
Direct Sum Testing

Roee David∗ Irit Dinur∗ Elazar Goldenberg∗ Guy Kindler† Igor Shinkar∗

January 6, 2014

Abstract

For a string a ∈ {0, 1}n its k-fold direct sum encoding is a function fa that takes as input
sets S ⊆ [n] of size k and outputs fa(S) =

∑
i∈S ai. In this paper we are interested in

the Direct Sum Testing Problem, where we are given a function f , and our goal is to test
whether f is close to a direct sum encoding, i.e., whether there exists some a ∈ {0, 1}n such
that f(S) =

∑
i∈S ai for most inputs S. By identifying the subsets of [n] with vectors in

{0, 1}n in the natural way, this problem can be thought of as linearity testing of functions
whose domain is restricted to the k’th layer of the hypercube.

We first consider the case k = n/2, and analyze for it a variant of the natural 3-query
linearity test introduced by Blum, Luby, and Rubinfeld (STOC ’90). Our analysis proceeds
via a new proof for linearity testing on the hypercube, which extends also to our setting.

We then reduce the Direct Sum Testing Problem for general k < n/2 to the case k = n/2,
and use a recent result on Direct Product Testing of Dinur and Steurer in order to analyze
the test.
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1 Introduction

The k-fold direct sum encoding of a string a ∈ {0, 1}n is the function f :
([n]
k

)
→ {0, 1} which

takes as input subsets S ⊆ [n] of size k, and whose output on such an S is f(S) =
∑

i∈S ai
(mod 2). Direct sums were originally considered in theoretical computer science in the famous
Yao XOR lemma [Yao82] for the purpose of hardness amplification in circuit complexity, and
since then have been extensively studied. They can also potentially be used for gap amplification
in PCP constructions, provided that we can devise and analyze local tests for them. We thus
naturally arrive at the following problem, which is the focus of this paper.

Direct Sum Testing Problem: Efficiently test whether a given a boolean function
f :
([n]
k

)
→ {0, 1} is (close to) a k-fold direct sum encoding.

This question is also very much related to that of testing whether a given function is close
to a k-fold tensor power and we elaborate on this in Section 1.2.

If we represent subsets S ∈
([n]
k

)
by strings x ∈ {0, 1}n of weight k, then the direct sum

encoding fa of a can be written as fa(x) =
∑

i xiai (mod 2). In other words, f is the restriction
of the linear function x 7→

∑
i∈[n] aixi (mod 2) to the k’th layer of the hypercube, which we

denote by
Lnk = {x ∈ {0, 1}n : |x| = k}.

Another definition for a function f to be linear on the hypercube is that it satisfies f(x)+f(y) =
f(x+ y) for every pair of inputs x, y. This suggests the natural linearity-test considered in the
paper of Blum, Luby, and Rubinfeld [BLR93]: Pick a pair of inputs x, y in the hypercube
independently and uniformly at random, and check whether f(x) + f(y) = f(x + y). A linear
function clearly passes the test with probability 1, and it was shown in [BLR93] that a function
that is far from all linear functions passes the test with probability bounded away from 1. This
linearity test is quite fundamental, and appears in many different contexts in computational
complexity including PCPs, locally testable codes, and hardness of approximation. The test
is well studied, and has many known proofs and generalizations, including to the case where
the domain is a group other than the hypercube. Most proofs, however, use the fact that the
elements x and y are chosen by the test independently, and moreover, for all x, y their sum x+y
always belongs to the domain of the tested function (see Section 1.4 for more details).

In the direct sum testing problem setting we are interested in functions whose domain is Lnk .
Trying to apply the BLR-test on a function f : Lnk → {0, 1} we face an obstacle: if we pick
x, y ∈ Lnk independently, often x+ y /∈ Lnk , and so we cannot query f on that input. Even in the
case k = n/2, where the expected weight of x+y is also n/2, x+y actually belongs to Lnn/2 only
with probability O(1/

√
n). To overcome this our test picks x, y ∈ Lnn/2 randomly, conditioned

on x+ y being in Lnn/2. Since x and y are no longer independent and the domain does not have
a group structure, the known linearity testing proofs do not seem to work for this setting.

The following is a formal definition of our direct sum test Tnk for parameters n and k, where
k is assumed to be even and bounded by n/2.

The Direct Sum Test - Tn
k

Given an oracle access to a function f : Lnk → {0, 1} do:

1. Pick x, y ∈ Lnk uniformly at random conditioned on x+ y ∈ Lnk .
2. Accept if and only if f(x) + f(y) = f(x+ y).

Step 1 of the test can be implemented by picking first x ∈ Lnk uniformly at random, then
choosing k/2 coordinates inside x, and k/2 coordinates outside x uniformly at random, and
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setting y to be 1 on these k coordinates and 0 elsewhere. Note that the test Tnk only makes
sense for even values of k, since otherwise it is impossible that x, y, and x+ y all belong to Lnk .

Theorem 1.1 (Main Theorem). Let n ∈ N, and let k ≤ n/2 be an even integer. For any
function f : Lnk → {0, 1} the following holds.

1. If f is linear, then Tnk accepts with probability 1.

2. For all ε > 0 if Pr[Tnk accepts f ] > 1 − ε, then there exists a string a ∈ {0, 1}n such that
Prx∈Ln

k
[f(x) =

∑
i∈[n] aixi] > 1− δ, where δ = δ(ε) is such that δ(ε)→ 0 as ε→ 0.

1.1 Motivation - hardness amplification

The direct sum encoding was first considered in theoretical computer science in the context
of hardness amplification for boolean circuits. Yao’s XOR lemma [Yao82] (see also [GNW95])
shows that if a function is slightly hard to compute then its direct sum encoding is significantly
harder to compute. In other words, the direct sum encoding amplifies the hardness of a function.
Hardness amplification has been the subject of much research (see, e.g., [STV01, O’D02, HVV06,
Tre03, IJKW10]). A closely related building block in the context of hardness amplification is
the direct product encoding. The direct product encoding of a string a ∈ {0, 1}n is a function
DPa :

([n]
k

)
→ {0, 1}k that gets as input a k-element subset S and outputs DPa(S) := a|S .

The area of PCPs and hardness of approximation is another setting where hardness ampli-
fication is well studied. Here we deal with optimization problems, and the parameter that is
amplified is the gap between the optimal value in the ’yes’ and the ’no’ cases. In these questions
direct products play an important role. The celebrated parallel repetition theorem of Raz [Raz]
shows that very strong amplification can be obtained by applying the direct product operation to
games. Dinur’s [Din07] gap amplification proof of the PCP theorem [AS98, ALM+98] proceeds
by repeatedly performing a (derandomized, or punctured) direct product encoding.

In the aforementioned PCP constructions (as well as in other constructions that involve direct
products [DR06, IKW09, DM11]) the analysis involves a so-called direct product test. Roughly
speaking, a direct product test works by picking two intersecting sets, and checking that the
function is consistent on their intersection. The analysis of such tests is far from trivial, and there
has been a line of work investigating this [GS00, DR06, DG08, IKW09, DM11, DG10, DS13],
especially in relation to PCP constructions.

Having reached a reasonable understanding of direct product tests it now seems possible to
move to study direct sum tests, where a major motivation is that of alphabet reduction. Indeed,
the large size of the alphabet in the direct product encoding makes it less useful in hardness
amplification, and arguably the simplest way to reduce the alphabet size is XORing the entries
of the output, resulting in the direct sum encoding. For example, in the gap amplification proof
of the PCP theorem [Din07] each direct product step is followed by an alphabet reduction step
that is rather complicated. If one were to replace the direct product by a direct sum, this step
could potentially be avoided, thus leading to a significant simplification, as well as the potential
of improving the parameters of PCP constructions. In order to obtain such constructions we
need to devise an efficient test that checks whether a given function is (close to) a direct sum
encoding.

Another important related question is that of understanding how the value of a multi-player
game behaves under the direct sum operation. Here we imagine a twist on the parallel repetition
of games setting, where the players are required to output the XOR of their answers (rather than
their concatenation, as in the classical parallel repetition setup). This question is analogous to
direct sum testing in a similar way that parallel repetition is analogous to direct product testing.
The direct sum operation is particularly meaningful for XOR games, and is the core in a recent
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breakthrough work of Chan [Cha13], who constructs a PCP with optimal amortized free bit
complexity.

The PCP motivation also drives our quest to find a direct sum test that makes the absolute
minimal number of queries, namely three. The fewer queries a test makes, the more useful it is
for combination with other gadgets, leading to stronger inapproximability results.

1.2 Tensor Power Testing

The direct sum encoding is very much related to the tensor power operation, and our results
imply a testing result for deciding whether a given function is a tensor power.

A function f : [n]k → {−1, 1} is a tensor power if there is a function b : [n] → {−1, 1} such
that f = b⊗k, i.e., f(z) =

∏k
i=1 b(zi) for all z ∈ [n]k. It is a tensor product if there are k (possibly

distinct) functions b1, . . . , bk : [n]→ {−1, 1} such that f = b1 ⊗ · · · ⊗ bk.
One can see that by moving between {−1, 1} notation and {0, 1} notation the tensor power

and the direct sum operations are very similar. Indeed, the only difference is that in the direct
sum we consider k-element subsets S ⊂ [n] whereas in the tensor product we consider k-tuples.
When k �

√
n this difference is negligible, which implies the testing results for tensor power.

We suggest and analyze the following three query test.

The Tensor Power Test - TPnk
Given an oracle access to a function f : [n]k → {−1, 1} do:

1. Pick u, v, w ∈ [n]k/2 independently at random.
2. Pick three permutations π1, π2, π3 : [k]→ [k] independently at random.
3. Accept if and only if f(uv ◦ π1) · f(vw ◦ π2) = f(uw ◦ π3).

In the test above for a k-tuple z ∈ [n]k and a permutation π : [k]→ [k] the notation z◦π denotes
the k-tuple permuted by π, namely, z ◦ π = (zπ(1), zπ(2), . . . , zπ(k)).

We prove the following theorem by reduction to Theorem 1.1.

Theorem 1.2. Suppose n, k ∈ N and ε > 0 are such that k2/n = o(ε). Let f : [n]k → {−1, 1}
be a function that passes the test TPnk with probability at least 1 − ε. Then there is some
b : [n]→ {−1, 1} such that

Pr
z∈[n]k

[f(z) = b⊗k(z) =

k∏
i=1

b(zi)] ≥ 1−O(ε).

1.3 Technical contribution

Our proof of Theorem 1.1 first handles the case k = n/2, and then derives the result for k < n/2
via a reduction to k = n/2. For k = n/2 we have the following result.

Theorem 1.3 (Direct Sum Testing for k = n/2). Let n ∈ N be such that n ≡ 0 (mod 4),
and let ε > 0. For all functions f : Lnn/2 → {0, 1}, if Pr[f(x) + f(y) = f(x + y)] > 1 − ε

then there exists a string a ∈ {0, 1}n such that Prx∈Ln
n/2

[f(x) =
∑

i∈[n] aixi] > 1 − δ, where
δ = δ(ε) = ε

3 · (1 + on(1)) +O(ε2).1

In fact, we prove a 3-functions version of the above theorem: Given three functions f1, f2, f3 :
Lnn/2 → {0, 1} the test picks x, y ∈ Lnn/2 with the same distribution as in Tnn/2, and checks that
f1(x) + f2(y) = f3(x+ y).

1We denote by on(1) a function that tends to zero as n tends to infinity.
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Theorem 1.4. Let n ∈ N be such that n ≡ 0 (mod 4), and let ε > 0. Given three functions
f1, f2, f3 : Lnn/2 → {0, 1} if Pr[f1(x) + f2(y) = f3(x + y)] > 1 − ε, then there exists some
i ∈ {1, 2, 3} and a string a ∈ {0, 1}n such that Prx∈Ln

n/2
[fi(x) =

∑
i∈[n] aixi] > 1−O(ε).

This theorem clearly implies Theorem 1.3 with weaker parameters (which we will fix later
in the proof). We prove Theorem 1.4 by giving a new analysis for the BLR test on the entire
hypercube and generalizing it for Lnk with k = n/2. We give more details below.

