2)

where τ = τ(p, s). The isometric transformation τ(p, s) will be called the
transformation corresponding to (1).

Definition 2.2 Let f be a Boolean function of n variables and τ ∈ Tn an
isometric transformation of {0, 1}n. Then, τ is called an automorphism of f , if
there is a ∈ {0, 1}, such that for all x, the identity (2) is satisfied.

Composition of automorphisms of a function is again an automorphism, so
the automorphisms of a function form a subgroup of Tn. The automorphism
τ = τ(p, s) corresponding to (1) maps 0 to s. Hence, if f is a vertex-transitive
function, then the group of its automorphisms is transitive on the vertices of
the Boolean cube.

Lemma 2.3 A non-constant Boolean function f is vertex-transitive, if and
only if there is a group of automorphisms of f , which is transitive on {0, 1}n.

Proof. The closure of the set of isometries τ required by Definition 2.1 is a
group of automorphisms of f , which is transitive.
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If G is a transitive group of automorphisms of f , then for every s ∈ {0, 1}n,
there is an automorphism τ ∈ G, which satisfies τ(0) = s. Since τ = τ(p, s) for
some p ∈ Sn, the identity (1) is satisfied for q = p−1 and some a ∈ {0, 1}. 2

In this paper, the vertex-transitive functions will be called transitive for
simplicity, although, in the literature, the notion of a transitive function can
have a different meaning, see Section 2.4.

A function f is transitive, if and only if ¬f = f ⊕ 1 is transitive. Due to
this, we can, without loss of generality, restrict ourselves to the functions, which
satisfy f(0) = 0.

Clearly, τ is an automorphism of f , if the partition of the Boolean cube
to the sets f−1(0) and f−1(1) is invariant under τ . In other words, these two
sets form a block system for the group of the automorphisms of f and each
automorphism either keeps or exchanges the blocks depending on the constant
a from (2). Properties of the groups of automorphisms of a transitive function,
which can be derived using this block system, are investigated in Section 4.

The system of the generators of a transitive group of automorphisms can be
small. The function α3 in Example 2.10 is a function of 8 variables, for which
a transitive group of automorphisms with two generators exists.

Verification of the transitivity of a group of automorphisms given by its
generators can be avoided, if the system of generators consists of n identities in
the special form described in Theorem 2.5. For the proof of this theorem, we
use the following lemma. For groups H,K, let HK = {hk | h ∈ H, k ∈ K}.

Lemma 2.4 A subgroup G of Tn is transitive, if and only if PnG = Tn.

Proof. Clearly, PnG ⊆ Tn. If G is transitive and τ ∈ Tn, then g(0) = τ(0) for
some g ∈ G. Consequently, τ = (τg−1)g ∈ PnG, since Pn is the stabilizer of
0 ∈ {0, 1}n. This implies PnG = Tn.

If PnG = Tn and s ∈ {0, 1}n, then τ(0) = s for some τ ∈ Tn and τ = πg ∈
PnG, where π ∈ Pn and g ∈ G. Since π(0) = 0, we have g(0) = s. Hence, G is
transitive. 2

The Boolean cube is a vertex-transitive graph, if two vertices are connected
by an edge if and only if their Hamming distance is 1. The automorphism group
of this graph is Tn. It is well-known that a set of automorphisms of a vertex-
transitive graph, which map a given vertex to all its neighbours, generates a
transitive subgroup of the automorphism group. The next theorem can be
understood as a special case of this, since the standard basis vectors ei, i =
1, . . . , n are the neighbours of the zero vertex of the Boolean cube. However, a
self-contained proof is presented.

Theorem 2.5 A function f of n variables is transitive, if and only if for every
i = 1, . . . , n, there is a permutation qi ∈ Sn and a constant ai ∈ {0, 1}, such
that

f(x ⊕ ei) = f(xqi) ⊕ ai , (3)

where ei is the i-th standard basis vector. Moreover, if f satisfies f(0) = 0,
then it is uniquely determined by the parameters qi, ai for i = 1, . . . , n.
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Proof. If f is transitive, then the subset of the identities from Definition 2.1
for the vectors s satisfying |s| = 1 is the set of n identities (3).

For the opposite direction, let us transform (3) to the equivalent form

f(xpi ⊕ ei) = f(x) ⊕ ai , (4)

where pi = q−1
i . If the identities (4) are satisfied, then the transformations

τi = τ(pi, ei) for i = 1, . . . , n are automorphisms of f and let G be the group
generated by them. In order to prove that G is transitive, let us first prove the
following.

Lemma 2.6 For every π ∈ Pn and i ∈ {1, . . . , n}, there is π′ ∈ Pn and j ∈
{1, . . . , n}, such that

τiπ = π′τj . (5)

Proof. If π = τ(r, 0) for r ∈ Sn, let j = r(i) and π′ = τ(pirp
−1
j , 0). Clearly,

er
i = ej. Using this, (5) can be verified by a simple calculation. 2

Denoting πi = τ(p−1
i , 0) for i = 1, . . . , n, we have τ(id, ei) = πiτi ∈ 〈Pn, G〉.

Since the tranformations τ(id, ei) generate Vn, we have Vn ⊆ 〈Pn, G〉. Every
element of 〈Pn, G〉 is expressible as a word over the elements of Pn and the
generators of G. By a repeated application of (5), this word can be transformed
to a word expressing the same transformation as an element of PnG. Hence,
〈Pn, G〉 = PnG and we have Tn = 〈Pn, Vn〉 ⊆ 〈Pn, G〉 = PnG ⊆ Tn. By Lemma
2.4, G is transitive and it follows that f is a transitive function.

Since f satisfies a system of identities (1), which is derived from identities
(3), there is at most one function f satisfying (3). 2

The existence of a function satisfying (3) for given parameters qi, ai is not
guaranteed. However, if the parameters qi, ai define a transitive function f , it
is possible to use them to compute f(x) for any x ∈ {0, 1}n in time polynomial
in n.

Theorem 2.7 Assume, f is a transitive function satisfying f(0) = 0 and let
qi, ai for i = 1, . . . , n be as in Theorem 2.5. Then, for every x ∈ {0, 1}n, it
is possible to compute f(x) in time O(n2) on RAM (random access machine)
with the unit cost measure, if qi, ai for i = 1, . . . , n are part of the input.

Proof. The algorithm is obtained by reformulating the computation with the
generators πi and τi from the proof of Theorem 2.5 in an explicit form. Let
x ∈ {0, 1}n, let i1, . . . , ik be indices such that x = ei1 ⊕ . . . ⊕ eik , and let

τ = πi1τi1 . . . πikτik .

Clearly, τ ∈ Vn and τ(0) = x. The word for τ will be successively transformed
into a word in PnG. In a general step, the word has the form

τ = πi1τi1 . . . πilτilστjl+1
. . . τjk

,
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where σ ∈ Pn and jl+1, . . . , jk ∈ {1, . . . , n}. The initial word has this form with
l = k − 1 and σ = πik . Using (5), the product πilτilσ can be transformed into
σ′τjl

, for appropriate jl and σ′ ∈ Pn. Repeating this with decreasing l up to
l = 1, we obtain

τ = στj1 . . . τjk

for an appropriate σ ∈ Pn and j1, . . . , jk. Since σ(0) = 0, we have

f(x) = f(τ(0)) = f((τj1 . . . τjk
)(0)) = f(0) ⊕ aj1 ⊕ . . . ⊕ ajk

.