Reducing Theorem 1.1 for k < n/2 to the case k = n/2: First, let us describe how the
case k < n/2 in Theorem 1.1 is obtained by reduction to k = n/2. The key of the reduction is
to notice that Tnk actually performs T 2k

k on a random subset u ⊂ [n] of size 2k. That is, Tnk is
equivalent to a test that first chooses a random set u of 2k coordinates, sets x and y to be zero
on coordinates outside of u, and on the u coordinates chooses them according to the distribution
used by T 2k

k .
If a function f passes the test with probability close to 1, then for most choices of u the test

passes with high probability when conditioned on the selection of u. By the n/2 case (namely
Theorem 1.3) for each such u the restriction of f to inputs that are contained in u is close to
some linear function φ(u), i.e., there is a 2k-string σ(u) such that f(x) =

∑
j∈u σ

(u)
j xj for most

such x’s. We then show that these “local” linear functions can be stitched together to a “global”
linear function φ, by finding a global string a ∈ {0, 1}n such that σ(u) = a|u. This is done by first
showing that for most u, u′ the strings σ(u), σ(u′) are consistent on their common coordinates.
Then, using a recent result by of Dinur and Steurer [DS13] on direct product testing, we conclude
that these local consistencies between σ(u) and σ(u′) imply the existence of such a global string.
This implies existence of a “global” linear function φ : Lnk → {0, 1} that is close to f .

A new analysis of linearity testing: Below we outline our analysis of linearity testing on
the hypercube, and then explain its extension to the direct sum testing. Let f : {0, 1}n → {0, 1}
be a function such that Prx,y[f(x) + f(y) = f(x+ y)] > 1− ε, and let δ be the relative distance
of f from the nearest linear function. Our goal is to show that δ = O(ε).

The proof follows a two step approach. The first step shows a dichotomy: either δ is O(ε)
or it lies in 1/2± O(ε). Indeed, if L is the closest linear function to f and BL = {x ∈ {0, 1}n :
f(x) 6= L(x)} is the set of points in which f(x) 6= L(x), the rejection probability of the test can
be written as

ε = Pr[f(x) + f(y) 6= f(x+ y)] ≥ Pr[x, y, x+ y ∈ BL] + 3 Pr[x ∈ BL, y, x+ y 6∈ BL]. (1)

The first step follows easily from (1).

It is now left to rule out the possibility of f agreeing with every linear function on 1/2±O(ε)
fraction of the domain. This is done in the second step which is carried out by induction on
the number of variables n, and works as follows. By averaging, there exist xn, yn ∈ {0, 1} such
that when fixing the last coordinates of x and y to these values the test accepts f with high
probability. Fixing the last bit to xn naturally induces a function f1 : {0, 1}n−1 → {0, 1} defined
as f(x) = f(x ◦ xn). Similarly, we define f2, and f3 by fixing the last bit to yn and xn + yn
respectively. Hence, the functions f1, f2, f3 : {0, 1}n−1 → {0, 1} pass the 3-function test with
high probability. Our goal is now to prove that (i) If Pr[f1(x) + f2(y) = f3(x+ y)] > 1− ε, then
one of the fi’s is close to a linear function; and (ii) If some fi is close to a linear function, then
f is close to a linear function.

In order to prove (i) we define a function g : {0, 1}n−1 → {0, 1} as g = f1 + f2 + f3, and
show that g passes the linearity test with high probability. By the induction hypothesis g must
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be close to some linear function L : {0, 1}n−1 → {0, 1}. We then show that each of the functions
f1, f2, f3 is either O(ε)-close to L or is O(ε)-close to 1 +L. This implies that at least one of the
three functions must be close to L, as otherwise the three functions would pass the test with
very low probability

In order to prove (ii) let us suppose for concreteness that f1 is O(ε)-close to a linear function
L. Then f agrees with a linear function L on (1−O(ε))-fraction of the halfspace obtained by the
fixing the last bit to xn. By taking a random extension of L to the entire space {0, 1}n, we get
that f agrees with some linear function in at least 3/4−O(ε) fraction of the points. Therefore,
the agreement of f with this linear function significantly deviates from 1/2, and hence by the
first step f must be O(ε) close to a linear function.

Functions defined on Lnn/2: In the above analysis looked at expressions of the form Pr[x ∈
B, y ∈ B] for some set B (see e.g. (1)). Since in the setting of Lnn/2 the vertices x and y are not
independent, estimating such a quantity is no longer a straightforward task. Similar estimations
are also required in the induction step, although this was not mentioned explicitly in the sketch
above.

We estimate this probability by considering the expansion properties of the underlying graph
Jn = (Vn, En), whose edges are (x, y) chosen by the test. Namely, the vertex set Vn of the graph
is Lnn/2 and there is an edge between x and y if and only if x + y ∈ Lnn/2. We refer to Jn as
the Johnson graph as it closely related to the Johnson scheme. We show that Jn satisfies the
following expansion property.

Lemma 1.5. Let A ⊆ Vn be a subset of the vertices of Jn of size |A| = α|V |. Pick an edge
(x, y) ∈ En of Jn uniformly at random. Then

1. Pr[x ∈ A, y /∈ A] = α(1− α)± α(1− α) · Õ(n−1/4).

2. Pr[x, y ∈ A] = α2 ± α(1− α) · Õ(n−1/4).

This is proven by showing that Jn has very short mixing time. Specifically, we prove that if
we start from an arbitrary vertex and make two random steps on the graph, then the distribution
of the walk after two steps is Õ(n−1/2)-close to the uniform distribution. This is what we would
expect to have from a random graph with such degree. We remark that although the spectrum
of Jn is well known (see [GGL95]), the bounds on the expansion of Jn obtained from the spectral
analysis are not sufficiently tight for our purpose, and we give a bespoke combinatorial analysis
for this graph in order to obtain the result.

1.4 Related work

Since the original proof of [BLR93], the linearity test has received a lot of attention, and was
extensively studied and generalized. Generalizations include testing linearity for groups other
than the hypercube, testing low degree (rather than degree 1), and finding more randomness-
efficient tests. See [BCLR08, BSVW03, BCH+96, SW04, AKK+05, KLX07, BKS+10, KS09].

Kopparty and Saraf [KS09] studied linearity testing on the hypercube for a large family of
measures on distances between functions. That is, the distance between functions is defined as
dist(f, g) = Prx∼µ[f(x) 6= g(x)] for some predefined distribution µ, which is not necessarily the
uniform measure. In particular, they show a linearity test that works for the distribution µp,
where each bit of x ∈ {0, 1}n is chosen to be 1 with probability p, and their proof also applies to
the setting of Lnk . A drawback of their test is that it makes O(n/k) queries, and does not look
like the natural “BLR-style” 3 query test.

5



Kaufman and Lubotzky [KL14] recently discovered an intriguing connection between high
dimensional expanders and testing, a connection that served as a trigger for this work. They
show that expansion of a k-dimensional simplicial complex V ⊆ Lnk on vertex set [n] is equivalent
to testing whether a function f : V → {0, 1} is a linear extension of a function defined on Lnk−1,
i.e., whether there is some g : Lnk−1 → {0, 1} such that f(x) =

∑
y⊆x,|y|=|x|−1 g(y) for all x ∈ V .

The case of k = 2 coincides with our result (because a function g : Ln1 → {0, 1} is just an
n-bit string), and was analyzed by Linial and Meshulam in [LM06] in the language of simplicial
complexes.

Motivated by constructions of short PCPs Ben-Sasson et al. [BSVW03] analyze a linearity
test in which, just like in our result, the queries x and y are not independent. Their domain is
the hypercube, and their goal was to minimize the number of random bits used by the test. The
test works by choosing x ∈ {0, 1}n uniformly at random, choosing s ∈ S for some S ⊆ {0, 1}n
of size nO(1) uniformly at random, and setting y = x + s. The test accepts if and only if
f(x) + f(y) = f(x+ y). They show that if S is a small biased set, then this indeed gives a good
linearity test.

This idea was later generalized by Shpilka and Wigderson [SW04] to arbitrary groups Γ with
generators S of size |S| = O(1), where the Cayley graph Cay(Γ, S) is an expander. They showed
that the test described above performs nearly as well as the original BLR-test (depending on the
expansion of the graph). The main difficulty in their work comes from the fact that x and y are
not chosen independently, which is similar to our setting. They overcome this problem using the
assumption that the underlying graph is an expander, which implies that if a function f is far
from being linear, then the inconsistencies in the f(x) + f(y) = f(x+ y) test are “well spread”,
and hence it rejects such functions with non-negligible probability. Still, in their settings the
domain of the function has a group structure, which seems to be crucial in their analysis.

Another natural generalization of linearity testing is checking whether a function is a low-
degree polynomial. This was done by Alon et al. in [AKK+05], whose analysis was later
improved by Bhattacharyya et al. [BKS+10]. The proof of Bhattacharyya et al. gives a new
analysis of linearity test on the hypercube by induction. It seems to differ from our proof, and,
in particular, we do not know if their proof can be extended to the setting of Lnn/2.

1.5 Comparison with known proofs

In this section we explain why the BLR decoding-style analysis of linearity testing does not
extend to our setting.

The combinatorial proofs of linearity testing, such the ones in [BLR93, BCLR08, SW04],
take a function f : {0, 1}n → {0, 1} that passes the linearity test with probability 1 − ε, and
define a correction function g : {0, 1}n → {0, 1} by letting g(x) = MAJy∈{0,1}n{f(y)+f(x+y)}.
It is then claimed that for ε small enough the function g is linear. Then, using the fact that
dist(f, g) < O(ε) it follows that f is O(ε)-close to a linear function.

In our settings, even for the case k = n/2 this analysis does not apply, since if we take
a function f : Lnn/2 → {0, 1} that passes the Tnn/2 test with high probability, and define the
correction function g : Lnn/2 → {0, 1} analogously, namely,

g(x) = MAJ{f(y) + f(x+ y) : y ∈ Lnn/2 such that x+ y ∈ Lnn/2},

then we can no longer assure that the function g is linear. To understand why the analysis above
cannot work, note that in our setting the correction function g considers for every x ∈ Lnn/2 the
“local majority” vote over only a small fraction of the space, namely those vertices that intersect
x on exactly n/4 of the coordinates. Therefore we cannot expect the global property of f to
propagate after one step of majority voting. One could try to make more steps of corrections.

6



By the expansion properties of the underlying graph Jn this approach could potentially work,
but it seems difficult to push through, and our proof takes a different approach.

The multiple-step correction approach looks similar to the work of Shpilka and Wigder-
son [SW04] discussed earlier in Section 1.4. In their setting every vertex x is tested only with a
tiny fraction of the domain (induced by an underlying expander graph G). For every vertex x
they considered the “local majority” of x. They use the expansion of G to show that if f passes
the test with high probability, then iterating the “local majority” function would converge to
the linear function closest to f . However, in order to prove convergence, they first defined a
correction function using ”global majority”, and then prove the “local majority” converges to the
same linear function.

1.6 Structure of the paper

We begin by presenting some notations in Section 2. In Section 3 we show a new analysis for
the linearity test on the hypercube. In Section 4 we show that every function that passes the
Tnk test with probability 1, is in fact a linear function. In Section 5 we prove our main technical
result, namely, Theorem 1.3. This is done by showing how to extend the proof for the hypercube
to our setting. In Section 6 we show that the analysis of the Tnk test for general case can be
reduced to the case k = n/2, thus proving Theorem 1.1 for general k < n/2. In Section 8 we
present the analysis of the vertex expansion of the Johnson graph.

We complement the discussion by presenting in Section 9 a different linearity test for functions
f : Lnk → {0, 1} that works for all k ≤ n, and makes O(max(nk ,

n
n−k )) queries.

2 Notations and Preliminaries

Notations: Let n ∈ N. We denote by Lnk ⊆ {0, 1}
n the set

Lnk = {x ∈ {0, 1}n : |x| = k},

and by LnEV EN ⊆ {0, 1}
n the set

LnEV EN = {x ∈ {0, 1}n : |x| is even}.

Note that LnEV EN is a subgroup of {0, 1}n.

Fact 2.1. Let n ∈ N, and let k < n. If k is even, then span〈Lnk〉 = LnEV EN . If k is odd, then
span〈Lnk〉 = {0, 1}n.

Definition 2.2. Let S ⊆ {0, 1}n be a subset (S is not necessarily a subgroup). A function
f : S → {0, 1} is said to be linear if there exists a = (a1, . . . , an) ∈ {0, 1}n such that f(x) =∑

i∈[n] aixi (mod 2) for all x ∈ S.

In particular, as explained above, a function f is a direct sum if and only if it is a linear
functions with domain Lnk .

Note that if span〈S〉 6= {0, 1}n, then the choice of a ∈ {0, 1}n in Definition 2.2 may not be
unique.