Computing the sequence j1, . . . , jk requires O(n) operations with elements of
Tn. Using the representation of Tn by T ∗

n , the total complexity is O(n2). 2

2.3 Examples of transitive functions

For a vector of variables x, let par(x) be the parity of the variables in x. For
an arbitrary set A ⊆ {1, . . . , n}, let xA be the variables, whose indices belong
to A.

Lemma 2.8 If A ⊆ {1, . . . , n}, then the linear function

par(xA) =
⊕

i∈A

xi

is transitive.

Proof. Denote f(x) = par(xA). The group Vn of the linear shifts is a group
of automorphisms of f , since for any s and x, the transformation τ = τ(id, s)
satisfies

f(τ(x)) = f(x ⊕ s) = f(x) ⊕ f(s) .

2

The function α2 from the following example is a quadratic function over
GF(2), which is transitive. It will be used later to construct more complex
transitive functions.

Example 2.9 The function α2(x1, x2, x3, x4) = (x1 ⊕x2)(x3 ⊕ x4)⊕ x2 ⊕x4 is
transitive.

Proof. One can verify that the function α2(x) satisfies

α2(x ⊕ e1) = α2(x1, x2, x4, x3) (6)

α2(x ⊕ e2) = α2(x1, x2, x4, x3) ⊕ 1 (7)

α2(x ⊕ e3) = α2(x2, x1, x3, x4) (8)

α2(x ⊕ e4) = α2(x2, x1, x3, x4) ⊕ 1 , (9)

which are the identities (3). Hence, the function α2 is transitive by Theorem
2.5. 2
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The next example demonstrates a transitive function α3 of 8 variables de-
fined by a polynomial of degree 3 over GF(2). The generators presented in
the proof of its transitivity do not generate the full automorphism group of α3,
which requires three generators.

Example 2.10 Let g be the function defined by

g(y1, . . . , y4) = y1 y2 y3 ⊕ y1 y2 y4 ⊕ y1 y3 y4 ⊕ y2 y3 y4 .

Then, the function α3 defined by the formula

α3(x1, . . . , x8) = g(x1 ⊕ x2, x3 ⊕ x4, x5 ⊕ x6, x7 ⊕ x8)
⊕ (x1 ⊕ x3 ⊕ x5 ⊕ x7)(x2 ⊕ x4 ⊕ x6 ⊕ x8)
⊕ (x1 ⊕ x2)(x3 ⊕ x4)
⊕x3 ⊕ x4 ⊕ x5 ⊕ x8 .

is transitive.

Proof. One can verify that the function α3(x) satisfies the identities

α3(x ⊕ e1) = α3(x
p1)

α3(x ⊕ e3) = α3(x
p2) ⊕ 1 ,

where the permutations p1, p2 in the cycle notation are

p1 = (1, 7)(2, 8)(3, 6, 4, 5)
p2 = (1, 5, 4, 7, 2, 6, 3, 8) .

The transformations τ(p−1
1 , e1) and τ(p−1

2 , e3) corresponding to these identities
represent two automorphisms of α3, which generate a group of size 28. More-
over, this group is transitive on {0, 1}8 and, hence, α3 is a transitive function
by Lemma 2.3. 2

For small values of n, it is possible to use GAP computer algebra system [9]
to construct all transitive subgroups of Tn up to conjugation and their intran-
sitive subgroups of index 2. By Theorem 4.5, this allows to find all transitive
functions up to a permutation of the variables. By Theorem 4.9, it is sufficient
to perform this calculation in a Sylow 2-subgroup of Tn, which is more efficient.

Using this approach, one can verify that every transitive function of 4 vari-
ables is either linear or quadratic and in the latter case, it is equal to α2 or
α2⊕1 up to a permutation of the variables. Similarly, one can verify that every
transitive function of 8 variables has degree at most 3 and each such function
of degree 3 is equal to α3 or α3 ⊕ 1 up to a permutation of the variables.

For every Boolean function, one can consider the induced subgraphs of the
Boolean cube defined by the sets of vertices f−1(0) and f−1(1). For a transi-
tive function, these graphs are vertex transitive and mutually isomorphic. In
general, these graphs need not be connected. For example, for the parity of
all variables, these graphs consist of isolated vertices. There are also transitive
functions, for which these graphs are connected and not edge transitive.
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For the function α3, the graphs described above are connected graphs on 128
vertices of degree 4 and are isomorphic to the graph C4[128,37] in the census
[19], see also [13]. This graph has 256 edges, is edge transitive, although not
arc transitive, has girth 4, diameter 8 and the size of the vertex stabilizer is 2.

The function α4 presented in the next example is a polynomial of degree
4 over GF(2) and is used in Section 6 as an example of a transitive function,
which is not simply transitive.

Example 2.11 There is a uniquely determined function α4 of n = 16 variables
satisfying for all x ∈ {0, 1}n the identities

α4(x ⊕ e1) = α4(x
p3)

α4(x ⊕ e5) = α4(x
p4)

α4(x ⊕ e1 ⊕ e2 ⊕ e9 ⊕ e10) = α4(x) ⊕ 1

α4(0) = 0 ,

where the permutations p3, p4 in the cycle notation are

p3 = (5, 6)(9, 16)(10, 15)(11, 13)(12, 14)
p4 = (1, 10, 8, 15, 3, 11, 5, 13, 2, 9, 7, 16, 4, 12, 6, 14) .

Proof. Let τ1 = τ(p−1
3 , e1), τ2 = τ(p−1

4 , e5) and τ3 = τ(id, e1 ⊕ e2 ⊕ e9 ⊕ e10) be
the transformations corresponding to the first three identities and let us consider
the groups G = 〈τ1, τ2, τ3〉 and H = 〈τ1, τ2〉 generated by them. One can verify
that G has size 2n+2 and is transitive on {0, 1}n. Group H is not transitive
and has two orbits. The transformation τ3 exchanges these two orbits. Every
function satisfying the given identities is constant on the orbits of H and has
different values on them. Together with the identity f(0) = 0, this implies that
the function is the characteristic function of the orbit not containing 0. Hence,
α4 is uniquely determined. Since it has a transitive group of automorphisms,
this function is transitive by Lemma 2.3. 2

2.4 Weakly symmetric functions

A function f is weakly symmetric, if there is a transitive subgroup G of Sn,
such that for every p ∈ G and every x ∈ {0, 1}n, we have

f(xp) = f(x) .

Although the definition of weakly symmetric and vertex-transitive functions
use similar notions, the corresponding classes of the functions are very differ-
ent. In particular, the number of the vertex-transitive functions is significantly
smaller than the number of the weakly symmetric functions. The logarithm to
base 2 of the number of the functions, which are invariant, for example, under
the group of the cyclic shifts of the n variables, is at least 2n/n. On the other
hand, the logarithm of the number of vertex-transitive functions is O(n2) by
Theorem 5.1. Moreover, the classes are almost disjoint in the following sense.
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Theorem 2.12 If a non-constant function f satisfies f(0) = 0 and is simul-
taneously weakly symmetric and vertex-transitive, then f is the parity of all
variables.

Proof. For a weakly symmetric function, there is a ∈ {0, 1} such that f(ei) = a
for all i = 1, . . . , n. Hence, if f(0) = 0 and x = 0, then for every i = 1, . . . , n,
we get

f(x ⊕ ei) = f(x) ⊕ a .