Fact 2.3. Let n ∈ N, and let k < n be even. Suppose that φ : Lnk → {0, 1} is a linear function.
Then, there are precisely two strings a, a′ ∈ {0, 1}n such that φ(x) =

∑
i∈[i] aixi (mod 2) and

φ(x) =
∑

i∈[n] a
′
ixi (mod 2) for all x ∈ Lnk . Specifically, the strings a and a′ are complements of

each other, i.e., ai = 1− a′i for all i ∈ [n].
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We will also need the following claim on distances between distinct linear functions on Lnk .
Note that unlike in the hypercube settings this claim is not trivial in the Lnk settings, and depends
on k not being to close to 0 or n.

Proposition 2.4. Let p ∈ (0, 1), let n ∈ N be an integer so that pn ∈ N, and let k = pn. Then,
for every pair of distinct linear functions φ1 6= φ2 : Lnk → {0, 1} it holds that

c ≤ Pr
x∈Ln

k

[φ1(x) 6= φ2(x)] ≤ 1− c

for some constant c = c(p) > 0 that depends only on p.

In particular, for all k ∈ (εn, (1 − ε)n) the distance between two distinct functions of Lnk is
bounded away above zero. We defer the proof to Appendix A.

We will also need the following definition of a δ-tester.

Definition 2.5. Let C be a class of functions from a finite domain D to a finite range Σ. Let
δ : (0, 1] → (0, 1] be a function such that δ(ε) → 0 as ε → 0. We say that T is a δ-test for the
class C if

1. All functions in C are accepted by T with probability 1.

2. For every ε > 0, any function f : D → Σ that passes the test T with probability 1 − ε is
δ(ε)-close to C, i.e., there exists some φ ∈ C such that Prx∈D[f(x) 6= φ(x)] < δ(ε).

Using this definition Theorem 1.1 considers the following class of functions.

Definition 2.6. Define LINn
k to be the class of functions f : Lnk → {0, 1} for which there exists

a ∈ {0, 1}n such that for every x ∈ Lnk it holds that f(x) =
∑

i∈[n] aixi.

Similarly, by identifying k-subsets of [n] with vectors in {0, 1}n of weight k, the class of direct
product functions can be written as follows.

Definition 2.7. Define DPnk to be the class of functions F : Lnk → {0, 1}
k for which there exists

a ∈ {0, 1}n such that F (x) = ax for every x ∈ Lnk , where ax is the substring of a confined to the
coordinates in which xi = 1.

Note that if T is a direct product tester in the sense of Definition 2.5 then for any function
F : Lnk → {0, 1}

k that passes the test with high probability there exists a string a ∈ {0, 1}n such
that F (x) ≡ ax for most inputs x ∈ Lnk . This is as opposed to a more relaxed definition of direct
product tester (such as the ones in [DG08, IKW09]), where for most x’s the Hamming distance
between F (x) and ax is small.

3 Linearity Testing on the Hypercube

In this section we describe the idea behind the proof of Theorem 1.1 by discussing a simpler
setting of the hypercube {0, 1}n. Our approach gives a new proof for linearity testing on {0, 1}n.
In Section 5 we show how this proof can be modified in order to prove linearity testing in the
setting of Lnn/2.

Recall, the test gets as an oracle access a function f : {0, 1}n → {0, 1} and tests whether f
is close to a linear function. The test is defined as follows.

BLR Linearity Test on the Hypercube:
Given an oracle access to a function f : {0, 1}n → {0, 1} do:
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1. Select x, y ∈ {0, 1}n independently.

2. Accept if and only if f(x) + f(y) = f(x+ y).

Theorem 3.1. There exists some ε0 > 0 small enough such that for every ε ∈ (0, ε0) and for all
n ∈ N the following holds. Suppose that a function f : {0, 1}n → {0, 1} passes the BLR test with
probability 1− ε. Then f is (ε/3 + 8ε2/9)-close to some linear function, namely, there exists a
linear function g : {0, 1}n → {0, 1} such that

Pr[f(x) 6= g(x)] < ε/3 + 8ε2/9.

In fact, we prove a slightly stronger result. Suppose that we are given three functions
f1, f2, f3 : {0, 1}n → {0, 1}, and our goal is to check whether the functions are (close to) linear.
Consider the following test. Given (an oracle access) to three functions f1, f2, f3 : {0, 1}n →
{0, 1} the test works as follows.

Three Functions Testing Linearity on the Hypercube
Given an oracle access to three functions f1, f2, f3 : {0, 1}n → {0, 1} do:

1. Select x, y ∈ {0, 1}n independently.

2. Accept if and only if f1(x) + f2(y) = f3(x+ y).

Note that if we take a linear function f1, and let f2 = f3 = f1 + 1, then the above test
accepts these functions. Therefore, if the test passes with high probability, it does not imply
that all functions are close to linear. What we do prove is that at least one of the functions
must be close to linear. Specifically, we prove the following theorem.

Theorem 3.2. There exists some ε0 > 0 small enough such that for every ε ∈ (0, ε0) and for
all n ∈ N the following holds. Let f1, f2, f3 : {0, 1}n → {0, 1} be three functions. Suppose that
they pass the three functions test with probability 1− ε. Then, there is i ∈ {1, 2, 3} such that fi
is 2ε+O(ε2)-close to some linear function.

3.1 First step towards the proof

Towards proving Theorem 3.1 we show first that if a function passes BLR test with probability
1−ε, then for every linear function L : {0, 1}n → {0, 1} it holds that either the distance between
f and L is either close to 0 or close to 1

2 .

Lemma 3.3. Let f : {0, 1}n → {0, 1} be a boolean function. For every linear function L :
{0, 1}n → {0, 1} let δL = dist(L, f) be the distance of f from L. If Pr[f(x) + f(y) = f(x+ y)] =
1− ε, then for every linear function L we have

• either δL ≤ ε/3 + 8ε2/9

• or 1
2 − (ε/3 + 8ε2/9) ≤ δL ≤ 1

2 + ε.

In particular, if φ : {0, 1}n → {0, 1} is a linear function such that dist(f, φ) /∈ [1
2 − (ε/3 +

8ε2/9), 1
2 + ε], then dist(f, φ) ≤ ε/3 + 8ε2/9.

Proof. Fix a boolean function f : {0, 1}n → {0, 1}, and suppose that it passes linearity test with
probability Pr[f(x) + f(y) = f(x + y)] = 1 − ε. For any linear function L : {0, 1}n → {0, 1}
define BL = {x ∈ {0, 1}n : f(x) 6= L(x)}, and let GL = {0, 1}n \ BL. Using this notation the
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distance between f and L is δL = |BL|
2n , and the rejection probability of the test on f can be

written as

ε = Pr[Test rejects f ] ≥ Pr[x, y, x+ y ∈ BL] + 3 Pr[x ∈ BL, y, x+ y ∈ GL]. (2)

Since Pr[·] ≥ 0, it follow that each of the two terms is smaller than ε. The first term gives us
the following bound.

Pr[x, y, x+ y ∈ BL] ≥ Pr[x ∈ BL]− Pr[x ∈ BL, y /∈ BL]− Pr[x ∈ BL, x+ y /∈ BL]

= Pr[x ∈ BL]− 2 Pr[x ∈ BL, y /∈ BL]

≥ δL − 2δL(1− δL)

≥ δL(2δL − 1).

Solving the inequality ε ≥ Pr[x, y, x+ y ∈ BL] ≥ δL(2δL − 1) for δL ≥ 0 we get

δL ≤
1

2
+ ε. (3)

Similarly, the second term gives us

Pr[x ∈ BL, y, x+ y ∈ GL] = Pr[x ∈ BL]− Pr[x ∈ BL, y ∈ BL]− Pr[x ∈ BL, x+ y ∈ BL]

= Pr[x ∈ BL]− 2 Pr[x ∈ BL, y ∈ BL]

≥ δL − 2δ2
L

≥ δL(1− 2δL).

Solving the quadratic inequality ε ≥ 3 Pr[x ∈ BL, y, x+ y ∈ GL] ≥ 3 · δL(1− 2δL) we get

δL ≤ ε/3 + 8ε2/9 or δL ≥
1

2
− (ε/3 + 8ε2/9). (4)

where we use the fact that
√

1− 8ε/3 ≥ 1− 4ε/3− 32ε2/9 holds for all ε ∈ [0, 1/8]. Lemma 3.3
follows by combining Equation (3) with Equation (4).

3.2 Proof of Theorems 3.1 and 3.2

In this section we prove Theorems 3.1 and 3.2.

Proof. We prove both Theorems 3.1 and 3.2 by induction of n. For the base case for Theorem 3.1
note that if n ≤ log(1/ε)

2 , then ε < 2−2n, and hence for every x, y ∈ {0, 1}n it holds that
f(x)+f(y) = f(x+y). This implies that f is a linear function. For the induction step we prove
the following two lemmas.

Lemma 3.4. Suppose that the statement of Theorem 3.1 holds for n− 1. Then, the statement
of Theorem 3.2 holds for n− 1.

Lemma 3.5. Suppose that for some n ∈ N the statement of Theorem 3.2 holds for n−1. Then,
the statement of Theorem 3.1 holds for n.

Therefore, in order to prove Theorems 3.1 and 3.2 it is enough to prove the two foregoing
lemmas.
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Proof of Lemma 3.4. We prove the lemma for the n-dimensional hypercube, and not for n − 1
as stated in the lemma.

Let f1, f2, f3 : {0, 1}n → {0, 1} be three functions and suppose that Pr[f1(x) + f2(y) =
f3(x+ y)] ≥ 1− ε. Define a function g : {0, 1}n → {0, 1} as g(x) = f1(x) + f2(x) + f3(x). Note
first that g is close to a linear function. Indeed,

Pr[g(x) + g(y) 6= g(x+ y)] = Pr

 f1(x) + f1(y) f1(x+ y)
+ f2(x) + f2(y) 6= + f2(x+ y)
+ f3(x) + f3(y) + f3(x+ y)


= Pr

 f1(x) + f2(y) f3(x+ y)
+ f2(x) + f3(y) 6= + f1(x+ y)
+ f3(x) + f1(y) + f2(x+ y)


≤ 3 Pr[f1(x) + f2(y) 6= f3(x+ y)]

≤ 3ε,

and thus, by Theorem 3.1 for n the function g is (ε+ 8ε2)-close to some linear function.

Claim 3.6. Let φ be a linear function such that dist(g, φ) ≤ ε + 8ε2. Then, the function f1 is
(2ε+O(ε2))-close to either φ or to φ+ 1, where O() hides some absolute constant.

Proof. We note first that Pr[f1(x) + f1(y) = g(x+ y)] ≥ 1− 3ε. Indeed

Pr[f1(x) + f1(y) 6= g(x+ y)] ≤ Pr[(f2(y) + f3(x+ y)) + (f3(x) + f2(x+ y)) = g(x+ y)] + 2ε

≤ Pr[f2(y) + f3(x) = f1(x+ y)] + 2ε

≤ 3ε.

Since φ : {0, 1}n → {0, 1} is a linear function such that dist(g, φ) ≤ ε+ 8ε2, it follows that

Pr
x,y

[f1(x) + φ(x) = f1(y) + φ(y)] ≥ 1− 4ε− 8ε2. (5)

We claim that Equation (5) implies that f1 is either close to φ or close to φ + 1. Indeed, let
f ′1 : {0, 1}n → {0, 1} be defined as f ′1 = f1 + φ. Then

Pr[f ′1(x) = f ′1(y)] ≥ 1− 4ε− 8ε2.

Therefore, by the “collision probability” argument f ′ is close to a constant function. Indeed,
if we denote p = Pr[f ′1(x) = 1], then p2 + (1 − p)2 ≥ 1 − 4ε − 8ε2, which implies that either
p ≤ 2ε+O(ε2) or p ≥ 1−(2ε+O(ε2)). Therefore, f ′1 is (2ε+O(ε2))-close to a constant function,
and hence f1 is (2ε+O(ε2))-close to either φ or to φ+ 1.

Similarly, the function f2 and f3 are also close to either φ or to φ+ 1. It is left to prove that
one of the fi’s must be linear. Indeed, if all fi’s were 2ε+ Cε2 close to φ+ 1, then

1−ε ≤ Pr[f1(x)+f2(y) = f3(x+y)] ≤ Pr[φ(x)+φ(y) = φ(x+y)+1]+3(2ε+Cε2) = 3(2ε+Cε2)

contradicting the assumption that ε is sufficiently small. Therefore, there must be some i ∈
{1, 2, 3} such that fi is (2ε+O(ε2))-close to the linear function φ. This completes the proof of
Lemma 3.4.

We now turn to proof of Lemma 3.5.
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Proof of Lemma 3.5. Let f : {0, 1}n → {0, 1} be a linear function, and suppose that Pr[f(x) +
f(y) = f(x+ y)] ≥ 1− ε. By averaging there are some bits xn, yn ∈ {0, 1} such that if we pick
x′, y′ ∈ {0, 1}n−1 independently then

Pr[f(x′ ◦ xn) + f(y′ ◦ yn) = f((x′ + y′) ◦ (xn + yn))] ≥ 1− ε, (6)

where ◦ denotes the concatenation of strings. Define three functions f1, f2, f3 : {0, 1}n−1 →
{0, 1} be letting

f1(x′) = f(x ◦ xn) f2(x′) = f(x′ ◦ yn) f3(x′) = f(x′ ◦ (xn + yn))

Then, by Equation (6) we have

Pr[f1(x′) + f2(y′) = f3(x′ + y′)] ≥ 1− ε.

By the hypothesis of the lemma it follows that one of the functions fi is (2ε+O(ε2))-close to a
linear function φ : {0, 1}n−1 → {0, 1}. Let us assume for concreteness that f1 is this function.
Our goal is to extend φ to an affine function ψ on {0, 1}n so that Pr[f(x) = ψ(x)] ≥ 3/4−O(ε).
Then, by Lemma 3.3 it will follow that ψ is linear, and f is close to ψ.

Let us assume first that xn = 0. Define ψ randomly by choosing a random bit b ∈ {0, 1} and
letting ψ(x1, . . . , xn) = φ(x1, . . . , xn−1)+ b ·xn. Note that ψ agrees with φ on the subspace {x ∈
{0, 1}n : xn = 0}, and for every x ∈ {0, 1}n such that xn = 1 it holds that Pr[ψ(x) = f(x)] = 1

2 .
Therefore, the expected agreement of f with ψ is

E[agr(f, ψ)] ≥ 1

2
(agr(f1, ψ)) +

1

2
· 1

2
≥ 3/4−O(ε).

The case xn = 1 is similar. Define ψ randomly by choosing a random bit b ∈ {0, 1} and
letting ψ(x1, . . . , xn) = φ(x1, . . . , xn−1) + b · (1 + xn). Similarly, ψ agrees with φ on the affine
subspace {x ∈ {0, 1}n : xn = 1}, and for every x ∈ {0, 1}n such that xn = 0 it holds that
Pr[ψ(x) = f(x)] = 1

2 . Hence the expected agreement of f with ψ is

E[agr(f, ψ)] ≥ 1

2
(agr(f1, ψ)) +

1

2
· 1

2
≥ 3/4−O(ε).

Therefore, if ε is sufficiently small, then by Lemma 3.3 the function ψ is linear, and dist(f, ψ) ≤
ε/3 + 8ε2/9. The lemma follows.

4 Proof of Theorem 1.1 for ε = 0

Before proving Theorem 1.1 we should first convince ourselves that Theorem 1.1 holds in even
the simplest case ε = 0.

Proposition 4.1. Let n ∈ N and let k ≤ n be even. Let f : Lnk → {0, 1} be a boolean function.
Then f passes the Tnk test with probability 1 if and only if f is a linear function.

Proof. Clearly, every linear function passes the test with probability 1. For the other direction,
let H be the set of all functions that pass the Tnk test with probability 1. In order to prove the
proposition we define an injective mapping ψ : H → {0, 1}n−1. This implies that |H| ≤ 2n−1.
By Fact 2.1 we have span〈Lnk〉 = LnEV EN , and hence there are 2n−1 distinct linear functions on
Lnk . This concludes the proof of Proposition 4.1.

In order to define a mapping ψ let us pick for each i ∈ [n− 1] an arbitrary vector z(i) ∈ Lnk
such that z(i)

i = 1 and z(i)
i+1 = 0. Given a function f ∈ H, define ψ(f) ∈ {0, 1}n−1 by setting

(ψ(f))i = f(z(i)) + f(z(i) + vi), where vi = ei + ei+1.2 By the discussion above, it is enough to
prove the following lemma.

2ψ is well defined since z(i) + vi ∈ Ln
k .
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Lemma 4.2. Let ψ : H → {0, 1}n−1 be as above. Then, the mapping ψ is one-to-one.

Proof of Lemma 4.2. It is easy to see that the mapping ψ is a homomorphism from H to
{0, 1}n−1, that is, ψ(f) + ψ(g) = ψ(f + g) for all f, g ∈ H. Thus, in order to prove that ψ
is an injection, it is enough to show that the kernel of ψ is trivial.

Let f ∈ H such that ψ(f) = 0. We claim that f is a constant function, and hence it must be
the constant zero function (since the constant 1 function does not pass Tnk with probability 1).
A first step in this direction is the following claim which says that the definition of the mapping
ψ is, in fact, independent of the choices of z(i).

Claim 4.3. Let i ∈ [n − 1]. For every x, y ∈ Lnk such that xi = yi = 1 and xi+1 = yi+1 = 0 it
holds that f(x) + f(x+ vi) = f(y) + f(y + vi).

Proof. For i ∈ [n− 1] define a graph Gi = (Vi, Ei), where Vi = {x ∈ Lnk : xi = 1, xi+1 = 0}, and
(x, y) ∈ Ei if and only if x+ y ∈ Lnk . It is easy to check that the graph Gi is connected, and so
it is enough to prove that f(x) + f(x+ vi) = f(y) + f(y+ vi) for every two neighboring vertices
(x, y) ∈ Ei. Indeed, since x+ y ∈ Lnk we have

f(x) + f(x+ vi) = (f(x) + f(x+ y)) + (f(x+ y) + f(x+ vi)) = f(y) + f(y + vi),

where the equalities f(x) + f(x+ y) = f(y) and f(x+ y) + f(x+ vi) = f(y + vi) follows from
the assumption that f passes the Tnk test with probability 1. The claim follows.

We also make the following observation.

Observation 4.4. Let x(0) ∈ Lnk be the vector such that x(0)
i = 1 for i ≤ k and x(0)

i = 0 for i > k.
Then, for every y ∈ Lnk there is a sequence x(1), . . . , x(t) ∈ {0, 1}n such that x(j+1) = x(j) + vij
for some ij ∈ [n− 1] and x(t) = y.

We are now ready to prove Lemma 4.2. By Claim 4.3 for every i ∈ [n − 1] and for every
x ∈ Lnk such that xi = 1 and xi+1 = 0 it holds that f(x) + f(x+ vi) = f(z(i)) + f(z(i) + vi) = 0.
Therefore, by the assumption that ψ(f) = 0 we get that f(x) = f(x + vi) for all x ∈ Lnk such
that xi = 1 and xi+1 = 0. By Observation 4.4 it follows that f(x) = f(y) for every x, y ∈ Lnk ,
i.e., f is a constant function, and so must be the constant 0 function.

This completes the proof of Proposition 4.1.

5 Proof of Theorem 1.3: Direct Sum Testing for k = n/2

In this section we prove Theorem 1.3. Recall that for n divisible by 4 the Tnn/2 test is defined as
follows.

Tn
n/2 - Direct Sum Test for k = n/2:

Given an oracle access to f : Lnn/2 → {0, 1} do:

1. Pick x, y ∈ Lnn/2 uniformly at random so that x+ y ∈ Lnn/2.

2. Accept if and only if f(x) + f(y) = f(x+ y).
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Theorem 1.3 restated: Let n ∈ N be such that n ≡ 0 (mod 4), and let ε > 0. For all
functions f : Lnn/2 → {0, 1} if Pr[f(x) + f(y) = f(x+ y)] > 1− ε, then there exists a string a ∈
{0, 1}n such that Prx∈Ln

k
[f(x) =

∑
i∈[n] aixi] > 1−δ, where δ = δ(ε) = ε

3 · (1+O(
√
γn))+O(ε2),

and γn = Õ(n−1/2) is the quantity from Lemma 1.5.

As explained in Section 1.3 we prove a stronger three functions version of this theorem.

Direct Sum Test for three functions:
Given an oracle access to three functions f1, f2, f3 : Lnn/2 → {0, 1} do:

1. Select x, y ∈ Lnn/2 such that x+ y ∈ Lnn/2.

2. Accept if and only if f1(x) + f2(y) = f3(x+ y).

Theorem 1.4 restated: Let n ∈ N be such that n ≡ 0 (mod 4), and let ε > 0. For all
functions f1, f2, f3 : Lnn/2 → {0, 1} if Pr[f1(x) + f2(y) = f3(x + y)] > 1 − ε, then there exists
i ∈ {1, 2, 3} and a string a ∈ {0, 1}n such that Prx∈Ln

k
[fi(x) =

∑
i∈[n] aixi] > 1 − δ, where

δ = δ(ε) = 4ε+O(ε2).

The proof is very similar to the proof of Theorems 3.1 and 3.2 from Section 3

Proof of Theorem 1.3. We prove Theorem 1.3 by induction of n, where in each step we increase
n by 4, since the theorem assumes that n ≡ 0 (mod 4). The base case n ≤ log(1/ε)

2 holds by
Proposition 4.1. For the induction step we prove the following two lemmas.

Lemma 5.1. Suppose that the statement of Theorem 1.3 holds for some n− 4 ∈ N. Then, the
statement of Theorem 1.4 holds for n− 4.

Lemma 5.2. Suppose that for some n ∈ N the statement of Theorem 1.4 holds for n−4. Then,
the statement of Theorem 1.3 holds for n.

These two lemmas, clearly, prove Theorem 1.3.

The rest of this section is devoted to proving Lemma 5.1 and Lemma 5.2. But first we prove
an analogue of Lemma 3.3, saying that every function f that passes the test with probability
close to 1 is either close to being linear or has distance close to 1/2 from every linear function.

Lemma 5.3. Let n ∈ N be such that n ≡ 0 (mod 4). Let f : Lnn/2 → {0, 1} be a boolean
function. For every linear function L : Lnn/2 → {0, 1} let δL = dist(L, f) be the distance of f
from L. If f passes the Tnn/2 test with probability 1− ε, then for every linear function L we have

• either δL ≤ ε
3 · (1 +O(

√
γn)) +O(ε2)

• 1
2 −

ε
3 · (1 +O(

√
γn))−O(ε2) ≤ δL ≤ 1

2 + ε+O(
√
γn).

In particular, if φ : Lnn/2 → {0, 1} is a linear function such that dist(f, φ) significantly deviates
from 1

2 , then f is O(ε)-close to φ.

Proof. The proof follows the lines of the proof of Lemma 3.3. The only difficulty comes from the
dependence between the choices of x and y. We overcome the difficulty by using Lemma 1.5.

Similarly to the proof of Lemma 3.3 for every linear function L : Lnn/2 → {0, 1} we define
BL = {x ∈ Lnn/2 : f(x) 6= L(x)}, and let GL = Lnn/2 \ BL. Using this notation the distance
between f and L is δL = BL

( n
n/2)

, and the rejection probability of the test on f is equal to

ε ≥ Pr[f(x) + f(y) 6= f(x+ y)] ≥ Pr[x, y, x+ y ∈ BL] + 3 Pr[x ∈ BL, y, x+ y ∈ GL]. (7)
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Since Pr[·] ≥ 0, it follow that each of the two terms is smaller than ε. We use Lemma 1.5 to
bound from below each term on the RHS separately. The first term is lower bounded as follows.

Pr[x, y, x+ y ∈ BL] ≥ Pr[x ∈ BL]− Pr[x ∈ BL, y /∈ BL]− Pr[x ∈ BL, x+ y /∈ BL]

= Pr[x ∈ BL]− 2 Pr[x ∈ BL, y /∈ BL]

[Using Lemma 1.5] ≥ δL − 2δL(1− δL)− 4δL(1− δL)
√
γn.

Solving the quadratic inequality ε ≥ Pr[x, y, x + y ∈ BL] ≥ δL(2δL − 1) − 4δL(1 − δL)
√
γn for

δL ≥ 0 we get

δL ≤
1

2
+ ε+O(

√
γn). (8)

Similarly, the second term gives us

ε/3 ≥ Pr[x ∈ BL, y, x+ y ∈ GL] = Pr[x ∈ BL]− Pr[x ∈ BL, y ∈ BL]− Pr[x ∈ BL, x+ y ∈ BL]

= Pr[x ∈ BL]− 2 Pr[x ∈ BL, y ∈ BL]

[Using Lemma 1.5] ≥ δL − 2δ2
L − 4δL(1− δL)

√
γn.

Solving the quadratic inequality ε/3 ≥ (δL − 2δ2
L − 2δL(1− δL)

√
γn) we get

δL ≤
ε

3
· (1 +O(

√
γn)) +O(ε2) or δL ≥

1

2
− ε

3
−O(ε2)−O(

√
γn), (9)

and the lemma follows.