For a vertex-transitive function, if there is a vertex x with this propery for all
i ∈ {1, . . . , n}, then all the vertices x of the Boolean cube have this property. If
a = 0, this implies that the function is the zero function. If a = 1, this implies
that the function is the parity of all variables. 2

2.5 Combining transitive functions by parity

For an arbitrary set A ⊆ {1, . . . , n}, let xA denote the subset of the variables,
whose indices belong to A.

Lemma 2.13 If A and B are disjoint sets of indices of the variables and f(xA)
and g(xB) are transitive functions, then also f(xA) ⊕ g(xB) is a transitive
function.

Proof. Let GA, resp. GB , be a transitive group of isometric transformations of
{0, 1}A, resp. {0, 1}B , which are automorphisms of f(xA), resp. g(xB). Then,
the direct product GA ×GB considered as a group of isometries of {0, 1}A∪B =
{0, 1}A × {0, 1}B is a transitive group of automorphisms of f(xA) ⊕ g(xB). 2

For a proof of a partial converse of this statement, we use a relationship
between the automorphisms of a function and its sensitivity on individual vari-
ables.

Definition 2.14 For any function f of n variables and any i, 1 ≤ i ≤ n, let
σ(f, i) be the sensitivity of the function f on the variable xi, which is defined
as the probability of f(x ⊕ ei) 6= f(x) or, equivalently, the expected value of
f(x⊕ei)⊕f(x) as a real number, where x is chosen at random from the uniform
distribution on {0, 1}n.

For every f and i, 0 ≤ σ(f, i) ≤ 1 and σ(f, i) = 0, if and only if f does not
depend on xi.

Lemma 2.15 The function f satisfies σ(f, i) = 1, if and only if there is a
function g(xA), where i /∈ A, such that f(x) = g(xA) ⊕ xi.

Proof. The sensitivity of f on xi is σ, if and only if the sensitivity of g = f ⊕xi

on xi is 1 − σ. 2
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Lemma 2.16 Let f be a function of n variables and let τ = τ(p, s) for some
p ∈ Sn, s ∈ {0, 1}n be an automorphism of f . If p(i) = j, then the function f
has the same sensitivity on the variables xi and xj.

Proof. For some a ∈ {0, 1} and for all x, we have

f(xp ⊕ s) = f(x) ⊕ a

and substituting x ⊕ ei for x in both sides of this identity yields

f(xp ⊕ s ⊕ ej) = f(x ⊕ ei) ⊕ a .

Together, this implies

f(xp ⊕ s ⊕ ej) ⊕ f(xp ⊕ s) = f(x ⊕ ei) ⊕ f(x) .

Since the mapping x 7→ xp ⊕ s preserves the uniform distribution on {0, 1}n,
the lemma follows. 2

Assume, the variables of a transitive function f are splitted into the sets xA

and xB and the sensitivity of every variable in xA is different from the sensitivity
of every variable in xB . Then, for every automorphism τ = τ(p, s) of f , the
permutation p preserves the sets A and B. In other words, the automorphism
group of f is a subgroup of the direct product TA × TB .

Lemma 2.17 Let A and B be disjoint sets of indices of the variables and let f ,
gA and gB be non-constant Boolean functions satisfying f(xA, xB) = gA(xA) ⊕
gB(xB). Let f be transitive and let G be a group of automorphisms of f , which
is transitive on {0, 1}A∪B . If G is a subgroup of TA × TB, then gA(xA) and
gB(xB) are transitive functions.

Proof. By symmetry, it is sufficient to prove transitivity of gA. Let GA be the
projection of G to the first component of the direct product TA × TB . Since G
is transitive on {0, 1}A∪B , GA is transitive on {0, 1}A.

Let τ ∈ G and let τ = (τA, τB), where τA ∈ TA and τB ∈ TB . Since τ is an
automorphism of f , there is c ∈ {0, 1}, such that for every xA ∈ {0, 1}A and
xB ∈ {0, 1}B , we have

f(τ(xA, xB)) = f(xA, xB) ⊕ c

and, hence,

gA(τA(xA)) ⊕ gB(τB(xB)) = gA(xA) ⊕ gB(xB) ⊕ c .

Let uB ∈ {0, 1}B be fixed and let c′ = gB(τB(uB)) ⊕ gB(uB) ⊕ c. Then, for
every xA ∈ {0, 1}A, we have

gA(τA(xA)) = gA(xA) ⊕ c′ .

Consequently, τA is an automorphism of gA. Since this is satisfied for every
element of G, GA consists of automorphisms of gA and, hence, gA is a transitive
function. 2

11



Theorem 2.18 Let A and B be disjoint sets of indices of the variables and let
g(xA) be an arbitrary Boolean function. Then, g(xA) ⊕ par(xB) is transitive if
and only if g(xA) is transitive.

Proof. Without loss of generality, we can assume that g depends on all variables
in xA. If g(xA) is transitive, then the statement follows from Lemma 2.13. For
the opposite direction, assume that f(xA, xB) = g(xA) ⊕ par(xB) is transitive
and consider two cases as follows.

For the first case, assume that the sensitivity of g(xA) on all xi, i ∈ A, is
less than 1. The sensitivity of f(xA, xB) on the variables from xA is the same
as the sensitivity of g(xA) and the sensitivity on the variables in xB is 1. Let G
be a group of automorphisms of f(xA, xB), which is transitive on {0, 1}A∪B . If
τ(p, s) ∈ G, then by Lemma 2.16, the permutation p preserves each of the sets
A and B. Hence, G is a subgroup of the direct product TA ×TB and by Lemma
2.17, τA is an automorphism of g(xA), which finishes the first case of the proof.

If g has sensitivity 1 for some variables in xA, let D be the set of their
indices and let C be the set of the indices of the variables from A, for which
the sensitivity of g is less than 1. Consider the decomposition

g(xA) = g′(xC) ⊕ par(xD)

obtained by a repeated application of Lemma 2.15 to the function g. The
function g′ satisfies the assumption of the first case of the proof. It follows that
g is transitive, if and only if g′ is transitive and, similarly, the function

f(xA, xB) = g′(xC) ⊕ par(xD) ⊕ par(xB)

is transitive, if and only if g′ is transitive. Consequently, the theorem holds also
in the general case. 2

3 Further constructions of transitive functions

3.1 Characterization of quadratic transitive functions

Any multivariate quadratic polynomial f(x) over GF(2), which satisfies f(0) =
0, can be written as

f(x) = xtUx ⊕ ctx , (10)

where U is an appropriate upper triangular matrix with zeros on the diagonal
and c is a column vector. It is useful to consider also the matrix Q = U ⊕ U t,
which is symmetric and represents the adjacency matrix of a graph, whose edges
correspond to the products contained in the polynomial.

Lemma 3.1 If f is a quadratic polynomial in the form (10), Q = U ⊕ U t and
s ∈ {0, 1}n, then for every x, we have

f(x ⊕ s) = f(x) ⊕ stQx ⊕ f(s) .
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Proof. Using (10), we obtain

f(x ⊕ s) = (x ⊕ s)tU(x ⊕ s) ⊕ ct(x ⊕ s) .

Expanding the right hand side, we obtain 6 terms, which can be combined to
the three expressions

xtUx ⊕ ctx = f(x)

stUx ⊕ xtUs = stUx ⊕ stU tx = stQx

stUs ⊕ cts = f(s) .