We now turn to the proof of Lemma 5.1

Proof of Lemma 5.1. The proof of Lemma 5.1 follows by the exactly the same arguments of the
proof of Lemma 3.4.

The only difference is in the argument near the end of Claim 3.6, where we have a linear
function φ that satisfies

Pr
x,y

[f1(x) + φ(x) = f1(y) + φ(y)] ≥ 1− 4ε− 8ε2.

(see Equation (5)). In our settings the choices of x and y are not independent, and are chosen
such that |x ∩ y| = n/4. This corresponds to choosing a random edge (x, y) in the graph Jn
described in Section 8. Replacing the “collision probability” argument with Corollary 8.4 we get
that f1 is (4ε+O(ε2))-close either to φ or to φ+ 1.

The rest is exactly the same as in the proof of Lemma 3.4.

Next we prove of Lemma 5.2.

Proof of Lemma 5.2. Let f : Lnn/2 → {0, 1} be a boolean function, and suppose that f passes
the Tnn/2 test with probability 1−ε. We want to prove that f is close to some linear function. By
Lemma 5.3 it is enough to prove that there is a linear function φ such that dist(f, φ) significantly
deviates from 0.5.

Note that the distribution on the pairs x, y ∈ Ln/2 in the test can be equivalently described
as follows.

1. Pick four distinct coordinates I = (i1, i2, i3, i4) ∈ [n]4.

2. Pick x′, y′ ∈ {0, 1}[n]\I of weight (n− 4)/2 each such that |x′ ∩ y′| = (n− 4)/4.
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3. Extend x′ to x ∈ Ln/2 by letting xI = (1, 1, 0, 0).

4. Extend y′ to y ∈ Ln/2 by letting yI = (1, 0, 1, 0).

If f passes the test with probability 1 − ε, then, by averaging, there is some 4-tuple I ∈ [n]4

such that conditioned on this choice of I the test passes with probability 1− ε. Let us assume
for simplicity that I = (1, 2, 3, 4). Then

Pr
x′,y′

[f(1100 ◦ x′) + f(1010 ◦ y′) = f(0110 ◦ (x′ + y′))] > 1− ε, (10)

where x′, y′ are chosen as in step 2, and ◦ denotes the concatenation of two strings.
Define three function f1, f2, f3 : Ln−4

(n−4)/2 → {0, 1} by letting

f1(x′) = f(1100 ◦ x′) f2(x′) = f(1010 ◦ x′) f3(x′) = f(0110 ◦ x′).

Then, by Equation (10) it follows that the function f1, f2, f3 pass the 3-function test with
probability at least 1− ε. By the hypothesis the statement of Theorem 1.4 holds for n− 4, and
thus one of the functions fi is close to some linear function φ(I) : Ln−4

(n−4)/2 → {0, 1}. That is, for
a random x′ ∈ Ln−4

(n/4)/2 we have

Pr[f(1100 ◦ x′) = φ(I)(x′)] > 1−O(ε).

Next, we claim that φ(I) can be extended to linear function that agrees with f on significantly
more that 0.5 fraction of the points.

Claim 5.4. The function φ(I) can be extended to an affine function φ : Lnn/2 → {0, 1} such that
Prx∈Ln

n/2
[f(x) = φ(x)] > 0.5 + (1−O(ε))/32.

Therefore, since dist(f, φ) significantly deviates from 0.5 by Lemma 5.3 the function φ is
linear, and dist(f, φ) ≤ ε

3 · (1 +O(
√
γn)) +O(ε2). This completes the proof of Lemma 5.2.

We now return to the proof of Claim 5.4. The proof goes by choosing a random extension
of φ(I) similarly to the argument in the proof of Lemma 3.5.

Proof of Claim 5.4. Let {vi = ei + ei+1 : i = 1, . . . , n − 1} be a basis of the subspace LnEV EN .
By Fact 2.1 we have Lnn/2 ⊆ LnEV EN , and hence every x ∈ Lnn/2 can be written as a linear
combination of vi’s.

Consider the set U = {1100 ◦ x′ : x′ ∈ Ln−4
(n−4)/2} ⊆ Lnn/2. Note that every element of x ∈ U

can be written as x = v1 +
∑n−1

i=5 civi for some ci ∈ {0, 1}. Since φ(I) is a linear function on
U (or rather on Ln−4

(n−4)/2) there are some coefficients (ai ∈ {0, 1} : i = 5, · · · , n − 1) such that
φ(I)(x) = φ(I)(v1 +

∑n−1
i=5 civi) =

∑n−1
i=5 ai · ci. Let φ be a random linear extension of φ(I) by

choosing coefficients a1, . . . , a4 uniformly at random, and letting φ(
∑n−1

i=1 civi)
def
= a1+

∑n−1
i=1 ai ·ci

(the free coefficient a1 is also the multiplicand in the term a1 · c1).3 Also, for every x ∈ Lnn/2 \U
it holds that Pr[φ(x) = f(x)] = 1

2 . Therefore, the expected agreement of φ with f is

E[agr(f, φ)] ≥ (1−O(ε)) · |U |
Lnn/2

+
1

2
· (1− |U |

Lnn/2
) ≥ 0.5 + (1/2−O(ε))

|U |
Lnn/2

≥ 0.5 + (1− ε)/32,

where the last inequality uses the fact that |U |
Ln
n/2
≥ 1/16. Therefore, there is a choice of the

random coefficients a1, . . . , a4 ∈ {0, 1} such that Pr[f(x) = φ(x)] ≥ 0.5+(1−ε)/32, as required.

3φ is indeed an extension of φ(I) since every x ∈ U is of the form x = v1 +
∑n−1

i=5 civi, and thus φ(x) =∑n−1
i=5 ai · ci = φ(I)(x).
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6 Direct Sum Testing for General k < n/2

In this section we prove Theorem 1.1 for all even k < n/2. The proof works by combining the
direct sum tester for k = n/2 from Theorem 1.3 with a recent result of Dinur and Steurer [DS13]
on direct product testing. They consider the following test for DPnk .

DPTn
k,k′ - Direct Product Consistency Test:

Given an oracle access to a function F : Lnk → {0, 1}
k do:

1. Select x ∈ Lnk uniformly at random.

2. Select y ∈ Lnk such that |x ∩ y| = k′.

3. Accept iff for every i ∈ x ∩ y it holds that F (x)i = F (y)i.

The following theorem asserts that DPTnk,k′ is indeed a test for the class DPnk .

Theorem 6.1 ([DS13]). For all p ∈ (0, 1) and for all n, k ∈ N the test DPTnk,pk is a O(ε)-test
for the class DPnk , where the constant in the O() notation depends only on p, but not on k or n.

We use Theorem 6.1 together with Theorem 1.3 in order to prove Theorem 1.1 for all even
k < n/2. Before reading the statement of the theorem it could be helpful to recall the definition
of a δ-test (see Definition 2.5).

Theorem 6.2. Let n ∈ N, and let k < n/2 be even. Suppose that T 2k
k is a δ1-test for the

class LIN2k
k , and suppose that DPTn−1

2k−1, 3k
2
−1

is a δ2-test for the class DPn2k, for some functions

δ1, δ2 : (0, 1] → (0, 1] such that δ1(·) is a non-decreasing linear function. There exists ε0 > 0
such that for all ε ∈ (0, ε0) and for all n, k ∈ N the test Tnk is a δ-test for the class LINn

k , where
δ(ε) = 2(δ1(ε) + δ2(ε2)) and ε2 = O(ε).

Plugging in δ1(ε1) = O(ε1) from Theorem 1.3 and δ2(ε2) = O(ε2) from Theorem 6.1 we get
Theorem 1.1 with δ(ε) = O(ε) for all even values of k ≤ n/2.

Proof. The distribution of the three queries made by the test Tnk can be viewed as first selecting
a random u ∈ Ln2k, and then selecting x, y ∈ Luk conditioned on x + y ∈ Luk , where Luk is the
collection of all x ∈ Lnk such that x ⊆ u (when we identify subsets of [n] with their characteristic
vectors). Therefore, if we condition on u, then the distribution on x, y, x+ y is identical to the
distribution of T 2k

k which we analyzed in previous sections (where we ignore the zero padding of
x, y, x+ y outside u).

Let f be a function that passes Tnk with probability 1− ε. For each u ∈ Ln2k let

εu = Pr[Tnk rejects u] = Pr
x,y,x+y∈Lu

k

[f(x) + f(y) 6= f(x+ y)] .

We clearly have Eu[εu] = ε. Since Luk is isomorphic to L2k
k except that the strings in Luk have

a padding of zeros outside u, we can invoke Theorem 1.3 to deduce the existence of a string
σ(u) ∈ {0, 1}2k for which

Pr
x∈Lu

k

[f(x) =
∑
i∈u

σ
(u)
i xi mod 2] ≥ 1− δ1(εu)

The next natural step would be to construct a direct product function that assigns each u with
σ(u), and then to apply the direct product testing theorem. However, we first must resolve an
ambiguity that stems from the fact that since k is even, both σ(u) and its complement give
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rise to the same linear function on Luk , as explained in Fact 2.3. We resolve this ambiguity by
considering only those u that contain a fixed coordinate i0 ∈ [n], and by letting the string σ(u)

be the one that assigns 0 to the coordinate i0. The coordinate i0 ∈ [n] is chosen so that

Pr[Tnk accepts f |i0 ∈ u] ≥ 1− ε,

where such a coordinate is guaranteed to exist by averaging.
Let Ln2k,0 denote the set of elements in Ln2k that contain i0. Now, we define a new function

F : Ln2k,0 → {0, 1}
2k by letting

F (u) = σ(u) ∀u ∈ Ln2k,0.

We claim that F passes the following test DPT0 with high probability.

1. Select u ∈ Ln2k,0 uniformly at random.

2. Select v ∈ Ln2k,0 uniformly at random conditioned on |u ∩ v| = 3k
2 .

3. Accept if and only if F (u)j = F (v)j for every j ∈ u ∩ v.

The following two claims complete the proof of Theorem 6.2.

Claim 6.3. The function F passes the test DPT0 with probability 1 − ε2 for ε2 = O(ε). This
implies that there exists a string a ∈ {0, 1}n such that

Pr
u∈Ln

2k,0

[F (u) = au] > 1− δ2(ε2),

where au denotes the restriction of a to the coordinates j ∈ [n] such that uj = 1.

The following claim asserts that f has a large agreement with the global linear function
represented by the string a ∈ {0, 1}n from Claim 6.3.

Claim 6.4. Let a ∈ {0, 1}n be the string from Claim 6.3. Then

Pr
x∈Ln

k

[f(x) =
∑
j∈x

aj ] > 1− 2(δ1(ε) + δ2(ε)).

This concludes the proof of Theorem 6.2.

Proof of Claim 6.3. Let u, v ∈ Ln2k be the choices of the test DPT0 such that |u ∩ v| = 3k
2 , and

suppose that the DPT0 test rejects on this pair, i.e., F (u)u∩v 6= F (v)u∩v. Hence, by Fact 2.3,
since i0 ∈ u∩v and F (u)i0 = F (v)i0 , the linear functions φ(u), φ(v) defined by φ(u)(x) =

∑
i σ

(u)
i xi

and φ(v)(x) =
∑

i σ
(u′)
i xi are not identical on Lu∩vk . Therefore, by Proposition 2.4, it follows

that for a random x ∈ Lu∩vk we have Prx∈Lu∩v
k

[φ(u)(x) 6= φ(v)(x)] ≥ c for some absolute constant
c > 0.

Let ε2 denote the probability that the test DPT0 rejects. Then

Pr
u,v∼DPT0
x∈Lu∩v

k

[φ(u)(x) = f(x) = φ(v)(x)] ≤ Pr[F (u)|u∩v = F (v)|u∩v]

+ Pr[
∑
j∈x

F (u)j =
∑
j∈x

F (v)j and F (u)|u∩v 6= F (v)|u∩v]

≤ (1− ε2) + ε2 · (1− c) = 1− cε2. (11)
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On the other hand, we claim that

Eu,v∼DPT0 Pr[φ(u)(x) = f(x) = φ(v)(x)] ≥ Eu,v[1− δ1(εu)− δ1(εv)] = 1− 2Eu[δ1(εu)]. (12)

Indeed, for any u ∈ Ln2k we have Pr[f(x) = φ(u)(x)] ≥ 1 − δ1(εu), and similarly for v. Equa-
tion (12) follows by union bound on u and v. Taking expectation over all choices u, v of the test
DPT0, we get the inequality.

It remains to recall that δ1(·) is a non-decreasing linear function, and so Eu[δ1(εu)] ≤
δ1(Eu[εu]) ≤ δ1(ε), where the last inequality is because the choice of i0 to ensures that Eu∈Ln

2k,0
[εu] ≤

Eu∈Ln
2k

[εu] = ε. Combining (11) and (12) we get ε2 ≤ 2δ1(ε)/c = O(ε), as required.
We have shown that the test DPT0 accepts on F with probability 1 − O(ε). We can now

ignore the i0’th coordinate in all u ∈ Ln2k,0 and think of F as a function F : Ln−1
2k−1 → {0, 1}

2k−1,
and so, the test DPT0 above corresponds to the direct product consistency test with parameters
(n− 1, 2k− 1, 3k

2 − 1). Since F passes the test with probability 1− ε2, by the assumption of the
theorem there exists a string a ∈ {0, 1}n such that

Pr
u∈Ln

2k,0

[F (u) = au] > 1− δ2(ε2),

as required.

Proof of Claim 6.4. Let a ∈ {0, 1}n be the string from Claim 6.3 satisfying Pru∈Ln
2k,0

[F (u) =

au] > 1− δ2(ε2). We first show that if we first pick u ∈ Ln2k,0 and then pick x ∈ Luk at random,
then with high probability we have f(x) =

∑
j∈x aj . More precisely, we show that

Pr
u∈Ln

2k,0

x∈Lu
k

[f(x) =
∑
j∈x

aj ] > 1− (δ1(ε) + δ2(ε2)). (13)

In order to prove (13) recall that Prx∈Lu
k
[f(x) = φ(u)(x) =

∑
j∈x F (u)j ] ≥ 1−δ1(εu) for each

u ∈ Ln2k,0. So in expectation over u ∈ Ln2k,0 we have

Pr
u∈Ln

2k,0

x∈Lu
k

[f(x) = φ(u)(x) =
∑
j∈x

F (u)j ] ≥ 1− Eu∈Ln
2k,0

[δ1(εu)] ≥ 1− δ1(Eu[εu]) ≥ 1− δ1(ε).

By the assumption on a for random u ∈ Ln2k,0 we have F (u) = au with probability at least
1− δ2(ε2). Therefore, by union bound we get that

Pr
u∈Ln

2k,0

x∈Lu
k

[f(x) =
∑
j∈x

F (u)j =
∑
j∈x

aj ] ≥ 1− (δ1(ε) + δ2(ε2)),

which implies (13).
To obtain the statement of Claim 6.4 the distribution of x needs to be uniform in Lnk .

Nonetheless, the distribution x in (13) can be written as a convex combination of the uniform
distribution on Lnk with probability 0.5, and another distribution that puts more weight on x’s
that contain i0. Thus, Equation (13) implies that if we pick x ∈ Lnk uniformly at random, then

Pr[f(x) =
∑
j∈x

aj ] > 1− 2(δ1(ε) + δ2(ε2)),

and the claim follows.
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7 Testing Tensor Powers

In this section we show that for k � n, Theorem 1.1 also implies a tester for tensors. A function
f : [n]k → {−1, 1} is a tensor power if there is some b : [n]→ {−1, 1} such that f = b⊗k, i.e.

f(z1, . . . , ik) = b(z1) · b(z2) · · · b(zk).

We will use the following notation. For two tuples u, v ∈ [n]k/2 we denote their concatenation
by uv ∈ [n]k. For a tuple z ∈ [n]k and a permutation π : [k] → [k] we let z ◦ π ∈ [n]k be the
permuted k-tuple (zπ(1), zπ(2), . . . , zπ(k)) ∈ [n]k. For convenience, we repeat the tensor power
test described in the introduction.

The Tensor Power Test - TPnk
Given an oracle access to a function f : [n]k → {−1, 1} do:

1. Pick u, v, w ∈ [n]k/2 independently uniformly at random.

2. Pick three permutations π1, π2, π3 : [k]→ [k] independently at random.

3. Accept if and only if f(uv ◦ π1) · f(vw ◦ π2) = f(uw ◦ π3).

We prove the following theorem.

Theorem 1.2 restated: Suppose n, k ∈ N and ε > 0 are such that k2/n = o(ε). Let f :
[n]k → {−1, 1} be a function that passes the test TPnk with probability at least 1− ε. Then there
is some b : [n]→ {−1, 1} such that

Pr
z∈[n]k

[f(z) = b⊗k(z) = b(z1) · b(z2) · · · b(zk)] ≥ 1−O(ε).

Proof. The proof is by reduction to Theorem 1.1. Given a function f : [n]k → {−1, 1}, we define
g :
([n]
k

)
→ {0, 1}. The idea is to define g(S) so that (−1)g(S) = f(a), where a is some ordering of

the subset S. However, since f might give different values to different orderings, this is not well
defined, and instead we consider all possible orderings of S. We write S = {a1 < a2 < · · · < ak}
and let (S ◦ π) := (aπ(1), . . . , aπ(k)) for every permutation π : [k]→ [k]. We define g(S) to equal
1 if Prπ[f(S ◦ π) = −1] > 1/2, and let g(S) = 0 otherwise. In other words

(−1)g(S) = majorityπf(S ◦ π),

where majority stands for the most common value. We claim that the function g passes the
direct sum test with probability 1−O(ε). Indeed, the queries x, y, x+y chosen by the direct sum
test distribution Tnk , are equivalently described as choosing three disjoint k/2-element subsets
U, V,W ⊆ [n] and setting x = U ∪ V , y = V ∪W and then x+ y = (U ∪ V )∆(V ∪W ) = U ∪W
(where we identify subsets on [n] with their indicator vectors). We couple this choice in the
direct sum test with a choice of uv = (UV ◦ π1), vw = (VW ◦ π2), uw = (UW ◦ π3) in f , where
π1, π2, π3 are random permutations.

Since TPnk randomizes the order, whenever g(x)+g(y) 6= g(x+y) there is constant probability
that TPnk fails by making random choices that coincide with the majority (this occurs for all
three queries with probability at least 1/8). Therefore, the probability of rejection of TPnk on f
is at least

Pr[TPnk rejects f ] ≥ Ω(1) · Pr[Tnk rejects g]− Pr[COLLISION],

20



where COLLISION denotes the even that at least one of the u, v, w ∈ [n]k has the same value
on different coordinates. By the assumption that k2/n = o(ε) it follows that Pr[COLLISION] =
o(ε), and hence the direct sum test rejects on g with probability at most O(ε).

We deduce from Theorem 1.1 that g is 1−O(ε) close to a direct sum, i.e., that there is some
a ∈ {0, 1}n such that PrS [g(S) =

∑
i∈S ai mod 2] ≥ 1−O(ε).

Note that the probability over S ∈
([n]
k

)
and π : [k]→ [k] that f(S ◦π) 6= (−1)g(S) is at most

O(ε), as otherwise this would cause TPnk to reject with too high a probability.
By the assumption that k2/n = o(ε) for a random z ∈ [n]k no COLLISION happens with

probability 1 − o(ε), and hence such z can be chosen by picking a random S ∈
([n]
k

)
and π :

[k]→ [k], and setting z = (S ◦ π). Therefore,

Pr
z∈[n]k

[f(z) = (−1)
∑

i∈[k] azi ] ≥ (1− o(ε)) Pr
z←S,π

[f(z) = (−1)
∑

i∈S ai ]− o(ε) = 1−O(ε),

and so, for b ∈ {−1, 1}n defined as bi = (−1)ai we have f(z) = b(z1) · b(z2) · · · b(zk) with
probability 1−O(ε). This completes the proof of the theorem.

8 Vertex Expansion of the Johnson Graph

In order to analyze the direct sum test Tnn/2 it will be convenient to consider the following graph,
which is a natural interpretation of the Johnson scheme.

Definition 8.1. For n ∈ N such that n ≡ 0 (mod 4) define a graph Jn = (Vn, En) by letting
V = Lnn/2, and setting an edge between two vertices x and y if and only if |x ∩ y| = n/4.

Remark The degree of the graph is almost linear. Indeed, if we denote by N =
(
n
n/2

)
= Θ( 2n√

n
)

the number of vertices in Jn, then every vertex Jn has degree
(n/2
n/4

)2
= Θ(2n

n ) = Θ( N√
log(N)

).

Note that we can describe linearity test in terms of the graph Jn as follows.

Tnn/2 test - restated in terms of Jn
Given an oracle access to a function f : Vn → {0, 1} do:

1. Select a random triangle {x, y, x+ y} ⊆ Vn in Jn.

2. Accept if and only if f(x) + f(y) = f(x+ y).

Below we claim that the mixing time of Jn is 2. More precisely, if we start from an arbitrary
vertex x ∈ Vn and perform a random walk x, y, z of length 2, then the distribution of z is
Õ(1/

√
n) close to the uniform distribution on Vn, i.e., it is almost independent of the starting

vertex x.

Lemma 8.2. For n ∈ N such that n ≡ 0 (mod 4) consider the graph Jn = (Vn, En). Fix a
vertex x ∈ Vn. Let y ∈ N(x) be a random neighbor of x, and let z ∈ N(y) be a random neighbor
of y. Then, the distribution of z is Õ(1/

√
n)-close in total variation distance to the uniform

distribution on Vn.

Proof. Since the graph Jn is vertex transitive, we may assume that x = 11 . . . 1︸ ︷︷ ︸
n/2

00 . . . 0︸ ︷︷ ︸
n/2

. Then

the distance of the distribution of z from the uniform distribution is

distTV (z, U) =
1

2

∑
w∈Ln

n/2

∣∣∣∣∣Pr[z = w]− 1(
n
n/2

)∣∣∣∣∣
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We partition the sum according to the weight of w on the coordinates {1, . . . , n/2}. Then

distTV (z, U) =
1

2

n/2∑
i=0

∣∣∣∣∣∣Pr[|z[1...n/2]| = i]−

(
n/2
i

)( n/2
n/2−i

)(
n
n/2

)
∣∣∣∣∣∣

Let y ∈ N(x) be a neighbor of x. Then, y has n/4 many 1’s in x, and n/4 many 1’s outside x.
Assume for concreteness that y = 11 . . . 1︸ ︷︷ ︸

n/4

00 . . . 0︸ ︷︷ ︸
n/4

11 . . . 1︸ ︷︷ ︸
n/4

00 . . . 0︸ ︷︷ ︸
n/4

. Then, in order to choose the

1’s of z ∈ N(y) we do the following.

1. Pick j coordinates from {1, . . . , n/4}.

2. Pick i− j coordinates from {n/4 + 1, . . . , n/2}.

3. Pick n/4− j coordinates from {n/2 + 1, . . . , 3n/4}.

4. Pick n/4− (i− j) coordinates from {3n/4 + 1, . . . , n}.

Therefore Pr[|z[1...n/2]| = i] =
∑i

j=0

(n/4
j )(n/4

i−j)(
n/4

n/4−j)(
n/4

n/4−(i−j))

(n/2
n/4)

2 , and so

distTV (z, U) =
1

2

n/2∑
i=0

∣∣∣∣∣∣
i∑

j=0

(
n/4
j

)2(n/4
i−j
)2(n/2

n/4

)2 −
(
n/2
i

)2(
n
n/2

)
∣∣∣∣∣∣ .

The following proposition completes the proof of Lemma 8.2.

Proposition 8.3. For all n ∈ N we have

n/2∑
i=0

∣∣∣∣∣∣
i∑

j=0

(
n/4
j

)2(n/4
i−j
)2(n/2

n/4

)2 −
(
n/2
i

)2(
n
n/2

)
∣∣∣∣∣∣ = Õ(1/

√
n).

We defer the proof of the proposition to Appendix B.

As a corollary, we conclude that Jn is a vertex-expander in the following strong sense.

Lemma 1.5 restated. For n ∈ N such that n ≡ 0 (mod 4) let γn = Õ(n−1/2) be the distance
of z from the uniform distribution in Lemma 8.2. Let A ⊆ Vn be a subset of the vertices of Jn
of size |A| = α|V |. Pick an edge (x, y) ∈ En of Jn uniformly at random. Then

1. Pr[x ∈ A, y /∈ A] = α(1− α)± 2α(1− α) · √γn.

2. Pr[x, y ∈ A] = α2 ± 2α(1− α) · √γn.

That is, the vertex expansion of Jn is very close to that of a random graph/complete graph.

Proof. Denote by τ = |E[A,A]|
|En| the fraction of edges in the cut (A,A). Note that τ is equal to

τ = 2α · Ex∈A
[

degA(x)

deg(x)

]
, (14)

where degA(x) = |N(x) ∩A| denotes the number of neighbors of x in A.
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For the first item, let us pick a random vertex x0 ∈ Vn, and perform a random walk x0, x1, x2

of length 2. Let EAA ∈ {0, 1, 2} be a random variable counting the number of times that the
walk crosses the cut (A,A). Then

E[EAA] = 2τ.