The lemma follows. 2

Definition 3.2 A quadratic polynomial f of n = 2k variables is called special,
if there is a homogeneous quadratic polynomial g of k variables, such that

f(x) = g(x1 ⊕ x2, x3 ⊕ x4, . . . , xn−1 ⊕ xn) ⊕
k

⊕

i=1

x2i .

Special quadratic polynomials can also be characterized by the form of the
corresponding matrix Q = U ⊕ U t. Let Π be the partition of the set of the
indices of the n variables into k two-element blocks {1, 2}, {3, 4}, . . . , {n−1, n}.
Consider the matrix Q as a block matrix by partitioning both the rows and
the columns according to Π into k × k blocks of size 2 × 2. Also, consider the
vector c splitted to k blocks of length 2 according to Π. A quadratic polynomial
in the form (10) is a special quadratic polynomial, if and only if the following
conditions are satisfied

• the diagonal blocks of Q are zero,

• the components of every non-diagonal block of Q are either all 0 or all 1,

• the vector c consists of k blocks of the form (0, 1).

Lemma 3.3 Every special quadratic polynomial is transitive.

Proof. Let f be a special quadratic polynomial of n = 2k variables, let U and
c be as in (10) and let Q = U ⊕ U t.

In order to prove that f is a transitive function, we prove that for every
i = 1, . . . , n, the function f(x ⊕ ei) has the form (3). By Lemma 3.1, we have

f(x ⊕ ei) = f(x) ⊕ et
iQx ⊕ f(ei) .

This implies that f(x⊕ei) has the same quadratic terms as f and possibly differs
in the linear and constant terms. The linear part of f(x ⊕ ei) is (ct ⊕ et

iQ)x.
Since Q is a symmetric matrix, this is (c ⊕ Qei)

tx. Due to the block structure
of Q and c described above, the vector c′ = (c⊕Qei)

t consists of k blocks, each
of which is either (0, 1) or (1, 0). Let qi be the permutation, which exchanges
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the indices in the blocks {2j − 1, 2j}, j ∈ {1, . . . , k}, where c′ is equal to (1, 0).
Clearly, c′ = cqi . Let us prove

f(x ⊕ ei) = f(xqi) ⊕ f(ei) .

Since f is a special quadratic polynomial, its quadratic part is invariant under
the permutation qi of the variables, so the quadratic terms are the same on
both sides. Since c′ = cqi , the coefficients of the linear terms are given by c′ on
both sides, so they are also equal. Since also the constant terms coincide, the
function f is transitive by Theorem 2.5 and identities (3). 2

Lemma 3.4 The sensitivity of a quadratic polynomial on any variable is 0,
1/2, or 1.

Proof. The sensitivity of f on the variable xi is equal to the probability of
f(x⊕ ei)⊕ f(x) 6= 0 for x chosen from the uniform distribution on {0, 1}n. If f
is quadratic, then for every i, the function f(x ⊕ ei)⊕ f(x) is a linear function
over GF(2). Hence, the probability of f(x ⊕ ei) ⊕ f(x) 6= 0 is 0, 1/2, or 1 as
required. 2

Recall that the sensitivity of f on the variable xi is denoted σ(f, i) for
i ∈ {1, . . . , n}. The sensitivity of a function in a vertex is defined as follows.

Definition 3.5 The sensitivity of a function f in a vertex x ∈ {0, 1}n will be
denoted σ(f, x) and defined as the number of indices i = 1, . . . , n, such that
f(x ⊕ ei) 6= f(x).

Let σ(f) be the maximum of σ(f, x) over all x ∈ {0, 1}n. Clearly, for
a transitive function f , the sensitivity σ(f, x) is the same for all vertices x.
Hence, σ(f) is also the average value of the sensitivity over all vertices. Due to
this, we have

σ(f) =
1

2n

∑

x

σ(f, x) =
1

2n

∑

x

∑

i

ind(f(x ⊕ ei) 6= f(x)) ,

where ind is the indicator function for a condition. Since

σ(f, i) =
1

2n

∑

x

ind(f(x ⊕ ei) 6= f(x)) ,

we finally have

σ(f) =
n

∑

i=1

σ(f, i) . (11)

Lemma 3.6 If f is a quadratic transitive function (10) of n variables, which
has sensitivity 1/2 on every variable, then for every s ∈ {0, 1}n, the vector
c ⊕ Qs contains n/2 non-zero components.
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Proof. By the assumption, for all i = 1, . . . , n, σ(f, i) = 1/2. Hence, (11)
implies σ(f) = n/2. Since f is transitive, we have σ(f) = σ(f, s) for all
s ∈ {0, 1}n. In particular, n/2 is an integer. The sensitivity σ(f, s) is equal to
the sensitivity in the zero vertex of f(x⊕ s) as a function of x. The sensitivity
of a polynomial in the zero vertex is equal to the number of its nonzero linear
terms. By Lemma 3.1, the linear part of f(x ⊕ s) is

ctx ⊕ stQx = (c ⊕ Qs)tx .

Hence, the number of non-zero components of the vector c ⊕ Qs is n/2 as
required. 2

For every 0, 1-matrix M , let A(M) be the affine set generated by the affine
combinations of the rows of M over GF(2), which are the linear combinations,
whose sum of the coefficients is 1. Equivalently, A(M) is the set of the sums of
odd size subsets of the rows of M . Every affine subset A of a vector space can
be obtained as a+ W , where a is an element of A and W is the linear subspace
formed by the differences of the elements of A. The dimension of W will be
called the dimension of the affine set A. For a subset A of {0, 1}n and p ∈ Sn,
let Ap be the set of xp for x ∈ A.

Lemma 3.7 If A is an affine subset of {0, 1}n, whose elements have n/2 non-
zero components, then there is a permutation p ∈ Sn, such that the affine set
Ap is a subset of the solutions of the system of the linear equations

x1 ⊕ x2 = 1
x3 ⊕ x4 = 1
. . .
xn−1 ⊕ xn = 1 .

(12)

Proof. Let k be the smallest number of affine generators of A and let B = {bi,j},
where i = 1, . . . , k and j = 1, . . . , n, be a k × n matrix, whose rows form
such a system of the generators. In particular, A = A(B). Moreover, let
b1, . . . , bn ∈ {0, 1}k be the columns of B.

Let L = {ℓI,y} be the 2k×2k matrix, such that the row indices I are subsets
of {1, . . . , k} and the column indices y are vectors y ∈ {0, 1}k . The rows are
linear functions over the column index specified by the row index. More exactly,
for every I and y, we have

ℓI,y =
⊕

i∈I

yi .

Let H = {hI,y} be the matrix, whose elements are

hI,y = (−1)ℓI,y .

The matrix H is a Hadamard matrix known as Sylvester’s construction.
The set of the rows of L is a linear space over GF(2), whose elements are

vectors of length 2k with components indexed by {0, 1}k . Let φ : L → {0, 1}n

be defined for every row z of L as

φ(z) = (zb1 , . . . , zbn
) . (13)
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For every I, let ℓI be the row of L with index I. Let V be the set of k rows ℓ{i}
for i = 1, . . . , k. The rows in V represent the linear functions depending on a
single bit of the column index y. Using this, one can verify that φ(ℓ{i}) is the
i-th row of the matrix B, since

φ(ℓ{i}) = (ℓ{i},b1 , . . . , ℓ{i},bn
) = (bi,1, . . . , bi,n) .

This implies that φ maps V to the rows of B and, hence, also maps the affine
set A(V ) onto the affine set A = A(B). Since the dimension of both these affine
sets is k − 1, the linear map φ is a bijection between A(V ) and A = A(B).

By the assumption, for every z ∈ A(V ), the vector φ(z) ∈ A has n/2
components equal to one. Since φ(z) is defined by (13) as a selection of some
of the components of z, possibly with repetitions, the number of ones in φ(z),
denoted as |φ(z)|, can be expressed by the scalar product in the real numbers

|φ(z)| = w · z , (14)

where w is an integer vector, whose components are given by

wy = |{j ∈ {1, . . . , n}; bj = y}| . (15)

Clearly,
∑

y∈{0,1}k

wy = n . (16)

Lemma 3.8 For every y ∈ {0, 1}k, we have wy = wy, where y is the compo-
nentwise complement of y.

Proof. Since H has the full rank over the real numbers, the vector w is a linear
combination of the rows of H. Consider any row z′ of H and the corresponding
row z of L, so we have in the real numbers

z′ = 1 − 2z ,

where 1 denotes the vector of all ones. If z ∈ A(V ) ⊆ L, then φ(z) ∈ A and we
have |φ(z)| = n/2 by the assumption. Using (14) and (16), we obtain

w · z′ = n − 2 (w · z) = 0 .

Since H is an orthogonal matrix, this implies that w is a linear combination
over the real numbers of the rows of H, which do not correspond to the rows
A(V ) of L. Since the rows in V are the linear functions over GF(2) of a single
bit of y, the set A(V ) consists exactly of the linear functions, which are the
parity of an odd number of the bits of y. Hence, the rows of L, which do not
belong to A(V ), are the parities of an even number of the bits of y. The parity
of an even number of the bits is the same for y and y. Hence, if z is a row of
L, which is not in A(V ), then zy = zy for all y ∈ {0, 1}k . Clearly, the same is
satisfied for the row 1 − 2z of H. Since all the rows of H, which contribute to
the expression of w, satisfy this symmetry, the lemma follows. 2
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Lemma 3.8 and (15) imply that for every y, the number of the occurences
of the column y in B is equal to the number of the occurences of the column
y. Hence, there is a permutation p ∈ Sn, such that the n columns of Bp form
n/2 pairs of complementary consecutive columns. Hence, if x is a row of Bp,
the equations (12) are satisfied. These identities clearly extend to the elements
of A(Bp). Since Ap = A(Bp), the proof of Lemma 3.7 is completed. 2

The main result of this section is the following theorem and its corollary.

Theorem 3.9 If f is a transitive function defined by a quadratic polynomial
(10) of n variables, which has sensitivity 1/2 on each variable, then there is
p ∈ Sn, such that f(x) = g(xp) for a special quadratic polynomial g.

Proof. Let U be as in (10) and let Q = U ⊕ U t. By Lemma 3.6, the affine set

A = {c ⊕ Qs ; s ∈ {0, 1}n}

satisfies the assumptions of Lemma 3.7. Let p be the permutation guaranteed
by Lemma 3.7. The elements of Ap satisfy (12). In particular, cp satisfies these
identities. Hence, if the vector cp is splitted into blocks of size 2 according to Π,
it consists of the blocks (0, 1) and (1, 0). Since the equations (12) are invariant
under exchanging the variables in any block, we can choose p so that c′ = cp

has the form (0, 1, 0, 1, . . . , 0, 1). Let Q′ be the matrix obtained by reordering
of both the columns and the rows of Q according to p. The matrix Q′ is a
symmetric matrix with zero diagonal, since Q has these properties. Let U ′ be
the upper triangular part of Q′ and let g be the function

g(x) = xtU ′x ⊕ (c′)tx .

One can easily verify that g(xp) = f(x) for every x.
The sum in GF(2) of c′ = (0, 1, . . . , 0, 1)t and any column of Q′ belongs to

Ap. Hence, if any column of Q′ is splitted according to Π, it consists of the
blocks (0, 0) and (1, 1). It follows that the matrix Q′ consists of n/2 pairs of
equal consecutive rows. Since it is symmetric, it consists of n/2×n/2 blocks of
dimension 2 × 2, each of which contains either all ones or all zeros. Moreover,
the diagonal blocks are zero, since the diagonal of the matrix is zero. Hence, Q′,
U ′ and c′ have the form, which implies that g is a special quadratic polynomial
as required. 2

Corollary 3.10 A quadratic polynomial defines a transitive function, if and
only if it can be obtained from a special quadratic polynomial by a permutation
of the variables and possibly removing irrelevant ones.

Proof. A polynomial obtained in the specified way defines a transitive function
by Lemma 3.3. For the opposite direction, let f be a transitive function defined
by quadratic polynomial, which depends on all its variables. By a repeated
application of Lemma 2.15, we can split the indices of the variables into disjoint
sets A and B, such that f(x) = g(xA) ⊕ par(xB) and g has sensitivity less
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than 1 on all its variables. By Lemma 3.4, g has sensitivity 1/2 on all its
variables. Moreover, by Theorem 2.18, the function g(xA) is transitive. Hence,
by Theorem 3.9, g is a special quadratic polynomial up to a permutation of
the variables. The function par(xB) can be expressed as a special quadratic
polynomial of 2|B| variables, which depends only on |B| of them and contains
no quadratic terms. Since the parity of two special quadratic polynomials on
disjoint sets of variables is a special quadratic polynomial, the theorem follows.
2

3.2 Transitive functions of an arbitrary degree

Let α2 be the quadratic transitive function from Example 2.9.

Lemma 3.11 For i = 1, 2, let gi be a transitive function of ki variables and
degree di. For i = 1, 2 and j = 1, 2, let xi,j be a vector of ki variables, such
that the sets of variables in the four vectors xi,j are mutually disjoint. Then,
α2(g1(x1,1), g1(x1,2), g2(x2,1), g2(x2,2)) is a transitive function of 2(k1+k2) vari-
ables and degree d1 + d2.

Proof. The concatenation of all the blocks xi,j will be denoted as x. Let f be
the considered function, so we have

f(x) = f(x1,1, x1,2, x2,1, x2,2) = α2(g1(x1,1), g1(x1,2), g2(x2,1), g2(x2,2)) .

Let ei,j,l be the standard basis vector of length 2(k1 + k2), which contains 1 at
the l-th position of the block corresponding to xi,j. In order to prove transitivity
of f using Theorem 2.5 and identities (3), we show that for every i, j, l, there
is a permutation p ∈ S2(k1+k2) and a ∈ {0, 1} such that

f(x ⊕ ei,j,l) = f(xp) ⊕ a . (17)

If (i, j) = (1, 1), then we consider e1,1,l, which has 1 at the l-th position of the
block x1,1 and is zero in all other blocks. Hence, we have

f(x ⊕ e1,1,l) = α2(g1(x1,1 ⊕ el), g1(x1,2), g2(x2,1), g2(x2,2)) .

Since g1 is a transitive function, there are q ∈ Sk1
and b ∈ {0, 1}, such that

g1(x1,1 ⊕ el) = g1(x
q
1,1) ⊕ b ,

which implies

f(x ⊕ e1,1,l) = α2(g1(x
q
1,1) ⊕ b, g1(x1,2), g2(x2,1), g2(x2,2)) .