On the other hand

E[EAA] = Pr[x0 ∈ A, x2 ∈ A] + Pr[x0 ∈ A, x2 ∈ A] (15)
+2 Pr[x0, x2 ∈ A, x1 ∈ A] + 2 Pr[x0, x2 ∈ A, x1 ∈ A].

Using Lemma 8.2 we have

Pr[x0 ∈ A, x2 ∈ A] = Pr[x0 ∈ A] · Pr[x2 ∈ A|x0 ∈ A] ≥ α · (1− α− γn).

By reversibility, we also have Pr[x0 ∈ A, x2 ∈ A] = Pr[x0 ∈ A, x2 ∈ A].
Next we claim that Pr[x0, x2 ∈ A, x1 ∈ A] ≥ τ2

4α . Indeed, in order to estimate Pr[x0, x2 ∈
A, x1 ∈ A] we may pick a vertex x1 ∈ Vn uniformly at random, and then pick two neighbors
x0, x2 ∈ N(x1) independently. Then

Pr[x0, x2 ∈ A, x1 ∈ A] = Pr[x1 ∈ A] Pr[x0, x2 ∈ A|x1 ∈ A]

= α · Ex∈A

[(
degA(x)

degV (x)

)2
]

[Cauchy-Schwartz inequality] ≥ α · Ex∈A
[

degA(x)

degV (x)

]2

[using Equation (14)] =
τ2

4α
.

Analogously, we have Pr[x0, x2 ∈ A, x1 ∈ A] ≥ τ2

4(1−α) . Therefore, using Equation (15) we get

2τ ≥ 2α(1− α− γn) + τ2(
1

2α
+

1

2(1− α)
).

Solving the quadratic inequality (in τ) gives us

(τ − 2α(1− α))2 ≤ 4α2(1− α) · γn.

By symmetry, we may change the roles of A and A to get

(τ − 2α(1− α))2 ≤ 4α(1− α)2 · γn.

The statement of the first item follows from the fact that Pr[x ∈ A, y /∈ A] = τ/2.
For the second item of the lemma we have

Pr[x, y ∈ A] = Pr[x ∈ A]− Pr[x ∈ A, y /∈ A].

Plugging the estimation from the first item, the lemma follows.

Corollary 8.4. Let A ⊆ Vn be a set of vertices of density α = |A|
|V | . Suppose that if we pick a

random edge (x, y) ∈ E then the probability that one endpoint is in A and the other is not in A
is at most ε for some ε > 0 sufficiently small. Then either α < ε+O(ε2) or α > 1− (ε+O(ε2)).

Proof. Suppose that n ∈ N be large enough such that γn < 1/16. (Otherwise the statement is
trivial for sufficiently large multiplicative constant in the O(ε) term.) By Lemma 1.5 we have

1− ε < Pr[x, y ∈ A] + Pr[x, y ∈ A] ≤ α2 + (1− α)2 ± 4α(1− α) · √γn.

This is equivalent to α(1 − α) < ε
2−4
√
γn

< ε. Solving the quadratic inequality in α gives the
desired result.
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8.1 Testing Tensor Products

It is natural to extend the above result to a tester for tensor products, i.e. for a tester deciding
if a given function is equal to b1 ⊗ b2 ⊗ · · · ⊗ bk. For this, we propose the following test

The Tensor product Test - TProdnk
Given an oracle access to a function f : [n]k → {−1, 1} do:

1. Pick u1, u2 ∈ [n]k independently at random.

2. Pick v1, v2 ∈ [n]k independently at random by setting

3. Pick three permutations π1, π2, π3 : [k]→ [k] independently at random.

4. Accept if and only if f(uv ◦ π1) · f(vw ◦ π2) = f(uw ◦ π3).

9 A Different Direct Sum Tester

For odd values of k, as well as for the case k > 2
3n one can see that no 3-query test can succeed.

In this section we present a different linearity test for functions f : Lnk → {0, 1} that works for
all k ≤ n, and makes O(max(nk ,

n
n−k )) queries. Therefore, the test makes constant number of

queries if k
n is bounded away from 0 and 1. The test has a very simple analysis and does not

rely on direct product test from Theorem 1.1. A similar result is already known from the work
of Kopparty and Saraf [KS09].

As mentioned in the introduction, Kopparty and Saraf [KS09] extend the BLR linearity
testing result to a large family of distributions on the hypercube, which they call “uniformly-
correlatable distributions”. That is, for a distribution µ on {0, 1}n the goal is to test whether a
function f : {0, 1}n → {0, 1} is close to some linear function, and the distance between functions
is defined as dist(f, g) = Prx∼µ[f(x) 6= g(x)]. We may give the following interpretation to
their test. Given a function f : {0, 1}n → {0, 1} the test constructs a probabilistic oracle
g : {0, 1}n → {0, 1} such that if we want to query g in a uniformly random point x, it is enough
to make a small number of queries to f on inputs r1, . . . , rt such that the marginal distribution
of each ri is equal to µ. Then, they simulate a linearity test on the (randomized) function g with
respect to the uniform distribution, and if the test passes with high probability, they deduce
that g is close to a linear function, and also f is close to a linear function.

Our tester is similar to the tester of Kopparty and Saraf, but the analysis we provide seems
to differ from theirs. In particular, our proof also constructs a probabilistic oracle as above, but
does not rely on the fact that the uniform distribution on Lnk is “uniformly-correlatable”, and
only uses the fact that every element in span〈Lnk〉 is a sum of O(max(nk ,

n
n−k )) vectors of Lnk .

Theorem 9.1. Let p ∈ (0, 1), let n ∈ N be sufficiently large such that pn ∈ N, and let k = pn.
There exists a test Tp such that given an oracle access to a function f : Lnk → {0, 1} makes
max(O(1

p), O( 1
1−p)) queries to f , and satisfies the following conditions.

1. If f is linear, then Tp accepts with probability 1.

2. For all ε > 0, if Pr[Tp accepts f ] > 1 − ε, then there exists a string a ∈ {0, 1}n such that
Prx∈Ln

k
[f(x) =

∑
i∈[n] aixi] > 1− δ, where δ = δ(ε) is such that δ(ε)→ 0 as ε→ 0.

Proof. Let us assume for simplicity that p = k/n ≤ 0.5. (The case p > 0.5 is handled analo-
gously.) Then, our goal is to design a linearity test for Lnk that makes O(n/k) queries. Recall
(Fact 2.1) that if k is even, then span〈Lnk〉 = LnEV EN , and otherwise span〈Lnk〉 = {0, 1}n. Fur-
thermore, note that for every x ∈ span〈Lnk〉 there are t = d1/pe vectors x1, . . . , xt ∈ Lnk such
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that
∑

i xi = x. This simple observation allows us to define the following test Tp that makes
3t = 3d1/pe queries.

Tp - Direct Sum Test for Lnk :
Given an oracle access to a function f : Lnk → {0, 1} do:

Set t = d1/pe. With probability 1/2 apply the subroutine T 1, and with probability 1/2 apply
the subroutine T 2, where T 1 and T 2 are defined as follows.

T 1:

1. Pick x, y ∈ span〈Lnk〉 independently uniformly at random. Let z = x+ y.

2. Pick x1, . . . , xt ∈ Lnk such that
∑

i xi = x.

3. Pick y1, . . . , yt ∈ Lnk such that
∑

i yi = y.

4. Pick z1, . . . , zt ∈ Lnk such that
∑

i zi = z.

5. Accept if and only if
∑

i f(xi) +
∑

i f(yi) +
∑

i f(zi) = 0.

T 2:

1. Pick x ∈ Lnk , and pick y ∈ span〈Lnk〉 independently uniformly at random. Let z = x+ y.

2. Pick y1, . . . , yt ∈ Lnk such that
∑

i yi = y.

3. Pick z1, . . . , zt ∈ Lnk such that
∑

i zi = z.

4. Accept if and only if f(x) +
∑

i f(yi) +
∑

i f(zi) = 0.

We interpret our test as follows. Given a function f : Lnk → {0, 1} the test constructs a
probabilistic oracle to a function G : span〈Lnk〉 → {0, 1} such that whenever we want to query
G in a uniformly random point x, we query f on a constant locations x1, . . . , xt that sum up to
x, and set G(x) =

∑
i f(xi).

Using this notation the test T 1 can be interpreted as testing whether G(x)+G(y) = G(x+y)
for uniformly random chosen x, y ∈ span〈Lnk〉. Similarly, the test T 2 can be interpreted as testing
whether f(x) +G(y) = G(x+ y) for uniformly random chosen x ∈ Lnk and y ∈ span〈Lnk〉.

Next, we define a function g : span〈Lnk〉 → {0, 1} to be the “rounding” of G. That is, for all
x ∈ span〈Lnk〉 we set g(x) = 1 if Pr[G(x) = 1] > 0.5, and g(x) = 0. Note that the domain of g
has a subgroup structure. We claim below that g passes the linearity test with high probability.
Using [BLR93] this will imply that g is close to some linear function.

Claim 9.2. Pick x, y ∈ span〈Lnk〉 independently uniformly at random. Then

Pr
x,y

[g(x) + g(y) = g(x+ y)] > 1− 4ε.

Therefore, there exists a linear function φ : span〈Lnk〉 → {0, 1}, such that dist(g, φ) = O(ε).

Proof. For every x ∈ span〈Lnk〉 we measure how decisive G is on x by letting εx = Pr[G(x) 6=
g(x)]. We first show that for uniformly random x ∈ span〈Lnk〉 we have Ex[εx] < ε.

Indeed, let x ∈ span〈Lnk〉. For any fixed values of y ∈ span〈Lnk〉, b2 = G(y), and b3 = G(x+y)
we have PrG[G(x) = b2+b3] ≤ 1−εx (the randomness is only over the choice of G(x)). Therefore
by taking the expectation we have

1− ε ≤ Pr[G(x) +G(y) = G(x+ y)] = Ex
[

Pr
G,y

[G(x) = G(y) +G(x+ y)]

]
≤ Ex[1− εx],
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This implies that Ew[εw] < ε.
Since each of the query of T 1 is uniformly distributed in span〈Lnk〉, it follows that with

probability at least 1 − 3ε, we have G(x) = g(x), G(y) = g(y), and G(x + y) = g(x + y). This
completes the first part of the claim.

Since the domain of g is a subgroup, it follows from [BLR93] that there exists a linear function
φ : span〈Lnk〉 → {0, 1}, such that dist(g, φ) = O(ε). The claim follows.

Next, we use the assumption that f passes the test T 2 with high probability in order to
prove that f is O(ε)-close to the restriction of φ to Lnk .

Claim 9.3. Let φ be the linear function from Claim 9.2. Then f is O(ε)-close to the restriction
of φ to Lnk .

Proof. Consider the oracle G as defined above, and note that the test T 2 checks that f(x) +
G(y) = G(y + x) for x ∈ Lnk ‘ and y ∈ span〈Lnk〉 chosen uniformly at random.

Note that by Claim 9.2 for a uniformly random y ∈ span〈Lnk〉 we have Pr[G(y) = g(y) =
φ(y)] > 1−O(ε), and similarly Pr[G(x+ y) = g(x+ y) = φ(x+ y)] > 1−O(ε).

Since by the assumption we have Pr[f(x) = G(y) + G(x + y)] > 1 − ε, it follows that a
random x ∈ Lnk with probability 1−O(ε) we have f(x) = φ(y) +φ(x+ y). By linearity of φ this
implies that

Pr
x

[f(x) = φ(x)] > 1−O(ε),

as required.

This completes the proof of Theorem 9.4.

Note that the proof of Theorem 9.4 is more general, and generalizes to all subsets V ⊆ {0, 1}n
such that each element of span〈V 〉 can be obtained by summing a small number of elements
from V .

Theorem 9.4. Let n ∈ N, and let V ⊆ {0, 1}n. Suppose that for every x ∈ span〈V 〉 there are t
elements x(1), . . . , x(t) ∈ V such that

∑t
i=1 x

(i) = x. Then, there exists a test TV such that given
an oracle access to a function f : V → {0, 1} makes 3t queries to f , and satisfies the following
conditions.

1. If f is linear on V , then TV accepts with probability 1.

2. For all ε > 0, if Pr[TV accepts f ] > 1− ε, then there exists a string a ∈ {0, 1}n such that
Prx∈V [f(x) =

∑
i∈[n] aixi] > 1− δ, where δ = δ(ε) is such that δ(ε)→ 0 as ε→ 0.