If b = 0, this implies

f(x ⊕ e1,1,l) = f(xq
1,1, x1,2, x2,1, x2,2) ,

which has the required form (17). If b = 1, we additionally use (6) to obtain

f(x ⊕ e1,1,l) = α2(g1(x
q
1,1), g1(x1,2), g2(x2,2), g2(x2,1))
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and, finally,
f(x ⊕ e1,1,l) = f(xq

1,1, x1,2, x2,2, x2,1) ,

which has the form (17).
If (i, j) = (1, 2), then we consider e1,2,l, which has 1 at the l-th position of

the block x1,2 and is zero in all other blocks. Similarly as in the previous case,
we obtain

f(x ⊕ e1,2,l) = α2(g1(x1,1), g1(x
q
1,2) ⊕ b, g2(x2,1), g2(x2,2))

with q ∈ Sk1
and b ∈ {0, 1} guaranteed by identities (3) for g1. If b = 0, this

can be rewritten to the form (17) as in the previous case. If b = 1, we use (7)
to obtain

f(x ⊕ e1,2,l) = α2(g1(x1,1), g1(x
q
1,2), g2(x2,2), g2(x2,1)) ⊕ 1 ,

and, finally,
f(x ⊕ e1,2,l) = f(x1,1, x

q
1,2, x2,2, x2,1) ⊕ 1 ,

which has the form (17).
The cases (i, j) = (2, 1) and (i, j) = (2, 2) are similar and left to the reader.

2

Theorem 3.12 For every integer d ≥ 1, there is a transitive function of at
most 2d2 variables represented by a polynomial over GF(2) of degree d.

Proof. Consider a binary tree with d leaves and the depth k = ⌈log2 d⌉. We
assign a transitive function to every node in the tree as follows. The leaves are
assigned to different variables. An internal node, both successors of which are
already assigned, is assigned to the function obtained by the previous lemma
from the functions in the two successors. This is repeated until the function
assigned to the root of the tree is obtained. It is easy to see that the degree of
this function is d and the number of the variables of this function is at most
d2k ≤ 2d2. 2

3.3 Transitive functions with small sensitivity

Let us consider the sensitivity and the block sensitivity of Boolean functions.
Both these sensitivities are first defined in every vertex of the Boolean cube and
the sensitivity of the function is the maximum of the corresponding sensitivity
over all vertices, see [12], Chapter 14.3 or, for example, [1]. For the sensitivity
of f in a vertex x see also Definition 3.5.

The block sensitivity of f in a vertex x is the maximum number m, such
that there are vectors vj , j = 1, . . . ,m, such that the sets of indices of non-zero
components in these vectors are pairwise disjoint and for every j = 1, . . . ,m, we
have f(x ⊕ vj) 6= f(x). The sets of non-zero positions in the vectors vj will be
called the sensitive blocks for f in x. Clearly, the block sensitivity in a vertex is
at least the sensitivity in the vertex, since the vectors vj can be the vectors ei,
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for which f(x⊕ei) 6= f(x). For a transitive function, the block sensitivity is the
same in all the vertices, so the maximum is also the common value, similarly
as for the sensitivity.

A certificate for the value f(x) in an input x is any set C of indices of the
components of x, such that every vector y satisfying f(y) 6= f(x) differs from x
in at least one position with index in C. The certificate complexity of f in the
input x is the smallest size of a certificate for the value f(x), see [12, 1]. For
a transitive function, the certificate complexity is the same for all x ∈ {0, 1}n

and this common value will be called the certificate complexity of the function.
In order to present a transitive function with sensitivity and block sensitivity

logarithmic in the number of the variables, let us prove additional properties of
the construction from Lemma 3.11.

Lemma 3.13 For i = 1, 2, let gi be a transitive function of ki variables, sensi-
tivity si, block sensitivity bi and certificate complexity ci. Let g be the combined
function of 2(k1 + k2) variables as in Lemma 3.11 and let s, b and c denote its
sensitivity, block sensitivity and certificate complexity in this order. Then, we
have

s = s1 + s2

b ≥ b1 + b2 + min{b1, b2}
c ≤ c1 + c2 + min{c1, c2} .

Proof. Since g1, g2 and g are transitive functions, it is sufficient to consider
their sensitivity, block sensitivity and certificate complexity in the zero vector.
Consider the value of

g(x1,1, x1,2, x2,1, x2,2) = α2(g1(x1,1), g1(x1,2), g2(x2,1), g2(x2,2))

in the zero vector and in a vector obtained from the zero vector by changing a
single bit to 1. These values differ, if and only if the change of the bit changes
either the value of g1(x1,2) or the value of g2(x2,2). There are s1 + s2 bit
positions, whose change has this effect.

In order to prove the required bound on b, choose b1 + b2 disjoint sensitive
blocks for the functions g1(x1,2) and g2(x2,2) in the zero vector. These blocks
are disjoint sensitive blocks also for g. Moreover, consider some collection of
min{b1, b2} disjoint sensitive blocks for g1(x1,1) and a collection of the same
number of disjoint sensitive blocks for g2(x2,1). Take the unions of pairs of
these blocks, one for g1(x1,1) and the other for g2(x2,1), so that each block
from the two collections is used exactly once. This yields additional min{b1, b2}
disjoint sensitive blocks for g.

In order to prove the required bound on c, consider a certificate for the 0
value in the zero vector for each of the functions g1(x1,2) and g2(x2,2). Moreover,
consider the shorter of the certificates for the value 0 for g1(x1,1) and g2(x2,1).
The union of these three certificates is a certificate for g(0) = 0 of total size
c1 + c2 + min{c1, c2}. 2

Let βi and γi be the sequences of functions defined by the recursions

β0 = x

βi+1 = α2(β
(1)
i , β

(2)
i , β

(3)
i , β

(4)
i )
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and
γ0 = x

γi+1 = α2(γ
(1)
i , γ

(2)
i , x(1), x(2)) ,

where x denotes a single variable and the upper indices distinguish distinct
variables or copies of a function depending on disjoint sets of variables. Note
that β1 = γ1 = α2.

Theorem 3.14 For every i ≥ 0, the function βi is a transitive function of
n = 4i variables with sensitivity 2i = n1/2 and block sensitivity 3i ≈ n0.7925.

Proof. Transitivity of βi and the number of the variables of this function
follow by induction using Lemma 3.11. The remaining properties can be easily
verified for β0 and β1. For i ≥ 2, the sensitivity of βi can be obtained by a
straightforward induction using Lemma 3.13 with g1 = g2 = βi. In order to
obtain the block sensitivity of βi, let us consider also its certificate complexity,
which is known to be an upper bound on block sensitivity. Using this and
Lemma 3.13, we get by induction 3i ≤ bi ≤ ci ≤ 3i. 2

Theorem 3.15 For every i ≥ 0, the function γi is a transitive function of
n = 3 · 2i − 2 variables with sensitivity i + 1 = Θ(log n) and block sensitivity
2i + 1 = Θ(log n).

Proof. Transitivity of γi and the number of the variables of this function follow
by induction using Lemma 3.11. The remaining properties can be easily verified
for γ0 and γ1. For i ≥ 2, a similar approach as in the proof of the previous
theorem can be used. In this case, Lemma 3.13 is used with g1 = γi and g2

equal to a single variable. 2

4 Groups of automorphisms

In Section 2.2, a transitive function was defined as a Boolean function, which
satisfies a system of identities corresponding to a transitive group of automor-
phisms of the function. In this section, we investigate the properties of these
groups themselves. As already mentioned, an isometry τ ∈ Tn is an automor-
phism of f , if the partition of the vertices of the Boolean cube into the sets
f−1(0) and f−1(1) is invariant under τ .

A block for a group G of permutations of a domain Ω is a non-empty subset
B ⊆ Ω, such that for every π ∈ G, we have either Bπ = B or Bπ ∩ B = ∅,
where Bπ = {bπ ; b ∈ B}. A block system for G is a partition of Ω, which is
preserved by G. Clearly, the elements of a block system are blocks in the sense
above. If G is transitive on Ω and B is a block, then the sets Bπ for π ∈ G
are blocks and the set of the different blocks of this form is a partition of Ω.
Moreover, this partition is preserved by G and, hence, is a block system. These
considerations are the basis for part (i) of Lemma 4.1, which summarizes well-
known facts used later. Part (iii) is used only for groups satisfying |G : H| = 2.
For more information on block systems for the permutation groups, see, for
example, [5, 11, 7].
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Lemma 4.1 Let G be a transitive group of permutations of a domain Ω and
u ∈ Ω. Then, the following three statements hold.

(i) Every block system for G is uniquely specified by the block in it, which
contains u.

(ii) A subset B of Ω containing u is a block of G, if and only if B = OrbitH(u)
for a subgroup H, which contains StabG(u). Moreover, there is a bijection
between the blocks of G, which contain u, and the subgroups H of G, which
contain StabG(u).

(iii) If H is a normal subgroup of G, then the orbits of H form a block system
of G. In particular, the orbits of H have the same size.

Lemma 4.2 A non-constant function f of n variables is transitive, if and only
if there is a transitive group G ≤ Tn, such that the partition of {0, 1}n to the
sets {f−1(0), f−1(1)} is a block system of G.

Proof. Let f be transitive. Clearly, the group generated by the isometries,
which appear as τ in (2), is a transitive subgroup of Tn satisfying the require-
ment.

For the opposite direction, let f be any non-constant function of n variables
and G a transitive subgroup of Tn, for which the partition {f−1(0), f−1(1)} is a
block system. Let s ∈ {0, 1}n be arbitrary. Since G is transitive, there is τ ∈ G,
such that τ(0) = s. Since τ satisfies (2) for some a ∈ {0, 1}, f is transitive by
Definition 2.1. 2

A transitive group can have several two-element block systems and they de-
fine different transitive functions. The parity of all variables represents a block
system for Tn and, clearly, also for any of its subgroups. Hence, a transitive
group of automorphisms of any function except of the parity of all variables
admits at least two different two element block systems. A unique block sys-
tem can be specified by considering the subgroup H of G, which is the set-wise
stabilizer of the blocks. Clearly, H is not transitive and for every τ ∈ H and
x ∈ {0, 1}n, we have f(τ(x)) = f(x).

Lemma 4.3 Let G and H be groups of isometries of {0, 1}n such that

• G is transitive,

• H ≤ G, |G : H| = 2,

• H is not transitive.

Then, for every vertex u, we have |OrbitH(u)| = 2n−1 and StabG(u) ≤ H.
Consequently, H has two orbits and they form a block system of G.

Proof. Let G and H be groups satisfying the assumptions and let u ∈ {0, 1}n.
Since |G : H| = 2, H is normal in G and by Lemma 4.1(iii), the orbits of H
form a block system of G. The orbit-stabilizer theorem implies

|OrbitG(u)| =
|G|

|StabG(u)|
= 2n
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and

|OrbitH(u)| =
|H|

|StabH(u)|
=

|G|

2 |StabH(u)|
.

Since StabH(u) = H ∩ StabG(u), we have either StabH(u) = StabG(u) or
|StabH(u)| ≤ 1

2 |StabG(u)|. In the latter case, we would have |OrbitH(u)| = 2n,
which is not possible, since H is intransitive. Hence, StabH(u) = StabG(u),
which implies |OrbitH(u)| = 2n−1 and StabG(u) ≤ H. 2

This lemma implies correctness of the following definition.

Definition 4.4 Let f be a non-constant Boolean function of n variables and
let G and H be subgroups of Tn such that

• G is transitive,

• H ≤ G, |G : H| = 2,

• for every τ ∈ H and x ∈ {0, 1}n, we have f(τ(x)) = f(x).

Moreover, if u ∈ {0, 1}n, such that f(u) = 0, then, we say that G, H and u
define f .

By Lemma 4.3, H has two orbits and the function is constant on each of
them. Hence, the function is uniquely determined. Moreover, the functions,
which can be defined in this way, are exactly the transitive functions.

Theorem 4.5 A non-constant Boolean function is transitive, if and only if it
is defined by some subgroups G and H of Tn and a vertex u ∈ {0, 1}n.

Proof. Assume, G, H, and u define a function f . By Lemma 4.3, H has two
orbits and they form a block system of G. Since f is constant on each of these
blocks, it is transitive by Lemma 4.2.

Let f be a non-constant transitive function. By Lemma 4.2, the partition
{f−1(0), f−1(1)} is a block system for a transitive group G of isometries. Let
H be the set-wise stabilizer of f−1(0) and let u be any element of f−1(0). One
can easily verify that the groups G, H, and vertex u define f . 2

A minimally transitive group is a permutation group, which is transitive,
but no its proper subgroup is transitive.

Lemma 4.6 For every non-constant transitive function f , there are groups G
and H and a vertex u, which define f , and G is minimally transitive.

Proof. If f is transitive, then Theorem 4.5 guarantees the existence of groups
G and H and a vertex u, which define f . If G is not minimally transitive, let
G′ be a minimally transitive subgroup of G and H ′ = H ∩ G′. Since H ′ is
intransitive, it follows that |G′ : H ′| > 1. Moreover, since |G′ : H ′| ≤ |G : H|,
we have |G′ : H ′| = 2. Clearly, f(τ(x)) = f(x) for every τ ∈ H ′. Hence, the
groups G′ and H ′ define the same function as the groups G and H. 2

The minimally transitive groups G satisfy further conditions, which are
based on the following consequence of a more general Theorem 3.4 from [17].
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Theorem 4.7 (Wielandt, 1964) If G is a transitive group of permutations
of a domain Ω, such that |Ω| = pn, where p is a prime, then every Sylow
p-subgroup of G is also transitive on Ω.

Specifically, we use the following consequence of this theorem.

Corollary 4.8 Every minimally transitive subgroup of Tn is a 2-group.

Proof. Let G be a minimally transitive subgroup of Tn. If G is not a 2-group,
then every its Sylow 2-subgroup is a proper subgroup, which is also transitive
by Theorem 4.7. This contradicts the assumptions, hence G is a 2-group. 2

This allows to strengthen the characterization of the transitive functions.

Theorem 4.9 A Boolean function f is transitive if and only if there are groups
G and H and a vertex u, which define f , and such that G is a minimally
transitive 2-group.

Proof. Let u be any vertex satisfying f(u) = 0. By Lemma 4.6, the function
f is defined by G, H and u, such that G is minimally transitive and, hence, a
2-group. 2

For a minimally transitive group G of isometries of {0, 1}n, the character-
ization of the subgroups H of G, which define a transitive function, can be
simplified, since every maximal proper subgroup H of G is intransitive and has
index 2 in G. The intersection of all the maximal subgroups of G is the Frattini
subgroup Φ(G). Using the properties of the Frattini subgroup of a p-group, see
for example [14, 4], we obtain the following theorem.