10 Open Problems and Future Work

Extending the proof to low degree polynomials. A natural generalization of linearity
testing is whether a given function is close to a low degree polynomial. Alon et al. [AKK+05],
and later Bhattacharyya et al. [BKS+10], studied this question for functions defined on the
hypercube. Do these results extend to functions defined only on Lnk? That is, given a function
f : Lnk → {0, 1}, test whether there is a low degree polynomial p : {0, 1}n → {0, 1} such that
f(x) = p(x) for most points x ∈ Lnk .

Reducing the Direct Product Testing Problem to Direct Sum Testing. We showed
a direct product tester implies the existence of a direct sum tester. Is there a reduction going
in the other direction? That is, given the fact we have a direct sum tester does it imply the
existence of a direct product tester.
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The Tensor Product Testing Interpretation. In Theorem 1.2 we proved tensor power
testing for k = o(

√
n). It would be interesting to extended to the theorem for all values of k.

Another interesting question in this direction is to test whether a given function f : [n]k →
{−1, 1} is close to a tensor product of k possibly distinct functions b(1) ⊗ · · · ⊗ b(k).

Low acceptance probability regime. Linearity testing was analyzed in the low acceptance
regime (see [BCH+96, KLX07]), where the goal is to understand functions that pass the test
with probability which is slightly larger compared to the probability that a random function
passes it. It is shown in [BCH+96] that if f defined on the hypercube passes the BLR test with
probability slightly above 0.5, then it has a non trivial correlation with some linear function.
Understanding the analogous question in the Lnk setting seems very interesting. Interestingly,
for small values of k, probability 0.5 is not the correct threshold to look at. See Appendix C for
details.

Derandomized Direct Sum Testing As explained in the introduction, one of the motiva-
tions for the direct sum testing question came from the potential of constructing new PCPs
that rely on direct sums as opposed to direct products which incur an increase in alphabet size.
Since the direct sum encoding of an n-bit string has length nk, it is not very efficient, and a
derandomized version of the direct sum test is well called for. Similar results for direct products
are already known [Din07, IJKW10, DM11] and can provide a good starting point. This ques-
tion is closely related to the recent work of Kaufman and Lubotzky [KL14], who discovered an
interesting connection between the high dimensional expanders and property testing.
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A Proof of Proposition 2.4

Proof. It is clearly enough to prove that for any non-constant linear function φ : Lnk → {0, 1} it
holds that c ≤ Prx∈Ln

k
[φ(x) = 1] ≤ 1− c.

Note first that trivially Pr [φ(x) = 1] ∈ (c1, 1 − c1) where c1 = 1

( n
pn)

> exp(−Ω(n)). We

prove below that Pr [φ(x) = 1] ∈ (c2, 1− c2) for c2 ≥ min{ p
4(1−p) ,

1−p
4p } − exp(−Ω(n)) where the

constant in the Ω() notation depends only on p. Taking c = max{c1, c2} clearly implies the
statement of the proposition.

Let s ∈ {0, 1}n be a string that represents the function φ, i.e., φ(x) =
∑

i∈[n] sixi (mod 2)
for all x ∈ Lnk , and let m = |s|. Note that we may assume without loss of generality that
1 ≤ m ≤ n/2.4 Observe that the probability over x ∈ Lnk that φ(x) = 1 equals to the probability

4Otherwise, if m > n/2, then we may consider the function φ̄ defined by s̄ = (1 − s1, . . . , 1 − sn) ∈ {0, 1}n,
and then φ̄(x) = φ(x) + k (mod 2) for all x ∈ Ln

k , and so we have either Pr[φ̄(x) = 1] = Pr[φ(x) = 1] or
Pr[φ̄(x) = 1] = 1− Pr[φ(x) = 1].
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that for a fixed string y ∈ Lnk and a random string σ ∈ Lnm it holds that
∑

i∈[n] σiyi = 1 (mod 2).
Therefore, it is enough to prove that for a random σ ∈ Lnm it holds that

Pr

∑
i∈[n]

σiyi = 1 (mod 2)

 ∈ (c, 1− c).

Let us first choose m− 1 coordinates of σ at random, and denote them by σ′ ∈ Lnm−1.

Claim A.1. With probability at least 1 − exp(−Ω(n)) we have |{i ∈ [n] \ σ′ : i ∈ y}| ≥ pn/4,
and |{i ∈ [n] \ σ′ : i /∈ y}| ≥ pn/4 ≥ (1− p)n/4.

Proof. If m < min{pn/2, (1 − p)n/2}, then by the assumption that |y| = pn the claim holds
trivially. Otherwise, by standard concentration bounds (see, e.g., [Hoe63]) with probability
1−exp(−Ω(n)) we have |σ′∩y| ≤ 1.5pm < 3pn/4 and |σ′∩([n]\y)| ≤ 1.5(1−p)m < 3(1−p)n/4
which clearly implies the claim.

Hence, if we let `1 = |{i ∈ [n] \ σ′ : i ∈ y}| and `2 = |{i ∈ [n] \ σ′ : i /∈ y}|, then with high
probability we have `1 ∈ (pn/4, pn) and `2 ∈ ((1− p)n/4, (1− p)n)). Therefore, the probability
that the last bit of σ is chosen to be in y is between p

4(1−p) and 1−p
4p . This completes the proof

of the proposition.

B Proof of Proposition 8.3

Proposition 8.3 restated: For all n ∈ N we have

2n∑
i=0

∣∣∣∣∣∣
(

2n
i

)2(
4n
2n

) − i∑
j=0

(
n
j

)2( n
i−j
)2(

2n
n

)2
∣∣∣∣∣∣ = Õ(1/

√
n).

Proof. By symmetry between i and 2n− i it is enough to bound the sum running from 0 to n.
Note also that we may consider only i ≥ n−

√
n log(n). Indeed, we have

i∑
j=0

(
n
j

)2( n
i−j
)2(

2n
n

)2 ≤

 i∑
j=0

(
n
j

)(
n
i−j
)(

2n
n

)
2

=

((
2n
i

)(
2n
n

))2

,

and hence, the contribution of i ≤ n−
√
n log(n) is upper bounded by

n−
√
n log(n)∑
i=0

(
2n
i

)2(
4n
2n

) +

(
2n
i

)2(
2n
n

)2 = 2−Ω(log2(n)) � Õ(1/
√
n).

Similarly, the contribution of the terms where j /∈ [n/2−
√
n log(n), n/2+

√
n log(n)] is 2−Ω(log2(n)) �

Õ(1/
√
n). Therefore, it is enough to bound the sum

n∑
i=n−

√
n log(n)

∣∣∣∣∣∣
(

2n
i

)2(
4n
2n

) − n/2+
√
n log(n)∑

j=n/2−
√
n log(n)

(
n
j

)2( n
i−j
)2(

2n
n

)2
∣∣∣∣∣∣ (16)
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In order to do it we use the following two estimations of binomial coefficients, which follow from
Stirling’s formula (see, e.g., [Odl95]). For all n the binomial coefficient

(
2n
n

)
can be estimated as(

n

bn/2c

)
=

2n√
πn/2

·
(

1±O(
1

n
)

)
. (17)

and for all k, n such that |k − n/2| < 2
√
n log(n) the binomial coefficient

(
n
k

)
can be estimated

as (
n

k

)
=

(
n

bn/2c

)
· exp

(
−(n/2− k)2

n/2

)
·
(

1±O(
log(n)√

n
)

)
, (18)

where in both estimates the O() notation hides some absolute constant independent of k and n.

This immediately gives us an estimate on the term (2ni )
2

(4n2n)

Claim B.1. For all n sufficiently large and for i ∈ [n−
√
n log(n), n] we have(

2n
i

)2(
4n
2n

) =

√
2

πn
· exp

(
−2(n− i)2

n

)
·
(

1± Õ(
1√
n

)

)
.

Proof. (
2n
i

)2(
4n
2n

) =

(
2n
n

)2 · exp
(
−2(n−i)2

n

)
(

4n
2n

) · (1± Õ(
1√
n

))

=
24n/(πn)

24n/
√

2πn
· exp

(
−2(n− i)2

n

)
· (1± Õ(

1√
n

))

=

√
2

πn
· exp

(
−2(n− i)2

n

)
· (1± Õ(

1√
n

)).

Now we move to the sum
∑

j (nj)
2
( n
i−j)

2

(2nn )
2 .

Claim B.2. For all n sufficiently large, for i ∈ [n−
√
n log(n), n] and for j ∈ [n/2−

√
n log(n), n/2+√

n log(n)] we have∑
j

(
n
j

)2( n
i−j
)2(

2n
n

)2 =

√
2

πn
· exp

(
−2(n− i)2

n

)
·
(

1± Õ(
1√
n

)

)
.

Proof. By the assumption that i ∈ [n−
√
n log(n), n] and j ∈ [n/2−

√
n log(n), n/2+

√
n log(n)]

we have (i− j) ∈ [n/2− 2
√
n log(n), n/2 +

√
n log(n)], and so using Equation (18) we get(

n

j

)(
n

i− j

)
=

(
n

n/2

)2

· exp

(
−(n/2− j)2 + (n/2− (i− j))2

n/2

)
· (1± Õ(

1√
n

))

=

(
n

n/2

)2

· exp

(
−4(j − i/2)2

n

)
· exp

(
−(n− i)2

n

)
· (1± Õ(

1√
n

)).

Therefore,

∑
j

(
n
j

)2( n
i−j
)2(

2n
n

)2 =
∑
j

(
n
n/2

)4(
2n
n

)2 · exp

(
−8(j − i/2)2

n

)
· exp

(
−2(n− i)2

n

)
· (1± Õ(

1√
n

))

=
4

πn
· exp

(
−2(n− i)2

n

)
·
∑
j

exp

(
−8(j − i/2)2

n

)
· (1± Õ(

1√
n

)).
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Note that although the sum
∑

j exp
(
−8(j−i/2)2

n

)
runs over j from n/2 −

√
n log(n) to n/2 +

√
n log(n), we may extend it the sum from −∞ to +∞ by losing (1+O(2− log2(n))) multiplicative

factor. We estimate the sum from −∞ to +∞ by the moving to the corresponding integral.

∞∑
j=−∞

exp

(
−8(j − i/2)2

n

)
=

∞∑
j=−∞

exp

(
−8j2

n

)
=

∫ ∞
−∞

exp

(
−8x2

n

)
dx+O(1) =

√
πn

8
+O(1).

Finally, we get

∑
j

(
n
j

)2( n
i−j
)2(

2n
n

)2 =
4

πn
· exp

(
−2(n− i)2

n

)
·
(√

πn

8
+O(1)

)
· (1± Õ(

1√
n

))

=

√
2

πn
· exp

(
−2(n− i)2

n

)
· (1± Õ(

1√
n

)),

as required.

Combining Claims B.1 and B.2 the sum in Equation (16) can be bounded by

n∑
i=n−

√
n log(n)

∣∣∣∣∣∣
(

2n
i

)2(
4n
2n

) −∑
j

(
n
j

)2( n
i−j
)2(

2n
n

)2
∣∣∣∣∣∣ ≤

√
2

πn
·
∑
i

exp

(
−2(n− i)2

n

)
·
∣∣∣∣(1 + Õ(

1√
n

))− (1− Õ(
1√
n

))

∣∣∣∣
≤

√
2

πn
· Õ(

1√
n

) ·
n∑

i=n−
√
n log(n)

1

= Õ(
1√
n

).

This completes the proof of Proposition 8.3.

C Low Error Acceptance Probability Regime

In this section we give a randomized construction of a function f : Ln4 → {0, 1} that passes the
Tn4 test with probability larger than 0.51, but has negligible correlation with all linear functions.
The function is defined as follows.

Let g : Ln2 → {0, 1} be a random function. For every x ∈ Ln4 pick x1, x2 ∈ Ln2 at random
such that x = x1 + x2 and let f(x) = g(x1) + g(x2).

Claim C.1. Pr[Tn4 accepts f ] > 0.51.

Proof. Pick x, y ∈ Ln4 at random according to the distribution of Tn4 , and let z = x + y. If the
partitions x = x1 + x2 and y = y1 + y2 and z = z1 + z2 are consistent, i.e., if x1 = y1, x2 = z1

and y2 = z2, then by definition of f it satisfies f(x) + f(y) = f(x + y), and so the test clearly
accepts. This happens with some constant probability bounded away from zero (taking 1/33 is
enough).

On the other hand, f has only negligible correlation with any linear function. This can be
shown by proving that for each linear function the correlation is small with high probability,
and then use union bound.
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