Theorem 4.10 Let G be a minimally transitive subgroup of Tn. If k is the
minimal number of its generators, then there are 2k − 1 maximal proper sub-
groups of G. If u is a vertex, then there are 2k − 1 different transitive functions
defined by G, some of its maximal subgroups H, and u.

Proof. Let u be a vertex. Since G is a minimally transitive 2-group, every
maximal proper subgroup H of G has index |G : H| = 2 and is intransitive.
Hence, by Lemma 4.3, every maximal proper subgroup H of G defines, together
with G and u, a transitive function. Moreover, different subgroups H define
different transitive functions by Lemma 4.1(ii).

There is a bijection between the maximal subgroups of G and the maximal
subgroups of G/Φ(G). Since G is a 2-group, the factor group G/Φ(G) is iso-
morphic to Zk

2 , see [14, 4]. There is a bijection between the maximal subgroups
of Zk

2 and the subspaces of GF(2)k of dimension k − 1. The number of these
subspaces is 2k − 1. Hence, also the number of the maximal subgroups of G is
2k − 1. 2

The following theorem allows to obtain a transitive function from a group
in a straightforward way.
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Theorem 4.11 A Boolean function f of n variables is transitive, if and only
if the set f−1(0) is an orbit of a subgroup of Tn and |f−1(0)| = 2n−1.

Proof. Let B = f−1(0) and u ∈ B. By assumption, there is a subgroup H
of Tn, such that B = OrbitH(u). Since |B| is a power of 2, there is a 2-group
H with this property by Theorem 3.4 from [17]. Assume, H is a maximal 2-
subgroup of Tn satisfying B = OrbitH(u). By Sylow theorems, there is a Sylow
2-subgroup K1 of Tn, such that H ≤ K1. Since K1 is transitive on {0, 1}n, we
actually have H < K1. Since K1 is a finite 2-group, it satisfies the normalizer
condition and, hence, the normalizer K2 of H in K1 satisfies H < K2. Let
g ∈ K2 be such that gH is an element of K2/H of order 2. Let G = H ∪ gH
be the group generated by H and g.

Since H is a maximal 2-group satisfying the property above and G is a
larger 2-group, we have 2n−1 < |OrbitG(u)|. The size of the orbit is a power
of 2, hence, G is transitive on the vertices of the Boolean cube. The groups G
and H satisfy the assumptions of Lemma 4.3 and hence, B is a block of G. It
follows that f is transitive by Lemma 4.2. 2

5 The number of transitive functions

The number of the special quadratic polynomials defined in Section 3.1 is a lower
bound on the number of the transitive functions of n variables. For an upper
bound on this number, one can use the representation of a transitive function
from Theorem 2.5. This immediately implies an upper bound 2O(n2 log2 n) and
is improved to 2O(n2) by restricting the permutations used in the representation
to any fixed Sylow 2-subgroup of Tn in Theorem 5.1.

In order to get a bound on the size of a Sylow 2-subgroup of Tn, let us
consider an example of such a subgroup in the representation T ∗

n described in
Section 2.1. Let m be the smallest power of 2, such that 2n ≤ m. Let M
be a balanced binary tree with m leaves numbered by integers from 1 to m
in the natural order. The automorphisms of this tree can be identified with
the permutations of the leaves. Let U∗

n be the subgroup of S2n defined by the
action on {1, . . . , 2n} of those automorphisms of M , which fix all the leaves with
index larger than 2n. Since every automorphism of M preserves the partition
{1, 2}, {3, 4}, . . . , {2n − 1, 2n}, U∗

n is a subgroup of T ∗
n .

If the binary representation of 2n has non-zero bits at positions i1, . . . , ir
or, equivalently, 2n = 2i1 + . . .+2ir and i1 > i2 > . . . > ir, then U∗

n is the direct
product of the groups of the automorphisms of r balanced binary trees, whose
depths are i1, . . . , ir, and the set of the leaves of each of these trees is an orbit
of U∗

n. One can verify that the size of U∗
n is 22n−r, which is the largest power

of 2 dividing (2n)!. Hence, U∗
n is a Sylow 2-subgroup of S2n and, hence, also of

T ∗
n . Since U∗

n is a subgroup of T ∗
n , it can be identified with a Sylow 2-subgroup

Un of Tn of the same size.

Theorem 5.1 The number of transitive functions of n variables is 2Θ(n2).
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Proof. The number of quadratic transitive functions of n variables is at least
the number of the special quadratic polynomials of 2k variables, where k =
⌊n/2⌋. This number is equal to the number of the homogeneous quadratic
polynomials of k variables, which is

2(
k

2) = 2n2/8+O(n) .

This implies the lower bound.
By Theorem 4.9, there are 2-groups G and H, which define f together with

a vertex u, which can be chosen to be the zero vertex. For each i = 1 . . . , n,
let τi ∈ G, such that τi(0) = ei. Moreover, let ai = 0, if τi ∈ H and ai = 1
otherwise. By Theorem 2.5, transformations τi and the constants ai uniquely
determine f . Let us represent G and H as subgroups of T ∗

n and let U be any
fixed Sylow 2-subgroup of T ∗

n . The size of U is 22n−r ≤ 22n−1, where r is
the number of the non-zero bits in the binary representation of 2n. By Sylow
theorems, G is a subgroup of Ug, which is conjugated to U by an appropriate
element g ∈ T ∗

n . Since U is fixed, the number of the possible choices of τi ∈ G is
at most |U |n|T ∗

n | ≤ 22n2+O(n log n) = 2O(n2). Since there are at most 2n choices
of the constants ai, the upper bound of the theorem follows. 2

6 Simply transitive functions

If G is a transitive subgroup of Tn, then its size is a multiple of 2n, since G is a
transitive group of permutations of {0, 1}n and, hence, its size is |StabG(u)|2n

for any vertex u of the Boolean cube. Some of the transitive functions of
n variables have a transitive group of automorphisms of size equal to 2n or,
equivalently, the group is simply transitive on {0, 1}n.

Definition 6.1 A Boolean function is simply transitive, if it is defined by
groups G and H and a vertex u, such that G is simply transitive or, equiv-
alently, is a regular group of the permutations of the vertices of the Boolean
cube.

Regular subgroups of Tn are precisely the groups, whose Cayley graph with
an appropriate generating set is the Boolean cube. See [6] for the details and
for a classification of such groups for n ≤ 6.

It is easy to prove that every linear and quadratic transitive function is
simply transitive. In fact, the groups of isometries used to verify transitivity of
these functions described in the previous sections have size 2n, where n is the
number of the variables.

GAP computer algebra system [9] was used for a random search of small
subgroups of T ∗

n , n = 16, whose action on {0, 1}n is transitive. This search
identified several transitive functions, which are not simply transitive. In par-
ticular, the function α4 from Example 2.10 has this property and was obtained
in this way. The automorphism group of α4 has size 2n+2 and is transitive on
{0, 1}n, however, no proper subgroup of this group is transitive. Hence, α4 is
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not a simply transitive function. This function is a polynomial of degree 4 over
GF (2). There are also polynomials of 16 variables and degree 3, which define
a transitive function, which is not simply transitive.
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